
Open Watcom C/C++

User’s Guide

Version 1.8

Notice of Copyright
Copyright 2002-2008 the Open Watcom Contributors. Portions Copyright 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

ii

Preface
Open Watcom C is an implementation of ISO/ANSI 9899:1990 Programming Language C. The standard
was developed by the ANSI X3J11 Technical Committee on the C Programming Language. In addition to
the full C language standard, the compiler supports numerous extensions for the Intel 80x86-based personal
computer environment. The compiler is also partially compliant with the ISO/IEC 9899:1999
Programming Language C standard.

Open Watcom C++ is an implementation of the Draft Proposed International Standard for Information
Systems Programming Language C++ (ANSI X3J16, ISO WG21). In addition to the full C++ language
standard, the compiler supports numerous extensions for the Intel 80x86-based personal computer
environment.

Open Watcom is well known for its language processors having developed, over the last decade, compilers
and interpreters for the APL, BASIC, COBOL, FORTRAN and Pascal programming languages. From the
start, Open Watcom has been committed to developing portable software products. These products have
been implemented on a variety of processor architectures including the IBM 370, the Intel 8086 family, the
Motorola 6809 and 68000, the MOS 6502, and the Digital PDP11 and VAX. In most cases, the tools
necessary for porting to these environments had to be created first. Invariably, a code generator had to be
written. Assemblers, linkers and debuggers had to be created when none were available or when existing
ones were inadequate.

Over the years, much research has gone into developing the "ultimate" code generator for the Intel 8086
family. We have continually looked for new ways to improve the quality of the emitted code, never being
quite satisfied with the results. Several major revisions, including some entirely new approaches to code
generation, have ensued over the years. Our latest version employs state of the art techniques to produce
very high quality code for the 8086 family. We introduced the C compiler in 1987, satisfied that we had a
C software development system that would be of major benefit to those developing applications in C for the
IBM PC and compatibles.

The Open Watcom C/C++ User’s Guide describes how to use Open Watcom C/C++ on Intel 80x86-based
personal computers with DOS, Windows, Windows NT, or OS/2.

Acknowledgements
This book was produced with the Open Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing
text annotated with tags. These tags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on a variety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for a variety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result is type-set quality copy
containing integrated text and graphics.

The Plum Hall Validation Suite for C/C++ has been invaluable in verifying the conformance of the Open
Watcom C/C++ compilers to the ISO C Language Standard and the Draft Proposed C++ Language
Standard.

Many users have provided valuable feedback on earlier versions of the Open Watcom C/C++ compilers and
related tools. Their comments were greatly appreciated. If you find problems in the documentation or have
some good suggestions, we would like to hear from you.

July, 1997.

iii

Trademarks Used in this Manual
DOS/4G and DOS/16M are trademarks of Tenberry Software, Inc.

High C is a trademark of MetaWare, Inc.

IBM Developer’s Toolkit, Presentation Manager, and OS/2 are trademarks of International Business
Machines Corp. IBM is a registered trademark of International Business Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows NT is a
trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender and 386|DOS-Extender are trademarks of Phar Lap Software, Inc.

QNX is a registered trademark of QNX Software Systems Ltd.

UNIX is a registered trademark of The Open Group.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

iv

Table of Contents
Open Watcom C/C++ User’s Guide ... 1

1 About This Manual ... 3

2 Open Watcom C/C++ Compiler Options ... 5
2.1 Compiler Options - Summarized Alphabetically ... 5
2.2 Compiler Options - Summarized By Category .. 9

2.2.1 Target Specific ... 9
2.2.2 Debugging/Profiling .. 10
2.2.3 Preprocessor ... 10
2.2.4 Diagnostics .. 11
2.2.5 Source/Output Control ... 11
2.2.6 Code Generation .. 12
2.2.7 80x86 Floating Point ... 13
2.2.8 Segments/Modules ... 13
2.2.9 80x86 Run-time Conventions .. 13
2.2.10 Optimizations ... 14
2.2.11 C++ Exception Handling ... 14
2.2.12 Double-Byte/Unicode Characters .. 15
2.2.13 Compatibility with Microsoft Visual C++ ... 15
2.2.14 Compatibility with Older Versions of the 80x86 Compilers 15

2.3 Compiler Options - Full Description ... 15
2.3.1 Target Specific ... 15
2.3.2 Debugging/Profiling .. 22
2.3.3 Preprocessor ... 25
2.3.4 Diagnostics .. 27
2.3.5 Source/Output Control ... 31
2.3.6 Code Generation .. 38
2.3.7 80x86 Floating Point ... 42
2.3.8 Segments/Modules ... 46
2.3.9 80x86 Run-time Conventions .. 51
2.3.10 Optimizations ... 55
2.3.11 C++ Exception Handling ... 59
2.3.12 Double-Byte/Unicode Characters .. 61
2.3.13 Compatibility with Microsoft Visual C++ ... 62
2.3.14 Compatibility with Older Versions of the 80x86 Compilers 62

3 The Open Watcom C/C++ Compilers .. 63
3.1 Open Watcom C/C++ Command Line Format .. 63
3.2 Open Watcom C/C++ DLL-based Compilers .. 64
3.3 Environment Variables .. 64
3.4 Open Watcom C/C++ Command Line Examples .. 65
3.5 Benchmarking Hints .. 67
3.6 Compiler Diagnostics ... 69
3.7 Open Watcom C/C++ #include File Processing .. 70
3.8 Open Watcom C/C++ Preprocessor ... 73
3.9 Open Watcom C/C++ Predefined Macros ... 74
3.10 Open Watcom C/C++ Extended Keywords ... 79
3.11 Based Pointers .. 86

3.11.1 Segment Constant Based Pointers and Objects ... 87
3.11.2 Segment Object Based Pointers ... 88
3.11.3 Void Based Pointers .. 88

v

Table of Contents
3.11.4 Self Based Pointers .. 89

3.12 The __declspec Keyword ... 90
3.13 The Open Watcom Code Generator ... 94

4 Precompiled Headers .. 97
4.1 Using Precompiled Headers ... 97
4.2 When to Precompile Header Files ... 97
4.3 Creating and Using Precompiled Headers ... 97
4.4 The "/fh[q]" (Precompiled Header) Option .. 98
4.5 Consistency Rules for Precompiled Headers ... 98

5 The Open Watcom C/C++ Libraries .. 101
5.1 Open Watcom C/C++ Library Directory Structure .. 101
5.2 Open Watcom C/C++ C Libraries ... 102
5.3 Open Watcom C/C++ Class Libraries ... 104
5.4 Open Watcom C/C++ Math Libraries .. 105
5.5 Open Watcom C/C++ 80x87 Math Libraries ... 106
5.6 Open Watcom C/C++ Alternate Math Libraries .. 107
5.7 The NO87 Environment Variable .. 107
5.8 The Open Watcom C/C++ Run-time Initialization Routines ... 108

16-bit Topics ... 111

6 16-bit Memory Models ... 113
6.1 Introduction .. 113
6.2 16-bit Code Models .. 113
6.3 16-bit Data Models ... 113
6.4 Summary of 16-bit Memory Models .. 114
6.5 Tiny Memory Model .. 114
6.6 Mixed 16-bit Memory Model .. 114
6.7 Linking Applications for the Various 16-bit Memory Models .. 115
6.8 Creating a Tiny Memory Model Application ... 115
6.9 Memory Layout .. 116

7 16-bit Assembly Language Considerations .. 119
7.1 Introduction .. 119
7.2 Data Representation ... 119

7.2.1 Type "char" .. 119
7.2.2 Type "short int" .. 120
7.2.3 Type "long int" .. 120
7.2.4 Type "int" ... 120
7.2.5 Type "float" ... 120
7.2.6 Type "double" .. 121

7.3 Memory Layout .. 122
7.4 Calling Conventions for Non-80x87 Applications .. 123

7.4.1 Passing Arguments Using Register-Based Calling Conventions 123
7.4.2 Sizes of Predefined Types ... 124
7.4.3 Size of Enumerated Types ... 125
7.4.4 Effect of Function Prototypes on Arguments .. 125
7.4.5 Interfacing to Assembly Language Functions ... 126
7.4.6 Functions with Variable Number of Arguments ... 129

vi

Table of Contents
7.4.7 Returning Values from Functions .. 129

7.5 Calling Conventions for 80x87-based Applications .. 132
7.5.1 Passing Values in 80x87-based Applications .. 132
7.5.2 Returning Values in 80x87-based Applications .. 133

8 16-bit Pragmas .. 135
8.1 Introduction .. 135
8.2 Using Pragmas to Specify Options .. 136
8.3 Using Pragmas to Specify Default Libraries .. 137
8.4 The ALIAS Pragma (C Only) .. 138
8.5 The ALLOC_TEXT Pragma (C Only) .. 139
8.6 The CODE_SEG Pragma ... 139
8.7 The COMMENT Pragma ... 140
8.8 The DATA_SEG Pragma ... 141
8.9 The DISABLE_MESSAGE Pragma (C Only) .. 141
8.10 The DUMP_OBJECT_MODEL Pragma (C++ Only) ... 142
8.11 The ENABLE_MESSAGE Pragma (C Only) .. 142
8.12 The ENUM Pragma .. 142
8.13 The ERROR Pragma .. 143
8.14 The EXTREF Pragma .. 143
8.15 The FUNCTION Pragma ... 144
8.16 The INCLUDE_ALIAS Pragma .. 145
8.17 Setting Priority of Static Data Initialization (C++ Only) ... 145
8.18 The INLINE_DEPTH Pragma (C++ Only) ... 146
8.19 The INLINE_RECURSION Pragma (C++ Only) ... 147
8.20 The INTRINSIC Pragma ... 147
8.21 The MESSAGE Pragma ... 148
8.22 The ONCE Pragma .. 148
8.23 The PACK Pragma ... 149
8.24 The READ_ONLY_FILE Pragma ... 150
8.25 The TEMPLATE_DEPTH Pragma (C++ Only) .. 150
8.26 The WARNING Pragma (C++ Only) .. 151
8.27 Auxiliary Pragmas .. 151

8.27.1 Specifying Symbol Attributes ... 151
8.27.2 Alias Names ... 152
8.27.3 Predefined Aliases ... 154

8.27.3.1 Predefined "__cdecl" Alias ... 154
8.27.3.2 Predefined "__pascal" Alias .. 155
8.27.3.3 Predefined "__watcall" Alias .. 155

8.27.4 Alternate Names for Symbols .. 156
8.27.5 Describing Calling Information ... 157

8.27.5.1 Loading Data Segment Register .. 159
8.27.5.2 Defining Exported Symbols in Dynamic Link Libraries 159
8.27.5.3 Defining Windows Callback Functions .. 160
8.27.5.4 Forcing a Stack Frame .. 160

8.27.6 Describing Argument Information .. 160
8.27.6.1 Passing Arguments in Registers .. 161
8.27.6.2 Forcing Arguments into Specific Registers .. 163
8.27.6.3 Passing Arguments to In-Line Functions .. 164
8.27.6.4 Removing Arguments from the Stack ... 164
8.27.6.5 Passing Arguments in Reverse Order .. 165

8.27.7 Describing Function Return Information .. 165

vii

Table of Contents
8.27.7.1 Returning Function Values in Registers .. 166
8.27.7.2 Returning Structures .. 167
8.27.7.3 Returning Floating-Point Data .. 168

8.27.8 A Function that Never Returns .. 169
8.27.9 Describing How Functions Use Memory .. 169
8.27.10 Describing the Registers Modified by a Function ... 173
8.27.11 An Example ... 174
8.27.12 Auxiliary Pragmas and the 80x87 ... 175

8.27.12.1 Using the 80x87 to Pass Arguments ... 175
8.27.12.2 Using the 80x87 to Return Function Values 178
8.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls 178

32-bit Topics ... 179

9 32-bit Memory Models ... 181
9.1 Introduction .. 181
9.2 32-bit Code Models .. 181
9.3 32-bit Data Models ... 181
9.4 Summary of 32-bit Memory Models .. 182
9.5 Flat Memory Model ... 182
9.6 Mixed 32-bit Memory Model .. 182
9.7 Linking Applications for the Various 32-bit Memory Models .. 183
9.8 Memory Layout .. 183

10 32-bit Assembly Language Considerations .. 185
10.1 Introduction .. 185
10.2 Data Representation ... 185

10.2.1 Type "char" .. 185
10.2.2 Type "short int" .. 186
10.2.3 Type "long int" .. 186
10.2.4 Type "int" ... 186
10.2.5 Type "float" ... 186
10.2.6 Type "double" .. 187

10.3 Memory Layout .. 188
10.4 Calling Conventions for Non-80x87 Applications .. 189

10.4.1 Passing Arguments Using Register-Based Calling Conventions 189
10.4.2 Sizes of Predefined Types ... 190
10.4.3 Size of Enumerated Types ... 191
10.4.4 Effect of Function Prototypes on Arguments .. 191
10.4.5 Interfacing to Assembly Language Functions ... 192
10.4.6 Using Stack-Based Calling Conventions ... 195
10.4.7 Functions with Variable Number of Arguments ... 198
10.4.8 Returning Values from Functions .. 198

10.5 Calling Conventions for 80x87-based Applications .. 200
10.5.1 Passing Values in 80x87-based Applications .. 201
10.5.2 Returning Values in 80x87-based Applications .. 202

11 32-bit Pragmas .. 203
11.1 Introduction .. 203
11.2 Using Pragmas to Specify Options .. 204
11.3 Using Pragmas to Specify Default Libraries .. 205

viii

Table of Contents
11.4 The ALIAS Pragma (C Only) .. 206
11.5 The ALLOC_TEXT Pragma (C Only) .. 207
11.6 The CODE_SEG Pragma ... 207
11.7 The COMMENT Pragma ... 208
11.8 The DATA_SEG Pragma ... 209
11.9 The DISABLE_MESSAGE Pragma (C Only) .. 209
11.10 The DUMP_OBJECT_MODEL Pragma (C++ Only) ... 210
11.11 The ENABLE_MESSAGE Pragma (C Only) .. 210
11.12 The ENUM Pragma .. 210
11.13 The ERROR Pragma .. 211
11.14 The EXTREF Pragma .. 211
11.15 The FUNCTION Pragma ... 212
11.16 The INCLUDE_ALIAS Pragma .. 213
11.17 Setting Priority of Static Data Initialization (C++ Only) ... 213
11.18 The INLINE_DEPTH Pragma (C++ Only) ... 214
11.19 The INLINE_RECURSION Pragma (C++ Only) ... 215
11.20 The INTRINSIC Pragma ... 215
11.21 The MESSAGE Pragma ... 216
11.22 The ONCE Pragma .. 216
11.23 The PACK Pragma ... 217
11.24 The READ_ONLY_FILE Pragma ... 218
11.25 The TEMPLATE_DEPTH Pragma (C++ Only) .. 218
11.26 The WARNING Pragma (C++ Only) .. 219
11.27 Auxiliary Pragmas .. 219

11.27.1 Specifying Symbol Attributes ... 219
11.27.2 Alias Names ... 220
11.27.3 Predefined Aliases ... 222

11.27.3.1 Predefined "__cdecl" Alias ... 223
11.27.3.2 Predefined "__pascal" Alias .. 223
11.27.3.3 Predefined "__stdcall" Alias ... 223
11.27.3.4 Predefined "__syscall" Alias ... 224
11.27.3.5 Predefined "__watcall" Alias (register calling convention) 224
11.27.3.6 Predefined "__watcall" Alias (stack calling convention) 225

11.27.4 Alternate Names for Symbols .. 225
11.27.5 Describing Calling Information ... 227

11.27.5.1 Loading Data Segment Register .. 228
11.27.5.2 Defining Exported Symbols in Dynamic Link Libraries 229
11.27.5.3 Forcing a Stack Frame .. 229

11.27.6 Describing Argument Information .. 230
11.27.6.1 Passing Arguments in Registers .. 230
11.27.6.2 Forcing Arguments into Specific Registers 233
11.27.6.3 Passing Arguments to In-Line Functions .. 233
11.27.6.4 Removing Arguments from the Stack ... 234
11.27.6.5 Passing Arguments in Reverse Order .. 234

11.27.7 Describing Function Return Information .. 235
11.27.7.1 Returning Function Values in Registers .. 235
11.27.7.2 Returning Structures .. 236
11.27.7.3 Returning Floating-Point Data .. 237

11.27.8 A Function that Never Returns .. 238
11.27.9 Describing How Functions Use Memory .. 239
11.27.10 Describing the Registers Modified by a Function ... 242
11.27.11 An Example ... 243

ix

Table of Contents
11.27.12 Auxiliary Pragmas and the 80x87 ... 244

11.27.12.1 Using the 80x87 to Pass Arguments ... 244
11.27.12.2 Using the 80x87 to Return Function Values 247
11.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls 247

In-line Assembly Language .. 249

12 In-line Assembly Language .. 251
12.1 In-line Assembly Language Default Environment .. 251
12.2 In-line Assembly Language Tutorial ... 252
12.3 Labels in In-line Assembly Code ... 257
12.4 Variables in In-line Assembly Code .. 257
12.5 In-line Assembly Language using _asm .. 259
12.6 In-line Assembly Directives and Opcodes ... 260

Structured Exception Handling in C ... 265

13 Structured Exception Handling .. 267
13.1 Termination Handlers .. 267
13.2 Exception Filters and Exception Handlers ... 274
13.3 Resuming Execution After an Exception ... 275
13.4 Mixing and Matching _try/_finally and _try/_except .. 276
13.5 Refining Exception Handling ... 278
13.6 Throwing Your Own Exceptions ... 281

Embedded Systems ... 283

14 Creating ROM-based Applications .. 285
14.1 Introduction .. 285
14.2 ROMable Functions ... 285
14.3 System-Dependent Functions .. 286
14.4 Modifying the Startup Code ... 287
14.5 Choosing the Correct Floating-Point Option ... 288

Appendices .. 289

A. Use of Environment Variables ... 291
A.1 FORCE .. 291
A.2 INCLUDE ... 291
A.3 LIB .. 291
A.4 LIBDOS .. 292
A.5 LIBWIN .. 292
A.6 LIBOS2 ... 292
A.7 LIBPHAR .. 293
A.8 NO87 ... 293
A.9 PATH .. 293
A.10 TMP ... 294
A.11 WATCOM ... 295

x

Table of Contents
A.12 WCC .. 295
A.13 WCC386 .. 295
A.14 WCL .. 296
A.15 WCL386 .. 296
A.16 WCGMEMORY .. 296
A.17 WD .. 297
A.18 WDW .. 297
A.19 WLANG .. 298
A.20 WPP ... 298
A.21 WPP386 ... 298

B. Open Watcom C Diagnostic Messages ... 301
B.1 Warning Level 1 Messages ... 302
B.2 Warning Level 2 Messages ... 307
B.3 Warning Level 3 Messages ... 308
B.4 Warning Level 4 Messages ... 310
B.5 Error Messages .. 310
B.6 Informational Messages ... 330
B.7 Pre-compiled Header Messages .. 331
B.8 Miscellaneous Messages and Phrases ... 332

C. Open Watcom C++ Diagnostic Messages .. 333
C.1 Diagnostic Messages ... 334

D. Open Watcom C/C++ Run-Time Messages ... 525
D.1 Run-Time Error Messages .. 525
D.2 errno Values and Their Meanings ... 526
D.3 Math Run-Time Error Messages ... 527

xi

xii

Open Watcom C/C++ User’s Guide

Open Watcom C/C++ User’s Guide

2

1 About This Manual

This manual contains the following chapters:

Chapter 1 — "About This Manual".

This chapter provides an overview of the contents of this guide.

Chapter 2 — "Open Watcom C/C++ Compiler Options" on page 5.

This chapter provides a summary and reference section for all the C and C++ compiler
options.

Chapter 3 — "The Open Watcom C/C++ Compilers" on page 63.

This chapter describes how to compile an application from the command line. This chapter
also describes compiler environment variables, benchmarking hints, compiler diagnostics,
#include file processing, the preprocessor, predefined macros, extended keywords, and the
code generator.

Chapter 4 — "Precompiled Headers" on page 97.

This chapter describes the use of precompiled headers to speed up compilation.

Chapter 5 — "The Open Watcom C/C++ Libraries" on page 101.

This chapter describes the Open Watcom C/C++ library directory structure, C libraries,
class libraries, math libraries, 80x87 math libraries, alternate math libraries, the "NO87"
environment variable, and the run-time initialization routines.

Chapter 6 — "16-bit Memory Models" on page 113.

This chapter describes the Open Watcom C/C++ memory models (including code and data
models), the tiny memory model, the mixed memory model, linking applications for the
various memory models, creating a tiny memory model application, and memory layout in
an executable.

Chapter 7 — "16-bit Assembly Language Considerations" on page 119.

This chapter describes issues relating to 16-bit interfacing such as parameter passing
conventions.

Chapter 8 — "16-bit Pragmas" on page 135.

This chapter describes the use of pragmas with the 16-bit compilers.

Chapter 9 — "32-bit Memory Models" on page 181.

About This Manual 3

Open Watcom C/C++ User’s Guide

This chapter describes the Open Watcom C/C++ memory models (including code and data
models), the flat memory model, the mixed memory model, linking applications for the
various memory models, and memory layout in an executable.

Chapter 10 — "32-bit Assembly Language Considerations" on page 185.

This chapter describes issues relating to 32-bit interfacing such as parameter passing
conventions.

Chapter 11 — "32-bit Pragmas" on page 203.

This chapter describes the use of pragmas with the 32-bit compilers.

Chapter 12 — "In-line Assembly Language" on page 251.

This chapter describes in-line assembly language programming using the auxiliary pragma.

Chapter 13 — "Creating ROM-based Applications" on page 285.

This chapter discusses some embedded systems issues as they pertain to the C library.

Appendix A. — "Use of Environment Variables" on page 291.

This appendix describes all the environment variables used by the compilers and related
tools.

Appendix B. — "Open Watcom C Diagnostic Messages" on page 301.

This appendix lists all of the Open Watcom C diagnostic messages with an explanation for
each.

Appendix C. — "Open Watcom C++ Diagnostic Messages" on page 333.

This appendix lists all of the Open Watcom C++ diagnostic messages with an explanation
for each.

Appendix D. — "Open Watcom C/C++ Run-Time Messages" on page 525.

This appendix lists all of the C/C++ run-time diagnostic messages with an explanation for
each.

4 About This Manual

2 Open Watcom C/C++ Compiler Options

Source files can be compiled using either the IDE or command-line compilers. This chapter describes all
the compiler options that are available.

For information about compiling applications from the IDE, see the Open Watcom Graphical Tools User’s
Guide.

For information about compiling applications from the command line, see the chapter entitled "The Open
Watcom C/C++ Compilers" on page 63.

The Open Watcom C/C++ compiler command names (compiler_name) are:

WCC the Open Watcom C compiler for 16-bit Intel platforms.
WPP the Open Watcom C++ compiler for 16-bit Intel platforms.
WCC386 the Open Watcom C compiler for 32-bit Intel platforms.
WPP386 the Open Watcom C++ compiler for 32-bit Intel platforms.

2.1 Compiler Options - Summarized Alphabetically
In this section, we present a terse summary of compiler options. This summary is displayed on the screen
by simply entering the compiler command name with no arguments.

Option: Description:

0 (16-bit only) 8088 and 8086 instructions (default for 16-bit) (see "0" on page 51)
1 (16-bit only) 188 and 186 instructions (see "1" on page 51)
2 (16-bit only) 286 instructions (see "2" on page 51)
3 (16-bit only) 386 instructions (see "3" on page 51)
4 (16-bit only) 486 instructions (see "4" on page 51)
5 (16-bit only) Pentium instructions (see "5" on page 51)
6 (16-bit only) Pentium Pro instructions (see "6" on page 51)
3r (32-bit only) generate 386 instructions based on 386 instruction timings and use

register-based argument passing conventions (see "3{r|s}" on page 51)
3s (32-bit only) generate 386 instructions based on 386 instruction timings and use

stack-based argument passing conventions (see "3{r|s}" on page 51)
4r (32-bit only) generate 386 instructions based on 486 instruction timings and use

register-based argument passing conventions (see "4{r|s}" on page 52)
4s (32-bit only) generate 386 instructions based on 486 instruction timings and use

stack-based argument passing conventions (see "4{r|s}" on page 52)
5r (32-bit only) generate 386 instructions based on Intel Pentium instruction timings and use

register-based argument passing conventions (default for 32-bit) (see "5{r|s}" on page 53)
5s (32-bit only) generate 386 instructions based on Intel Pentium instruction timings and use

stack-based argument passing conventions (see "5{r|s}" on page 53)
6r (32-bit only) generate 386 instructions based on Intel Pentium Pro instruction timings and

use register-based argument passing conventions (see "6{r|s}" on page 53)

Compiler Options - Summarized Alphabetically 5

Open Watcom C/C++ User’s Guide

6s (32-bit only) generate 386 instructions based on Intel Pentium Pro instruction timings and
use stack-based argument passing conventions (see "6{r|s}" on page 53)

ad[=<file_name>] generate makefile style auto depend file (see "ad[=<file_name>]" on page 31)
adbs force slashes generated in makefile style auto depend to backward (see "adbs" on page

32)
add[=<file_name>] specify source dependancy name generated in make-style autodep file (see

"add[=<file_name>]" on page 32)
adhp[=<file_name>] specify path to use for headers which result with no path, and are filename only. (see

"adhp[=<path_name>]" on page 32)
adfs force slashes generated in makefile style auto depend to forward (see "adfs" on page 33)
adt[=<target_name>] specify target name generated in makefile style auto depend (see

"adt[=<target_name>]" on page 33)
bc build target is a console application (see "bc" on page 15)
bd build target is a Dynamic Link Library (DLL) (see "bd" on page 16)
bg build target is a GUI application (see "bg" on page 16)
bm build target is a multi-thread environment (see "bm" on page 16)
br build target uses DLL version of C/C++ run-time libraries (see "br" on page 16)
bt[=<os>] build target for operating system <os> (see "bt[=<os>]" on page 16)
bw build target uses default windowing support (see "bw" on page 17)
d0 (C++ only) no debugging information (see "d0" on page 22)
d1 line number debugging information (see "d1" on page 22)
d1+ (C only) line number debugging information plus typing information for global symbols

and local structs and arrays (see "d1+" on page 22)
d2 full symbolic debugging information (see "d2" on page 23)
d2i (C++ only) d2 and debug inlines; emit inlines as external out-of-line functions (see "d2i"

on page 23)
d2s (C++ only) d2 and debug inlines; emit inlines as static out-of-line functions (see "d2s" on

page 23)
d2t (C++ only) full symbolic debugging information, without type names (see "d2t" on page

23)
d3 full symbolic debugging with unreferenced type names (see "d3" on page 23) ,*
d3i (C++ only) d3 plus debug inlines; emit inlines as external out-of-line functions (see "d3i"

on page 23)
d3s (C++ only) d3 plus debug inlines; emit inlines as static out-of-line functions (see "d3s" on

page 23)
d<name>[=text] preprocessor #define name [text] (see "d<name>[=text]" on page 25)
d+ allow extended -d macro definitions (see "d+" on page 25)
db generate browsing information (see "db" on page 33)
e<number> set error limit number (default is 20) (see "e<number>" on page 27)
ecc set default calling convention to __cdecl (see "ecc" on page 38)
ecd set default calling convention to __stdcall (see "ecd" on page 38)
ecf set default calling convention to __fastcall (see "ecf" on page 38)
ecp set default calling convention to __pascal (see "ecp" on page 38)
ecr set default calling convention to __fortran (see "ecr" on page 38)
ecs set default calling convention to __syscall (see "ecs" on page 38)
ecw set default calling convention to __watcall (default) (see "ecw" on page 38)
ee call epilogue hook routine (see "ee" on page 24)
ef use full path names in error messages (see "ef" on page 27)
ei force enum base type to use at least an int (see "ei" on page 38)
em force enum base type to use minimum (see "em" on page 38)
en emit routine name before prologue (see "en" on page 24)
ep[<number>] call prologue hook routine with number of stack bytes available (see "ep[<number>]" on

page 24)

6 Compiler Options - Summarized Alphabetically

Open Watcom C/C++ Compiler Options

eq do not display error messages (they are still written to a file) (see "eq" on page 27)
er (C++ only) do not recover from undefined symbol errors (see "er" on page 27)
et Pentium profiling (see "et" on page 24)
ew (C++ only) generate less verbose messages (see "ew" on page 28)
ez (32-bit only) generate Phar Lap Easy OMF-386 object file (see "ez" on page 34)
fc=<file_name> (C++ only) specify file of command lines to be batch processed (see "fc=<file_name>" on

page 34)
fh[q][=<file_name>] use precompiled headers (see "fh[q][=<file_name>]" on page 34)
fhd store debug info for pre-compiled header once (DWARF only) (see "fhd" on page 34)
fhr (C++ only) force compiler to read pre-compiled header (see "fhr" on page 34)
fhw (C++ only) force compiler to write pre-compiled header (see "fhw" on page 34)
fhwe (C++ only) don’t include pre-compiled header warnings when "we" is used (see "fhwe"

on page 34)
fi=<file_name> force file_name to be included (see "fi=<file_name>" on page 34)
fo=<file_name> set object or preprocessor output file specification (see "fo[=<file_name>]

(preprocessor)" on page 26) (see "fo[=<file_name>]" on page 35)
fpc generate calls to floating-point library (see "fpc" on page 44)
fpi (16-bit only) generate in-line 80x87 instructions with emulation (default)

(32-bit only) generate in-line 387 instructions with emulation (default) (see "fpi" on page
44)

fpi87 (16-bit only) generate in-line 80x87 instructions

(32-bit only) generate in-line 387 instructions (see "fpi87" on page 45)
fp2 generate in-line 80x87 instructions (see "fp2" on page 45)
fp3 generate in-line 387 instructions (see "fp3" on page 45)
fp5 generate in-line 80x87 instructions optimized for Pentium processor (see "fp5" on page

46)
fp6 generate in-line 80x87 instructions optimized for Pentium Pro processor (see "fp6" on

page 46)
fpd enable generation of Pentium FDIV bug check code (see "fpd" on page 46)
fpr generate 8087 code compatible with older versions of compiler (see "fpr" on page 62)
fr=<file_name> set error file specification (see "fr[=<file_name>]" on page 35)
ft (C++ only) try truncated (8.3) header file specification (see "ft" on page 35)
fti (C only) track include file opens (see "fti" on page 35)
fx (C++ only) do not try truncated (8.3) header file specification (see "fx" on page 36)
fzh (C++ only) do not automatically append extensions for include files (see "fzh" on page

36)
fzs (C++ only) do not automatically append extensions for source files (see "fzs" on page 36)
g=<codegroup> set code group name (see "g=<codegroup>" on page 47)
h{w,d,c} set debug output format (Open Watcom, Dwarf, Codeview) (see "h{w,d,c}" on page 25)
i=<directory> add directory to list of include directories (see "i=<directory>" on page 36)
j change char default from unsigned to signed (see "j" on page 39)
k (C++ only) continue processing files (ignore errors) (see "k" on page 36)
m{f,s,m,c,l,h} memory model — mf=flat (see "mf" on page 53), ms=small (see "ms" on page 53),

mm=medium (see "mm" on page 53), mc=compact (see "mc" on page 53), ml=large (see
"ml" on page 53), mh=huge (see "mh" on page 54) (default is "ms" for 16-bit and
Netware, "mf" for 32-bit)

nc=<name> set name of the code class (see "nc=<name>" on page 47)
nd=<name> set name of the "data" segment (see "nd=<name>" on page 47)
nm=<name> set module name different from filename (see "nm=<name>" on page 48)
nt=<name> set name of the "text" segment (see "nt=<name>" on page 48)

Compiler Options - Summarized Alphabetically 7

Open Watcom C/C++ User’s Guide

o{a,b,c,d,e,f,f+,h,i,i+,k,l,l+,m,n,o,p,r,s,t,u,x,z} control optimization (see "oa" on page 55) (see "of" on page
18)

pil preprocessor ignores #line directives (see "pil" on page 26)
p{e,l,c,w=<num>} preprocess file only, sending output to standard output; "c" include comments; "e"

encrypt identifiers (C++ only); "l" include #line directives; w=<num> wrap output lines
at <num> columns (zero means no wrap) (see "p{e,l,c,w=<num>}" on page 26)

q operate quietly (see "q" on page 28)
r save/restore segment registers (see "r" on page 62)
ri return chars and shorts as ints (see "ri" on page 39)
s remove stack overflow checks (see "s" on page 25)
sg generate calls to grow the stack (see "sg" on page 19)
st touch stack through SS first (see "st" on page 20)
t=<num> (C++ only) set tab stop multiplier (see "t=<num>" on page 28)
u<name> preprocessor #undef name (see "u<name>" on page 27)
v output function declarations to .def file (with typedef names) (see "v" on page 36)
vc... (C++ only) VC++ compatibility options (see "vc..." on page 62)
w<number> set warning level number (default is w1) (see "w<number>" on page 28)
wcd=<num> warning control: disable warning message <num> (see "wcd=<number>" on page 28)
wce=<num> warning control: enable warning message <num> (see "wce=<number>" on page 28)
we treat all warnings as errors (see "we" on page 28)
wo (C only) (16-bit only) warn about problems with overlaid code (see "wo" on page 28)
wx set warning level to maximum setting (see "wx" on page 29)
xd (C++ only) disable exception handling (default) (see "xd" on page 60)
xdt (C++ only) disable exception handling (same as "xd") (see "xdt" on page 60)
xds (C++ only) disable exception handling (table-driven destructors) (see "xds" on page 60)
xr (C++ only) enable RTTI (see "xr" on page 39)
xs (C++ only) enable exception handling (see "xs" on page 60)
xst (C++ only) enable exception handling (direct calls for destruction) (see "xst" on page 60)
xss (C++ only) enable exception handling (table-driven destructors) (see "xss" on page 60)
z{a,e} disable/enable language extensions (default is ze) (see "za" on page 29) (see "ze" on page

29)
zat (C++ only) disable alternative tokens (see "zat" on page 36)
zc place literal strings in code segment (see "zc" on page 39)
zd{f,p} allow DS register to "float" or "peg" it to DGROUP (default is zdp) (see "zd{f,p}" on

page 54)
zdl (32-bit only) load DS register directly from DGROUP (see "zdl" on page 54)
zev (C only, Unix extension) enable arithmetic on void derived types (see "zev" on page 54)
zf (C++ only) let scope of for loop initialization extend beyond loop (see "zf" on page 36)
zf{f,p} allow FS register to be used (default for all but flat memory model) or not be used

(default for flat memory model) (see "zf{f,p}" on page 54)
zfw generate FWAIT instructions on 386 and later (see "zfw" on page 54)
zg output function declarations to .def (without typedef names) (see "zg" on page 37)
zg{f,p} allow GS register to be used or not used (see "zg{f,p}" on page 55)
zk0 double-byte char support for Kanji (see "zk{0,1,2,l}" on page 61)
zk0u translate Kanji double-byte characters to UNICODE (see "zk0u" on page 61)
zk1 double-byte char support for Chinese/Taiwanese (see "zk{0,1,2,l}" on page 61)
zk2 double-byte char support for Korean (see "zk{0,1,2,l}" on page 61)
zkl double-byte char support if current code page has lead bytes (see "zk{0,1,2,l}" on page

61)
zku=<codepage> load UNICODE translate table for specified code page (see "zku=<codepage>" on page

61)
zl suppress generation of library file names and references in object file (see "zl" on page

37)

8 Compiler Options - Summarized Alphabetically

Open Watcom C/C++ Compiler Options

zld suppress generation of file dependency information in object file (see "zld" on page 37)
zlf add default library information to object files (see "zlf" on page 38)
zls remove automatically inserted symbols (such as runtime library references) (see "zls" on

page 38)
zm place each function in separate segment (near functions not allowed) (see "zm" on page

49)
zmf place each function in separate segment (near functions allowed) (see "zmf" on page 50)
zp[{1,2,4,8,16}] set minimal structure packing (member alignment) (see "zp[{1,2,4,8,16}]" on page 39)
zpw output warning when padding is added in a struct/class (see "zpw" on page 41)
zq operate quietly (see "zq" on page 31)
zri inline floating point rounding code (see "zri" on page 55)
zro omit floating point rounding code (see "zro" on page 55)
zs syntax check only (see "zs" on page 31)
zt<number> set data threshold (default is zt32767) (see "zt<number>" on page 41)
zu do not assume that SS contains segment of DGROUP (see "zu" on page 55)
zv (C++ only) enable virtual function removal optimization (see "zv" on page 42)
zw Microsoft Windows prologue/epilogue code sequences (see "zw" on page 20)
zW (16-bit only) Microsoft Windows optimized prologue/epilogue code sequences (see "zW

(optimized)" on page 21)
zWs (16-bit only) Microsoft Windows smart callback sequences (see "zWs" on page 21)
zz remove "@size" from __stdcall function names (10.0 compatible) (see "zz" on page 62)

2.2 Compiler Options - Summarized By Category
In the following sections, we present a terse summary of compiler options organized into categories.

2.2.1 Target Specific
Option: Description:

bc build target is a console application (see "bc" on page 15)
bd build target is a Dynamic Link Library (DLL) (see "bd" on page 16)
bg build target is a GUI application (see "bg" on page 16)
bm build target is a multi-threaded environment (see "bm" on page 16)
br build target uses DLL version of C/C++ run-time library (see "br" on page 16)
bt[=<os>] build target for operating system <os> (see "bt[=<os>]" on page 16)
bw build target uses default windowing support (see "bw" on page 17)
of generate traceable stack frames as needed (see "of" on page 18)
of+ always generate traceable stack frames (see "of+" on page 18)
sg generate calls to grow the stack (see "sg" on page 19)
st touch stack through SS first (see "st" on page 20)
zw generate code for Microsoft Windows (see "zw" on page 20)
zW (16-bit only) Microsoft Windows optimized prologue/epilogue code sequences (see "zW

(optimized)" on page 21)
zWs (16-bit only) Microsoft Windows smart callback sequences (see "zWs" on page 21)

Compiler Options - Summarized By Category 9

Open Watcom C/C++ User’s Guide

2.2.2 Debugging/Profiling
Option: Description:

d0 (C++ only) no debugging information (see "d0" on page 22)
d1 line number debugging information (see "d1" on page 22)
d1+ (C only) line number debugging information plus typing information for global symbols

and local structs and arrays (see "d1+" on page 22)
d2 full symbolic debugging information (see "d2" on page 23)
d2i (C++ only) d2 and debug inlines; emit inlines as external out-of-line functions (see "d2i"

on page 23)
d2s (C++ only) d2 and debug inlines; emit inlines as static out-of-line functions (see "d2s" on

page 23)
d2t (C++ only) d2 but without type names (see "d2t" on page 23)
d3 full symbolic debugging with unreferenced type names (see "d3" on page 23)
d3i (C++ only) d3 plus debug inlines; emit inlines as external out-of-line functions (see "d3i"

on page 23)
d3s (C++ only) d3 plus debug inlines; emit inlines as static out-of-line functions (see "d3s" on

page 23)
ee call epilogue hook routine (see "ee" on page 24)
en emit routine names in the code segment (see "en" on page 24)
ep[<number>] call prologue hook routine with number stack bytes available (see "ep[<number>]" on

page 24)
et Pentium profiling (see "et" on page 24)
h{w,d,c} set debug output format (Open Watcom, DWARF, Codeview) (see "h{w,d,c}" on page

25)
s remove stack overflow checks (see "s" on page 25)

2.2.3 Preprocessor
Option: Description:

d<name>[=text] precompilation #define name [text] (see "d<name>[=text]" on page 25)
d+ allow extended "d" macro definitions on command line (see "d+" on page 25)
fo[=<file_name>] set preprocessor output file name (see "fo[=<file_name>] (preprocessor)" on page 26)
pil preprocessor ignores #line directives (see "pil" on page 26)
p{e,l,c,w=<num>} preprocess file

c preserve comments
e encrypt identifiers (C++ only)
l insert #line directives
w=<num> wrap output lines at <num> columns. Zero means no wrap.

(see "p{e,l,c,w=<num>}" on page 26)
u<name> undefine macro name (see "u<name>" on page 27)

10 Compiler Options - Summarized By Category

Open Watcom C/C++ Compiler Options

2.2.4 Diagnostics
Option: Description:

e<number> set error limit number (see "e<number>" on page 27)
ef use full path names in error messages (see "ef" on page 27)
eq do not display error messages (they are still written to a file) (see "eq" on page 27)
er (C++ only) do not recover from undefined symbol errors (see "er" on page 27)
ew (C++ only) alternate error message formatting (see "ew" on page 28)
q operate quietly (see "q" on page 28)
t=<num> set tab stop multiplier (see "t=<num>" on page 28)
w<number> set warning level number (see "w<number>" on page 28)
wcd=<num> warning control: disable warning message <num> (see "wcd=<number>" on page 28)
wce=<num> warning control: enable warning message <num> (see "wce=<number>" on page 28)
we treat all warnings as errors (see "we" on page 28)
wx set warning level to maximum setting (see "wx" on page 29)
z{a,e} disable/enable language extensions (see "za" on page 29) (see "ze" on page 29)
zq operate quietly (see "zq" on page 31)
zs syntax check only (see "zs" on page 31)

2.2.5 Source/Output Control
Option: Description:

ad[=<file_name>] generate makefile style auto depend file (see "ad[=<file_name>]" on page 31)
adbs force slashes generated in makefile style auto depend to backward (see "adbs" on page

32)
add[=<file_name>] set source depend name for makefile style auto depend file (see "add[=<file_name>]"

on page 32)
adhp[=<path prefix>] set default path for header dependancies which result in name only. (see

"adhp[=<path_name>]" on page 32)
adfs force slashes generated in makefile style auto depend to forward (see "adfs" on page 33)
adt[=<target_name>] specify target name generated in makefile style auto depend (see

"adt[=<target_name>]" on page 33)
db generate browsing information (see "db" on page 33)
ez generate PharLap EZ-OMF object files (see "ez" on page 34)
fc=<file_name> (C++ only) specify file of command lines to be batch processed (see "fc=<file_name>" on

page 34)
fh[q][=<file_name>] use precompiled headers (see "fh[q][=<file_name>]" on page 34)
fhd store debug info for pre-compiled header once (DWARF only) (see "fhd" on page 34)
fhr (C++ only) force compiler to read pre-compiled header (will never write) (see "fhr" on

page 34)
fhw (C++ only) force compiler to write pre-compiled header (will never read) (see "fhw" on

page 34)
fhwe (C++ only) don’t include pre-compiled header warnings when "we" is used (see "fhwe"

on page 34)
fi=<file_name> force file_name to be included (see "fi=<file_name>" on page 34)
fo[=<file_name>] set object or preprocessor output file name (see "fo[=<file_name>]" on page 35)
fr[=<file_name>] set error file name (see "fr[=<file_name>]" on page 35)
ft (C++ only) try truncated (8.3) header file specification (see "ft" on page 35)

Compiler Options - Summarized By Category 11

Open Watcom C/C++ User’s Guide

fti (C only) track include file opens (see "fti" on page 35)
fx (C++ only) do not try truncated (8.3) header file specification (see "fx" on page 36)
fzh (C++ only) do not automatically append extensions for include files (see "fzh" on page

36)
fzs (C++ only) do not automatically append extensions for source files (see "fzs" on page 36)
i=<directory> another include directory (see "i=<directory>" on page 36)
k continue processing files (ignore errors) (see "k" on page 36)
v output function declarations to .def (see "v" on page 36)
zat (C++ only) disable alternative tokens (see "zat" on page 36)
zf (C++ only) let scope of for loop initialization extend beyond loop (see "zf" on page 36)
zg generate function prototypes using base types (see "zg" on page 37)
zl remove default library information (see "zl" on page 37)
zld remove file dependency information (see "zld" on page 37)
zlf add default library information to object files (see "zlf" on page 38)
zls remove automatically generated symbols references (see "zls" on page 38)

2.2.6 Code Generation
Option: Description:

ecc set default calling convention to __cdecl (see "ecc" on page 38)
ecd set default calling convention to __stdcall (see "ecd" on page 38)
ecf set default calling convention to __fastcall (see "ecf" on page 38)
ecp set default calling convention to __pascal (see "ecp" on page 38)
ecr set default calling convention to __fortran (see "ecr" on page 38)
ecs set default calling convention to __syscall (see "ecs" on page 38)
ecw set default calling convention to __watcall (default) (see "ecw" on page 38)
ei force enum base type to use at least an int (see "ei" on page 38)
em force enum base type to use minimum (see "em" on page 38)
j change char default from unsigned to signed (see "j" on page 39)
ri return chars and shorts as ints (see "ri" on page 39)
xr (C++ only) enable RTTI (see "xr" on page 39)
zc place literal strings in the code segment (see "zc" on page 39)
zp{1,2,4,8,16} pack structure members (see "zp[{1,2,4,8,16}]" on page 39)
zpw output warning when padding is added in a struct/class (see "zpw" on page 41)
zt<number> set data threshold (see "zt<number>" on page 41)
zv (C++ only) enable virtual function removal optimization (see "zv" on page 42)

2.2.7 80x86 Floating Point
Option: Description:

fpc calls to floating-point library (see "fpc" on page 44)
fpi in-line 80x87 instructions with emulation (see "fpi" on page 44)
fpi87 in-line 80x87 instructions (see "fpi87" on page 45)
fp2 generate floating-point for 80x87 (see "fp2" on page 45)
fp3 generate floating-point for 387 (see "fp3" on page 45)
fp5 optimize floating-point for Pentium (see "fp5" on page 46)
fp6 optimize floating-point for Pentium Pro (see "fp6" on page 46)
fpd enable generation of Pentium FDIV bug check code (see "fpd" on page 46)

12 Compiler Options - Summarized By Category

Open Watcom C/C++ Compiler Options

2.2.8 Segments/Modules
Option: Description:

g=<codegroup> set code group name (see "g=<codegroup>" on page 47)
nc=<name> set code class name (see "nc=<name>" on page 47)
nd=<name> set data segment name (see "nd=<name>" on page 47)
nm=<name> set module name (see "nm=<name>" on page 48)
nt=<name> set name of text segment (see "nt=<name>" on page 48)
zm place each function in separate segment (near functions not allowed) (see "zm" on page

49)
zmf (C++ only) place each function in separate segment (near functions allowed) (see "zmf"

on page 50)

2.2.9 80x86 Run-time Conventions
Option: Description:

0 (16-bit only) 8088 and 8086 instructions (see "0" on page 51)
1 (16-bit only) 188 and 186 instructions (see "1" on page 51)
2 (16-bit only) 286 instructions (see "2" on page 51)
3 (16-bit only) 386 instructions (see "3" on page 51)
4 (16-bit only) 486 instructions (see "4" on page 51)
5 (16-bit only) Pentium instructions (see "5" on page 51)
6 (16-bit only) Pentium Pro instructions (see "6" on page 51)
3r (32-bit only) 386 register calling conventions (see "3{r|s}" on page 51)
3s (32-bit only) 386 stack calling conventions (see "3{r|s}" on page 51)
4r (32-bit only) 486 register calling conventions (see "4{r|s}" on page 52)
4s (32-bit only) 486 stack calling conventions (see "4{r|s}" on page 52)
5r (32-bit only) Pentium register calling conventions (see "5{r|s}" on page 53)
5s (32-bit only) Pentium stack calling conventions (see "5{r|s}" on page 53)
6r (32-bit only) Pentium Pro register calling conventions (see "6{r|s}" on page 53)
6s (32-bit only) Pentium Pro stack calling conventions (see "6{r|s}" on page 53)
m{f,s,m,c,l,h} memory model (Flat,Small,Medium,Compact,Large,Huge) (see "mf" on page 53)
zdf DS floats i.e. not fixed to DGROUP (see "zd{f,p}" on page 54)
zdp DS is pegged to DGROUP (see "zd{f,p}" on page 54)
zdl Load DS directly from DGROUP (see "zdl" on page 54)
zff FS floats i.e. not fixed to a segment (see "zf{f,p}" on page 54)
zfp FS is pegged to a segment (see "zf{f,p}" on page 54)
zgf GS floats i.e. not fixed to a segment (see "zg{f,p}" on page 55)
zgp GS is pegged to a segment (see "zg{f,p}" on page 55)
zri Inline floating point rounding code (see "zri" on page 55)
zro Omit floating point rounding code (see "zro" on page 55)
zu SS != DGROUP (see "zu" on page 55)

2.2.10 Optimizations

Compiler Options - Summarized By Category 13

Open Watcom C/C++ User’s Guide

Option: Description:

oa relax aliasing constraints (see "oa" on page 55)
ob enable branch prediction (see "ob" on page 56)
oc disable <call followed by return> to <jump> optimization (see "oc" on page 56)
od disable all optimizations (see "od" on page 56)
oe[=<num>] expand user functions in-line. <num> controls max size (see "oe=<num>" on page 57)
oh enable repeated optimizations (longer compiles) (see "oh" on page 57)
oi expand intrinsic functions in-line (see "oi" on page 57)
oi+ (C++ only) expand intrinsic functions in-line and set inline_depth to maximum (see "oi+"

on page 57)
ok enable control flow prologues and epilogues (see "ok" on page 57)
ol enable loop optimizations (see "ol" on page 57)
ol+ enable loop optimizations with loop unrolling (see "ol+" on page 58)
om generate in-line 80x87 code for math functions (see "om" on page 58)
on allow numerically unstable optimizations (see "on" on page 58)
oo continue compilation if low on memory (see "oo" on page 58)
op generate consistent floating-point results (see "op" on page 58)
or reorder instructions for best pipeline usage (see "or" on page 58)
os favor code size over execution time in optimizations (see "os" on page 58)
ot favor execution time over code size in optimizations (see "ot" on page 58)
ou all functions must have unique addresses (see "ou" on page 59)
ox equivalent to -obmiler -s (see "ox" on page 59)
oz NULL points to valid memory in the target environment (see "oz" on page 59)

2.2.11 C++ Exception Handling
Option: Description:

xd disable exception handling (default) (see "xd" on page 60)
xdt disable exception handling (same as "xd") (see "xdt" on page 60)
xds disable exception handling (table-driven destructors) (see "xds" on page 60)
xs enable exception handling (see "xs" on page 60)
xst enable exception handling (direct calls for destruction) (see "xst" on page 60)
xss enable exception handling (table-driven destructors) (see "xss" on page 60)

2.2.12 Double-Byte/Unicode Characters
Option: Description:

zk{0,1,2,l} double-byte char support: 0=Kanji,1=Chinese/Taiwanese,2=Korean,l=local (see
"zk{0,1,2,l}" on page 61)

zk0u translate double-byte Kanji to UNICODE (see "zk0u" on page 61)
zku=<codepage> load UNICODE translate table for specified code page (see "zku=<codepage>" on page

61)

14 Compiler Options - Summarized By Category

Open Watcom C/C++ Compiler Options

2.2.13 Compatibility with Microsoft Visual C++
Option: Description:

vc... VC++ compatibility options (see "vc..." on page 62)
vcap allow alloca() or _alloca() in a parameter list

2.2.14 Compatibility with Older Versions of the 80x86 Compilers
Option: Description:

r save/restore segment registers across calls (see "r" on page 62)
fpr generate backward compatible 80x87 code (see "fpr" on page 62)
zz generate backward compatible __stdcall conventions by removing the "@size" from

__stdcall function names (10.0 compatible) (see "zz" on page 62)

2.3 Compiler Options - Full Description
In the following sections, we present complete descriptions of compiler options organized into categories.

2.3.1 Target Specific
This group of options deals with characteristics of the target application; for example, simple executables
versus Dynamic Link Libraries, character-mode versus graphical user interface, single-threaded versus
multi-threaded, and so on.

bc
(OS/2, Win16/32 only) This option causes the compiler to emit into the object file references to the
appropriate startup code for a character-mode console application. The presence of LibMain/DLLMain
or WinMain/wWinMain in the source code does not influence the selection of startup code. Only main
and wmain are significant.

If none of "bc", "bd", "bg" or "bw" are specified then the order of priority in determining which
combination of startup code and libraries to use are as follows.

1. The presence of one of LibMain or DLLMain implies that the DLL startup code and libraries
should be used.

2. The presence of WinMain or wWinMain implies that the GUI startup code and libraries should
be used.

3. The presence of main or wmain implies that the default startup code and libraries should be
used.

If both a wide and non-wide version of an entry point are specified, the "wide" entry point will be used.
Thus wWinMain is called when both WinMain and wWinMain are present. Similarly, wmain is called
when both main and wmain are present (and WinMain/wWinMain are not present). By default, if both
wmain and WinMain are included in the source code, then the startup code will attempt to call
wWinMain (since both "wide" and "windowed" entry points were included).

Compiler Options - Full Description 15

Open Watcom C/C++ User’s Guide

bd
(OS/2, Win16/32 only) This option causes the compiler to emit into the object file references to the
run-time DLL startup code (reference to the __DLLstart_ symbol) and, if required, special versions of
the run-time libraries that support DLLs. The presence of main/wmain or WinMain/wWinMain in the
source code does not influence the selection of startup code. Only LibMain and DLLMain are significant
(see "bc" on page 15). If you are building a DLL with statically linked C runtime (the default), it is
recommended that you compile at least one of its object files with the "bd" switch to ensure that the DLL’s
C runtime is properly initialized. The macro __SW_BD will be predefined if "bd" is selected.

bg
(OS/2, Win16/32 only) This option causes the compiler to emit into the object file references to the
appropriate startup code for a windowed (GUI) application. The presence of LibMain/DLLMain or
main/wmain in the source code does not influence the selection of startup code. Only WinMain and
wWinMain are significant (see "bc" on page 15).

bm
(Netware, OS/2, Win32 only) This option causes the compiler to emit into the object file references to the
appropriate multi-threaded library name(s). The macros _MT and__SW_BM will be predefined if "bm" is
selected.

br
(OS/2, Win32 only) This option causes the compiler to emit into the object file references to the run-time
DLL library name(s). The run-time DLL libraries are special subsets of the Open Watcom C/C++ run-time
libraries that are available as DLLs. When you use this option with an OS/2 application, you must also
specify the "CASEEXACT" option to the Open Watcom Linker. The macros _DLL and__SW_BR will be
predefined if "br" is selected.

bt[=<os>]
This option causes the compiler to define the "build" target. This option is used for cross-development
work. It prevents the compiler from defining the default build target (which is based on the host system the
compiler is running on). The default build targets are:

DOS when the host operating system is DOS,

OS2 when the host operating system is OS/2,

NT when the host operating system is Windows NT (including Windows 95),

QNX when the host operating system is QNX. or

LINUX when the host operating system is Linux.

It also prevents the compiler from defining the default target macro. Instead the compiler defines a macro
consisting of the string "<os>" converted to uppercase and prefixed and suffixed with two underscores.
The default target macros are described in the section entitled "Open Watcom C/C++ Predefined Macros"
on page 74.

For example, specifying the option:

bt=foo

16 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

would cause the compiler to define the macro

__FOO__

and prevent it from defining MSDOS, _DOS and__DOS__ if the compiler was being run under DOS,
__OS2__ if using the OS/2 hosted compiler,__NT__ if using the Windows NT or Windows 95 hosted
compiler, __QNX__ and__UNIX__ if using the QNX hosted version. or__LINUX__ and__UNIX__ if
using the Linux hosted version. Any string consisting of letters, digits, and the underscore character may
be used for the target name.

The compiler will also construct an environment variable called <os>_INCLUDE and see if it has been
defined. If the environment variable is defined then each directory listed in it is searched (in the order that
they were specified). For example, the environment variable WINDOWS_INCLUDE will be searched if
bt=WINDOWS option was specified.

Example:
set windows_include=\watcom\h\win

Include file processing is described in the section entitled "Open Watcom C/C++ #include File Processing"
on page 70.

Several target names are recognized by the compiler and perform additional operations.

Target name Additional operation

DOS Defines the macros _DOS and MSDOS.

WINDOWS Same as specifying one of the "zw" options. Defines the macros _WINDOWS (16-bit
only) and __WINDOWS_386__ (32-bit only).

NETWARE (32-bit only) Causes the compiler to use stack-based calling conventions. Also defines
the macro __NETWARE_386__.

QNX Defines the macro __UNIX__.

LINUX Defines the macro __UNIX__.

Specifying "bt" with no target name following restores the default target name.

bw
(Win16 only) This option causes the compiler to import a special symbol so that the default windowing
library code is linked into your application. The presence of LibMain/DLLMain in the source code does
not influence the selection of startup code. Only main, wmain, WinMain and wWinMain are
significant (see "bc" on page 15). The macro __SW_BW will be predefined if "bw" is selected.

of
This option selects the generation of traceable stack frames for those functions that contain calls or require
stack frame setup.

(16-bit only) To use Open Watcom’s "Dynamic Overlay Manager" (DOS only), you must compile all
modules using one of the "of" or "of+" options ("of" is sufficient).

For near functions, the following function prologue sequence is generated.

Compiler Options - Full Description 17

Open Watcom C/C++ User’s Guide

(16-bit only)

push BP
mov BP,SP

(32-bit only)
push EBP
mov EBP,ESP

For far functions, the following function prologue sequence is generated.

(16-bit only)

inc BP
push BP
mov BP,SP

(32-bit only)
inc EBP
push EBP
mov EBP,ESP

The BP/EBP value on the stack will be even or odd depending on the code model.

For 16-bit DOS systems, the Dynamic Overlay Manager uses this information to determine if the return
address on the stack is a short address (16-bit offset) or long address (32-bit segment:offset).

Do not use this option for 16-bit Windows applications. It will alter the code sequence generated for
"_export" functions.

Example:
C>compiler_name toaster /of

The macro __SW_OF will be predefined if "of" is selected.

of+
This option selects the generation of traceable stack frames for all functions regardless of whether they
contain calls or require stack frame setup. This option is intended for developers of embedded systems
(ROM-based applications).

To use Open Watcom’s "Dynamic Overlay Manager" (16-bit DOS only), you must compile all modules
using one of the "of" or "of+" options ("of" is sufficient).

For near functions, the following function prologue sequence is generated.

(16-bit only)

push BP
mov BP,SP

(32-bit only)
push EBP
mov EBP,ESP

For far functions, the following function prologue sequence is generated.

18 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

(16-bit only)

inc BP
push BP
mov BP,SP

(32-bit only)
inc EBP
push EBP
mov EBP,ESP

The BP/EBP value on the stack will be even or odd depending on the code model.

For 16-bit DOS systems, the Dynamic Overlay Manager uses this information to determine if the return
address on the stack is a short address (16-bit offset) or long address (32-bit segment:offset).

Do not use this option for 16-bit Windows applications. It will alter the code sequence generated for
"_export" functions.

Example:
C>compiler_name toaster /of+

sg
This option is useful for 32-bit OS/2 and Win32 multi-threaded applications. It requests the code generator
to emit a run-time call at the start of any function that has more than 4K bytes of automatic variables
(variables located on the stack).

Under 32-bit OS/2, the stack is grown automatically in 4K pages for any threads, other than the primary
thread, using the stack "guard page" mechanism. The stack consists of in-use committed pages topped off
with a special guard page. A memory reference into the 4K guard page causes the operating system to
grow the stack by one 4K page and to add a new 4K guard page. This works fine when there is less than
4K of automatic variables in a function. When there is more than 4K of automatic data, the stack must be
grown in an orderly fashion, 4K bytes at a time, until the stack has grown sufficiently to accommodate all
the automatic variable storage requirements. Hence the requirement for a stack-growing run-time routine.
The stack-growing run-time routine is called __GRO.

The "stack=" linker option specifies how much stack is available and committed for the primary thread
when an executable starts. The stack size parameter to _beginthread() specifies how much stack is
available for a child thread. The child thread starts with just 4k of stack committed. The stack will not
grow to be bigger than the size specified by the stack size parameter.

Under 32-bit Windows (Win32), the stack is grown automatically in 4K pages for all threads using a
similar stack "guard page" mechanism. The stack consists of in-use committed pages topped off with a
special guard page. The techniques for growing the stack in an orderly fashion are the same as that
described above for OS/2.

The "stack=" linker option specifies how much stack is available for the primary thread when an executable
starts. The "commit stack=" linker directive specifies how much of that stack is committed when the
executable starts. If no "commit stack=" directive is used, it defaults to the same value as the stack size.
The stack size parameter to _beginthread() specifies how much stack is committed for a child thread.
If the size is set to zero, the size of the primary thread stack is used for the child thread stack. When the
child thread executes, the stack space is not otherwise restricted.

The macro __SW_SG will be predefined if "sg" is selected.

Compiler Options - Full Description 19

Open Watcom C/C++ User’s Guide

st
This option causes the code generator to ensure that the first reference to the stack in a function is to the
stack "bottom" using the SS register. If the memory for this part of the stack is not mapped to the task, a
memory fault will occur involving the SS register. This permits an operating system to allocate additional
stack space to the faulting task.

Suppose that a function requires 100 bytes of stack space. The code generator usually emits an instruction
sequence to reduce the stack pointer by the required number of bytes of stack space, thereby establishing a
new stack bottom. When the "st" option is specified, the code generator will ensure that the first reference
to the stack is to a memory location with the lowest address. If a memory fault occurs, the operating
system can determine that it was a stack reference (since the SS register is involved) and also how much
additional stack space is required.

See the description of the "sg" option for a more general solution to the stack allocation problem. The
macro __SW_ST will be predefined if "st" is selected.

zw
(16-bit only) This option causes the compiler to generate the prologue/epilogue code sequences required for
Microsoft Windows applications. The following "fat" prologue/epilogue sequence is generated for any
functions declared to be "far _export" or "far pascal".

far pascal func(...)
far _export func(...)
far _export pascal func(...)

push DS
pop AX
nop
inc BP
push BP
mov BP,SP
push DS
mov DS,AX
.
.
.
pop DS
pop BP
dec BP
retf n

The macro __WINDOWS__ will be predefined if "zw" is selected.

(32-bit only) This option causes the compiler to generate any special code sequences required for 32-bit
Microsoft Windows applications. The macro __WINDOWS__ and__WINDOWS_386__ will be
predefined if "zw" is selected.

zW (optimized)
(16-bit only) This option is similar to "zw" but causes the compiler to generate more efficient
prologue/epilogue code sequences in some cases. This option may be used for Microsoft Windows
applications code other than user callback functions. Any functions declared as "far _export" will be
compiled with the "fat" prologue/epilogue code sequence described under the "zw" option.

20 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

far _export func(...)
far _export pascal func(...)

The following "skinny" prologue/epilogue sequence is generated for functions that are not declared to be
"far _export".

far pascal func(...)
far func(...)

inc BP
push BP
mov BP,SP
.
.
.
pop BP
dec BP
retf n

The macro __WINDOWS__ will be predefined if "zW" is selected.

zWs
(16-bit only) This option is similar to "zW" but causes the compiler to generate "smart callbacks". This
option may be used for Microsoft Windows user callback functions in executables only. It is not permitted
for DLLs. Normally, a callback function cannot be called directly. You must use MakeProcInstance to
obtain a function pointer with which to call the callback function.

If you specify "zWs" then you do not need to use MakeProcInstance in order to call your own callback
functions. Any functions declared as "far _export" will be compiled with the "smart" prologue code
sequence described here.

The following example shows the usual prologue code sequence that is generated when the "zWs" option is
NOT used.

Example:
compiler_name winapp /mc /bt=windows /d1

short FAR PASCAL __export Function1(short var1,
long varlong,
short var2)

{
0000 1e FUNCTION1 push ds
0001 58 pop ax
0002 90 nop
0003 45 inc bp
0004 55 push bp
0005 89 e5 mov bp,sp
0007 1e push ds
0008 8e d8 mov ds,ax

The following example shows the "smart" prologue code sequence that is generated when the "zWs" option
is used. The assumption here is that the SS register contains the address of DGROUP.

Compiler Options - Full Description 21

Open Watcom C/C++ User’s Guide

Example:
compiler_name winapp /mc /bt=windows /d1 /zWs

short FAR PASCAL __export Function1(short var1,
long varlong,
short var2)

{
0000 8c d0 FUNCTION1 mov ax,ss
0002 45 inc bp
0003 55 push bp
0004 89 e5 mov bp,sp
0006 1e push ds
0007 8e d8 mov ds,ax

2.3.2 Debugging/Profiling
This group of options deals with all the forms of debugging information that can be included in an object
file. Support for profiling of Pentium code is also described.

d0
(C++ only) No debugging information is included in the object file.

d1
Line number debugging information is included in the object file. This option provides additional
information to the Open Watcom Debugger (at the expense of larger object files and executable files). Line
numbers are handy when debugging your application with the Open Watcom Debugger at the source code
level. Code speed is not affected by this option. To avoid recompiling, the Open Watcom Strip Utility can
be used to remove debugging information from the executable image.

d1+
(C only) Line number debugging information plus typing information for global symbols and local structs
and arrays is included in the object file. Although global symbol information can be made available to the
Open Watcom Debugger through a Open Watcom Linker option, typing information for global symbols
and local structs and arrays must be requested when the source file is compiled. This option provides
additional information to the Open Watcom Debugger (at the expense of larger object files and executable
files). Code speed is not affected by this option. To avoid recompiling, the Open Watcom Strip Utility can
be used to remove debugging information from the executable image.

d2
In addition to line number information, local symbol and data type information is included in the object
file. Although global symbol information can be made available to the Open Watcom Debugger through a
Open Watcom Linker option, local symbol and typing information must be requested when the source file
is compiled. This option provides additional information to the Open Watcom Debugger (at the expense of
larger object files and executable files).

By default, the compiler will select the "od" level of optimization if "d2" is specified (see the description of
the "od" option). Starting with version 11.0, the compiler now expands functions in-line where appropriate.
This means that symbolic information for the in-lined function will not be available.

The use of this option will make the debugging chore somewhat easier at the expense of code speed and
size. To create production code, you should recompile without this option.

22 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

d2i
(C++ only) This option is identical to "d2" but does not permit in-lining of functions. Functions are emitted
as external out-of-line functions. This option can result in larger object and/or executable files than with
"d2" (we are discussing both "code" and "file" size here).

d2s
(C++ only) This option is identical to "d2" but does not permit in-lining of functions. Functions are emitted
as static out-of-line functions. This option can result in larger object and/or executable files than with "d2"
or "d2i" (we are discussing both "code" and "file" size here). Link times are faster than "d2i" (fewer
segment relocations) but executables are slightly larger.

d2t
(C++ only) This option is identical to "d2" but does not include type name debugging information. This
option can result in smaller object and/or executable files (we are discussing "file" size here).

d3
This option is identical to "d2" but also includes symbolic debugging information for unreferenced type
names. Note that this can result in very large object and/or executable files when header files like
WINDOWS.H or OS2.H are included.

d3i
(C++ only) This option is identical to "d3" but does not permit in-lining of functions. Functions are emitted
as external out-of-line functions. This option can result in larger object and/or executable files than with
"d3" (we are discussing both "code" and "file" size here).

d3s
(C++ only) This option is identical to "d3" but does not permit in-lining of functions. Functions are emitted
as static out-of-line functions. This option can result in larger object and/or executable files than with "d3"
or "d3i" (we are discussing both "code" and "file" size here). Link times are faster than "d3i" (fewer
segment relocations) but executables are slightly larger.

ee
This option causes the compiler to generate a call to __EPI in the epilogue sequence at the end of every
function. This user-written routine can be used to collect/record profiling information. Other related
options are "ep[<number>]" and "en". The macro __SW_EE will be predefined if "ee" is selected.

en
The compiler will emit the function name into the object code as a string of characters just before the
function prologue sequence is generated. The string is terminated by a byte count of the number of
characters in the string.

; void Toaster(int arg)

db "Toaster", 7
public Toaster
Toaster label byte

.

.

.
ret

Compiler Options - Full Description 23

Open Watcom C/C++ User’s Guide

This option is intended for developers of embedded systems (ROM-based applications). It may also be
used in conjunction with the "ep" option for special user-written profiling applications. The macro
__SW_EN will be predefined if "en" is selected.

ep[<number>]
This option causes the compiler to generate a call to a user-written __PRO routine in the prologue sequence
at the start of every function. This routine can be used to collect/record profiling information. The optional
argument <number> can be used to cause the compiler to allocate that many bytes on the stack as a place
for __PRO to store information. Other related options are "ee" on page 23 and "en" on page 23. The
macro __SW_EP will be predefined if "ep" is selected.

et
(Pentium only) This option causes the compiler to generate code into the prolog of each function to count
exactly how much time is spent within that function, in clock ticks. This option is valid only for Pentium
compatible processors (i.e., the instructions inserted into the code do not work on 486 or earlier
architectures). The Pentium "rdtsc" opcode is used to obtain the instruction cycle count.

At the end of the execution of the program, a file will be written to the same location as the executable,
except with a ".prf" extension. The contents of the file will look like this:

Example:
1903894223 1 main
1785232334 1376153 StageA
1882249150 13293 StageB
1830895850 2380 StageC
225730118 99 StageD

The first column is the total number of clock ticks spent inside of the function during the execution of the
program, the second column is the number of times it was called and the third column is the individual
function name. The total number of clock ticks includes time spent within functions called from this
function.

The overhead of the profiling can be somewhat intrusive, especially for small leaf functions (i.e., it may
skew your results somewhat).

h{w,d,c}
The type of debugging information that is to be included in the object file is one of "Open Watcom",
"DWARF" or "Codeview". The default is "DWARF".

If you wish to use the Microsoft Codeview debugger, then choose the "hc" option (this option causes
Codeview Level 4 information to be generated). It will be necessary to run the Microsoft Debugging
Information Compactor, CVPACK, on the executable once the linker has created it. For information on
requesting the linker to automatically run CVPACK, see the section entitled "OPTION CVPACK" in the
Open Watcom Linker User’s Guide. Alternatively, you can run CVPACK from the command line.

When linking the application, you must also choose the appropriate Open Watcom Linker DEBUG
directive. See the Open Watcom Linker User’s Guide for more information.

s
Stack overflow checking is omitted from the generated code. By default, the compiler will emit code at the
beginning of every function that checks for the "stack overflow" condition. This option can be used to
disable this feature. The macro __SW_S will be predefined if "s" is selected.

24 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

2.3.3 Preprocessor
This group of options deals with the compiler preprocessor.

d<name>[=text]
This option can be used to define a preprocessor macro from the command line. If =text is not specified,
then 1 is assumed. In other words, specifying /dDBGON is equivalent to specifying /dDBGON=1 on the
command line.

If =text is specified, then this option is equivalent to including the following line in your source code.

#define name text

Consider the following example.

Example:
d_MODDATE="87.05.04"

The above example is equivalent to a line in the source file containing:

#define _MODDATE "87.05.04"

d+
The syntax of any "d" option which follows on the command line is extended to include C/C++ tokens as
part of "text". The token string is terminated by a space character. This permits more complex syntax than
is normally allowed.

Example:
/d+ /d_radx=x*3.1415926/180

This is equivalent to specifying the following in the source code.

Example:
#define _radx x*3.1415926/180

Open Watcom C++ extends this feature by allowing parameterized macros. When a parameter list is
specified, the "=" character must not be specified. It also permits immediate definition of the macro as
shown in the second line of the example.

Example:
/d+ /d_rad(x)x*3.1415926/180
/d+_rad(x)x*3.1415926/180

This is equivalent to specifying the following in the source code.

Example:
#define _rad(x) x*3.1415926/180

fo[=<file_name>] (preprocessor)
The "fo" option is used with any form of the "p" (preprocessor) option to name the output file drive, path,
file name and extension. If the output file name is not specified, it is constructed from the source file name.
If the output file extension is not specified, it is ".i" by default.

Compiler Options - Full Description 25

Open Watcom C/C++ User’s Guide

Example:
C>compiler_name report /p /fo=d:\proj\prep\

A trailing "\" must be specified for directory names. If, for example, the option was specified as
fo=d:\proj\prep then the output file would be called d:\proj\prep.i. A default filename
extension must be preceded by a period (".").

Example:
C>compiler_name report /p /fo=d:\proj\prep\.cpr

pil
By default, #line directives embedded in source files are processed and will be used as a basis for file name
and line number information in error messages, __FILE__ and __LINE__ symbols, etc. The "pil" option
causes the preprocessor to ignore #line directives and refer to actual file names and line numbers.

p{e,l,c,w=<num>}
The input file is preprocessed and, by default, is written to the standard output file. The "fo" option may be
used to redirect the output to a file with default extension ".i".

Specify "pc" if you wish to include the original source comments in the Open Watcom C/C++ preprocessor
output file.

(C++ Only) Specify "pe" if you wish to encrypt the original identifiers when they are written to the Open
Watcom C/C++ preprocessor output file.

Specify "pl" if you wish to include #line directives.

Specify "pcl" or "plc" if you wish both source comments and #line directives.

Use the "w=<num>" suffix if you wish to wish output lines to wrap at <num> columns. Zero means no
wrap.

Example:
C>compiler_name report /pcelw=80

The input file is preprocessed only. When only "p" is specified, source comments and #line directives are
not included. You must request these using the "c" and "l" suffixes. When the output of the preprocessor is
fed into the compiler, the #line directive enables the compiler to issue diagnostics in terms of line
numbers of the original source file.

The options which are supported when the Open Watcom C/C++ preprocessor is requested are: "d", "fi",
"fo", "i", "m?", and "u".

u<name>
The "u" option may be used to turn off the definition of a predefined macro. If no name is specified then all
predefined macros are undefined.

Example:
C>compiler_name report /uM_I386

26 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

2.3.4 Diagnostics
This group of options deals with the control of compiler diagnostics.

e<number>
The compiler will stop compilation after reaching <number> errors. By default, the compiler will stop
compilation after 20 errors.

ef
This option causes the compiler to display full path names for files in error messages.

eq
This option causes the compiler to not display error messages on the console; however, they are still written
to a file (see "fr[=<file_name>]" on page 35).

er
(C++ only) This option causes the C++ compiler to not recover from undefined symbol errors. By default,
the compiler recovers from "undefined symbol" errors by injecting a special entry into the symbol table that
prevents further issuance of diagnostics relating to the use of the same name. Specify the "er" option if you
want all uses of the symbol to be diagnosed.

Example:
struct S {
};

void foo(S *p) {
p->m = 1; // member ’m’ has not been declared in ’S’

}
void bar(S *p) {

p->m = 2; // no error unless "er" is specified
}

ew
(C++ only) This option causes the C++ compiler to generate equivalent but less verbose diagnostic
messages.

q
This option is equivalent to the "zq" option (see "zq" on page 31).

t=<num>
(C++ only) The "t" option is used to set the tab stop interval. By default, the compiler assumes a tab stop
occurs at multiples of 8 (1+n x 8 = 1, 9, 17, ... for n=0, 1, 2, ...). When the compiler reports a line number
and column number in a diagnostic message, the column number has been adjusted for intervening tabs. If
the default tab stop setting for your text editor is not a multiple of 8, then you should use this option.

Example:
C>compiler_name report /t=4

Compiler Options - Full Description 27

Open Watcom C/C++ User’s Guide

w<number>
The compiler will issue only warning type messages of severity <number> or below. Type 1 warning
messages are the most severe while type 3 warning messages are the least severe. Specify "w0" to prevent
warning messages from being issued. Specify "wx" to obtain all warning messages.

wcd=<number>
The compiler will not issue the warning message indicated by <number>.

wce=<number>
The compiler will issue the warning message indicated by <number> despite any pragmas that may have
disabled it.

we
By default, the compiler will continue to create an object file when there are warnings produced. This
option can be used to treat all warnings as errors, thereby preventing the compiler from creating an object
file if there are warnings found within a module.

wo
(C only) (16-bit only) This option tells the compiler to emit warnings for things that will cause problems
when compiling code for use in overlays.

wx
This option sets the warning level to its maximum setting.

za
This option helps to ensure that the module to be compiled conforms to the ISO/ANSI C or C++
programming language specification (depending on the compiler which is selected). The macro
NO_EXT_KEYS (no extended keywords) will be predefined if "za" is selected. The "ou" option will be
enabled (see "ou" on page 59). See also the description of the "ze" option.

When using the C compiler, there is an exception to the enforcement of the ISO C standard programming
language specification. The use of C++ style comments (// comment) are not diagnosed.

ze
The "ze" option (default) enables the use of the following compiler extensions:

1. The requirement for at least one external definition per module is relaxed.

2. When using the C compiler, some forgiveable pointer type mismatches become warnings instead
of errors.

3. In-line math functions are allowed (note that errno will not be set by in-line functions).

4. When using the C compiler, anonymous structs/unions are allowed (this is always permitted in
C++).

28 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

Example:
struct {

int a;
union {

int b;
float alt_b;

};
int c;

} x;

In the above example, "x.b" is a valid reference to the "b" field.

5. For C only, ISO function prototype scope rules are relaxed to allow the following program to
compile without any errors.

Example:
void foo(struct a *__p);

struct a {
int b;
int c;

};

void bar(void)
{

struct a x;
foo(&x);

}

According to a strict interpretation of the ISO C standard, the function prototype introduces a
new scope which is terminated at the semicolon (;). The effect of this is that the structure tag "a"
in the function "foo" is not the same structure tag "a" defined after the prototype. A diagnostic
must be issued for a conforming ISO C implementation.

6. A trailing comma (,) is allowed after the last constant in an enum declaration.

Example:
enum colour { RED, GREEN, BLUE, };

7. The ISO requirement that all enums have a base type of int is relaxed. The motivation for this
extension is conservation of storage. Many enums can be represented by integral types that are
smaller in size than an int.

Example:
enum colour { RED, GREEN, BLUE, };

void foo(void)
{

enum colour x;

x = RED;
}

In the example, "x" can be stored in an unsigned char because its values span the range 0 to 2.

Compiler Options - Full Description 29

Open Watcom C/C++ User’s Guide

8. The ISO requirement that the base type of a bitfield be int or unsigned is relaxed. This allows a
programmer to allocate bitfields from smaller units of storage than an int (e.g., unsigned char).

Example:
struct {

unsigned char a : 1;
unsigned char b : 1;
unsigned char c : 1;

} x;

struct {
unsigned a : 1;
unsigned b : 1;
unsigned c : 1;

} y;

In the above example, the size of "x" is the same size as an unsigned char whereas the size of "y"
is the same size as an unsigned int.

9. The following macros are defined.

_near, near
_far, far, SOMDLINK (16-bit)
_huge, huge
_based
_segment
_segname
_self
_cdecl, cdecl, SOMLINK (16-bit)
_pascal, pascal
_fastcall
_fortran, fortran
_inline
_interrupt, interrupt
_export
_loadds
_saveregs
_stdcall
_syscall, SOMLINK (32-bit), SOMDLINK (32-bit)
_far16

See also the description of the "za" option.

zq
The "quiet mode" option causes the informational messages displayed by the compiler to be suppressed.
Normally, messages are displayed identifying the compiler and summarizing the number of lines compiled.
As well, a dot is displayed every few seconds while the code generator is active, to indicate that the
compiler is still working. These messages are all suppressed by the "quiet mode" option. Error and
warning messages are not suppressed.

zs
The compiler will check the source code only and omit the generation of object code. Syntax checking,
type checking, and so on are performed as usual.

30 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

2.3.5 Source/Output Control
This group of options deals with control over the input files and output files that the compiler processes
and/or creates.

ad[=<file_name>]
This option enables generation of auto dependancy infomation in a makefile syntax generating a
<target>:<depends...> list. If the auto depend file is not specified, it is constructed from the source file
name. If the depend extension is not specified, it is ".d" by default.

Example:
C>compiler_name report /ad=d:\proj\obj\

A trailing "\" must be specified for directory names. If, for example, the option was specified as
fo=d:\proj\obj then the dependancy file would be called d:\proj\obj.d.

A default filename extension must be preceded by a period (".").

Example:
C>compiler_name report /ad=d:\proj\obj\.dep

The file generated has content

Example:
<targetname>:<input source file> <included header files...>

included header files exclude those which come <watcom>/h.

adbs
When generating makefile style auto depend files, this option forces any slashes "/" or "\" to be "\". Certain
operations can cause mixed slashes, this forces the output to be appropriate for the make used.

add[=<file_name>]
Set the first dependancy name in a makefile style auto depend file. The default for this is the source name
specified to compile. This file spec follows the rules specified for other files. (see "ad[=<file_name>]" on
page 31)

adhp[=<path_name>]
When including file with "" delimiters, the filename resulting in makefile type auto dependancy files will
have no path. This allows these files to be given a path, and said path will may be relative. This
path_name is prepended to the filename exactly, so a trailing slash must be specified.

This issue only affects headers found in the current directory. If the header was found in the source’s
directory, it receives a path, which means there will be at least one [IS_]PATH_CHAR in the path,
otherwise it is found in the current directory.

let me illustrate....

Example:
source.obj: source.c header.h

Compiler Options - Full Description 31

Open Watcom C/C++ User’s Guide

This target rule will work when compiling within the source’s directory ONLY, otherwise dependancy files
source.c and header.h will not be found; no rule to make them; and make fails.

Example:
output/source.obj: sourcepath/source.c header.h

(what is generated now, when compiling source.c within sourcepath)

This will also fail if the make evaluates this rule from some place other than sourcepath.

This will work, however, if the header was really found in the current directory. (no option required)

(one possible intent... which will be generated now, if header.h is not in the current path, but is with the
source, and the compile is done outside sourcepath)

Example:
output/output.obj: sourcepath/source.c sourcepath/header.h

This rule can be consistantly generated by specifying -adhp=sourcepath/ . Then when the header file is
found in the current directory, especially when it is sourcepath, will not have had a path, and will receive
the default header path. The rule may then be processed from outside that current directory. [
-ahdp=$(SOMEVAR)/] may be specified... this will result in output as $(SOMEVAR) which make may
expand]

(another possible intent... which will result in referencing the same header file always, when running a
make from outside the current path specified when the compile was originally invoked...)

Example:
output/output.obj: sourcepath/source.c
current_path_at_compile/header.h

-adhp=currentpath/

This says currentpath, because the rule is generated based on the state of when the compile is done, and
should be viewed as past tense so that the rule specifies accurately what was compiled...

adfs
When generating makefile style auto depend files, this option forces any slashes "/" or "\" to be "/". Certain
operations can cause mixed slashes, this forces the output to be appropriate for the make used.

adt[=<target_name>]
This option enables generation of auto dependancy infomation in a makefile syntax. The target name in the
file can be specified. If the auto depend target is not specified, it is constructed from the source file name.
If the target extension is not specified, it is ".obj" by default.

Example:
C>compiler_name report /adt=d:\proj\obj\

A trailing "\" must be specified for directory names. If, for example, the option was specified as
fo=d:\proj\obj then the dependancy file would be called d:\proj\obj.obj.

A default filename extension must be preceded by a period (".").

32 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

Example:
C>compiler_name report /adt=d:\proj\obj\.dep

The file generated has content

Example:
<targetname>:<input source file> <included header files...>

included header files exclude those which come <watcom>/h.

db
Use this option to generate browsing information. The browsing information is recorded in a file whose
name is constructed from the source file name and the extension ".mbr".

ez
(32-bit only) The compiler will generate an object file in Phar Lap Easy OMF-386 (object module format)
instead of the default Microsoft OMF. The macro __SW_EZ will be predefined if "ez" is selected.

fc=<file_name>
(C++ only) The specified "batch" file contains a list of command lines to be processed. This enables the
processing of a number of source files together with options for each file with one single invocation of the
compiler. Only one "fc" option is allowed and no source file names are permitted on the command line.

Example:
[batch.txt]
main /onatx /zp4
part1 part2 /onatx /zp4 /d1
part3 /onatx /zp4 /d2

C>compiler_name /fc=\watcom\h\batch.txt

Each line in the file is treated stand-alone. In other words, the options from one line do not carry over to
another line. However, any options specified on the command line or the associated compiler environment
variable will carry over to the individual command lines in the batch file. When the compiler diagnoses
errors in a source file, processing of subsequent command lines is halted unless the "k" option was specified
(see "k" on page 36).

fh[q][=<file_name>]
The compiler will generate/use a precompiled header for the first header file referenced by #include in
the source file. See the chapter entitled "Precompiled Headers" on page 97 for more information.

fhd
The compiler will store debug info for the pre-compiled header once (DWARF only). See the chapter
entitled "Precompiled Headers" on page 97 for more information.

fhr
(C++ only) This option will force the compiler to read the pre-compiled header if it appears to be
up-to-date; otherwise, it will read the header files included by the source code. It will never write the
pre-compiled header (even when it is out-of-date). See the chapter entitled "Precompiled Headers" on page
97 for more information.

Compiler Options - Full Description 33

Open Watcom C/C++ User’s Guide

fhw
(C++ only) This option will force the compiler to write the pre-compiled header (even when it appears to
be up-to-date). See the chapter entitled "Precompiled Headers" on page 97 for more information.

fhwe
(C++ only) This option will ensure that pre-compiled header warnings are not counted as errors when the
"we" (treat warnings as errors) option is specified.

fi=<file_name>
The specified file is included as if a

#include "<file_name>"

directive were placed at the start of the source file.

Example:
C>compiler_name report /fi=\watcom\h\stdarg.h

fo[=<file_name>]
When generating an object file, the "fo" option may be used to name the object file drive, path, file name
and extension. If the object file name is not specified, it is constructed from the source file name. If the
object file extension is not specified, it is ".obj" by default.

Example:
C>compiler_name report /fo=d:\proj\obj\

A trailing "\" must be specified for directory names. If, for example, the option was specified as
fo=d:\proj\obj then the object file would be called d:\proj\obj.obj.

A default filename extension must be preceded by a period (".").

Example:
C>compiler_name report /fo=d:\proj\obj\.dbo

fr[=<file_name>]
The "fr" option is used to name the error file drive, path, file name and extension. If the error file name is
not specified, it is constructed from the source file name. If the output file extension is not specified, it is
".err" by default. If no part of the name is specified, then no error file is produced (i.e., /fr disables
production of an error file).

Example:
C>compiler_name report /fr=d:\proj\errs\

A trailing "\" must be specified for directory names. If, for example, the option was specified as
fr=d:\proj\errs then the output file would be called d:\proj\errs.err. A default filename
extension must be preceded by a period (".").

Example:
C>compiler_name report /fr=d:\proj\errs\.erf

34 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

ft
(C++ only) If the compiler cannot open a header file whose file name is longer than 8 letters or whose file
extension is longer than 3 letters, it will truncate the name at 8 letters and the extension at 3 letters and try
to open a file with the shortened name. This is the default behaviour for the compiler.

For example, if the compiler cannot open the header file called strstream.h, it will attempt to open a
header file called strstrea.h.

fti
(C only) Whenever a file is open as a result of #include directive processing, an informational message
is printed. The message contains the file name and line number identifying where the #include directive
was located.

fx
(C++ only) This option can be used to disable the truncated header filename processing that the compiler
does by default (see "ft" above).

fzh
(C++ only) This option can be used to stop the compiler from automatically adding extensions to include
files. The default behaviour of the compiler is to search for the specified file, then to try known extensions
if the file specifier does not have an extension. Thus, #include <string> could be matched by ’string’,
’string.h’ or ’string.hpp’ (see "fzs" below). The macro __SW_FZH will be defined when this switch is
used.

fzs
(C++ only) This option can be used to stop the compiler from automatically adding extensions to source
files. The default behaviour of the compiler is to search for the specified file, then to try known extensions
if the file specifier does not have an extension. Thus, ’src_file’ could be matched by ’src_file’,
’src_file.cpp’ or ’src_file.cc’ (see "fzh" above). The macro __SW_FZS will be defined when this switch is
used.

i=<directory>
where "<directory>" takes the form

[d:]path;[d:]path...

The specified paths are added to the list of directories in which the compiler will search for "include" files.
See the section entitled "Open Watcom C/C++ #include File Processing" on page 70 for information on
directory searching.

k
(C++ only) This option instructs the compiler to continue processing subsequent source files after an error
has been diagnosed in the current source file. See the option "fc=<file_name>" on page 33 for information
on compiling multiple source files.

v
Open Watcom C will output function declarations to a file with the same filename as the C source file but
with extension ".def". The "definitions" file may be used as an "include" file when compiling other
modules in order to take advantage of the compiler’s function and argument type checking.

Compiler Options - Full Description 35

Open Watcom C/C++ User’s Guide

zat
ISO C++ defines a number of alternative tokens that can be used instead of certain traditional tokens. For
example "and" instead of "&&", "or" instead of "||", etc. See section 2.5 of the ISO C++ 98 standard for the
complete list of such tokens. The "zat" option disables support for these tokens so that the names "and",
"or", etc are no longer reserved.

zf
Starting with Open Watcom 1.3, the scope of a variable declared in the initialization expression of a for
loop header is by default limited to the body of the loop. This is in accordance with the ISO C++ standard.
The "zf" option causes the compiler to revert to the behavior it had before Open Watcom 1.3. In particular,
it causes the scope of variables declared in the initialization expression of a for loop header to extend
beyond the loop.

Example:
#include <iostream>

void f()
{

for(int i = 0; i < 10; ++i) {
std::cout << i << "\n";

}
std::cout << "Value of i at loop termination: " << i << "\n";

}

The above code will not compile with Open Watcom 1.3 or later because the variable "i" is out of scope in
the last output statement. The "zf" option will allow such code to compile by extending the scope of "i"
beyond the loop.

zg
The "zg" option is similar to the "v" option except that function declarations will be output to the "DEF"
file using base types (i.e., typedefs are reduced to their base type).

Example:
typedef unsigned int UINT;
UINT f(UINT x)
{

return(x + 1);
}

If you use the "v" option, the output will be:

extern UINT f(UINT);

If you use the "zg" option, the output will be:

extern unsigned int f(unsigned int);

zl
By default, the compiler places in the object file the names of the C libraries that correspond to the memory
model and floating-point options that were selected. The Open Watcom Linker uses these library names to
select the libraries required to link the application. If you use the "zl" option, the library names will not be
included in the generated object file.

36 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

The compiler may generate external references for library code that conveniently cause the linker to link in
different code. One such case is: if you have any functions that pass or return floating-point values (i.e.,
float or double), the compiler will insert an external reference that will cause the floating-point formatting
routines to be included in the executable. The "zl" option will disable these external references.

Use this option when you wish to create a library of object modules which do not contain Open Watcom
C/C++ library name references.

zld
By default, the compiler places in the object file the names and time stamps of all the files referenced by the
source file. This file dependency information can then be used by WMAKE to determine that this file
needs to be recompiled if any of the referenced files has been modified since the object file was created.
This option causes the compiler to not emit this information into the object file.

zlf
The "zlf" option tells the compilers to emit references for all default library information into the compiled
object file. See also the options "zl", "zld" and "zls".

zls
The "zls" option tells the compilers to remove automatically inserted symbols. These symbols are usually
used to force symbol references to be fixed up from the run-time libraries. An example would be the
symbol __DLLstart_, that is inserted into any object file that has a DllMain() function defined within its
source file.

2.3.6 Code Generation
This group of options deals with controlling some aspects of the code that is generated by the compiler.

ecc
set default calling convention to __cdecl

ecd
set default calling convention to __stdcall

ecf
set default calling convention to __fastcall

ecp
set default calling convention to __pascal

ecr
set default calling convention to __fortran

ecs
set default calling convention to __syscall

Compiler Options - Full Description 37

Open Watcom C/C++ User’s Guide

ecw
set default calling convention to __watcall (default)

ei
This option can be used to force the compiler to allocate at least an "int" for all enumerated types. The
macro __SW_EI will be predefined if "ei" is selected.

em
This option can be used to force the compiler to allocate the smallest storage unit required to hold all
possible values given for an enumerated list. This option is the default for the x86 architecture. The macro
__SW_EM will be predefined if "em" is selected.

j
The default char type is changed from an unsigned to a signed quantity. The macros
__CHAR_SIGNED__ and__SW_J will be predefined if "j" is selected.

ri
Functions declared to return integral types such as chars and shorts are promoted to returning ints. This
allows non-ISO-conforming source code which does not properly declare the return types of functions to
work properly. The use of this option should be avoided.

xr
The "xr" option is used to to enable the use of the C++ feature called Run-Time Type Information (RTTI).
RTTI can only be used with classes that have virtual functions declared. This restriction implies that if you
enable RTTI, the amount of storage used for a class in memory does not change. The RTTI information is
added to the virtual function information block so there will be an increase in the executable size if you
choose to enable RTTI. There is no execution penalty at all unless you use the dynamic_cast<> feature in
which case, you should be aware that the operation requires a lookup operation in order to perform the
conversion properly. You can mix and match modules compiled with and without "xr", with the caveat that
dynamic_cast<> and typeid() may not function (return NULL or throw an exception) if used on a class
instance that was not compiled with the "xr" option.

zc
The "zc" option causes the code generator to place literal strings and const items in the code segment.

Example:
extern const int cvar = 1;
int var = 2;
const int ctable[5] = { 1, 2, 3, 4, 5 };
char *birds[3] = { "robin", "finch", "wren" };

In the above example, cvar and ctable and the strings "robin", "finch", etc. are placed in the
code segment. This option is supported in large data or flat memory models only, or if the item is explicitly
"far". The macro __SW_ZC will be predefined if "zc" is selected.

zp[{1,2,4,8,16}]
The "zp" option allows you to specify the alignment of members in a structure. The default is "zp2" for the
16-bit compiler and "zp8" for 32-bit compiler. The alignment of structure members is described in the

38 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

following table. If the size of the member is 1, 2, 4, 8 or 16, the alignment is given for each of the "zp"
options. If the member of the structure is an array or structure, the alignment is described by the row "x".

zp1 zp2 zp4 zp8 zp16

sizeof(member) \---------------------------------------
1 | 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
x | aligned to largest member

An alignment of 0 means no alignment, 2 means word boundary, 4 means doubleword boundary, etc.

Note that packed structures are padded to ensure that consecutive occurrences of the same structure in
memory are aligned appropriately. This is illustrated when the following example is compiled with "zp4".
The amount of padding is determined as follows. If the largest member of structure "s" is 1 byte then "s" is
not aligned. If the largest member of structure "s" is 2 bytes then "s" is aligned according to row 2. If the
largest member of structure "s" is 4 bytes then "s" is aligned according to row 4. If the largest member of
structure "s" is 8 bytes then "s" is aligned according to row 8. At present, there are no scalar objects that
can have a size of 16 bytes. If the largest member of structure "s" is an array or structure then "s" is aligned
according to row "x". Padding is the inclusion of slack bytes at the end of a structure in order to guarantee
the alignment of consecutive occurrences of the same structure in memory.

To understand why structure member alignment may be important, consider the following example.

Example:
#include <stdio.h>
#include <stddef.h>

typedef struct memo_el {
char date[9];
struct memo_el *prev,*next;
int ref_number;
char sex;

} memo;

void main()
{

printf("Offset of %s is %d\n",
"date", offsetof(memo, date));

printf("Offset of %s is %d\n",
"prev", offsetof(memo, prev));

printf("Offset of %s is %d\n",
"next", offsetof(memo, next));

printf("Offset of %s is %d\n",
"ref_number", offsetof(memo, ref_number));

printf("Offset of %s is %d\n",
"sex", offsetof(memo, sex));

printf("Size of %s is %d\n",
"memo", sizeof(memo));

printf("Number of padding bytes is %d\n",
sizeof(memo)
- (offsetof(memo, sex) + sizeof(char)));

}

Compiler Options - Full Description 39

Open Watcom C/C++ User’s Guide

In the above example, the default alignment "zp8" will cause the pointer and integer items to be aligned on
even addresses although the array "date" is 9 bytes in length. The items are 2-byte aligned when
sizeof(item) is 2 and 4-byte aligned when sizeof(item) is 4.

On computer systems that have a 16-bit (or 32-bit) bus, improved performance can be obtained when
pointer, integer and floating-point items are aligned on an even boundary. This could be done by careful
rearrangement of the fields of the structure or it can be forced by use of the "zp" option.

16-bit output when compiled zp1:
Offset of date is 0
Offset of prev is 9
Offset of next is 11
Offset of ref_number is 13
Offset of sex is 15
Size of memo is 16
Number of padding bytes is 0

16-bit output when compiled zp4:
Offset of date is 0
Offset of prev is 10
Offset of next is 12
Offset of ref_number is 14
Offset of sex is 16
Size of memo is 18
Number of padding bytes is 1

32-bit output when compiled zp1:
Offset of date is 0
Offset of prev is 9
Offset of next is 13
Offset of ref_number is 17
Offset of sex is 21
Size of memo is 22
Number of padding bytes is 0

32-bit output when compiled zp4:
Offset of date is 0
Offset of prev is 12
Offset of next is 16
Offset of ref_number is 20
Offset of sex is 24
Size of memo is 28
Number of padding bytes is 3

zpw
The compiler will output a warning message whenever padding is added to a struct/class for alignment
purposes.

zt<number>
The "data threshold" option is used to set the maximum size for data objects to be included in the default
data segment. This option can be used with the compact, large, and huge (16-bit) memory models only.
These are memory models where there can be more than one data segment. Normally, all data objects
whose size is less than or equal to the threshold value are placed in the default data segment "_DATA"
unless they are specifically declared to be far items. When there is a large amount of static data, it is
often useful to set the data threshold size so that all objects larger than this size are placed in another (far)

40 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

data segment. For example, the option "zt100" causes all data objects larger than 100 bytes in size to be
implicitly declared as far and grouped in other data segments.

The default data threshold value is 32767. Thus, by default, all objects greater than 32767 bytes in size are
implicitly declared as far and will be placed in other data segments. If the "zt" option is specified without
a size, the data threshold value is 256. The largest value that can be specified is 32767 (a larger value will
result in 256 being selected).

If the "zt" option is used to compile any module in a program, then you must compile all the other modules
in the program with the same option (and value).

Care must be exercised when declaring the size of objects in different modules. Consider the following
declarations in two different C files. Suppose we define an array in one module as follows:

extern int Array[100] = { 0 };

and, suppose we reference the same array in another module as follows:

extern int Array[10];

Assuming that these modules were compiled with the option "zt100", we would have a problem. In the first
module, the array would be placed in another segment since Array[100] is bigger than the data
threshold. In the second module, the array would be placed in the default data segment since Array[10]
is smaller than the data threshold. The extra code required to reference the object in another data segment
would not be generated.

Note that this problem can also occur even when the "zt" option is not used (i.e., for objects greater than
32767 bytes in size). There are two solutions to this problem: (1) be consistent when declaring an object’s
size, or, (2) do not specify the size in data reference declarations.

zv
(C++ only) Enable virtual function removal optimization.

2.3.7 80x86 Floating Point
This group of options deals with control over the type of floating-point instructions that the compiler
generates. There are two basic types — floating-point calls (FPC) or floating-point instructions (FPI).
They are selectable through the use of one of the compiler options described below. You may wish to use
the following list when deciding which option best suits your requirements. Here is a summary of
advantages/disadvantages to both.

FPC

1. not IEEE floating-point
2. not tailorable to processor
3. uses coprocessor if present; simulates otherwise
4. 32-bit/64-bit accuracy
5. runs somewhat faster if coprocessor present
6. faster emulation (fewer bits of accuracy)
7. leaner "math" library
8. fatter application code (calls to library rather than in-line instructions)
9. application cannot trap floating-point exceptions
10. ideal for ROM applications

Compiler Options - Full Description 41

Open Watcom C/C++ User’s Guide

FPI, FPI87

1. IEEE floating-point
2. tailorable to processor (see fp2, fp3, fp5, fp6)
3. uses coprocessor if present; emulates IEEE otherwise
4. up to 80-bit accuracy
5. runs "full-tilt" if coprocessor present
6. slower emulation (more bits of accuracy)
7. fatter "math" library
8. leaner application code (in-line instructions)
9. application can trap floating-point exceptions
10. ideal for general-purpose applications

To see the difference in the type of code generated, consider the following small example.

Example:
#include <stdio.h>
#include <time.h>

void main()
{

clock_t cstart, cend;
cstart = clock();
/* .

.

.
*/
cend = clock();
printf("%4.2f seconds to calculate\n",

((float)cend - cstart) / CLOCKS_PER_SEC);
}

The following 32-bit code is generated by the Open Watcom C compiler (wcc386) using the "fpc" option.

main_ push ebx

push edx
call clock_
mov edx,eax
call clock_
call __U4FS ; unsigned 4 to floating single
mov ebx,eax
mov eax,edx
call __U4FS ; unsigned 4 to floating single
mov edx,eax
mov eax,ebx
call __FSS ; floating single subtract
mov edx,3c23d70aH
call __FSM ; floating single multiply
call __FSFD ; floating single to floating double
push edx
push eax
push offset L1
call printf_
add esp,0000000cH
pop edx
pop ebx
ret

The following 32-bit code is generated by the Open Watcom C compiler (wcc386) using the "fpi" option.

42 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

main_ push ebx

push edx
sub esp,00000010H
call clock_
mov edx,eax
call clock_
xor ebx,ebx
mov [esp],eax
mov +4H[esp],ebx
mov +8H[esp],edx
mov +0cH[esp],ebx
fild qword ptr [esp] ; integer to double
fild qword ptr +8H[esp] ; integer to double
fsubp st(1),st ; subtract
fmul dword ptr L2 ; multiply
sub esp,00000008H
fstp qword ptr [esp] ; store into memory
push offset L1
call printf_
add esp,0000000cH
add esp,00000010H
pop edx
pop ebx
ret

fpc
All floating-point arithmetic is done with calls to a floating-point emulation library. If a numeric data
processor is present in the system, it will be used by the library; otherwise floating-point operations are
simulated in software. This option should be used for any of the following reasons:

1. Speed of floating-point emulation is favoured over code size.
2. An application containing floating-point operations is to be stored in ROM and an 80x87 will not

be present in the system.

The macro __SW_FPC will be predefined if "fpc" is selected.

Note: When any module in an application is compiled with the "fpc" option, then all modules must be
compiled with the "fpc" option.

Different math libraries are provided for applications which have been compiled with a particular
floating-point option. See the section entitled "Open Watcom C/C++ Math Libraries" on page 105.

See the section entitled "The NO87 Environment Variable" on page 107 for information on testing the
floating-point simulation code on personal computers equipped with a coprocessor.

fpi
(16-bit only) The compiler will generate in-line 80x87 numeric data processor instructions into the object
code for floating-point operations. Depending on which library the code is linked against, these
instructions will be left as is or they will be replaced by special interrupt instructions. In the latter case,
floating-point will be emulated if an 80x87 is not present. This is the default floating-point option if none
is specified.

(32-bit only) The compiler will generate in-line 387-compatible numeric data processor instructions into
the object code for floating-point operations. When any module containing floating-point operations is
compiled with the "fpi" option, coprocessor emulation software will be included in the application when it
is linked.

Compiler Options - Full Description 43

Open Watcom C/C++ User’s Guide

For 32-bit Open Watcom Windows-extender applications or 32-bit applications run in Windows 3.1 DOS
boxes, you must also include the WEMU387.386 file in the [386enh] section of the SYSTEM.INI file.

Example:
device=C:\WATCOM\binw\wemu387.386

Note that the WDEBUG.386 file which is installed by the Open Watcom Installation software contains the
emulation support found in the WEMU387.386 file.

Thus, a math coprocessor need not be present at run-time. This is the default floating-point option if none
is specified. The macros __FPI__ and__SW_FPI will be predefined if "fpi" is selected.

Note: When any module in an application is compiled with a particular "floating-point" option, then all
modules must be compiled with the same option.

If you wish to have floating-point emulation software included in the application, you should select the
"fpi" option. A math coprocessor need not be present at run-time.

Different math libraries are provided for applications which have been compiled with a particular
floating-point option. See the section entitled "Open Watcom C/C++ Math Libraries" on page 105.

See the section entitled "The NO87 Environment Variable" on page 107 for information on testing the math
coprocessor emulation code on personal computers equipped with a coprocessor.

fpi87
(16-bit only) The compiler will generate in-line 80x87 numeric data processor instructions into the object
code for floating-point operations. An 8087 or compatible math coprocessor must be present at run-time.
If the "2" option is used in conjunction with this option, the compiler will generate 287 and upwards
compatible instructions; otherwise, the compiler will generate 8087 compatible instructions.

(32-bit only) The compiler will generate in-line 387-compatible numeric data processor instructions into
the object code for floating-point operations. When the "fpi87" option is used exclusively, coprocessor
emulation software is not included in the application when it is linked. A 387 or compatible math
coprocessor must be present at run-time.

The macros __FPI__ and__SW_FPI87 will be predefined if "fpi87" is selected. See Note with
description of "fpi" option.

fp2
The compiler will generate in-line 80x87 numeric data processor instructions into the object code for
floating-point operations. For Open Watcom compilers generating 16-bit code, this option is the default.
For 32-bit applications, use this option if you wish to support those few 386 systems that are equipped with
a 287 numeric data processor ("fp3" is the default for Open Watcom compilers generating 32-bit code).
However, for 32-bit applications, the use of this option will reduce execution performance. Use this option
in conjunction with the "fpi" or "fpi87" options. The macro __SW_FP2 will be predefined if "fp2" is
selected.

fp3
The compiler will generate in-line 387-compatible numeric data processor instructions into the object code
for floating-point operations. For 16-bit applications, the use of this option will limit the range of systems

44 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

on which the application will run but there are execution performance improvements. For Open Watcom
compilers generating 32-bit code, this option is the default. Use this option in conjunction with the "fpi" or
"fpi87" options. The macro __SW_FP3 will be predefined if "fp3" is selected.

fp5
The compiler will generate in-line 80x87 numeric data processor instructions into the object code for
floating-point operations. The sequence of floating-point instructions will be optimized for greatest
possible performance on the Intel Pentium processor. For 16-bit applications, the use of this option will
limit the range of systems on which the application will run but there are execution performance
improvements. Use this option in conjunction with the "fpi" or "fpi87" options. The macro __SW_FP5
will be predefined if "fp5" is selected.

fp6
The compiler will generate in-line 80x87 numeric data processor instructions into the object code for
floating-point operations. The sequence of floating-point instructions will be optimized for greatest
possible performance on the Intel Pentium Pro processor. For 16-bit applications, the use of this option
will limit the range of systems on which the application will run but there are execution performance
improvements. Use this option in conjunction with the "fpi" or "fpi87" options. The macro __SW_FP6
will be predefined if "fp6" is selected.

fpd
A subtle problem was detected in the FDIV instruction of Intel’s original Pentium CPU. In certain rare
cases, the result of a floating-point divide could have less precision than it should. Contact Intel directly for
more information on the issue.

As a result, the run-time system startup code has been modified to test for a faulty Pentium. If the FDIV
instruction is found to be flawed, the low order bit of the run-time system variable __chipbug will be set.

extern unsigned __near __chipbug;

If the FDIV instruction does not show the problem, the low order bit will be clear. If the Pentium FDIV
flaw is a concern for your application, there are two approaches that you could take:

1. You may test the __chipbug variable in your code in all floating-point and memory models
and take appropriate action (such as display a warning message or discontinue the application).

2. Alternately, you can use the "fpd" option when compiling your code. This option directs the
compiler to generate additional code whenever an FDIV instruction is generated which tests the
low order bit of __chipbug and, if on, calls the software workaround code in the math
libraries. If the bit is off, an in-line FDIV instruction will be performed as before.

If you know that your application will never run on a defective Pentium CPU, or your analysis shows that
the FDIV problem will not affect your results, you need not use the "fpd" option. The macro __SW_FPD
will be predefined if "fpd" is selected.

2.3.8 Segments/Modules
This group of options deals with object file data structures that are generated by the compiler.

Compiler Options - Full Description 45

Open Watcom C/C++ User’s Guide

g=<codegroup>
The generated code is placed in the group called "<codegroup>". The default "text" segment name will be
"<codegroup>_TEXT" but this can be overridden by the "nt" option.

Example:
C>compiler_name report /g=RPTGROUP /s

(16-bit only) <<

This is useful when compiling applications for small code models where the total application will contain
more than 64 kilobytes of code. Each group can contain up to 64 kilobytes of code. The application
follows a "mixed" code model since it contains a mix of small and large code (intra-segment and
inter-segment calls). Memory models are described in the chapter entitled "16-bit Memory Models" on
page 113. The far keyword is used to describe routines that are referenced from one group/segment but
are defined in another group/segment.

For small code models, the "s" option should be used in conjunction with the "g" option to prevent the
generation of calls to the C run-time "stack overflow check" routine (__STK). You must also avoid calls
to other "small code" C run-time library routines since inter-segment "near" calls to C library routines are
not possible.

>> (16-bit only)

nc=<name>
The default "code" class name is "CODE". The small code model "_TEXT" segment and the large code
model "module_name_TEXT" segments belong to the "CODE" class. This option allows you to select a
different class name for these code segments. The name of the "code" class is explicitly set to "<name>".

Note that the default "data" class names are "DATA" (for the "CONST", "CONST2" and "_DATA"
segments) and "BSS" (for the "_BSS" segment). There is no provision for changing the data class names.

nd=<name>
This option permits you to define a special prefix for the "CONST", "CONST2", "_DATA", and "_BSS"
segment names. The name of the group to which these segments belong is also changed from "DGROUP"
to "<name>_GROUP". This option is especially useful in the creation of 16-bit Dynamic Link Library
(DLL) routines.

Example:
C>compiler_name report /nd=spec

In the above example, the segment names become "specCONST", "specCONST2", "spec_DATA", and
"spec_BSS" and the group name becomes "spec_GROUP".

By default, the data group "DGROUP" consists of the "CONST", "CONST2", "_DATA", and "_BSS"
segments. The compiler places certain types of data in each segment. The "CONST" segment contains
constant literals that appear in your source code.

Example:
char *birds[3] = { "robin", "finch", "wren" };

printf("Hello world\n");

46 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

In the above example, the strings "Hello world\n", "robin", "finch", etc. appear in the "CONST" segment.

The "CONST2" segment contains initialized read-only data.

Example:
extern const int cvar = 1;
int var = 2;
int table[5] = { 1, 2, 3, 4, 5 };
char *birds[3] = { "robin", "finch", "wren" };

In the above example, the constant variable cvar is placed in the "CONST2" segment.

The "_BSS" segment contains uninitialized data such as scalars, structures, or arrays.

Example:
int var1;
int array1[400];

Other data segments containing data, specifically declared to be far or exceeding the data threshold (see
"zt" option), are named either "module_nameN_DATA" when using the C compiler or
"module_name_DATAN" when using the C++ compiler where "N" is some integral number.

Example:
int far array2[400];

In the above example, array2 is placed in the segment "report11_DATA" (C) or "report_DATA11"
(C++) provided that the module name is "report".

The macro __SW_ND will be predefined if "nd" is selected.

nm=<name>
By default, the object file name and the module name that is placed within it are constructed from the
source file name. When the "nm" option is used, the module name that is placed into the object file is
"<name>". For large code models, the "text" segment name is "<name>_TEXT" unless the "nt" option is
used.

In the following example, the preprocessed output from report.c is stored on drive "D" under the name
temp.c. The file is compiled with the "nm" option so that the module name imbedded into the object file
is "REPORT" rather than "TEMP".

Example:
C>compiler_name report /pl /fo=d:\temp.c
C>compiler_name d:\temp /nm=report /fo=report

Since the "fo" option is also used, the resultant object file is called report.obj.

nt=<name>
The name of the "text" segment is explicitly set to "<name>". By default, the "text" segment name is
"_TEXT" for small code models and "module_name_TEXT" for large code models.

Compiler Options - Full Description 47

Open Watcom C/C++ User’s Guide

Application Memory Code
Type Model Segment
----------- ------- -------------------
16-bit tiny _TEXT
32-bit flat _TEXT
16/32-bit small _TEXT
16/32-bit medium module_name_TEXT
16/32-bit compact _TEXT
16/32-bit large module_name_TEXT
16-bit huge module_name_TEXT

zm
The "zm" option instructs the code generator to place each function into a separate segment.

In small code models, the segment name is "_TEXT" by default.

(C only) In large code models, the segment name is composed of the function name concatenated with the
string "_TEXT".

(C++ only) In large code models, the segment name is composed of the module name concatenated with the
string "_TEXT" and a unique integral number.

The default string "_TEXT" can be altered using the "nt" option (see "nt=<name>" on page 47).

The advantages to this option are:

1. Since each function is placed in its own segment, functions that are not required by an
application are omitted from the executable by the linker (when "OPTION ELIMINATE" is
specified).

2. This can result in smaller executables.
3. This benefit applies to both small and large code models.
4. This option allows you to create granular libraries without resorting to placing each function in a

separate file.

Example:
static int foo(int x)
{

return x - 1;
}

static int near foo1(int x)
{

return x + 1;
}

int foo2(int y)
{

return foo(y) * foo1(y-1);
}

int foo3(int x, int y)
{

return x + y * x;
}

48 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

The disadvantages to this option are:

1. The "near call" optimization for static functions in large code models is disabled (e.g., the
function foo in the example above will never be "near called". Static functions will always be
"far called" in large code models.

2. Near static functions will still be "near called" (e.g., the function foo1 is "near called" in the
example above). However, this can lead to problems at link time if the caller function ends up in
a different segment from the called function (the linker will issue a message if this is the case).

3. The "common epilogue" optimization is lost.
4. The linker "OPTION ELIMINATE" must be specified when linking an application to take

advantage of the granularity inherent in object files/libraries compiled with this option.
5. Any assumptions about relative position of functions are invalid. Consider the following code

which attempts to determine the size of a code region by subtracting function addresses:

Example:
region_size = (unsigned long)&function2 - (unsigned
long)function1;

When "zm" is in effect, region_size may be extremely large or even a negative value. For
the above code to work as intended, both function1 and function2 (and every function
intended to be located between them) must reside in a single code segment.

This option can be used in paging environments where special segment ordering may be employed. The
"alloc_text" pragma is often used in conjunction with this option to place functions into specific segments.

The macro __SW_ZM will be predefined if "zm" is selected.

zmf
(C++ only) This option is identical to the "zm" option (see "zm" on page 48) except for the following large
code model consideration.

Instead of placing each function in a segment with a different name, the code generator will place each
function in a segment with the same name (the name of the module suffixed by "_TEXT").

The advantages to this option are:

1. All functions in a module will reside in the same physical segment in an executable.
2. The "near call" optimization for static functions in large code models is not disabled (e.g., the

function foo in the example above will be "near called". Static functions will always be "near
called" in large code models.

3. The problem associated with calling "near" functions goes away since all functions in a module
will reside in the same physical segment (e.g., the function foo1 is "near" in the example
above).

The disadvantages to this option are:

1. The size of a physical segment is restricted to 64K in 16-bit applications. Although this may
limit the number of functions that can be placed in the segment, the restriction is only on a "per
module" basis.

2. Although less constricting, the size of a physical segment is restricted to 4G in a 32-bit
application.

Compiler Options - Full Description 49

Open Watcom C/C++ User’s Guide

2.3.9 80x86 Run-time Conventions
This group of options deals with the 80x86 run-time environment.

0
(16-bit only) The compiler will make use of only 8086 instructions in the generated object code. This is the
default. The resulting code will run on 8086 and all upward compatible processors. The macro __SW_0
will be predefined if "0" is selected.

1
(16-bit only) The compiler will make use of 186 instructions in the generated object code whenever
possible. The resulting code probably will not run on 8086 compatible processors but it will run on 186
and upward compatible processors. The macro __SW_1 will be predefined if "1" is selected.

2
(16-bit only) The compiler will make use of 286 instructions in the generated object code whenever
possible. The resulting code probably will not run on 8086 or 186 compatible processors but it will run on
286 and upward compatible processors. The macro __SW_2 will be predefined if "2" is selected.

3
(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or "zgf" options
are used) in the generated object code whenever possible. The code will be optimized for 386 processors.
The resulting code probably will not run on 8086, 186 or 286 compatible processors but it will run on 386
and upward compatible processors. The macro __SW_3 will be predefined if "3" is selected.

4
(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or "zgf" options
are used) in the generated object code whenever possible. The code will be optimized for 486 processors.
The resulting code probably will not run on 8086, 186 or 286 compatible processors but it will run on 386
and upward compatible processors. The macro __SW_4 will be predefined if "4" is selected.

5
(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or "zgf" options
are used) in the generated object code whenever possible. The code will be optimized for the Intel Pentium
processor. The resulting code probably will not run on 8086, 186 or 286 compatible processors but it will
run on 386 and upward compatible processors. The macro __SW_5 will be predefined if "5" is selected.

6
(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or "zgf" options
are used) in the generated object code whenever possible. The code will be optimized for the Intel Pentium
Pro processor. The resulting code probably will not run on 8086, 186 or 286 compatible processors but it
will run on 386 and upward compatible processors. The macro __SW_6 will be predefined if "6" is
selected.

3{r|s}
(32-bit only) The compiler will generate 386 instructions based on 386 instruction timings (see "4", "5" and
"6" below).

50 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

If the "r" suffix is specified, the following machine-level code strategy is employed.

• The compiler will pass arguments in registers whenever possible. This is the default method used to
pass arguments (unless the "bt=netware" option is specified).

• All registers except EAX are preserved across function calls.

• When any form of the "fpi" option is used, the result of functions of type "float" and "double" is
returned in ST(0).

• When the "fpc" option is used, the result of a function of type "float" is returned in EAX and the
result of a function of type "double" is returned in EDX:EAX.

• The resulting code will be smaller than that which is generated for the stack-based method of passing
arguments (see "3s" below).

• The default naming convention for all global functions is such that an underscore character ("_") is
suffixed to the symbol name. The default naming convention for all global variables is such that an
underscore character ("_") is prefixed to the symbol name.

If the "s" suffix is specified, the following machine-level code strategy is employed.

• The compiler will pass all arguments on the stack.

• The EAX, ECX and EDX registers are not preserved across function calls.

• The FS and GS registers are not preserved across function calls.

• The result of a function of type "float" is returned in EAX. The result of a function of type "double"
is returned in EDX:EAX.

• The resulting code will be larger than that which is generated for the register method of passing
arguments (see "3r" above).

• The naming convention for all global functions and variables is modified such that no underscore
characters ("_") are prefixed or suffixed to the symbol name.

The "s" conventions are similar to those used by the MetaWare High C 386 compiler.

By default, "r" is selected if neither "r" nor "s" is specified.

The macro __SW_3 will be predefined if "3" is selected. The macro__SW_3R will be predefined if "r" is
selected (or defaulted). The macro __SW_3S will be predefined if "s" is selected.

4{r|s}
(32-bit only) This option is identical to "3{r|s}" except that the compiler will generate 386 instructions
based on 486 instruction timings. The code is optimized for 486 processors rather than 386 processors. By
default, "r" is selected if neither "r" nor "s" is specified. The macro __SW_4 will be predefined if "4" is
selected. The macro __SW_3R will be predefined if "r" is selected (or defaulted). The macro__SW_3S
will be predefined if "s" is selected.

Compiler Options - Full Description 51

Open Watcom C/C++ User’s Guide

5{r|s}
(32-bit only) This option is identical to "3{r|s}" except that the compiler will generate 386 instructions
based on Intel Pentium instruction timings. This is the default. The code is optimized for Intel Pentium
processors rather than 386 processors. By default, "r" is selected if neither "r" nor "s" is specified. The
macro __SW_5 will be predefined if "5" is selected. The macro__SW_3R will be predefined if "r" is
selected (or defaulted). The macro __SW_3S will be predefined if "s" is selected.

6{r|s}
(32-bit only) This option is identical to "3{r|s}" except that the compiler will generate 386 instructions
based on Intel Pentium Pro instruction timings. The code is optimized for Intel Pentium Pro processors
rather than 386 processors. By default, "r" is selected if neither "r" nor "s" is specified. The macro
__SW_6 will be predefined if "6" is selected. The macro__SW_3R will be predefined if "r" is selected (or
defaulted). The macro __SW_3S will be predefined if "s" is selected.

mf
(32-bit only) The "flat" memory model (code and data up to 4 gigabytes) is selected. By default, the 32-bit
compiler will select this memory model unless the target system is Netware in which case "small" is
selected. The following macros will be predefined.

M_386FM
_M_386FM
__FLAT__

ms
The "small" memory model (small code, small data) is selected. By default, the 16-bit compiler will select
this memory model. When the target system is Netware, the 32-bit compiler will select this memory model.
The following macros will be predefined.

M_I86SM
_M_I86SM
M_386SM
_M_386SM
__SMALL__

mm
The "medium" memory model (big code, small data) is selected. The following macros will be predefined.

M_I86MM
__MEDIUM__

mc
The "compact" memory model (small code, big data) is selected. The following macros will be predefined.

M_I86CM
_M_I86CM
__COMPACT__

ml
The "large" memory model (big code, big data) is selected. The following macros will be predefined.

52 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

M_I86LM
__LARGE__

mh
(16-bit only) The "huge" memory model (big code, huge data) is selected. The following macros will be
predefined.

M_I86HM
__HUGE__

Memory models are described in the chapters entitled "16-bit Memory Models" on page 113 and "32-bit
Memory Models" on page 181. Other architectural aspects of the Intel 86 family such as pointer size are
discussed in the sections entitled "Sizes of Predefined Types" on page 124 in the chapter entitled "16-bit
Assembly Language Considerations" or "Sizes of Predefined Types" on page 190 in the chapter entitled
"32-bit Assembly Language Considerations"

zd{f,p}
The "zdf" option allows the code generator to use the DS register to point to other segments besides
"DGROUP" This is the default in the 16-bit compact, large, and huge memory models (except for 16-bit
Windows applications).

The "zdp" option informs the code generator that the DS register must always point to "DGROUP" This is
the default in the 16-bit small and medium memory models, all of the 16-bit Windows memory models, and
the 32-bit small and flat memory models. The macro __SW_ZDF will be predefined if "zdf" is selected.
The macro __SW_ZDP will be predefined if "zdp" is selected.

zdl
(32-bit only) The "zdl" option causes generation of code to load the DS register directly from DGROUP
(rather than the default run-time call). This option causes the generation of a segment relocation. This
option is used with the "zdp" option but not the "zdf" option.

zev
The "zev" option is an extension to the Watcom C compiler to allow arithmetic operations on void derived
types. This option has been added for compatibility with some Unix compilers and is not ISO compliant.
The use of this option should be avoided.

zf{f,p}
The "zff" option allows the code generator to use the FS register (default for all but flat memory model).
The "zfp" option informs the code generator that the FS register must not be used (default in flat memory
model). The macro __SW_ZFF will be predefined if "zff" is selected. The macro__SW_ZFP will be
predefined if "zfp" is selected.

zfw
The "zfw" option turns on generation of FWAIT instructions on 386 and later CPUs. Note that when
targeting 286 and earlier, this option has no effect because FWAITs are always required for
synchronization between CPU and FPU.

This option generates larger and slower code and should only be used when restartable floating-point
exceptions are required.

Compiler Options - Full Description 53

Open Watcom C/C++ User’s Guide

The macro __SW_ZFW will be predefined if "zfw" is selected.

zg{f,p}
The "zgf" option allows the code generator to use the GS register (default for all memory models). The
"zgp" option informs the code generator that the GS register must not be used. The macro __SW_ZGF will
be predefined if "zgf" is selected. The macro __SW_ZGP will be predefined if "zgp" is selected.

zri
(32-bit only) The "zri" option inlines the code for floating point rounding. Normally a function call is
generated for each float to int conversion which may not be desirable.

The macro __SW_ZRI will be predefined if "zri" is selected.

zro
The "zro" option omits the code for floating point rounding. This results in non-conformant code - the
rounding mode is not ISO/ANSI C compliant - but the code generated is very fast.

The macro __SW_ZRO will be predefined if "zro" is selected.

zu
The "zu" option relaxes the restriction that the SS register contains the base address of the default data
segment, "DGROUP". Normally, all data items are placed into the group "DGROUP" and the SS register
contains the base address of this group. When the "zu" option is selected, the SS register is volatile
(assumed to point to another segment) and any global data references require loading a segment register
such as DS with the base address of "DGROUP".

(16-bit only) This option is useful when compiling routines that are to be placed in a Dynamic Link Library
(DLL) since the SS register points to the stack segment of the calling application upon entry to the function.

The macro __SW_ZU will be predefined if "zu" is selected.

2.3.10 Optimizations
When specified on the command line, optimization options may be specified individually (oa, oi) or the
letters may be strung together (oailt).

oa
Alias checking is relaxed. When this option is specified, the code optimizer will assume that global
variables are not indirectly referenced through pointers. This assumption may reduce the size of the code
that is generated. The following example helps to illustrate this point.

54 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

Example:
extern int i;

void rtn(int *pi)
{

int k;
for(k = 0; k < 10; ++k) {

(*pi)++;
i++;

}
}

In the above example, if "i" and "*pi" referenced the same integer object then "i" would be incremented by
2 each time through the "for" loop and we would call the pointer reference "*pi" an alias for the variable
"i". In this situation, the compiler could not bind the variable "i" to a register without making sure that the
"in-memory" copy of "i" was kept up-to-date. In most cases, the above situation does not arise. Rarely
would we reference the same variable directly by name and indirectly through a pointer in the same routine.
The "oa" option instructs the code generator that such cases do not arise in the module to be compiled. The
code generator will be able to produce more efficient code when it does not have to worry about the alias
"problem".

The macro __SW_OA will be predefined if "oa" is selected.

ob
When the "ob" option is specified, the code generator will try to order the blocks of code emitted such that
the "expected" execution path (as determined by a set of simple heuristics) will be straight through, with
other cases being handled by jumps to separate blocks of code "out of line". This will result in better cache
utilization on the Pentium. If the heuristics do not apply to your code, it could result in a performance
decrease.

oc
This option may be used to disable the optimization where a "CALL" followed by a "RET" (return) is
changed into a "JMP" (jump) instruction.

(16-bit only) This option is required if you wish to link an overlayed program using the Microsoft DOS
Overlay Linker. The Microsoft DOS Overlay Linker will create overlay calls for a "CALL" instruction
only. This option is not required when using the Open Watcom Linker.

The macro __SW_OC will be predefined if "oc" is selected.

od
Non-optimized code sequences are generated. The resulting code will be much easier to debug when using
the Open Watcom Debugger. By default, the compiler will select "od" if "d2" is specified. If "d2" is
followed by one of the other "o?" options then "od" is overridden.

Example:
C>compiler_name report /d2 /os

The macro __SW_OD will be predefined if "od" is selected.

Compiler Options - Full Description 55

Open Watcom C/C++ User’s Guide

oe=<num>
Certain user functions are expanded in-line. The criteria for which functions are selected for in-line
expansion is based on the "size" of the function in terms of the number of "tree nodes" generated by the
function. Functions are internally represented as tree structures, where each operand and each operator is a
node of the tree. For example, the statement a = -b * (c + d) can be represented as a tree with 8
nodes, one for each operand and operator.

The number of "nodes" generated corresponds closely with the number of operators used in an expression.
Functions which require more than "<num>" nodes are not expanded in-line. The default number is 20.
With larger "<num>" values, more (larger) functions will be expanded in-line. This optimization is
especially useful when locally-referenced functions are small in size.

Example:
C>compiler_name dhrystone /oe

oh
This option enables repeated optimizations (which can result in longer compiles).

oi
Certain library functions are generated in-line. You must include the appropriate header file containing the
prototype for the desired function so that it will be generated in-line. The functions that can be generated
in-line are:

abs _disable div _enable fabs _fmemchr
_fmemcmp _fmemcpy _fmemset _fstrcat _fstrcmp _fstrcpy
_fstrlen inpd (2) inpw inp labs ldiv (2)
_lrotl (2) _lrotr (2) memchr memcmp memcpy memset (1)
movedata outpd (2) outpw outp _rotl _rotr
strcat strchr strcmp (1) strcpy strlen

*1 16-bit only
*2 32-bit only

The macros __INLINE_FUNCTIONS__ and__SW_OI will be predefined if "oi" is selected.

oi+
(C++ only) This option encompasses "oi" but also sets inline_depth to its maximum (255). By default,
inline_depth is 3. The inline_depth can also be changed by using the C++ inline_depth pragma.

ok
This option enables flowing of register save (from prologue) down into the function’s flow graph. This
means that register save/restores will not be executed when it is not necessary (as can be the case when a
function consists of an if-else construct with a simple part that does little and a more complex part that does
a lot).

ol
Loop optimizations are performed. This includes moving loop-invariant expressions outside the loops.
The macro __SW_OL will be predefined if "ol" is selected.

56 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

ol+
Loop optimizations are performed including loop unrolling. This includes moving loop-invariant
expressions outside the loops and turning some loops into straight-line code. The macro __SW_OL will be
predefined if "ol+" is selected.

om
Generate in-line 80x87 code for math functions like sin, cos, tan, etc. If this option is selected, it is the
programmer’s responsibility to make sure that arguments to these functions are within the range accepted
by the fsin, fcos, etc. instructions since no run-time check is made. For 16-bit, you must also
include the "fp3" option to get in-line 80x87 code (except for fabs). The functions that can be generated
in-line are:

atan cos exp fabs log10 log sin sqrt tan

The macro __SW_OM will be predefined if "om" is selected.

on
This option allows the compiler to replace floating-point divisions with multiplications by the reciprocal.
This generates faster code, but the result may not be the same because the reciprocal may not be exactly
representable. The macro __SW_ON will be predefined if "on" is selected.

oo
By default, the compiler will abort compilation if it runs low on memory. This option forces the compiler
to continue compilation even when low on memory, however, this can result in very poor code being
generated. The macro __SW_OO will be predefined if "oo" is selected.

op
This option causes the compiler to store intermediate floating-point results into memory in order to generate
consistent floating-point results rather than keeping values in the 80x87 registers where they have more
precision. The macro __SW_OP will be predefined if "op" is selected.

or
This option enables reordering of instructions (instruction scheduling) to achieve better performance on
pipelined architectures such as the Intel 486 and Pentium processors. This option is essential for generating
fast code for the Intel Pentium processor. Selecting this option will make it slightly more difficult to debug
because the assembly language instructions generated for a source statement may be intermixed with
instructions generated for surrounding statements. The macro __SW_OR will be predefined if "or" is
selected.

os
Space is favoured over time when generating code (smaller code but possibly slower execution). By
default, the compiler selects a balance between "space" and "time". The macro __SW_OS will be
predefined if "os" is selected.

ot
Time is favoured over space when generating code (faster execution but possibly larger code). By default,
the compiler selects a balance between "space" and "time". The macro __SW_OT will be predefined if "ot"
is selected.

Compiler Options - Full Description 57

Open Watcom C/C++ User’s Guide

ou
This option forces the compiler to make sure that all function labels are unique. Thus the compiler will not
place two function labels at the same address even if the code for the two functions are identical. This
option is automatically selected if the "za" option is specified. The macro __SW_OU will be predefined if
"ou" is selected.

ox
The "obmiler" and "s" (no stack overflow checking) options are selected.

oz
This option prevents the compiler from omitting NULL pointer checks on pointer conversions. By default,
the compiler omits NULL pointer checks on pointer conversions when it is safe to do so. Consider the
following example.

struct B1 {

int b1;
};
struct B2 {

int b2;
};
struct D : B1, B2 {

int d;
};

void clear_D(D *p)
{

p->d = 0;
B1 *p1 = p;
p1->b1 = 0;
B2 *p2 = p;
p2->b2 = 0;

}

In this example, the C++ compiler must ensure that p1 and p2 become NULL if p is NULL (since no
offset adjustment is allowed for a NULL pointer). However, the first executable statement implies that p is
not NULL since, in most operating environments, the executing program would crash at the first executable
statement if p was NULL. The "oz" option will prevent the compiler from omitting the check for a NULL
pointer.

The macro __SW_OZ will be predefined if "oz" is selected.

When "ox" is combined with the "on", "oa" and "ot" options ("onatx") and the "zp4" option, the code
generator will attempt to give you the fastest executing code possible irrespective of architecture. Other
options can give you architecture specific optimizations to further improve the speed of your code. Note
that specifying "onatx" is equivalent to specifying "onatblimer" and "s". See the section entitled
"Benchmarking Hints" on page 67 for more information on generating fast code.

2.3.11 C++ Exception Handling
The "xd..." options disable exception handling. Consequently, it is not possible to use throw, try, or catch
statements, or to specify a function exception specification. If your program (or a library which it includes)
throws exceptions, then one of the "xs..." options should be used to compile all the modules in your

58 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

program; otherwise, any active objects created within the module will not be destructed during exception
processing.

Multiple schemes are possible, allowing experimentation to determine the optimal scheme for particular
circumstances. You can mix and match schemes on a module basis, with the proviso that exceptions should
be enabled wherever it is possible that a created object should be destructed by the exception mechanism.

xd
This option disables exception handling. It is the default option if no exception handling option is
specified. When this option is specified (or defaulted):

• Destruction of objects is caused by direct calls to the appropriate destructors

• Destructor functions are implemented with direct calls to appropriate destructors to destruct base
classes and class members.

xdt
This option is the same as "xd" (see "xd").

xds
This option disables exception handling. When this option is specified:

• Destruction of objects is caused by direct calls to the appropriate destructors.

• Destruction of base classes and class members is accomplished by interpreting tables.

• This option, in general, generates smaller code, with increased execution time and with more
run-time system routines included by the linker.

xs
This option enables exception handling using a balanced scheme. When this option is specified:

• Tables are interpreted to effect destruction of temporaries and automatic objects; destructor functions
are implemented with direct calls to appropriate destructors to destruct base classes and class
members.

xst
This option enables exception handling using a time-saving scheme. When this option is specified:

• Destruction of temporaries and automatic objects is accomplished with direct calls to appropriate
destructors; destructor functions are implemented with direct calls to appropriate destructors to
destruct base classes and class members.

• This scheme will execute faster, but will use more space in general.

xss
This option enables exception handling using a space-saving scheme. When this option is specified:

Compiler Options - Full Description 59

Open Watcom C/C++ User’s Guide

• Tables are interpreted to effect destruction of temporaries and automatic objects; destruction of base
classes and class members is accomplished by interpreting tables.

• This option, in general, generates smaller code, with increased execution time.

2.3.12 Double-Byte/Unicode Characters
This group of options deals with compile-time aspects of character sets used in the source code.

zk{0,1,2,l}
This option causes the compiler to recognize double-byte characters in strings. When the compiler scans a
text string enclosed in quotes ("), it will recognize the first byte of a double-byte character and suppress
lexical analysis of the second byte. This will prevent the compiler from misinterpreting the second byte as
a "\" or quote (") character.

zk, zk0 These options cause the compiler to process strings for Japanese double-byte characters
(range 0x81 - 0x9F and 0xE0 - 0xFC). The characters in the range A0 - DF are single-byte
Katakana.

zk1 This option causes the compiler to process strings for Traditional Chinese and Taiwanese
double-byte characters (range 0x81 - 0xFC).

zk2 This option causes the compiler to process strings for Korean Hangeul double-byte
characters (range 0x81 - 0xFD).

zkl This option causes the compiler to process strings using the current code page. If the local
character set includes double-byte characters then string processing will check for lead
bytes.

The macro __SW_ZK will be predefined if any "zk" option is selected.

zk0u
This option causes the compiler to process strings for Japanese double-byte characters (range 0x81 - 0x9F
and 0xE0 - 0xFC). The characters in the range A0 - DF are single-byte Katakana. All characters, including
Kanji, in wide characters (L’c’) and wide strings (L"string") are translated to UNICODE.

When the compiler scans a text string enclosed in quotes ("), it will recognize the first byte of a double-byte
character and suppress lexical analysis of the second byte. This will prevent the compiler from
misinterpreting the second byte as a "\" or quote (") character.

zku=<codepage>
Characters in wide characters (L’c’) and wide strings (L"string") are translated to UNICODE. The
UNICODE translate table for the specified code page is loaded from a file with the name "UNICODE.cpn"
where "cpn" is the code page number (e.g., zku=850 selects file "UNICODE.850"). The compiler locates
this file by searching the paths listed in the PATH environment variable.

60 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

2.3.13 Compatibility with Microsoft Visual C++
This group of options deals with compatibility with Microsoft’s Visual C++ compiler.

vc...
The "vc" option prefix is used to introduce a set of Microsoft Visual C++ compatibility options. At present,
there is only one: vcap.

vcap
This options tells the compiler to allow _alloca() to be used in a parameter list. The optimizer has to do
extra work to allow this but since it is rare (and easily worked around if you can), you have to ask the
optimizer to handle this case. You also may get less efficient code in some cases.

2.3.14 Compatibility with Older Versions of the 80x86 Compilers
This group of options deals with compatibility with older versions of Open Watcom’s 80x86 compilers.

r
This option instructs the compiler to generate function prologue and epilogue sequences that save and
restore any segment registers that are modified by the function. Caution should be exercised when using
this option. If the value of the segment register being restored matches the value of a segment that was
freed within the function, a general protection fault will occur in protected-mode environments. By default,
the compiler does not generate code to save and restore segment registers. This option is provided for
compatibility with the version 8.0 release. The macro __SW_R will be predefined if "r" is selected.

fpr
Use this option if you want to generate floating-point instructions that will be compatible with version 9.0
or earlier of the compilers. For more information on floating-point conventions see the sections entitled
"Using the 80x87 to Pass Arguments" on page 175 and "Using the 80x87 to Pass Arguments" on page 244.

zz
Use this option if you want to generate __stdcall function names that will be compatible with version 10.0
of the compilers. When this option is omitted, all C symbols (extern "C" symbols in C++) are suffixed by
"@nnn" where "nnn" is the sum of the argument sizes (each size is rounded up to a multiple of 4 bytes so
that char and short are size 4). When the argument list contains "...", the "@nnn" suffix is omitted. This
convention is compatible with Microsoft. For more information on the __stdcall convention see the section
entitled "Open Watcom C/C++ Extended Keywords" on page 79.

Compiler Options - Full Description 61

Open Watcom C/C++ User’s Guide

62 Compiler Options - Full Description

3 The Open Watcom C/C++ Compilers

This chapter covers the following topics.

• Command line syntax (see "Open Watcom C/C++ Command Line Format")

• Environment variables used by the compilers (see "Environment Variables" on page 64)

• Examples of command line syntax (see "Open Watcom C/C++ Command Line Examples" on page
65)

• Interpreting diagnostic messages (see "Compiler Diagnostics" on page 69)

• #include file handling (see "Open Watcom C/C++ #include File Processing" on page 70)

• Using the preprocessor built into the compilers (see "Open Watcom C/C++ Preprocessor" on page
73)

• System-dependent macros predefined by the compilers (see "Open Watcom C/C++ Predefined
Macros" on page 74)

• Additional keywords supported by the compilers (see "Open Watcom C/C++ Extended Keywords"
on page 79)

• Based pointer support in the compilers (see "Based Pointers" on page 86)

• Notes about the Code Generator (see "The Open Watcom Code Generator" on page 94)

3.1 Open Watcom C/C++ Command Line Format
The formal Open Watcom C/C++ command line syntax is shown below.

compiler_name [options] [file_spec] [options] [@extra_opts]

The square brackets [] denote items which are optional.

compiler_name is one of the Open Watcom C/C++ compiler command names.

WCC is the Open Watcom C compiler for 16-bit Intel platforms.
WPP is the Open Watcom C++ compiler for 16-bit Intel platforms.
WCC386 is the Open Watcom C compiler for 32-bit Intel platforms.
WPP386 is the Open Watcom C++ compiler for 32-bit Intel platforms.

Open Watcom C/C++ Command Line Format 63

Open Watcom C/C++ User’s Guide

file_spec is the file name specification of one or more files to be compiled. If file_spec is specified
as the single character ".", an input file is read from standard input and the output file name
defaults to stdin.obj.

If no drive is specified, the default drive is assumed.

If no path is specified, the current working directory is assumed. If the file is not in the
current directory, an adjacent "C" directory (i.e., ..\c) is searched if it exists.

If no file extension is specified, the compiler will check for a file with one of the following
extensions in the order listed:

.CPP (C++ only)

.CC (C++ only)

.C (C/C++)

If a period "." is specified but not the extension, the file is assumed to have no filename
extension.

If only the compiler name is specified then the compiler will display a list of available
options.

options is a list of valid compiler options, each preceded by a slash ("/") or a dash ("−"). Options
may be specified in any order.

extra_opts is the name of an environment variable or file which contains additional command line
options to be processed. If the specified environment variable does not exist, a search is
made for a file with the specified name. If no file extension is included in the specified
name, the default file extension is ".occ". A search of the current directory is made. If not
successful, an adjacent "OCC" directory (i.e., ..\occ) is searched if it exists.

3.2 Open Watcom C/C++ DLL-based Compilers
The compilers are also available in Dynamic Link Library (DLL) form.

WCCD is the DLL version of the Open Watcom C compiler for 16-bit Intel platforms.
WPPDI86 is the DLL version of the Open Watcom C++ compiler for 16-bit Intel platforms.
WCCD386 is the DLL version of the Open Watcom C compiler for 32-bit Intel platforms.
WPPD386 is the DLL version of the Open Watcom C++ compiler for 32-bit Intel platforms.

The DLL versions of the compilers can be loaded from the Open Watcom Integrated Development
Environment (IDE) and Open Watcom Make.

3.3 Environment Variables
Environment variables can be used to specify commonly used compiler options. There is one environment
variable for each compiler (the name of the environment variable is the same as the compiler name). The
Open Watcom C/C++ environment variable names are:

64 Environment Variables

The Open Watcom C/C++ Compilers

WCC used with the Open Watcom C compiler for 16-bit Intel platforms

Example:
C>set wcc=/d1 /ot

WPP used with the Open Watcom C++ compiler for 16-bit Intel platforms

Example:
C>set wpp=/d1 /ot

WCC386 used with the Open Watcom C compiler for 32-bit Intel platforms

Example:
C>set wcc386=/d1 /ot

WPP386 used with the Open Watcom C++ compiler for 32-bit Intel platforms

Example:
C>set wpp386=/d1 /ot

The options specified in environment variables are processed before options specified on the command line.
The above examples define the default options to be "d1" (include line number debugging information in
the object file), and "ot" (favour time optimizations over size optimizations).

Whenever you wish to specify an option that requires the use of an "=" character, you can use the "#"
character in its place. This is required by the syntax of the "SET" command.

Once a particular environment variable has been defined, those options listed become the default each time
the associated compiler is used. The compiler command line can be used to override any options specified
in the environment string.

These environment variables are not examined by the Open Watcom Compile and Link utilities. Since the
Open Watcom Compile and Link utilities pass the relevant options found in their associated environment
variables to the compiler command line, their environment variable options take precedence over the
options specified in the environment variables associated with the compilers.

Hint: If you are running DOS and you use the same compiler options all the time, you may find it
handy to define the environment variable in your DOS system initialization file, AUTOEXEC.BAT.

If you are running Windows NT, use the "System" icon in the Control Panel to define environment
variables.

If you are running OS/2 and you use the same compiler options all the time, you may find it handy to
define the environment variable in your OS/2 system initialization file, CONFIG.SYS.

Environment Variables 65

Open Watcom C/C++ User’s Guide

3.4 Open Watcom C/C++ Command Line Examples
The following are some examples of using Open Watcom C/C++ to compile C/C++ source programs.

Example:
C>compiler_name report /d1 /s

The compiler processes report.c(pp) producing an object file which contains source line number
information. Stack overflow checking is omitted from the object code.

Example:
C>compiler_name /mm /fpc calc

The compiler compiles calc.c(pp) for the Intel "medium" memory model and generates calls to
floating-point library emulation routines for all floating-point operations. Memory models are described in
the chapter entitled "16-bit Memory Models" on page 113.

Example:
C>compiler_name kwikdraw /2 /fpi87 /oaxt

The compiler processes kwikdraw.c(pp) producing 16-bit object code for an Intel 286 system
equipped with an Intel 287 numeric data processor (or any upward compatible 386/387, 486DX, or Pentium
system). While the choice of these options narrows the number of microcomputer systems where this code
will execute, the resulting code will be highly optimized for this type of system.

Example:
C>compiler_name /mf /3s calc

The compiler compiles calc.c(pp) for the Intel 32-bit "flat" memory model. The compiler will
generate 386 instructions based on 386 instruction timings using the stack-based argument passing
convention. The resulting code will be optimized for Intel 386 systems. Memory models are described in
the chapter entitled "32-bit Memory Models" on page 181. Argument passing conventions are described in
the chapter entitled "32-bit Assembly Language Considerations" on page 185.

Example:
C>compiler_name kwikdraw /4r /fpi87 /oaimxt

The compiler processes kwikdraw.c(pp) producing 32-bit object code for an Intel 386-compatible
system equipped with a 387 numeric data processor. The compiler will generate 386 instructions based on
486 instruction timings using the register-based argument passing convention. The resulting code will be
highly optimized for Intel 486 systems.

Example:
C>compiler_name ..\source\modabs /d2

The compiler processes ..\source\modabs.c(pp) (a file in a directory which is adjacent to the
current one). The object file is placed in the current directory. Included with the object code and data is
information on local symbols and data types. The code generated is straight-forward, unoptimized code
which can be readily debugged with the Open Watcom Debugger.

66 Open Watcom C/C++ Command Line Examples

The Open Watcom C/C++ Compilers

Example:
C>set compiler_name=/i#\includes /mc
C>compiler_name \cprogs\grep.tst /fi=iomods.c

The compiler processes the program contained in the file \cprogs\grep.tst. The file iomods.c is
included as if it formed part of the source input stream. The include search path and memory model
options are defaults each time the compiler is invoked. The memory model option could be overridden on
the command line. After looking for an "include" file in the current directory, the compiler will search each
directory listed in the "i" path. See the section entitled "Open Watcom C/C++ #include File Processing" on
page 70 for more information.

Example:
C>compiler_name grep /fo=..\obj\

The compiler processes the program contained in the file grep.c(pp) which is located in the current
directory. The object file is placed in the directory ..\obj under the name grep.obj.

Example:
C>compiler_name /dDBG=1 grep /fo=..\obj\.dbo

The compiler processes the program contained in the file grep.c(pp) which is located in the current
directory. The macro "DBG" is defined so that conditional debugging statements that have been placed in
the source are compiled. The object file is placed in the directory ..\obj and its filename extension will
be ".dbo" (instead of ".obj"). Selection of a different filename extension permits easy identification of
object files that have been compiled with debugging statements.

Example:
C>compiler_name /g=GKS /s \gks\gopks

The compiler generates code for gopks.c(pp) and places it into the "GKS" group. If the "g" option had
not been specified, the code would not have been placed in any group. Assume that this file contains the
definition of the routine gopengks as follows:

void far gopengks(int workstation, long int h)
{

.

.

.
}

For a small code model, the routine gopengks must be defined in this file as far since it is placed in
another group. The "s" option is also specified to prevent a run-time call to the stack overflow check
routine which will be placed in a different code segment at link time. The gopengks routine must be
prototyped by C routines in other groups as

void far gopengks(int workstation, long int h);

since it will appear in a different code segment.

Open Watcom C/C++ Command Line Examples 67

Open Watcom C/C++ User’s Guide

3.5 Benchmarking Hints
The Open Watcom C/C++ compiler contains many options for controlling the code to be produced. It is
impossible to have a certain set of compiler options that will produce the absolute fastest execution times
for all possible applications. With that said, we will list the compiler options that we think will give the
best execution times for most applications. You may have to experiment with different options to see
which combination of options generates the fastest code for your particular application.

The recommended options for generating the fastest 16-bit Intel code are:

Pentium Pro /onatx /oh /oi+ /ei /zp8 /6 /fpi87 /fp6

Pentium /onatx /oh /oi+ /ei /zp8 /5 /fpi87 /fp5

486 /onatx /oh /oi+ /ei /zp8 /4 /fpi87 /fp3

386 /onatx /oh /oi+ /ei /zp8 /3 /fpi87 /fp3

286 /onatx /oh /oi+ /ei /zp8 /2 /fpi87 /fp2

186 /onatx /oh /oi+ /ei /zp8 /1 /fpi87

8086 /onatx /oh /oi+ /ei /zp8 /0 /fpi87

The recommended options for generating the fastest 32-bit Intel code are:

Pentium Pro /onatx /oh /oi+ /ei /zp8 /6 /fp6

Pentium /onatx /oh /oi+ /ei /zp8 /5 /fp5

486 /onatx /oh /oi+ /ei /zp8 /4 /fp3

386 /onatx /oh /oi+ /ei /zp8 /3 /fp3

The "oi+" option is for C++ only. Under some circumstances, the "ob" and "ol+" optimizations may also
give better performance with 32-bit Intel code.

Option "on" causes the compiler to replace floating-point divisions with multiplications by the reciprocal.
This generates faster code (multiplication is faster than division), but the result may not be the same
because the reciprocal may not be exactly representable.

Option "oe" causes small user written functions to be expanded in-line rather than generating a call to the
function. Expanding functions in-line can further expose other optimizations that couldn’t otherwise be
detected if a call was generated to the function.

Option "oa" causes the compiler to relax alias checking.

Option "ot" must be specified to cause the code generator to select code sequences which are faster without
any regard to the size of the code. The default is to select code sequences which strike a balance between
size and speed.

Option "ox" is equivalent to "obmiler" and "s" which causes the compiler/code generator to do branch
prediction ("ob"), generate 387 instructions in-line for math functions such as sin, cos, sqrt ("om"), expand

68 Benchmarking Hints

The Open Watcom C/C++ Compilers

intrinsic functions in-line ("oi"), perform loop optimizations ("ol"), expand small user functions in-line
("oe"), reorder instructions to avoid pipeline stalls ("or"), and to not generate any stack overflow checking
("s"). Option "or" is very important for generating fast code for the Pentium and Pentium Pro processors.

Option "oh" causes the compiler to attempt repeated optimizations (which can result in longer compiles but
more optimal code).

Option "oi+" causes the C++ compiler to expand intrinsic functions in-line (just like "oi") but also sets the
inline_depth to its maximum (255). By default, inline_depth is 3. The inline_depth can also be changed by
using the C++ inline_depth pragma.

Option "ei" causes the compiler to allocate at least an "int" for all enumerated types.

Option "zp8" causes all data to be aligned on 8 byte boundaries. The default is "zp2" for the 16-bit
compiler and "zp8" for 32-bit compiler. If, for example, "zp1" packing was specified then this would pack
all data which would reduce the amount of data memory required but would require extra clock cycles to
access data that is not on an appropriate boundary.

Options "0", "1", "2", "3", "4", "5" and "6" emit Intel code sequences optimized for processor-specific
instruction set features and timings. For 16-bit Intel applications, the use of these options may limit the
range of systems on which the application will run but there are execution performance improvements.

Options "fp2", "fp3", "fp5" and "fp6" emit Intel floating-point operations targetted at specific features of
the math coprocessor in the Intel series. For 16-bit Intel applications, the use of these options may limit the
range of systems on which the application will run but there are execution performance improvements.

Option "fpi87" causes in-line Intel 80x87 numeric data processor instructions to be generated into the
object code for floating-point operations. Floating-point instruction emulation is not included so as to
obtain the best floating-point performance in 16-bit Intel applications.

For 32-bit Intel applications, the use of the "fp5" option will give good performance on the Intel Pentium
but less than optimal performance on the 386 and 486. The use of the "5" option will give good
performance on the Pentium and minimal, if any, impact on the 386 and 486. Thus, the following set of
options gives good overall performance for the 386, 486 and Pentium processors.

/onatx /oh /oi+ /ei /zp8 /5 /fp3

3.6 Compiler Diagnostics
If the compiler prints diagnostic messages to the screen, it will also place a copy of these messages in a file
in your current directory. The file will have the same file name as the source file and an extension of ".err".
The compiler issues two types of diagnostic messages, namely warnings or errors. A warning message
does not prevent the production of an object file. However, error messages indicate that a problem is
severe enough that it must be corrected before the compiler will produce an object file. The error file is a
handy reference when you wish to correct the errors in the source file.

Just to illustrate the diagnostic features of Open Watcom C/C++, we will modify the "hello" program in
such a way as to introduce some errors.

Compiler Diagnostics 69

Open Watcom C/C++ User’s Guide

Example:
#include <stdio.h>

int main()
{

int x;
printf("Hello world\n");
return(y);

}

The equivalent C++ program follows:

Example:
#include <iostream.h>
#include <iomanip.h>

int main()
{

int x;
cout << "Hello world" << endl;
return(y);

}

In this example, we have added the lines:

int x;

and

return(y);

and changed the keyword void to int.

We compile the program with the "warning" option.

Example:
C>compiler_name hello /w3

For the C program, the following output appears on the screen.

hello.c(7): Error! E1011: Symbol ’y’ has not been declared
hello.c(5): Warning! W202: Symbol ’x’ has been defined, but not

referenced
hello.c: 8 lines, included 174, 1 warnings, 1 errors

For the C++ program, the following output appears on the screen.

hello.cpp(8): Error! E029: (col 13) symbol ’y’ has not been declared
hello.cpp(9): Warning! W014: (col 1) no reference to symbol ’x’
hello.cpp(9): Note! N392: (col 1) ’int x’ in ’int main(void)’

defined in: hello.cpp(6) (col 9)
hello.cpp: 9 lines, included 1628, 1 warning, 1 error

Here we see an example of both types of messages. An error and a warning message have been issued. As
indicated by the error message, we require a declarative statement for the identifier y. The warning
message indicates that, while it is not a violation of the rules of C/C++ to define a variable without ever
using it, we probably did not intend to do so. Upon examining the program, we find that:

70 Compiler Diagnostics

The Open Watcom C/C++ Compilers

1. the variable x should have been assigned a value, and
2. the variable y has probably been incorrectly typed and should have been entered as x.

The complete list of Open Watcom C/C++ diagnostic messages is presented in an appendix of this guide.

3.7 Open Watcom C/C++ #include File Processing
When using the #include preprocessor directive, a header is identified by a sequence of characters
placed between the "<" and ">" delimiters (e.g., <file>) and a source file is identified by a sequence of
characters enclosed by quotation marks (e.g., "file"). Open Watcom C/C++ makes a distinction between
the use of "<>" or quotation marks to surround the name of the file to be included. The search techniques
for header files and source files are slightly different. Consider the following example.

Example:
#include <stdio.h> /* a system header file */
#include "stdio.h" /* your own header or source file */

You should use "<" and ">" when referring to standard or system header files and quotation marks when
referring to your own header and source files.

The character sequence placed between the delimiters in an #include directive represents the name of
the file to be included. The file name may include drive, path, and extension.

It is not necessary to include the drive and path specifiers in the file specification when the file resides on a
different drive or in a different directory. Open Watcom C/C++ provides a mechanism for looking up
include files which may be located in various directories and disks of the computer system. Open Watcom
C/C++ searches directories for header and source files in the following order (the search stops once the file
has been located):

1. If the file specification enclosed in quotation marks ("file-spec") or angle brackets (<file-spec>)
contains the complete drive and path specification, that file is included (provided it exists). No
other searching is performed. The drive need not be specified in which case the current drive is
assumed.

2. If the file specification is enclosed in quotation marks, the current directory is searched.

3. Next, if the file specification is enclosed in quotation marks, the directory of the file containing
the #include directive is searched. If the current file is also an #include file, the directory
of the parent file is searched next. This search continues recursively through all the nested
#include files until the original source file’s directory is searched.

4. Next, if the file specification enclosed in quotation marks ("file-spec") or in angle brackets
(<file-spec>), each directory listed in the "i" path is searched (in the order that they were
specified).

5. Next, each directory listed in the <os>_INCLUDE environment variable is searched (in the
order that they were specified). The environment variable name is constructed from the current
build target name. The default build targets are:

Open Watcom C/C++ #include File Processing 71

Open Watcom C/C++ User’s Guide

DOS when the host operating system is DOS,

OS2 when the host operating system is OS/2,

NT when the host operating system is Windows NT/95, or

QNX when the host operating system is QNX.

LINUX when the host operating system is Linux.

For example, the environment variable OS2_INCLUDE will be searched if the build target is
"OS2". The build target would be OS/2 if:

1. the host operating system is OS/2 and the "bt" option was not specified, or
2. the "bt=OS2" option was explicitly specified.

6. Next, each directory listed in the INCLUDE environment variable is searched (in the order that
they were specified).

7. Finally, if the file specification is enclosed in quotation marks, an adjacent "H" directory (i.e.,
..\h) is searched if it exists.

In the above example, <stdio.h> and "stdio.h" could refer to two different files if there is a
stdio.h in the current directory and one in the Open Watcom C/C++ include file directory
(\WATCOM\H) and the current directory is not listed in an "i" path or the INCLUDE environment
variable.

The compiler will search the directories listed in "i" paths (see description of the "i" option) and the
INCLUDE environment variable in a manner analogous to that which the operating system shell will use
when searching for programs by using the PATH environment variable.

The "SET" command is used to define an INCLUDE environment variable that contains a list of
directories. A command of the form

SET INCLUDE=[d:]path;[d:]path...

is issued before running Open Watcom C/C++ the first time. The brackets indicate that the drive "d:" is
optional and the ellipsis indicates that any number of paths may be specified. For Windows NT, use the
"System" icon in the Control Panel to define environment variables.

We illustrate the use of the #include directive in the following example.

Example:
#include <stdio.h>
#include <time.h>
#include <dos.h>

72 Open Watcom C/C++ #include File Processing

The Open Watcom C/C++ Compilers

#include "common.c"

int main()
{

initialize();
update_files();
create_report();
finalize();

}

#include "part1.c"
#include "part2.c"

If the above text is stored in the source file report.c in the current directory then we might issue the
following commands to compile the application.

Example:
C>rem -- Two places to look for include files
C>set include=c:\watcom\h;b:\headers
C>rem -- Now compile application specifying a
C>rem third location for include files
C>compiler_name report /fo=..\obj\ /i=..\source

In the above example, the "SET" command is used to define the INCLUDE environment variable. It
specifies that the \watcom\h directory (of the "C" disk) and the \headers directory (a directory of the
"B" disk) are to be searched.

The Open Watcom C/C++ "i" option defines a third place to search for include files. The advantage of the
INCLUDE environment variable is that it need not be specified each time the compiler is run.

3.8 Open Watcom C/C++ Preprocessor
The Open Watcom C/C++ preprocessor forms an integral part of Open Watcom C/C++. When any form of
the "p" option is specified, only the preprocessor is invoked. No code is generated and no object file is
produced. The output of the preprocessor is written to the standard output file, although it can also be
redirected to a file using the "fo" option. Suppose the following C/C++ program is contained in the file
msgid.c.

Open Watcom C/C++ Preprocessor 73

Open Watcom C/C++ User’s Guide

Example:
#define _IBMPC 0
#define _IBMPS2 1

#if _TARGET == _IBMPS2
char *SysId = { "IBM PS/2" };
#else
char *SysId = { "IBM PC" };
#endif

/* Return pointer to System Identification */

char *GetSysId()
{

return(SysId);
}

We can use the Open Watcom C/C++ preprocessor to generate the C/C++ code that would actually be
compiled by the compiler by issuing the following command.

Example:
C>compiler_name msgid /plc /fo /d_TARGET=_IBMPS2

The file msgid.i will be created and will contain the following C/C++ code.

#line 1 "msgid.c"

char *SysId = { "IBM PS/2" };
#line 9 "msgid.c"

/* Return pointer to System Identification */

char *GetSysId()
{

return(SysId);
}

Note that the file msgid.i can be used as input to the compiler.

Example:
C>compiler_name msgid.i

Since #line directives are present in the file, the compiler can issue error messages in terms of the
original source file line numbers.

74 Open Watcom C/C++ Preprocessor

The Open Watcom C/C++ Compilers

3.9 Open Watcom C/C++ Predefined Macros
In addition to the standard ISO-defined macros supported by the Open Watcom C/C++ compilers, several
additional system-dependent macros are also defined. These are described in this section. See the Open
Watcom C Language Reference manual for a description of the standard macros.

The Open Watcom C/C++ compilers run on various host operating systems including DOS, OS/2,
Windows NT, Windows 95 and QNX. Any of the supported host operating systems can be used to develop
applications for a number of target systems. By default, the target operating system for the application is
the same as the host operating system unless some option or combination of options is specified. For
example, DOS applications are built on DOS by default, OS/2 applications are built on OS/2 by default,
and so on. But the flexibility is there to build applications for other operating systems/environments.

The macros described below may be used to identify the target system for which the application is being
compiled. (Note: In several places in the following text, a pair of underscore characters appears as __
which resembles a single, elongated underscore.)

The Open Watcom C/C++ compilers support both 16-bit and 32-bit application development. The
following macros are defined for 16-bit and 32-bit target systems.

16-bit 32-bit

======== ========
__X86__ __X86__
__I86__ __386__
M_I86 M_I386
_M_I86 _M_I386
_M_IX86 _M_IX86

Notes:

1. The __X86__ identifies the target as an Intel environment.

2. The __I86__,M_I86 and_M_I86 macros identify the target as a 16-bit Intel environment.

3. The __386__,M_I386 and_M_I386 macros identify the target as a 32-bit Intel
environment.

4. The _M_IX86 macro is identically equal to 100 times the architecture compiler option value (/0,
/1, /2, /3, /4, /5, etc.). If "/5" (Pentium instruction timings) was specified as a compiler option,
then the value of _M_IX86 would be 500.

The Open Watcom C/C++ compilers support application development for a variety of operating systems.
The following macros are defined for particular target operating systems.

Target Macros
====== ======================================
DOS __DOS__, _DOS, MSDOS
OS/2 __OS2__
QNX __QNX__, __UNIX__
Netware __NETWARE__, __NETWARE_386__
NT __NT__
Windows __WINDOWS__, _WINDOWS, __WINDOWS_386__
Linux __LINUX__, __UNIX__

Open Watcom C/C++ Predefined Macros 75

Open Watcom C/C++ User’s Guide

Notes:

1. The __DOS__,_DOS and MSDOS macros are defined when the build target is "DOS" (16-bit
DOS or 32-bit extended DOS).

2. The __OS2__ macro is defined when the build target is "OS2" (16-bit or 32-bit OS/2).

3. The __QNX__ and__UNIX__ macros are defined when the build target is "QNX" (16-bit or
32-bit QNX).

4. The __NETWARE__ and__NETWARE_386__ macros are defined when the build target is
"NETWARE" (Novell NetWare).

5. The __NT__ macro is defined when the build target is "NT" (Windows NT and Windows 95).

6. The __WINDOWS__ macro is defined when the build target is "WINDOWS" or one of the "zw",
"zW", "zWs" options is specified (identifies the target operating system as 16-bit Windows or
32-bit extended Windows but not Windows NT or Windows 95).

7. The _WINDOWS macro is defined when the build target is "WINDOWS" or one of the "zw",
"zW", "zWs" options is specified and you are using a 16-bit compiler (identifies the target
operating system as 16-bit Windows).

8. The __WINDOWS_386__ macro is defined when the build target is "WINDOWS" or the "zw"
option is specified and you are using a 32-bit compiler (identifies the target operating system as
32-bit extended Windows).

9. The __LINUX__ and__UNIX__ macros are defined when the build target is "LINUX" (32-bit
Linux).

The following macros are defined for the indicated options.

Option Macro
====== ==================
bm _MT
br _DLL
fpi __FPI__
fpi87 __FPI__
j __CHAR_SIGNED__
oi __INLINE_FUNCTIONS__
xr _CPPRTTI (C++ only)
xs _CPPUNWIND (C++ only)
xss _CPPUNWIND (C++ only)
xst _CPPUNWIND (C++ only)
za NO_EXT_KEYS
zw __WINDOWS__
zW __WINDOWS__
zWs __WINDOWS__

The following memory model macros are defined for the indicated memory model options.

76 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

Option All 16-bit only 32-bit only
====== =========== ================= =================
mf __FLAT__ M_386FM _M_386FM
ms __SMALL__ M_I86SM _M_I86SM M_386SM _M_386SM
mm __MEDIUM__ M_I86MM _M_I86MM M_386MM _M_386MM
mc __COMPACT__ M_I86CM _M_I86CM M_386CM _M_386CM
ml __LARGE__ M_I86LM _M_I86LM M_386LM _M_386LM
mh __HUGE__ M_I86HM _M_I86HM

The following macros indicate which compiler is compiling the C/C++ source code.

__cplusplus Open Watcom C++ predefines the macro __cplusplus to identify the compiler as a
C++ compiler.

__WATCOMC__
Open Watcom C/C++ predefines the macro __WATCOMC__ to identify the compiler as one
of the Open Watcom C/C++ compilers.

The value of the macro depends on the version number of the compiler. The value is 100
times the version number (version 8.5 yields 850, version 9.0 yields 900, etc.). Note that
for Open Watcom 1.0, the value of this macro is 1200, for Open Watcom 1.1 it is 1210 etc.

__WATCOM_CPLUSPLUS__
Open Watcom C++ predefines the macro __WATCOM_CPLUSPLUS__ to identify the
compiler as one of the Open Watcom C++ compilers.

The value of the macro depends on the version number of the compiler. The value is 100
times the version number (version 10.0 yields 1000, version 10.5 yields 1050, etc.). Note
that for Open Watcom 1.0, the value of this macro is 1200, for Open Watcom 1.1 it is 1210
etc.

The following macros are defined for compatibility with Microsoft.

__CPPRTTI Open Watcom C++ predefines the __CPPRTTI macro to indicate that C++ Run-Time
Type Information (RTTI) is in force. This macro is predefined if the Open Watcom C++
"xr" compile option is specified and is not defined otherwise.

__CPPUNWIND
Open Watcom C++ predefines the __CPPUNWIND macro to indicate that C++ exceptions
supported. This macro is predefined if any of the Open Watcom C++ "xs", "xss" or "xst"
compile options are specified and is not defined otherwise.

_INTEGRAL_MAX_BITS
Open Watcom C/C++ predefines the _INTEGRAL_MAX_BITS macro to indicate that
maximum number of bits supported in an integral type (see the description of the "__int64"
keyword in the next section). Its value is 64 currently.

_PUSHPOP_SUPPORTED
Open Watcom C/C++ predefines the _PUSHPOP_SUPPORTED macro to indicate that
#pragma pack(push) and #pragma pack(pop) are supported.

_STDCALL_SUPPORTED
Open Watcom C/C++ predefines the _STDCALL_SUPPORTED macro to indicate that the
standard 32-bit Win32 calling convention is supported.

Open Watcom C/C++ Predefined Macros 77

Open Watcom C/C++ User’s Guide

The following table summarizes the predefined macros supported by the compilers and the values that the
respective compilers assign to them. A "yes" under the column means that the compiler supports the macro
with the indicated value. Note that the C and C++ compilers sometime support the same macro but with
different values (including no value which means the symbol is defined without a value).

78 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

Predefined Macro Supported by Compiler
and Setting wcc wcc386 wpp wpp386

--------------------------- ------ ------ ------ ------
__386__=1 Yes Yes
__3R__=1 Yes
_based=__based Yes Yes Yes Yes
_cdecl=__cdecl Yes Yes Yes Yes
cdecl=__cdecl Yes Yes Yes Yes
__cplusplus=1 Yes Yes
_CPPRTTI=1 Yes Yes
_CPPUNWIND=1 Yes Yes
_export=__export Yes Yes Yes Yes
_far16=__far16 Yes Yes Yes Yes
_far=__far Yes Yes Yes Yes
far=__far Yes Yes Yes Yes
_fastcall=__fastcall Yes Yes Yes Yes
__FLAT__=1 Yes Yes
_fortran=__fortran Yes Yes Yes Yes
fortran=__fortran Yes Yes Yes Yes
__FPI__=1 Yes Yes Yes Yes
_huge=__huge Yes Yes Yes Yes
huge=__huge Yes Yes Yes Yes
__I86__=1 Yes Yes
_inline=__inline Yes Yes Yes Yes
_INTEGRAL_MAX_BITS=64 Yes Yes Yes Yes
_interrupt=__interrupt Yes Yes Yes Yes
interrupt=__interrupt Yes Yes Yes Yes
_loadds=__loadds Yes Yes Yes Yes
_M_386FM=1 Yes
M_386FM=1 Yes
_M_I386=1 Yes Yes
M_I386=1 Yes Yes
_M_I86=1 Yes Yes
M_I86=1 Yes Yes
_M_I86SM=1 Yes Yes
M_I86SM=1 Yes Yes
_M_IX86=0 Yes Yes
_M_IX86=500 Yes Yes
_near=__near Yes Yes Yes Yes
near=__near Yes Yes Yes Yes
__NT__=1 (on Win32 platform) Yes Yes Yes Yes
_pascal=__pascal Yes Yes Yes Yes
pascal=__pascal Yes Yes Yes Yes
_saveregs=__saveregs Yes Yes Yes Yes
_segment=__segment Yes Yes Yes Yes
_segname=__segname Yes Yes Yes Yes
_self=__self Yes Yes Yes Yes
__SMALL__=1 Yes Yes
SOMDLINK=__far Yes
SOMDLINK=_Syscall Yes Yes
SOMLINK=__cdecl Yes
SOMLINK=_Syscall Yes Yes
_STDCALL_SUPPORTED=1 Yes Yes
__SW_0=1 Yes Yes
__SW_3R=1 Yes Yes
__SW_5=1 Yes Yes
__SW_FP287=1 Yes
__SW_FP2=1 Yes
__SW_FP387=1 Yes
__SW_FP3=1 Yes
__SW_FPI=1 Yes Yes Yes Yes
__SW_MF=1 Yes Yes
__SW_MS=1 Yes
__SW_ZDP=1 Yes Yes Yes Yes
__SW_ZFP=1 Yes Yes Yes Yes
__SW_ZGF=1 Yes Yes
__SW_ZGP=1 Yes Yes
_stdcall=__stdcall Yes Yes Yes Yes
_syscall=__syscall Yes Yes Yes Yes
__WATCOM_CPLUSPLUS__=1280 Yes Yes
__WATCOMC__=1280 Yes Yes Yes Yes

Open Watcom C/C++ Predefined Macros 79

Open Watcom C/C++ User’s Guide

__X86__=1 Yes Yes Yes Yes

3.10 Open Watcom C/C++ Extended Keywords
Open Watcom C/C++ supports the use of some special keywords to describe system dependent attributes of
functions and other object names. These attributes are inspired by the Intel processor architecture and the
plethora of function calling conventions in use by compilers for this architecture. In keeping with the ISO
C and C++ language standards, Open Watcom C/C++ uses the double underscore (i.e., "__") or single
underscore followed by uppercase letter (e.g., "_S") prefix with these keywords. To support compatibility
with other C/C++ compilers, alternate forms of these keywords are also supported through predefined
macros.

__near Open Watcom C/C++ supports the __near keyword to describe functions and other object
names that are in near memory and pointers to near objects.

Open Watcom C/C++ predefines the macros near and _near to be equivalent to the
__near keyword.

__far Open Watcom C/C++ supports the __far keyword to describe functions and other object
names that are in far memory and pointers to far objects.

Open Watcom C/C++ predefines the macros far, _far and SOMDLINK (16-bit only) to
be equivalent to the __far keyword.

__huge Open Watcom C/C++ supports the __huge keyword to describe functions and other object
names that are in huge memory and pointers to huge objects. The 32-bit compilers treat
these as equivalent to far objects.

Open Watcom C/C++ predefines the macros huge and _huge to be equivalent to the
__huge keyword.

__based Open Watcom C/C++ supports the __based keyword to describe pointers to objects that
appear in other segments or the objects themselves. See the section entitled "Based
Pointers" on page 86 for an explanation of the __based keyword.

Open Watcom C/C++ predefines the macro _based to be equivalent to the __based
keyword.

__segment Open Watcom C/C++ supports the __segment keyword which is used when describing
objects of type segment. See the section entitled "Based Pointers" on page 86 for an
explanation of the __segment keyword.

Open Watcom C/C++ predefines the macro _segment to be equivalent to the
__segment keyword.

__segname Open Watcom C/C++ supports the __segname keyword which is used when describing
segname constant based pointers or objects. See the section entitled "Based Pointers" on
page 86 for an explanation of the __segname keyword.

Open Watcom C/C++ predefines the macro _segname to be equivalent to the
__segname keyword.

80 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

__self Open Watcom C/C++ supports the __self keyword which is used when describing self
based pointers. See the section entitled "Based Pointers" on page 86 for an explanation of
the __self keyword.

Open Watcom C/C++ predefines the macro _self to be equivalent to the __self
keyword.

__restrict Open Watcom C/C++ provides the __restrict type qualifier as an alternative to the ISO C99
restrict keyword; it is supported even when C99 keywords aren’t visible. This type
qualifier is used as an optimization hint. Any object accessed through a restrict qualified
pointer may only be accessed through that pointer and the compiler may assume that there
will be no aliasing.

_Packed Open Watcom C/C++ supports the _Packed keyword which is used when describing a
structure. If specified before the struct keyword, the compiler will force the structure to be
packed (no alignment, no gaps) regardless of the setting of the command-line option or the
#pragma controlling the alignment of members.

__cdecl Open Watcom C/C++ supports the __cdecl keyword to describe C functions that are
called using a special convention.

Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument
is pushed first. The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a
structure is returned, the called routine returns a pointer in register AX/EAX to
the return value which is stored in the data segment (DGROUP).

4. For the 16-bit compiler, registers AX, BX, CX and DX, and segment register ES
are not saved and restored when a call is made.

5. For the 32-bit compiler, registers EAX, ECX and EDX are not saved and
restored when a call is made.

Open Watcom C/C++ predefines the macros cdecl, _cdecl,_Cdecl and SOMLINK
(16-bit only) to be equivalent to the __cdecl keyword.

__pascal Open Watcom C/C++ supports the __pascal keyword to describe Pascal functions that
are called using a special convention described by a pragma in the "stddef.h" header file.

Open Watcom C/C++ predefines the macros pascal, _pascal and_Pascal to be
equivalent to the __pascal keyword.

__fortran Open Watcom C/C++ supports the __fortran keyword to describe functions that are
called from FORTRAN. It converts the name to uppercase letters and suppresses the "_"
which is appended to the function name for certain calling conventions.

Open Watcom C/C++ predefines the macros fortran and _fortran to be equivalent to
the __fortran keyword.

Open Watcom C/C++ Extended Keywords 81

Open Watcom C/C++ User’s Guide

__interrupt Open Watcom C/C++ supports the __interrupt keyword to describe a function that is
an interrupt handler.

Example:
#include <i86.h>

void __interrupt int10(union INTPACK r)
{

.

.

.
}

The code generator will emit instructions to save all registers. The registers are saved on
the stack in a specific order so that they may be referenced using the "INTPACK" union as
shown in the DOS example above. The code generator will emit instructions to establish
addressability to the program’s data segment since the DS segment register contents are
unpredictable. The function will return using an "IRET" (16-bit) or "IRETD" (32-bit)
(interrupt return) instruction.

Open Watcom C/C++ predefines the macros interrupt and _interrupt to be
equivalent to the __interrupt keyword.

__declspec(modifier)
Open Watcom C/C++ supports the __declspec keyword for compatibility with
Microsoft C++. The __declspec keyword is used to modify storage-class attributes of
functions and/or data. There are several modifiers that can be specified with the
__declspec keyword: thread, naked, dllimport, dllexport, __pragma(
"string"), __cdecl,__pascal,__fortran,__stdcall, and
__syscall. These attributes are a property only of the declaration of the object or
function to which they are applied. Unlike the __near and__far keywords, which
actually affect the type of object or function (in this case, 2- and 4-byte addresses), these
storage-class attributes do not redefine the type attributes of the object itself. The
__pragma modifier is supported by Open Watcom C++ only. The thread attribute
affects data and objects only. The naked, __pragma,__cdecl,__pascal,
__fortran,__stdcall, and__syscall attributes affect functions only. The
dllimport and dllexport attributes affect functions, data, and objects. For more
information on the __declspec keyword, please see the section entitled "The __declspec
Keyword" on page 90.

__export Open Watcom C/C++ supports the __export keyword to describe functions and other
object names that are to be exported from a Microsoft Windows DLL, OS/2 DLL, or
Netware NLM. See also the description of the "zu" option.

Example:
void __export _Setcolor(int color)
{

.

.

.
}

Open Watcom C/C++ predefines the macro _export to be equivalent to the __export
keyword.

82 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

__loadds Open Watcom C/C++ supports the __loadds keyword to describe functions that require
specific loading of the DS register to establish addressability to the function’s data
segment. This keyword is useful in describing a function that will be placed in a Microsoft
Windows or OS/2 1.x Dynamic Link Library (DLL). See also the description of the "nd"
and "zu" options.

Example:
void __export __loadds _Setcolor(int color)
{

.

.

.
}

If the function in an OS/2 1.x Dynamic Link Library requires access to private data, the
data segment register must be loaded with an appropriate value since it will contain the DS
value of the calling application upon entry to the function.

Open Watcom C/C++ predefines the macro _loadds to be equivalent to the __loadds
keyword.

__saveregs Open Watcom C/C++ recognizes the __saveregs keyword which is an attribute used by
C/C++ compilers to describe a function that must save and restore all registers.

Open Watcom C/C++ predefines the macro _saveregs to be equivalent to the
__saveregs keyword.

__stdcall (32-bit only) The __stdcall keyword may be used with function definitions, and
indicates that the 32-bit Win32 calling convention is to be used.

Notes:

1. All symbols are preceded by an underscore character.

2. All C symbols (extern "C" symbols in C++) are suffixed by "@nnn" where
"nnn" is the sum of the argument sizes (each size is rounded up to a multiple of 4
bytes so that char and short are size 4). When the argument list contains "...", the
"@nnn" suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last argument
is pushed first. The called routine will remove the arguments from the stack.

4. When a structure is returned, the caller allocates space on the stack. The address
of the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of
the space allocated for the return value. Floating-point values are returned in
80x87 register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when a call is made.

__syscall (32-bit only) The __syscall keyword may be used with function definitions, and
indicates that the calling convention used is compatible with functions provided by 32-bit
OS/2.

Open Watcom C/C++ Extended Keywords 83

Open Watcom C/C++ User’s Guide

Notes:

1. Symbols names are not modified, that is, they are not adorned with leading or
trailing underscores.

2. Arguments are pushed on the stack from right to left. That is, the last argument
is pushed first. The calling routine will remove the arguments from the stack.

3. When a structure is returned, the caller allocates space on the stack. The address
of the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of
the space allocated for the return value. Floating-point values are returned in
80x87 register ST(0).

4. Registers EAX, ECX and EDX are not saved and restored when a call is made.

Open Watcom C/C++ predefines the macros _syscall, _System, SOMLINK (32-bit
only) and SOMDLINK (32-bit only) to be equivalent to the __syscall keyword.

__far16 (32-bit only) Open Watcom C/C++ recognizes the __far16 keyword which can be used
to define far 16-bit (far16) pointers (16-bit selector with 16-bit offset) or far 16-bit function
prototypes. This keyword can be used under 32-bit OS/2 to call 16-bit functions from your
32-bit flat model program. Integer arguments will automatically be converted to 16-bit
integers, and 32-bit pointers will be converted to far16 pointers before calling a special
thunking layer to transfer control to the 16-bit function.

Open Watcom C/C++ predefines the macros _far16 and_Far16 to be equivalent to the
__far16 keyword. This keyword is compatible with Microsoft C.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4
gigabyte segment referenced by the DS register is divided into 8192 areas of 64K bytes
each. A far16 pointer consists of a 16-bit selector referring to one of the 64K byte areas,
and a 16-bit offset into that area.

A pointer declared as,

[type] __far16 *name;

defines an object that is a far16 pointer. If such a pointer is accessed in the 32-bit
environment, the compiler will generate the necessary code to convert between the far16
pointer and a "flat" 32-bit pointer.

For example, the declaration,

char __far16 *bufptr;

declares the object bufptr to be a far16 pointer to char.

A function declared as,

[type] __far16 func([arg_list]);

declares a 16-bit function. Any calls to such a function from the 32-bit environment will
cause the compiler to convert any 32-bit pointer arguments to far16 pointers, and any int

84 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

arguments from 32 bits to 16 bits. (In the 16-bit environment, an object of type int is only
16 bits.) Any return value from the function will have its return value converted in an
appropriate manner.

For example, the declaration,

char * __far16 Scan(char *buffer, int len, short err);

declares the 16-bit function Scan. When this function is called from the 32-bit
environment, the buffer argument will be converted from a flat 32-bit pointer to a far16
pointer (which, in the 16-bit environment, would be declared as char __far *. The
len argument will be converted from a 32-bit integer to a 16-bit integer. The err
argument will be passed unchanged. Upon returning, the far16 pointer (far pointer in the
16-bit environment) will be converted to a 32-bit pointer which describes the equivalent
location in the 32-bit address space.

_Seg16 (32-bit only) Open Watcom C/C++ recognizes the _Seg16 keyword which has a similar
but not identical function as the __far16 keyword described above. This keyword is
compatible with IBM C Set/2 and IBM VisualAge C++.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4
gigabyte segment referenced by the DS register is divided into 8192 areas of 64K bytes
each. A far16 pointer consists of a 16-bit selector referring to one of the 64K byte areas,
and a 16-bit offset into that area.

Note that _Seg16 is not interchangeable with __far16.

A pointer declared as,

[type] * _Seg16 name;

defines an object that is a far16 pointer. Note that the _Seg16 appears on the right side of
the * which is opposite to the __far16 keyword described above.

For example,

char * _Seg16 bufptr;

declares the object bufptr to be a far16 pointer to char (the same as above).

The _Seg16 keyword may not be used to describe a 16-bit function. A #pragma directive
must be used instead. A function declared as,

[type] * _Seg16 func([parm_list]);

declares a 32-bit function that returns a far16 pointer.

For example, the declaration,

char * _Seg16 Scan(char * buffer, int len, short err);

declares the 32-bit function Scan. No conversion of the argument list will take place.
The return value is a far16 pointer.

Open Watcom C/C++ Extended Keywords 85

Open Watcom C/C++ User’s Guide

__pragma Open Watcom C++ supports the __pragma keyword to support in-lining of member
functions. The __pragma keyword must be followed by parentheses containing a string
that names an auxiliary pragma. Here is a simplified example showing usage and syntax.

Example:
#pragma aux fast_mul = \

"imul eax,edx" \
parm caller [eax] [edx] \
value struct;

struct fixed {
unsigned v;

};

fixed __pragma("fast_mul") operator *(fixed, fixed);

fixed two = { 2 };
fixed three = { 3 };

fixed foo()
{

return two * three;
}

See the chapters entitled "16-bit Pragmas" on page 135 and "32-bit Pragmas" on page 203
for more information on pragmas.

__int64 Open Watcom C/C++ supports the __int64 keyword to define 64-bit integer data objects.

Example:
static __int64 bigInt;

Also supported are signed and unsigned 64-bit integer constants.

signed __int64 Use the "i64" suffix for a signed 64-bit integer constant.

Example:
12345i64
12345I64

unsigned __int64 Use the "ui64" suffix for an unsigned 64-bit integer constant.

Example:
12345Ui64
12345uI64

The run-time library supports formatting of __int64 items (see the description of the
printf library function).

86 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

Example:
#include <stdio.h>
#include <limits.h>

void main()
{

__int64 bigint;
__int64 bigint2;

bigint2 = 8I64 * (LONG_MAX + 1I64);
for(bigint = 0;

bigint <= bigint2;
bigint += bigint2 / 16) {

printf("Hello world %Ld\n", bigint);
}

}

Restrictions

switch An __int64 expression cannot be used in a switch statement.

bit fields More than 32 bits in a 64-bit bitfield is not supported.

3.11 Based Pointers
Near pointers are generally the most efficient type of pointer because they are small, and the compiler can
assume knowledge about what segment of the computer’s memory the pointer (offset) refers to. Far
pointers are the most flexible because they allow the programmer to access any part of the computer’s
memory, without limitation to a particular segment. However, far pointers are bigger and slower because
of the additional flexibility.

Based pointers are a compromise between the efficiency of near pointers and the flexibility of far pointers.
With based pointers, the programmer takes responsibility to tell the compiler which segment a near pointer
(offset) belongs to, but may still access segments of the computer’s memory outside of the normal data
segment (DGROUP). The result is a pointer type which is as small as and almost as efficient as a near
pointer, but with most of the flexibility of a far pointer.

An object declared as a based pointer falls into one of the following categories:

• the based pointer is in the segment described by another object,
• the based pointer, used as a pointer to another object of the same type (as in a linked list), refers to
the same segment,

• the based pointer is an offset to no particular segment, and must be combined explicitly with a
segment value to produce a valid pointer.

To support based pointers, the following keywords are provided:

__based
__segment
__segname
__self

The following operator is also provided:

Based Pointers 87

Open Watcom C/C++ User’s Guide

:>

These keywords and operator are described in the following sections.

Two macros, defined in malloc.h, are also provided:

_NULLSEG
_NULLOFF

They are used in a manner similar to NULL, but are used with objects declared as __segment and
__based respectively.

3.11.1 Segment Constant Based Pointers and Objects
A segment constant based pointer or object has its segment value based on a specific, named segment. A
segment constant based object is specified as:

[type] __based(__segname("segment")) object_name;

and a segment constant based pointer is specified as:

[type] __based(__segname("segment")) *object-name;

where segment is the name of the segment in which the pointer or object is based. As shown above, the
segment name is always specified as a string. There are three special segment names recognized by the
compiler:

"_CODE"
"_CONST"
"_DATA"

The "_CODE" segment is the default code segment. The "_CONST" segment is the segment containing
constant values. The "_DATA" segment is the default data segment. If the segment name is not one of the
three recognized names, then a segment will be created with that name. If a segment constant based object
is being defined, then it will be placed in the named segment. If a segment constant based pointer is being
defined, then it can point at objects in the named segment.

The following examples illustrate segment constant based pointers and objects.

Example:
int __based(__segname("_CODE")) ival = 3;
int __based(__segname("_CODE")) *iptr;

ival is an object that resides in the default code segment. iptr is an object that resides in the data
segment (the usual place for data objects), but points at an integer which resides in the default code
segment. iptr is suitable for pointing at ival.

88 Based Pointers

The Open Watcom C/C++ Compilers

Example:
char __based(__segname("GOODTHINGS")) thing;

thing is an object which resides in the segment GOODTHINGS, which will be created if it does not
already exist. (The creation of segments is done by the linker, and is a method of grouping objects and
functions. Nothing is implicitly created during the execution of the program.)

3.11.2 Segment Object Based Pointers
A segment object based pointer derives its segment value from another named object. A segment object
based pointer is specified as follows:

[type] __based(segment) *name;

where segment is an object defined as type __segment.

An object of type __segment may contain a segment value. Such an object is particularly designed for
use with segment object based pointers.

The following example illustrates a segment object based pointer:

Example:
__segment seg;
char __based(seg) *cptr;

The object seg contains only a segment value. Whenever the object cptr is used to point to a character,
the actual pointer value will be made up of the segment value found in seg and the offset value found in
cptr. The object seg might be assigned values such as the following:

• a constant value (e.g., the segment containing screen memory),
• the result of the library function _bheapseg,
• the segment portion of another pointer value, by casting it to the type __segment.

3.11.3 Void Based Pointers
A void based pointer must be explicitly combined with a segment value to produce a reference to a memory
location. A void based pointer does not infer its segment value from another object. The :> (base)
operator is used to combine a segment value and a void based pointer.

For example, on a personal computer running DOS with a color monitor, the screen memory begins at
segment 0xB800, offset 0. In a video text mode, to examine the first character currently displayed on the
screen, the following code could be used:

Example:

Based Pointers 89

Open Watcom C/C++ User’s Guide

extern void main()
{

__segment screen;
char __based(void) *scrptr;

screen = 0xB800;
scrptr = 0;
printf("Top left character is ’%c’.\n",

*(screen:>scrptr));
}

The general form of the :> operator is:

segment :> offset

where segment is an expression of type __segment, andoffset is an expression of type __based(
void) *.

3.11.4 Self Based Pointers
A self based pointer infers its segment value from itself. It is particularly useful for structures such as
linked lists, where all of the list elements are in the same segment. A self based pointer pointing to one
element may be used to access the next element, and the compiler will use the same segment as the original
pointer.

The following example illustrates a function which will print the values stored in the last two members of a
linked list:

Example:
struct a {

struct a __based(__self) *next;
int number;

};

extern void PrintLastTwo(struct a far *list)
{

__segment seg;
struct a __based(seg) *aptr;

seg = FP_SEG(list);
aptr = FP_OFF(list);
for(; aptr != _NULLOFF; aptr = aptr->next) {

if(aptr->next == _NULLOFF) {
printf("Last item is %d\n",

aptr->number);
} else if(aptr->next->next == _NULLOFF) {

printf("Second last item is %d\n",
aptr->number);

}
}

}

The argument to the function PrintLastTwo is a far pointer, pointing to a linked list structure anywhere
in memory. It is assumed that all members of a particular linked list of this type reside in the same segment
of the computer’s memory. (Another instance of the linked list might reside entirely in a different

90 Based Pointers

The Open Watcom C/C++ Compilers

segment.) The object seg is given the segment portion of the far pointer. The object aptr is given the
offset portion, and is described as being based in the segment stored in seg.

The expression aptr->next refers to the next member of the structure stored in memory at the offset
stored in aptr and the segment implied by aptr, which is the value stored in seg. So far, the behavior
is no different than if next had been declared as,

struct a *next;

The expression aptr->next->next illustrates the difference of using a self based pointer. The first
part of the expression (aptr->next) occurs as described above. However, using the result to point to
the next member occurs by using the offset value found in the next member and combining it with the
segment value of the pointer used to get to that member, which is still the segment implied by aptr,
which is the value stored in seg. If next had not been declared using __based(__self), then
the second pointing operation would refer to the offset value found in the next member, but with the
default data segment (DGROUP), which may or may not be the same segment as stored in seg.

3.12 The __declspec Keyword
Open Watcom C/C++ supports the __declspec keyword for compatibility with Microsoft C++. The
__declspec keyword is used to modify storage-class attributes of functions and/or data.

__declspec(thread) is used to define thread local storage (TLS). TLS is the mechanism by which each
thread in a multithreaded process allocates storage for thread-specific data. In standard
multithreaded programs, data is shared among all threads of a given process, whereas
thread local storage is the mechanism for allocating per-thread data.

Example:
__declspec(thread) static int tls_data = 0;

The following rules apply to the use of the thread attribute.

• The thread attribute can be used with data and objects only.

• You can specify the thread attribute only on data items with static storage
duration. This includes global data objects (both static and extern), local static
objects, and static data members of classes. Automatic data objects cannot be
declared with the thread attribute. The following example illustrates this error:

Example:
#define TLS __declspec(thread)
void func1()
{

TLS int tls_data; // Wrong!
}

int func2(TLS int tls_data) // Wrong!
{

return tls_data;
}

The __declspec Keyword 91

Open Watcom C/C++ User’s Guide

• The thread attribute must be used for both the declaration and the definition of a
thread local object, whether the declaration and definition occur in the same file or
separate files. The following example illustrates this error:

Example:
#define TLS __declspec(thread)
extern int tls_data; // This generates an error,
because the
TLS int tls_data; // declaration and the
definition differ.

• Classes cannot use the thread attribute. However, you can instantiate class
objects with the thread attribute, as long as the objects do not need to be
constructed or destructed. For example, the following code generates an error:

Example:
#define TLS __declspec(thread)
TLS class A // Wrong! Classes are not objects
{

// Code
};
A AObject;

Because the declaration of objects that use the thread attribute is permitted, these
two examples are semantically equivalent:

Example:
#define TLS __declspec(thread)
TLS class B
{

// Code
} BObject; // Okay! BObject declared thread
local.

class C
{

// Code
};
TLS C CObject; // Okay! CObject declared thread
local.

• Standard C permits initialization of an object or variable with an expression
involving a reference to itself, but only for objects of non-static extent. Although
C++ normally permits such dynamic initialization of an object with an expression
involving a reference to itself, this type of initialization is not permitted with thread
local objects.

Example:
#define TLS __declspec(thread)
TLS int tls_i = tls_i; // C and C++ error
int j = j; // Okay in C++; C
error
TLS int tls_k = sizeof(tls_k); // Okay in C and
C++

92 The __declspec Keyword

The Open Watcom C/C++ Compilers

Note that a sizeof expression that includes the object being initialized does not
constitute a reference to itself and is allowed in C and C++.

__declspec(naked) indicates to the code generator that no prologue or epilogue sequence is to be
generated for a function. Any statements other than "_asm" directives or auxiliary pragmas
are not compiled. _asm Essentially, the compiler will emit a "label" with the specified
function name into the code.

Example:
#include <stdio.h>

int __declspec(naked) foo(int x)
{

_asm {
#if defined(__386__)

inc eax
#else

inc ax
#endif

ret
}

}

void main()
{

printf("%d\n", foo(1));
}

The following rules apply to the use of the naked attribute.

• The naked attribute cannot be used in a data declaration. The following declaration
would be flagged in error.

Example:
__declspec(naked) static int data_object = 0;

__declspec(dllimport) is used to declare functions, data and objects imported from a DLL.

Example:
#define DLLImport __declspec(dllimport)

DLLImport void dll_func();
DLLImport int dll_data;

Functions, data and objects are exported from a DLL by use of
__declspec(dllexport), the__export keyword (for which
__declspec(dllexport) is the replacement), or through linker "EXPORT"
directives.

Note: When calling functions imported from other modules, it is not strictly necessary to
use the __declspec(dllimport) modifier to declare the functions. This modifier
however must always be used when importing data or objects to ensure correct behavior.

__declspec(dllexport) is used to declare functions, data and objects exported from a DLL. Declaring
functions as dllexport eliminates the need for linker "EXPORT" directives. The
__declspec(dllexport) attribute is a replacement for the __export keyword.

The __declspec Keyword 93

Open Watcom C/C++ User’s Guide

__declspec(__pragma("string")) is used to declare functions which adhere to the conventions described
by the pragma identified by "string".

Example:
#include <stdio.h>

#pragma aux my_stdcall "_*" \
parm routine [] \
value struct struct caller [] \
modify [eax ecx edx];

struct list {
struct list *next;
int value;
float flt_value;

};

#define STDCALL __declspec(__pragma("my_stdcall"))

STDCALL struct list foo(int x, char *y, double z);

void main()
{

int a = 1;
char *b = "Hello there";
double c = 3.1415926;
struct list t;

t = foo(a, b, c);
printf("%d\n", t.value);

}

struct list foo(int x, char *y, double z)
{

struct list tmp;

printf("%s\n", y);
tmp.next = NULL;
tmp.value = x;
tmp.flt_value = z;
return(tmp);

}

The __pragma modifier is supported by Open Watcom C++ only.

__declspec(__cdecl) is used to declare functions which conform to the Microsoft compiler calling
convention.

__declspec(__pascal) is used to declare functions which conform to the OS/2 1.x and Windows 3.x
calling convention.

__declspec(__fortran) is used to declare functions which conform to the __fortran calling convention.

94 The __declspec Keyword

The Open Watcom C/C++ Compilers

Example:
#include <stdio.h>

#define DLLFunc __declspec(dllimport __fortran)
#define DLLData __declspec(dllimport)

#ifdef __cplusplus
extern "C" {
#endif

DLLFunc int dll_func(int, int, int);
DLLData int dll_data;

#ifdef __cplusplus
};
#endif

void main()
{

printf("%d %d\n", dll_func(1,2,3), dll_data);
}

__declspec(__stdcall) is used to declare functions which conform to the 32-bit Win32 "standard" calling
convention.

Example:
#include <stdio.h>

#define DLLFunc __declspec(dllimport __stdcall)
#define DLLData __declspec(dllimport)

DLLFunc int dll_func(int, int, int);
DLLData int dll_data;

void main()
{

printf("%d %d\n", dll_func(1,2,3), dll_data);
}

__declspec(__syscall) is used to declare functions which conform to the 32-bit OS/2 __syscall calling
convention.

3.13 The Open Watcom Code Generator
The Open Watcom Code Generator performs such optimizations as common subexpression elimination,
global flow analysis, and so on.

In some cases, the code generator can do a better job of optimizing code if it could utilize more memory.
This is indicated when a

Not enough memory to optimize procedure ’xxxx’

message appears on the screen as the source program is compiled. In such an event, you may wish to make
more memory available to the code generator.

The Open Watcom Code Generator 95

Open Watcom C/C++ User’s Guide

A special environment variable may be used to obtain memory usage information or set memory usage
limits on the code generator. The WCGMEMORY environment variable may be used to request a report
of the amount of memory used by the compiler’s code generator for its work area.

Example:
C>set WCGMEMORY=?

When the memory amount is "?" then the code generator will report how much memory was used to
generate the code.

It may also be used to instruct the compiler’s code generator to allocate a fixed amount of memory for a
work area.

Example:
C>set WCGMEMORY=128

When the memory amount is "nnn" then exactly "nnnK" bytes will be used. In the above example, 128K
bytes is requested. If less than "nnnK" is available then the compiler will quit with a fatal error message. If
more than "nnnK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more memory available
to the code generator, the more optimal code it will generate. Thus, for two personal computers with
different amounts of memory, the code generator may produce different (although correct) object code. If
you have a software quality assurance requirement that the same results (i.e., code) be produced on two
different machines then you should use this feature. To generate identical code on two personal computers
with different memory configurations, you must ensure that the WCGMEMORY environment variable is
set identically on both machines.

The second reason where this feature is useful is on virtual memory paging systems (e.g., OS/2) where an
unlimited amount of memory can be used by the code generator. If a very large module is being compiled,
it may take a very long time to compile it. The code generator will continue to allocate more and more
memory and cause an excessive amount of paging. By restricting the amount of memory that the code
generator can use, you can reduce the amount of time required to compile a routine.

96 The Open Watcom Code Generator

4 Precompiled Headers

4.1 Using Precompiled Headers
Open Watcom C/C++ supports the use of precompiled headers to decrease the time required to compile
several source files that include the same header file.

4.2 When to Precompile Header Files
Using precompiled headers reduces compilation time when:

• You always use a large body of code that changes infrequently.

• Your program comprises multiple modules, all of which use the same first include file and the same
compilation options. In this case, the first include file along with all the files that it includes can be
precompiled into one precompiled header.

Because the compiler only uses the first include file to create a precompiled header, you may want to create
a master or global header file that includes all the other header files that you wish to have precompiled.
Then all source files should include this master header file as the first #include in the source file. Even
if you don’t use a master header file, you can benefit from using precompiled headers for Windows
programs by using #include <windows.h> as the first include file, or by using #include
<afxwin.h> as the first include file for MFC applications.

The first compilation — the one that creates the precompiled header file — takes a bit longer than
subsequent compilations. Subsequent compilations can proceed more quickly by including the precompiled
header.

You can precompile C and C++ programs. In C++ programming, it is common practice to separate class
interface information into header files which can later be included in programs that use the class. By
precompiling these headers, you can reduce the time a program takes to compile.

Note: Although you can use only one precompiled header (.PCH) file per source file, you can use
multiple .PCH files in a project.

4.3 Creating and Using Precompiled Headers
Precompiled code is stored in a file called a precompiled header when you use the precompiled header
option (/fh or /fhq) on the command line. The /fh option causes the compiler to either create a
precompiled header or use the precompiled header if it already exists. The /fhq option is similar but
prevents the compiler from issuing informational or warning messages about precompiled header files. The
default name of the precompiled header file is one of WCC.PCH, WCC386.PCH, WPP.PCH, or
WPP386.PCH (depending on the compiler used). You can also control the name of the precompiled

Creating and Using Precompiled Headers 97

Open Watcom C/C++ User’s Guide

header that is created or used with the /fh=filename or /fhq=filename ("specify precompiled header
filename") options.

Example:
/fh=projectx.pch
/fhq=projectx.pch

4.4 The "/fh[q]" (Precompiled Header) Option
The /fh option instructs the compiler to use a precompiled header file with a default name of WCC.PCH,
WCC386.PCH, WPP.PCH, or WPP386.PCH (depending on the compiler used) if it exists or to create
one if it does not. The file is created in the current directory. You can use the /fh=filename option to
change the default name (and placement) of the precompiled header. Add the letter "q" (for "quiet") to the
option name to prevent the compiler from displaying precompiled header activity information.

The following command line uses the /fh option to create a precompiled header.

Example:
wpp /fh myprog.cpp
wpp386 /fh myprog.cpp

The following command line creates a precompiled header named myprog.pch and places it in the
\projpch directory.

Example:
wpp /fh=\projpch\myprog.pch myprog.cpp
wpp386 /fh=\projpch\myprog.pch myprog.cpp

The precompiled header is created and/or used when the compiler encounters the first #include directive
that occurs in the source file. In a subsequent compilation, the compiler performs a consistency check to
see if it can use an existing precompiled header. If the consistency check fails then the compiler discards
the existing precompiled header and builds a new one.

The /fhq form of the precompiled header option prevents the compiler from issuing warning or
informational messages about precompiled header files. For example, if you change a header file, the
compiler will tell you that it changed and that it must regenerate the precompiled header file. If you specify
/fhq then the compiler just generates the new precompiled header file without displaying a message.

4.5 Consistency Rules for Precompiled Headers
If a precompiled header file exists (either the default file or one specified by /fh=filename), it is compared
to the current compilation for consistency. A new precompiled header file is created and the new file
overwrites the old unless the following requirements are met:

• The current compiler options must match those specified when the precompiled header was created.

• The current working directory must match that specified when the precompiled header was created.

• The name of the first #include directive must match the one that was specified when the
precompiled header was created.

98 Consistency Rules for Precompiled Headers

Precompiled Headers

• All macros defined prior to the first #include directive must have the same values as the macros
defined when the precompiled header was created. A sequence of #define directives need not
occur in exactly the same order because there are no semantic order dependencies for #define
directives.

• The value and order of include paths specified on the command line with /i options must match those
specified when the precompiled header was created.

• The time stamps of all the header files (all files specified with #include directives) used to build
the precompiled header must match those that existed when the precompiled header was created.

Consistency Rules for Precompiled Headers 99

Open Watcom C/C++ User’s Guide

100 Consistency Rules for Precompiled Headers

5 The Open Watcom C/C++ Libraries

The Open Watcom C/C++ library routines are described in the Open Watcom C Library Reference
manual, and the Open Watcom C++ Class Library Reference manual.

5.1 Open Watcom C/C++ Library Directory Structure
Since Open Watcom C/C++ supports both 16-bit and 32-bit application development, libraries are grouped
under two major subdirectories. The LIB286 directory is used to contain libraries for 16-bit application
development. The LIB386 directory is used to contain libraries for 32-bit application development.

For 16-bit application development, the Intel x86 processor-dependent libraries are placed under the
\WATCOM\LIB286 directory.

For 32-bit application development, the Intel 386 and upward-compatible processor-dependent libraries are
placed under the \WATCOM\LIB386 directory.

Since Open Watcom C/C++ also supports several operating systems, including DOS, OS/2, Windows 3.x
and Windows NT, system-dependent libraries are grouped under different directories underneath the
processor-dependent directories.

For DOS applications, the system-dependent libraries are placed in \WATCOM\LIB286\DOS (16-bit
applications) and \WATCOM\LIB386\DOS (32-bit applications).

For OS/2 applications, the system-dependent libraries are placed in \WATCOM\LIB286\OS2 (16-bit
applications) and \WATCOM\LIB386\OS2 (32-bit applications).

For Microsoft Windows applications, the system-dependent libraries are placed in
\WATCOM\LIB286\WIN (16-bit applications) and \WATCOM\LIB386\WIN (32-bit applications).

For Microsoft Windows NT applications, the system-dependent libraries are placed in
\WATCOM\LIB386\NT (32-bit applications).

For Novell NetWare 386 applications, the system-dependent libraries are placed in
\WATCOM\LIB386\NETWARE (32-bit applications).

\watcom

|
.-----------+----------------.
| |

lib286 lib386
| |

.-------+-------. .-------.-------+-------.-------.
| | | | | | | |

dos os2 win dos os2 win nt netware
| | | | | | | |

Open Watcom C/C++ Library Directory Structure 101

Open Watcom C/C++ User’s Guide

5.2 Open Watcom C/C++ C Libraries
Due to the many code generation strategies possible in the 80x86 family of processors, a number of
versions of the libraries are provided. You must use the libraries which coincide with the particular
architecture, operating system, and code generation strategy or model that you have selected. For the type
of code generation strategy or model that you intend to use, refer to the description of the "m?" memory
model compiler option. The various code models supported by Open Watcom C/C++ are described in the
chapters entitled "16-bit Memory Models" on page 113 and "32-bit Memory Models" on page 181.

We have selected a simple naming convention for the libraries that are provided with Open Watcom
C/C++. Letters are affixed to the file name to indicate the particular strategy with which the modules in the
library have been compiled.

16-bit only

S denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"small" memory model (small code, small data).

M denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"medium" memory model (big code, small data).

C denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"compact" memory model (small code, big data).

L denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"large" memory model (big code, big data).

H denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"huge" memory model (big code, huge data).

MT denotes a version of the Open Watcom C/C++ libraries which may be used with OS/2
multi-threaded applications.

DL denotes a version of the Open Watcom C/C++ libraries which may be used when creating
an OS/2 Dynamic Link Library.

32-bit only

3R denotes a version of the Open Watcom C/C++ libraries that will be used by programs
which have been compiled for the "flat/small" memory models using the "3r", "4r" or "5r"
option.

3S denotes a version of the Open Watcom C/C++ libraries that will be used by programs
which have been compiled for the "flat/small" memory models using the "3s", "4s" or "5s"
option.

The Open Watcom C/C++ 16-bit libraries are listed below by directory.

102 Open Watcom C/C++ C Libraries

The Open Watcom C/C++ Libraries

Under \WATCOM\LIB286\DOS

CLIBS.LIB (DOS small model support)
CLIBM.LIB (DOS medium model support)
CLIBC.LIB (DOS compact model support)
CLIBL.LIB (DOS large model support)
CLIBH.LIB (DOS huge model support)
GRAPH.LIB (model independent, DOS graphics support)

Under \WATCOM\LIB286\OS2

CLIBS.LIB (OS/2 small model support)
CLIBM.LIB (OS/2 medium model support)
CLIBC.LIB (OS/2 compact model support)
CLIBL.LIB (OS/2 large model support)
CLIBH.LIB (OS/2 huge model support)
CLIBMTL.LIB (OS/2 multi-thread, large model support)
CLIBDLL.LIB (OS/2 DLL, large model support)
DOSPMS.LIB (Phar Lap 286 PM small model support)
DOSPMM.LIB (Phar Lap 286 PM medium model support)
DOSPMC.LIB (Phar Lap 286 PM compact model support)
DOSPML.LIB (Phar Lap 286 PM large model support)
DOSPMH.LIB (Phar Lap 286 PM huge model support)

Under \WATCOM\LIB286\WIN

CLIBS.LIB (Windows small model support)
CLIBM.LIB (Windows medium model support)
CLIBC.LIB (Windows compact model support)
CLIBL.LIB (Windows large model support)
WINDOWS.LIB (Windows API library)

The Open Watcom C/C++ 32-bit libraries are listed below by directory.

Under \WATCOM\LIB386\DOS

CLIB3R.LIB (flat/small models, "3r", "4r" or "5r" option)
CLIB3S.LIB (flat/small models, "3s", "4s" or "5s" option)
GRAPH.LIB (flat/small models, DOS graphics support)

The graphics library GRAPH.LIB is independent of the argument passing conventions.

Under \WATCOM\LIB386\OS2

CLIB3R.LIB (flat/small models, "3r", "4r" or "5r" option)
CLIB3S.LIB (flat/small models, "3s", "4s" or "5s" option)

Under \WATCOM\LIB386\WIN

CLIB3R.LIB (flat/small models, "3r", "4r" or "5r" option)
CLIB3S.LIB (flat/small models, "3s", "4s" or "5s" option)
WIN386.LIB (32-bit Windows API)

Open Watcom C/C++ C Libraries 103

Open Watcom C/C++ User’s Guide

Under \WATCOM\LIB386\NT

CLIB3R.LIB (flat/small models, "3r", "4r" or "5r" option)
CLIB3S.LIB (flat/small models, "3s", "4s" or "5s" option)

5.3 Open Watcom C/C++ Class Libraries
The Open Watcom C/C++ Class Library routines are described in the Open Watcom C++ Class Library
Reference manual.

The Open Watcom C++ 16-bit Class Libraries are listed below.

Under \WATCOM\LIB286

(iostream and string class libraries)
PLIBS.LIB (small model support)
PLIBM.LIB (medium model support)
PLIBC.LIB (compact model support)
PLIBL.LIB (large model support)
PLIBH.LIB (huge model support)
PLIBMTL.LIB (OS/2 multi-thread, large model support)
PLIBDLL.LIB (OS/2 DLL, large model support)

(complex class library for "fpc" option)
CPLXS.LIB (small model support)
CPLXM.LIB (medium model support)
CPLXC.LIB (compact model support)
CPLXL.LIB (large model support)
CPLXH.LIB (huge model support)

(complex class library for "fpi..." options)
CPLX7S.LIB (small model support)
CPLX7M.LIB (medium model support)
CPLX7C.LIB (compact model support)
CPLX7L.LIB (large model support)
CPLX7H.LIB (huge model support)

These libraries are independent of the operating system (except those designated for OS/2). The "7"
designates a library compiled with the "7" option.

The Open Watcom C++ 32-bit Class Libraries are listed below.

Under \WATCOM\LIB386

(iostream and string class libraries)
PLIB3R.LIB (flat models, "3r", "4r" or "5r" option)
PLIB3S.LIB (flat models, "3s", "4s" or "5s" option)
PLIBMT3R.LIB (multi-thread library for OS/2 and Windows NT)
PLIBMT3S.LIB (multi-thread library for OS/2 and Windows NT)

(complex class library for "fpc" option)
CPLX3R.LIB (flat models, "3r", "4r" or "5r" option)
CPLX3S.LIB (flat models, "3s", "4s" or "5s" option)

(complex class library for "fpi..." options)
CPLX73R.LIB (flat models, "3r", "4r" or "5r" option)
CPLX73S.LIB (flat models, "3s", "4s" or "5s" option)

104 Open Watcom C/C++ Class Libraries

The Open Watcom C/C++ Libraries

These libraries are independent of the operating system (except those designated for OS/2 and Windows
NT). The "3R" and "3S" suffixes refer to the argument passing convention used. The "7" designates a
library compiled with the "7" option.

5.4 Open Watcom C/C++ Math Libraries
In general, a Math library is required when floating-point computations are included in the application. The
Math libraries are operating-system independent.

For the 286 architecture, the Math libraries are placed under the \WATCOM\LIB286 directory.

For the 386 architecture, the Math libraries are placed under the \WATCOM\LIB386 directory.

An 80x87 emulator library, emu87.lib, is also provided which is both operating-system and architecture
dependent.

The following situations indicate that one of the Math libraries should be included when linking the
application.

1. When one or more of the functions described in the math.h header file is referenced, then a
Math library must be included.

2. If an application is linked and the message

"_fltused_ is an undefined reference"

appears, then a Math library must be included.

3. (16-bit only) If an application is linked and the message

"__init_87_emulator is an undefined reference"

appears, then one of the modules in the application was compiled with one of the "fpi", "fpi87",
"fp2", "fp3" or "fp5" options. If the "fpi" option was used, the 80x87 emulator library (
emu87.lib) or the 80x87 fixup library (noemu87.lib) should be included when linking
the application.

If the "fpi87" option was used, the 80x87 fixup library noemu87.lib should be included when
linking the application.

The 80x87 emulator is contained in emu87.lib. Use noemu87.lib in place of
emu87.lib when the emulator is not wanted.

4. (32-bit only) If an application is linked and the message

"__init_387_emulator is an undefined reference"

appears, then one of the modules in the application was compiled with one of the "fpi", "fpi87",
"fp2", "fp3" or "fp5" options. If the "fpi" option was used, the 80x87 emulator library (
emu387.lib) should be included when linking the application.

If the "fpi87" option was used, the empty 80x87 emulator library noemu387.lib should be
included when linking the application.

Open Watcom C/C++ Math Libraries 105

Open Watcom C/C++ User’s Guide

The 80x87 emulator is contained in emu387.lib. Use noemu387.lib in place of
emu387.lib when the emulator is not wanted.

Normally, the compiler and linker will automatically take care of this. Simply ensure that the WATCOM
environment variable includes the location of the Open Watcom C/C++ libraries.

5.5 Open Watcom C/C++ 80x87 Math Libraries
One of the following Math libraries must be used if any of the modules of your application were compiled
with one of the Open Watcom C/C++ "fpi", "fpi87", "fp2", "fp3" or "fp5" options and your application
requires floating-point support for the reasons given above.

16-bit libraries:

MATH87S.LIB (small model)
MATH87M.LIB (medium model)
MATH87C.LIB (compact model)
MATH87L.LIB (large model)
MATH87H.LIB (huge model)
NOEMU87.LIB
DOS\EMU87.LIB (DOS dependent)
OS2\EMU87.LIB (OS/2 dependent)
WIN\EMU87.LIB (Windows dependent)
WIN\MATH87C.LIB (Windows dependent)
WIN\MATH87L.LIB (Windows dependent)

32-bit libraries:

MATH387R.LIB (flat/small models, "3r", "4r" or "5r" option)
MATH387S.LIB (flat/small models, "3s", "4s" or "5s" option)
DOS\EMU387.LIB (DOS dependent)
WIN\EMU387.LIB (Windows dependent)
OS2\EMU387.LIB (OS/2 dependent)
NT\EMU387.LIB (Windows NT dependent)

The "fpi" option causes an 80x87 numeric data processor emulator to be linked into your application in
addition to any 80x87 math routines that were referenced. This emulator will decode and emulate 80x87
instructions when an 80x87 is not present in the system or if the environment variable NO87 has been set
(this variable is described below).

For 32-bit Open Watcom Windows-extender applications or 32-bit applications run in Windows 3.1 DOS
boxes, you must also include the WEMU387.386 file in the [386enh] section of the SYSTEM.INI file.

Example:
device=C:\WATCOM\binw\wemu387.386

Note that the WDEBUG.386 file which is installed by the Open Watcom Installation software contains the
emulation support found in the WEMU387.386 file.

When the "fpi87" option is used exclusively, the emulator is not included. In this case, the application must
be run on personal computer systems equipped with the numeric data processor.

106 Open Watcom C/C++ 80x87 Math Libraries

The Open Watcom C/C++ Libraries

5.6 Open Watcom C/C++ Alternate Math Libraries
One of the following Math libraries must be used if any of the modules of your application were compiled
with the Open Watcom C/C++ "fpc" option and your application requires floating-point support for the
reasons given above. The following Math libraries include support for floating-point which is done
out-of-line through run-time calls.

16-bit libraries:

MATHS.LIB (small model)
MATHM.LIB (medium model)
MATHC.LIB (compact model)
MATHL.LIB (large model)
MATHH.LIB (huge model)
WIN\MATHC.LIB (Windows dependent)
WIN\MATHL.LIB (Windows dependent)

32-bit libraries:

MATH3R.LIB (flat/small models, "3r", "4r" or "5r" option)
MATH3S.LIB (flat/small models, "3s", "4s" or "5s" option)

Applications which are linked with one of these libraries do not require a numeric data processor for
floating-point operations. If one is present in the system, it will be used; otherwise floating-point
operations are simulated in software. The numeric data processor will not be used if the environment
variable NO87 has been set (this variable is described below).

5.7 The NO87 Environment Variable
If you have a numeric data processor (math coprocessor) in your system but you wish to test a version of
your application that will use floating-point emulation ("fpi" option) or simulation ("fpc" option), you can
define the NO87 environment variable.

(16-bit only) The application must be compiled using the "fpc" (floating-point calls) option and linked with
the appropriate math?.lib library or the "fpi" option (default) and linked with the appropriate
math87?.lib and emu87.lib libraries.

(32-bit only) The application must be compiled using the "fpc" (floating-point calls) option and linked with
the appropriate math3?.lib library or the "fpi" option (default) and linked with the appropriate
math387?.lib library.

Using the "SET" command, define the environment variable as follows:

C>SET NO87=1

Now, when you run your application, the 80x87 will be ignored. To undefine the environment variable,
enter the command:

C>SET NO87=

The NO87 Environment Variable 107

Open Watcom C/C++ User’s Guide

5.8 The Open Watcom C/C++ Run-time Initialization Routines
Source files are included in the package for the Open Watcom C/C++ application startup (or initialization)
sequence.

(16-bit only) The initialization code directories/files are listed below:

Under \WATCOM\SRC\STARTUP

WILDARGV.C (wild card processing for argv)
8087CW.C (value loaded into 80x87 control word)

Under \WATCOM\SRC\STARTUP\DOS (DOS initialization)

CSTRT086.ASM (startup for 16-bit apps)
DOS16M.ASM (startup code for Tenberry Software’s DOS/16M)
CMAIN086.C (final part of initialization sequence)
MDEF.INC (macros included by assembly code)

Under \WATCOM\SRC\STARTUP\WIN (Windows initialization)

CSTRTW16.ASM (startup for 16-bit Windows apps)
LIBENTRY.ASM (startup for 16-bit Windows DLLs)
MDEF.INC (macros included by assembly code)

Under \WATCOM\SRC\STARTUP\OS2 (OS/2 initialization)

CMAIN086.C (final part of initialization sequence)
MAINO16.C (middle part of initialization sequence)
CSTRTO16.ASM (startup for 16-bit OS/2)
EXITWMSG.H (header file required by MAINO16.C)
WOS2.H (header file required by MAINO16.C)
INITFINI.H (header file required by MAINO16.C)
MDEF.INC (macros included by assembly code)

The following is a summary description of the startup files for DOS. The startup files for Windows and
OS/2 are similar. The assembler file CSTRT086.ASM contains the first part of the initialization code and
the remainder is continued in the file CMAIN086.C. It is CMAIN086.C that calls your main routine
(main).

The DOS16M.ASM file is a special version of the CSTRT086.ASM file which is required when using the
Tenberry Software, Inc. DOS/16M 286 DOS extender.

(32-bit only) The initialization code directories/files are listed below:

Under \WATCOM\SRC\STARTUP

WILDARGV.C (wild card processing for argv)
8087CW.C (value loaded into 80x87 control word)

108 The Open Watcom C/C++ Run-time Initialization Routines

The Open Watcom C/C++ Libraries

Under \WATCOM\SRC\STARTUP\386

CSTRT386.ASM (startup for most DOS Extenders)
CSTRTW32.ASM (startup for 32-bit Windows)
CSTRTX32.ASM (startup for FlashTek DOS Extender)
CMAIN386.C (final part of initialization sequence)

The assembler files CSTRT*.ASM contain the first part of the initialization code and the remainder is
continued in the file CMAIN386.C. It is CMAIN386.C that calls your main routine (main).

The source code is provided for those who wish to customize the initialization sequence for special
applications.

The file wildargv.c contains an alternate form of "argv" processing in which wild card command line
arguments are transformed into lists of matching file names. Wild card arguments are any arguments
containing "*" or "?" characters unless the argument is placed within quotes ("). Consider the following
example in which we run an application called "TOUCH" with the argument "*.c".

C>touch *.c

Suppose that the application was linked with the object code for the file wildargv.c. Suppose that the
files ap1.c, ap2.c and ap3.c are stored in the current directory. The single argument "*.c" is
transformed into a list of arguments such that:

argc == 4
argv[1] points to "ap1.c"
argv[2] points to "ap2.c"
argv[3] points to "ap3.c"

The source file wildargv.c must be compiled to produce the object file wildargv.obj. This file
must be specified before the Open Watcom C/C++ libraries in the linker command file in order to replace
the standard "argv" processing.

The Open Watcom C/C++ Run-time Initialization Routines 109

Open Watcom C/C++ User’s Guide

110 The Open Watcom C/C++ Run-time Initialization Routines

16-bit Topics

16-bit Topics

112

6 16-bit Memory Models

6.1 Introduction
This chapter describes the various 16-bit memory models supported by Open Watcom C/C++. Each
memory model is distinguished by two properties; the code model used to implement function calls and the
data model used to reference data.

6.2 16-bit Code Models
There are two code models;

1. the small code model and
2. the big code model.

A small code model is one in which all calls to functions are made with near calls. In a near call, the
destination address is 16 bits and is relative to the segment value in segment register CS. Hence, in a small
code model, all code comprising your program, including library functions, must be less than 64K.

A big code model is one in which all calls to functions are made with far calls. In a far call, the destination
address is 32 bits (a segment value and an offset relative to the segment value). This model allows the size
of the code comprising your program to exceed 64K.

Note: If your program contains less than 64K of code, you should use a memory model that employs
the small code model. This will result in smaller and faster code since near calls are smaller instructions
and are processed faster by the CPU.

6.3 16-bit Data Models
There are three data models;

1. the small data model,
2. the big data model and
3. the huge data model.

A small data model is one in which all references to data are made with near pointers. Near pointers are 16
bits; all data references are made relative to the segment value in segment register DS. Hence, in a small
data model, all data comprising your program must be less than 64K.

A big data model is one in which all references to data are made with far pointers. Far pointers are 32 bits
(a segment value and an offset relative to the segment value). This removes the 64K limitation on data size
imposed by the small data model. However, when a far pointer is incremented, only the offset is adjusted.
Open Watcom C/C++ assumes that the offset portion of a far pointer will not be incremented beyond 64K.

16-bit Data Models 113

16-bit Topics

The compiler will assign an object to a new segment if the grouping of data in a segment will cause the
object to cross a segment boundary. Implicit in this is the requirement that no individual object exceed 64K
bytes. For example, an array containing 40,000 integers does not fit into the big data model. An object
such as this should be described as huge.

A huge data model is one in which all references to data are made with far pointers. This is similar to the
big data model. However, in the huge data model, incrementing a far pointer will adjust the offset and the
segment if necessary. The limit on the size of an object pointed to by a far pointer imposed by the big data
model is removed in the huge data model.

Notes:

1. If your program contains less than 64K of data, you should use the small data model. This will
result in smaller and faster code since references using near pointers produce fewer instructions.

2. The huge data model should be used only if needed. The code generated in the huge data model
is not very efficient since a run-time routine is called in order to increment far pointers. This
increases the size of the code significantly and increases execution time.

6.4 Summary of 16-bit Memory Models
As previously mentioned, a memory model is a combination of a code model and a data model. The
following table describes the memory models supported by Open Watcom C/C++.

Memory Code Data Default Default
Model Model Model Code Data

Pointer Pointer
-------- -------- -------- -------- --------
tiny small small near near
small small small near near
medium big small far near
compact small big near far
large big big far far
huge big huge far huge

6.5 Tiny Memory Model
In the tiny memory model, the application’s code and data must total less than 64K bytes in size. All code
and data are placed in the same segment. Use of the tiny memory model allows the creation of a COM file
for the executable program instead of an EXE file. For more information, see the section entitled "Creating
a Tiny Memory Model Application" in this chapter.

6.6 Mixed 16-bit Memory Model
A mixed memory model application combines elements from the various code and data models. A mixed
memory model application might be characterized as one that uses the near, far, or huge keywords when
describing some of its functions or data objects.

For example, a medium memory model application that uses some far pointers to data can be described as a
mixed memory model. In an application such as this, most of the data is in a 64K segment (DGROUP) and

114 Mixed 16-bit Memory Model

16-bit Memory Models

hence can be referenced with near pointers relative to the segment value in segment register DS. This
results in more efficient code being generated and better execution times than one can expect from a big
data model. Data objects outside of the DGROUP segment are described with the far keyword.

6.7 Linking Applications for the Various 16-bit Memory
Models

Each memory model requires different run-time and floating-point libraries. Each library assumes a
particular memory model and should be linked only with modules that have been compiled with the same
memory model. The following table lists the libraries that are to be used to link an application that has
been compiled for a particular memory model.

Memory Run-time Floating-Point Floating-Point
Model Library Calls Library Library (80x87)
------- -------- -------------- ---------------
tiny CLIBS.LIB MATHS.LIB MATH87S.LIB

+CSTART_T.OBJ +(NO)EMU87.LIB*

small CLIBS.LIB MATHS.LIB MATH87S.LIB
+(NO)EMU87.LIB*

medium CLIBM.LIB MATHM.LIB MATH87M.LIB
+(NO)EMU87.LIB*

compact CLIBC.LIB MATHC.LIB MATH87C.LIB
+(NO)EMU87.LIB*

large CLIBL.LIB MATHL.LIB MATH87L.LIB
+(NO)EMU87.LIB*

huge CLIBH.LIB MATHH.LIB MATH87H.LIB
+(NO)EMU87.LIB*

* One of emu87.lib or noemu87.lib will be used with the 80x87 math libraries depending on the use
of the "fpi" (include emulation) or "fpi87" (do not include emulation) options.

6.8 Creating a Tiny Memory Model Application
Tiny memory model programs are created by compiling all modules with the small memory model option
and linking in the special initialization file "CSTART_T.OBJ". This file is found in the Open Watcom
C/C++ LIB286\DOS directory. It must be the first object file specified when linking the program.

The following sequence will create the executable file "MYPROG.COM" from the file "MYPROG.C":

Creating a Tiny Memory Model Application 115

16-bit Topics

Example:
C>wcc myprog /ms
C>wlink system com file myprog

Most of the details of linking a "COM" program are handled by the "SYSTEM COM" directive (see the
wlsystem.lnk file for details). When linking a "COM" program, the message "Stack segment not
found" is issued. This message may be ignored.

6.9 Memory Layout
The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. This segment is initialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
data in segments belonging to group "DGROUP". Segments belonging to class "STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and
"STACK" are last in the segment ordering so that uninitialized data need not take space in the executable
file.

In addition to these special segments, the following conventions are used by Open Watcom C/C++.

1. The "CODE" class contains the executable code for your application. In a small code model, this
consists of the segment "_TEXT". In a big code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory models (the
data threshold is 32K unless changed using the "zt" compiler option)

116 Memory Layout

16-bit Memory Models

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for a big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

Memory Layout 117

16-bit Topics

118 Memory Layout

7 16-bit Assembly Language Considerations

7.1 Introduction
This chapter will deal with the following topics.

1. The data representation of the basic types supported by Open Watcom C/C++.

2. The memory layout of a Open Watcom C/C++ program.

3. The method for passing arguments and returning values.

4. The two methods for passing floating-point arguments and returning floating-point values.

One method is used when one of the Open Watcom C/C++ "fpi" or "fpi87" options is specified
for the generation of in-line 80x87 instructions. When the "fpi" option is specified, an 80x87
emulator is included from a math library if the application includes floating-point operations.
When the "fpi87" option is used exclusively, the 80x87 emulator will not be included.

The other method is used when the Open Watcom C/C++ "fpc" option is specified. In this case,
the compiler generates calls to floating-point support routines in the alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

7.2 Data Representation
This section describes the internal or machine representation of the basic types supported by Open Watcom
C/C++.

7.2.1 Type "char"
An item of type "char" occupies 1 byte of storage. Its value is in the following range.

0 <= n <= 255

Note that "char" is, by default, unsigned. The Open Watcom C/C++ compiler option "j" can be used to
change the default from unsigned to signed. If "char" is signed, an item of type "char" is in the following
range.

-128 <= n <= 127

You can force an item of type "char" to be unsigned or signed regardless of the default by defining them to
be of type "unsigned char" or "signed char" respectively.

Data Representation 119

16-bit Topics

7.2.2 Type "short int"
An item of type "short int" occupies 2 bytes of storage. Its value is in the following range.

-32768 <= n <= 32767

Note that "short int" is signed and hence "short int" and "signed short int" are equivalent. If an item of type
"short int" is to be unsigned, it must be defined as "unsigned short int". In this case, its value is in the
following range.

0 <= n <= 65535

7.2.3 Type "long int"
An item of type "long int" occupies 4 bytes of storage. Its value is in the following range.

-2147483648 <= n <= 2147483647

Note that "long int" is signed and hence "long int" and "signed long int" are equivalent. If an item of type
"long int" is to be unsigned, it must be defined as "unsigned long int". In this case, its value is in the
following range.

0 <= n <= 4294967295

7.2.4 Type "int"
An item of type "int" occupies 2 bytes of storage. Its value is in the following range.

-32768 <= n <= 32767

Note that "int" is signed and hence "int" and "signed int" are equivalent. If an item of type "int" is to be
unsigned, it must be defined as "unsigned int". In this case its value is in the following range.

0 <= n <= 65535

If you are generating code that executes in 16-bit mode, "short int" and "int" are equivalent, "unsigned short
int" and "unsigned int" are equivalent, and "signed short int" and "signed int" are equivalent. This may not
be the case in other environments where "int" and "long int" are 4 bytes.

7.2.5 Type "float"
A datum of type "float" is an approximate representation of a real number. Each datum of type "float"
occupies 4 bytes. If m is the magnitude of x (an item of type "float") then x can be approximated if

2-126 <= m < 2128

or in more approximate terms if

1.175494e-38 <= m <= 3.402823e38

Data of type "float" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

120 Data Representation

16-bit Assembly Language Considerations

+---+---------+---------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+---------------------+
31 30-23 22-0

Notes

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 127 (i.e., exponent value 1 represents 2-126; exponent value 127
represents 20; exponent value 254 represents 2127; etc.). The exponent field is 8 bits long.

Significand The leading bit of the significand is always 1, hence it is not stored in the significand field.
Thus the significand is always "normalized". The significand field is 23 bits long.

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then the
quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then the quantity
is a special value called a "denormal" or nonnormal number.

7.2.6 Type "double"
A datum of type "double" is an approximate representation of a real number. The precision of a datum of
type "double" is greater than or equal to one of type "float". Each datum of type "double" occupies 8 bytes.
If m is the magnitude of x (an item of type "double") then x can be approximated if

2-1022 <= m < 21024

or in more approximate terms if

2.2250738585072e-308 <= m <= 1.79769313486232e308

Data of type "double" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

+---+---------+--------------------------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+--------------------------------------+
63 62-52 51-0

Data Representation 121

16-bit Topics

Notes:

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 1023 (i.e., exponent value 1 represents 2-1022; exponent value 1023
represents 20; exponent value 2046 represents 21023; etc.). The exponent field is 11 bits
long.

Significand The leading bit of the significand is always 1, hence it is not stored in the significand field.
Thus the significand is always "normalized". The significand field is 52 bits long.

Zero A double precision zero quantity occurs when the sign bit, exponent, and significand are all
zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then the
quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then the quantity
is a special value called a "denormal" or nonnormal number.

7.3 Memory Layout
The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. This segment is initialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
data in segments belonging to group "DGROUP". Segments belonging to class "STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and
"STACK" are last in the segment ordering so that uninitialized data need not take space in the executable
file.

In addition to these special segments, the following conventions are used by Open Watcom C/C++.

122 Memory Layout

16-bit Assembly Language Considerations

1. The "CODE" class contains the executable code for your application. In a small code model, this
consists of the segment "_TEXT". In a big code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory models (the
data threshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for a big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

7.4 Calling Conventions for Non-80x87 Applications
The following sections describe the calling convention used when compiling with the "fpc" compiler
option.

7.4.1 Passing Arguments Using Register-Based Calling Conventions
How arguments are passed to a function with register-based calling conventions is determined by the size
(in bytes) of the argument and where in the argument list the argument appears. Depending on the size,
arguments are either passed in registers or on the stack. Arguments such as structures are almost always
passed on the stack since they are generally too large to fit in registers. Since arguments are processed
from left to right, the first few arguments are likely to be passed in registers (if they can fit) and, if the
argument list contains many arguments, the last few arguments are likely to be passed on the stack.

The registers used to pass arguments to a function are AX, BX, CX and DX. The following algorithm
describes how arguments are passed to functions.

Initially, we have the following registers available for passing arguments: AX, DX, BX and CX. Note that
registers are selected from this list in the order they appear. That is, the first register selected is AX and the
last is CX. For each argument Ai, starting with the left most argument, perform the following steps.

1. If the size of Ai is 1 byte, convert it to 2 bytes and proceed to the next step. If Ai is of type
"unsigned char", it is converted to an "unsigned int". If Ai is of type "signed char", it is
converted to a "signed int". If Ai is a 1-byte structure, the padding is determined by the
compiler.

2. If an argument has already been assigned a position on the stack, Ai will also be assigned a
position on the stack. Otherwise, proceed to the next step.

Calling Conventions for Non-80x87 Applications 123

16-bit Topics

3. If the size of Ai is 2 bytes, select a register from the list of available registers. If a register is
available, Ai is assigned that register. The register is then removed from the list of available
registers. If no registers are available, Ai will be assigned a position on the stack.

4. If the size of Ai is 4 bytes, select a register pair from the following list of combinations: [DX
AX] or [CX BX]. The first available register pair is assigned to Ai and removed from the list of
available pairs. The high-order 16 bits of the argument are assigned to the first register in the
pair; the low-order 16 bits are assigned to the second register in the pair. If none of the above
register pairs is available, Ai will be assigned a position on the stack.

5. If the type of Ai is "double" or "float" (in the absence of a function prototype), select [AX BX
CX DX] from the list of available registers. All four registers are removed from the list of
available registers. The high-order 16 bits of the argument are assigned to the first register and
the low-order 16 bits are assigned to the fourth register. If any of the four registers is not
available, Ai will be assigned a position on the stack.

6. All other arguments will be assigned a position on the stack.

Notes:

1. Arguments that are assigned a position on the stack are padded to a multiple of 2 bytes. That is,
if a 3-byte structure is assigned a position on the stack, 4 bytes will be pushed on the stack.

2. Arguments that are assigned a position on the stack are pushed onto the stack starting with the
rightmost argument.

7.4.2 Sizes of Predefined Types
The following table lists the predefined types, their size as returned by the "sizeof" function, the size of an
argument of that type and the registers used to pass that argument if it was the only argument in the
argument list.

Basic Type "sizeof" Argument Registers
Size Used

char 1 2 [AX]
short int 2 2 [AX]
int 2 2 [AX]
long int 4 4 [DX AX]
float 4 8 [AX BX CX DX]
double 8 8 [AX BX CX DX]
near pointer 2 2 [AX]
far pointer 4 4 [DX AX]
huge pointer 4 4 [DX AX]

Note that the size of the argument listed in the table assumes that no function prototypes are specified.
Function prototypes affect the way arguments are passed. This will be discussed in the section entitled
"Effect of Function Prototypes on Arguments".

124 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Notes:

1. Provided no function prototypes exist, an argument will be converted to a default type as
described in the following table.

Argument Type Passed As

char unsigned int
signed char signed int
unsigned char unsigned int
float double

7.4.3 Size of Enumerated Types
The integral type of an enumerated type is determined by the values of the enumeration constants. In strict
ISO/ANSI C mode, all enumerated constants are of type int. In the extensions mode, the compiler will
use the smallest integral type possible (excluding long ints) that can represent all values of the enumerated
type. For instance, if the minimum and maximum values of the enumeration constants are in the range
−128 and 127, the enumerated type will be equivalent to a signed char (size = 1 byte). All references
to enumerated constants in the previous instance will have type signed char. An enumerated constant
is always promoted to an int when passed as an argument.

7.4.4 Effect of Function Prototypes on Arguments
Function prototypes define the types of the formal parameters of a function. Their appearance affects the
way in which arguments are passed. An argument will be converted to the type of the corresponding
formal parameter in the function prototype. Consider the following example.

void prototype(float x, int i);

void main()
{

float x;
int i;

x = 3.14;
i = 314;
prototype(x, i);
rtn(x, i);

}

The function prototype for prototype specifies that the first argument is to be passed as a "float" and the
second argument is to be passed as an "int". This results in the first argument being passed in registers DX
and AX and the second argument being passed in register BX.

If no function prototype is given, as is the case for the function rtn, the first argument will be passed as a
"double" and the second argument would be passed as an "int". This results in the first argument being
passed in registers AX, BX, CX and DX and the second argument being passed on the stack.

Note that even though both prototype and rtn were called with identical argument lists, the way in
which the arguments were passed was completely different simply because a function prototype for
prototype was specified. Function prototyping is an excellent way to guarantee that arguments will be
passed as expected to your assembly language function.

Calling Conventions for Non-80x87 Applications 125

16-bit Topics

7.4.5 Interfacing to Assembly Language Functions
Consider the following example.

Example:
void main()
{

long int x;
int i;
long int y;

x = 7;
i = 77;
y = 777;
myrtn(x, i, y);

}

myrtn is an assembly language function that requires three arguments. The first argument is of type "long
int", the second argument is of type "int" and the third argument is again of type "long int". Using the rules
for register-based calling conventions, these arguments will be passed to myrtn in the following way:

1. The first argument will be passed in registers DX and AX leaving BX and CX as available
registers for other arguments.

2. The second argument will be passed in register BX leaving CX as an available register for other
arguments.

3. The third argument will not fit in register CX (its size is 4 bytes) and hence will be pushed on the
stack.

Let us look at the stack upon entry to myrtn.

Small Code Model
Offset

+----------------+
0 | return address | <- SP points here

+----------------+
2 | argument #3 |

| |
+----------------+

6 | |

Big Code Model
Offset

+----------------+
0 | return address | <- SP points here

| |
+----------------+

4 | argument #3 |
| |
+----------------+

8 | |

126 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Notes:

1. The return address is the top element on the stack. In a small code model, the return address is 1
word (16 bits); in a big code model, the return address is 2 words (32 bits).

Register SP cannot be used as a base register to address the third argument on the stack. Register BP is
normally used to address arguments on the stack. Upon entry to the function, register BP is set to point to
the stack but before doing so we must save its contents. The following two instructions achieve this.

push BP ; save current value of BP
mov BP,SP ; get access to arguments

After executing these instructions, the stack looks like this.

Small Code Model
Offset

+----------------+
0 | saved BP | <- BP and SP point here

+----------------+
2 | return address |

+----------------+
4 | argument #3 |

| |
+----------------+

8 | |

Big Code Model
Offset

+----------------+
0 | saved BP | <- BP and SP point here

+----------------+
2 | return address |

| |
+----------------+

6 | argument #3 |
| |
+----------------+

10 | |

As the above diagrams show, the third argument is at offset 4 from register BP in a small code model and
offset 6 in a big code model.

Upon exit from myrtn, we must restore the value of BP. The following two instructions achieve this.

mov SP,BP ; restore stack pointer
pop BP ; restore BP

The following is a sample assembly language function which implements myrtn.

Calling Conventions for Non-80x87 Applications 127

16-bit Topics

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segment byte public ’CODE’

assume CS:_TEXT
assume DS:DGROUP
public myrtn_

myrtn_ proc near
push BP ; save BP
mov BP,SP ; get access to arguments

;
; body of function
;

mov SP,BP ; restore SP
pop BP ; restore BP
ret 4 ; return and pop last arg

myrtn_ endp
_TEXT ends

Large Memory Model (big code, big data)
DGROUP group _DATA, _BSS
MYRTN_TEXT segment byte public ’CODE’

assume CS:MYRTN_TEXT
public myrtn_

myrtn_ proc far
push BP ; save BP
mov BP,SP ; get access to arguments

;
; body of function
;

mov SP,BP ; restore SP
pop BP ; restore BP
ret 4 ; return and pop last arg

myrtn_ endp
MYRTN_TEXT ends

Notes:

1. Global function names must be followed with an underscore. Global variable names must be
preceded with an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and AX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option.

3. The direction flag must be clear before returning to the caller.

4. In a small code model, any segment containing executable code must belong to the segment
"_TEXT" and the class "CODE". The segment "_TEXT" must have a "combine" type of
"PUBLIC". On entry, CS contains the segment address of the segment "_TEXT". In a big code
model there is no restriction on the naming of segments which contain executable code.

5. In a small data model, segment register DS contains the segment address of the group
"DGROUP". This is not the case in a big data model.

128 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declare them as "far".

7. In general, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. If any of the arguments was pushed onto the stack, the called routine must pop those arguments
off the stack in the "ret" instruction.

7.4.6 Functions with Variable Number of Arguments
A function prototype with a parameter list that ends with ",..." has a variable number of arguments. In this
case, all arguments are passed on the stack. Since no prototyping information exists for arguments
represented by ",...", those arguments are passed as described in the section "Passing Arguments".

7.4.7 Returning Values from Functions
The way in which function values are returned depends on the size of the return value. The following
examples describe how function values are to be returned. They are coded for a small code model.

1. 1-byte values are to be returned in register AL.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret1_

Ret1_ proc near ; char Ret1()
mov AL,’G’
ret

Ret1_ endp
_TEXT ends

end

2. 2-byte values are to be returned in register AX.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret2_

Ret2_ proc near ; short int Ret2()
mov AX,77
ret

Ret2_ endp
_TEXT ends

end

3. 4-byte values are to be returned in registers DX and AX with the most significant word in
register DX.

Calling Conventions for Non-80x87 Applications 129

16-bit Topics

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret4_

Ret4_ proc near ; long int Ret4()
mov AX,word ptr CS:Val4+0
mov DX,word ptr CS:Val4+2
ret

Val4 dd 7777777
Ret4_ endp
_TEXT ends

end

4. 8-byte values, except structures, are to be returned in registers AX, BX, CX and DX with the
most significant word in register AX.

Example:
.8087

_TEXT segment byte public ’CODE’
assume CS:_TEXT
public Ret8_

Ret8_ proc near ; double Ret8()
mov DX,word ptr CS:Val8+0
mov CX,word ptr CS:Val8+2
mov BX,word ptr CS:Val8+4
mov AX,word ptr CS:Val8+6
ret

Val8: dq 7.7
Ret8_ endp
_TEXT ends

end

The ".8087" pseudo-op must be specified so that all floating-point constants are generated in
8087 format. When using the "fpc" (floating-point calls) option, "float" and "double" are
returned in registers. See section "Returning Values in 80x87-based Applications" when using
the "fpi" or "fpi87" options.

5. Otherwise, the caller allocates space on the stack for the return value and sets register SI to point
to this area. In a big data model, register SI contains an offset relative to the segment value in
segment register SS.

130 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public RetX_

;
; struct int_values {
; int value1, value2, value3, value4, value5;
; };
;
RetX_ proc near ; struct int_values RetX()

mov word ptr SS:0[SI],71
mov word ptr SS:4[SI],72
mov word ptr SS:8[SI],73
mov word ptr SS:12[SI],74
mov word ptr SS:16[SI],75
ret

RetX_ endp
_TEXT ends

end

When returning values on the stack, remember to use a segment override to the stack segment
(SS).

The following is an example of a Open Watcom C/C++ program calling the above assembly language
subprograms.

#include <stdio.h>

struct int_values {
int value1;
int value2;
int value3;
int value4;
int value5;

};

extern char Ret1(void);
extern short int Ret2(void);
extern long int Ret4(void);
extern double Ret8(void);
extern struct int_values RetX(void);

void main()
{

struct int_values x;

printf("Ret1 = %c\n", Ret1());
printf("Ret2 = %d\n", Ret2());
printf("Ret4 = %ld\n", Ret4());
printf("Ret8 = %f\n", Ret8());
x = RetX();
printf("RetX1 = %d\n", x.value1);
printf("RetX2 = %d\n", x.value2);
printf("RetX3 = %d\n", x.value3);
printf("RetX4 = %d\n", x.value4);
printf("RetX5 = %d\n", x.value5);

}

Calling Conventions for Non-80x87 Applications 131

16-bit Topics

The above function should be compiled for a small code model (use the "ms" or "mc" compiler option).

7.5 Calling Conventions for 80x87-based Applications
When a source file is compiled by Open Watcom C/C++ with one of the "fpi" or "fpi87" options, all
floating-point arguments are passed on the 80x86 stack. The rules for passing arguments are as follows.

1. If the argument is not floating-point, use the procedure described earlier in this chapter.

2. If the argument is floating-point, it is assigned a position on the 80x86 stack.

7.5.1 Passing Values in 80x87-based Applications
Consider the following example.

Example:
extern void myrtn(int,float,double,long int);

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77
j = 77;
myrtn(i, x, y, j);

}

myrtn is an assembly language function that requires four arguments. The first argument is of type "int" (
2 bytes), the second argument is of type "float" (4 bytes), the third argument is of type "double" (8 bytes)
and the fourth argument is of type "long int" (4 bytes). These arguments will be passed to myrtn in the
following way:

1. The first argument will be passed in register AX leaving BX, CX and DX as available registers
for other arguments.

2. The second argument will be passed on the 80x86 stack since it is a floating-point argument.

3. The third argument will also be passed on the 80x86 stack since it is a floating-point argument.

4. The fourth argument will be passed on the 80x86 stack since a previous argument has been
assigned a position on the 80x86 stack.

Remember, arguments are pushed on the stack from right to left. That is, the rightmost argument is pushed
first.

Any assembly language function must obey the following rule.

1. All arguments passed on the stack must be removed by the called function.

132 Calling Conventions for 80x87-based Applications

16-bit Assembly Language Considerations

The following is a sample assembly language function which implements myrtn.

Example:
.8087

_TEXT segment byte public ’CODE’
assume CS:_TEXT
public myrtn_

myrtn_ proc near
;
; body of function
;

ret 16 ; return and pop arguments
myrtn_ endp
_TEXT ends

end

Notes:

1. Function names must be followed by an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and EAX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option. In this example, AX does not have to be saved as it was used to pass the first argument.
Floating-point registers can be modified without saving their contents.

3. The direction flag must be clear before returning to the caller.

4. This function has been written for a small code model. Any segment containing executable code
must belong to the class "CODE" and the segment "_TEXT". On entry, CS contains the segment
address of the segment "_TEXT". The above restrictions do not apply in a big code memory
model.

5. When writing assembly language functions for a small code model, you must declare them as
"near". If you wish to write assembly language functions for a big code model, you must declare
them as "far".

7.5.2 Returning Values in 80x87-based Applications
Floating-point values are returned in ST(0) when using the "fpi" or "fpi87" options. All other values are
returned in the manner described earlier in this chapter.

Calling Conventions for 80x87-based Applications 133

16-bit Topics

134 Calling Conventions for 80x87-based Applications

8 16-bit Pragmas

8.1 Introduction
A pragma is a compiler directive that provides the following capabilities.

• Pragmas allow you to specify certain compiler options.

• Pragmas can be used to direct the Open Watcom C/C++ code generator to emit specialized
sequences of code for calling functions which use argument passing and value return techniques that
differ from the default used by Open Watcom C/C++.

• Pragmas can be used to describe attributes of functions (such as side effects) that are not possible at
the C/C++ language level. The code generator can use this information to generate more efficient
code.

• Any sequence of in-line machine language instructions, including DOS and BIOS function calls, can
be generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is used to
describe the syntax of pragmas.

keywords A keyword is shown in a mono-spaced courier font.

program-item A program-item is shown in a roman bold-italics font. A program-item is a symbol name
or numeric value supplied by the programmer.

punctuation A punctuation character shown in a mono-spaced courier font must be entered as
is.

A punctuation character shown in a roman bold-italics font is used to describe syntax.
The following syntactical notation is used.

[abc] The item abc is optional.

{abc} The item abc may be repeated zero or more times.

a|b|c One of a, b or c may be specified.

a ::= b The item a is defined in terms of b.

(a) Item a is evaluated first.

The following classes of pragmas are supported.

Introduction 135

16-bit Topics

• pragmas that specify options

• pragmas that specify default libraries

• pragmas that describe the way structures are stored in memory

• pragmas that provide auxiliary information used for code generation

8.2 Using Pragmas to Specify Options
Currently, the following options can be specified with pragmas:

unreferenced The "unreferenced" option controls the way Open Watcom C/C++ handles unused symbols.
For example,

#pragma on (unreferenced);

will cause Open Watcom C/C++ to issue warning messages for all unused symbols. This is
the default. Specifying

#pragma off (unreferenced);

will cause Open Watcom C/C++ to ignore unused symbols. Note that if the warning level
is not high enough, warning messages for unused symbols will not be issued even if
"unreferenced" was specified.

check_stack The "check_stack" option controls the way stack overflows are to be handled. For
example,

#pragma on (check_stack);

will cause stack overflows to be detected and

#pragma off (check_stack);

will cause stack overflows to be ignored. When "check_stack" is on, Open Watcom C/C++
will generate a run-time call to a stack-checking routine at the start of every routine
compiled. This run-time routine will issue an error if a stack overflow occurs when
invoking the routine. The default is to check for stack overflows. Stack overflow checking
is particularly useful when functions are invoked recursively. Note that if the stack
overflows and stack checking has been suppressed, unpredictable results can occur.

If a stack overflow does occur during execution and you are sure that your program is not
in error (i.e. it is not unnecessarily recursing), you must increase the stack size. This is
done by linking your application again and specifying the "STACK" option to the Open
Watcom Linker with a larger stack size.

It is also possible to specify more than one option in a pragma as illustrated by the
following example.

#pragma on (check_stack unreferenced);

136 Using Pragmas to Specify Options

16-bit Pragmas

reuse_duplicate_strings (C only) (C Only) The "reuse_duplicate_strings" option controls the way Open
Watcom C handles identical strings in an expression. For example,

#pragma on (reuse_duplicate_strings);

will cause Open Watcom C to reuse identical strings in an expression. This is the default.
Specifying

#pragma off (reuse_duplicate_strings);

will cause Open Watcom C to generate additional copies of the identical string. The
following example shows where this may be of importance to the way the application
behaves.

Example:
#include <stdio.h>

#pragma off (reuse_duplicate_strings)

void poke(char *, char *);

void main()
{

poke("Hello world\n", "Hello world\n");
}

void poke(char *x, char *y)
{

x[3] = ’X’;
printf(x);
y[4] = ’Y’;
printf(y);

}
/*
Default output:
HelXo world
HelXY world
*/

8.3 Using Pragmas to Specify Default Libraries
Default libraries are specified in special object module records. Library names are extracted from these
special records by the Open Watcom Linker. When unresolved references remain after processing all
object modules specified in linker "FILE" directives, these default libraries are searched after all libraries
specified in linker "LIBRARY" directives have been searched.

By default, that is if no library pragma is specified, the Open Watcom C/C++ compiler generates, in the
object file defining the main program, default libraries corresponding to the memory model and
floating-point model used to compile the file. For example, if you have compiled the source file containing
the main program for the medium memory model and the floating-point calls floating-point model, the
libraries "clibm" and "mathm" will be placed in the object file.

If you wish to add your own default libraries to this list, you can do so with a library pragma. Consider the
following example.

Using Pragmas to Specify Default Libraries 137

16-bit Topics

#pragma library (mylib);

The name "mylib" will be added to the list of default libraries specified in the object file.

If the library specification contains characters such as ’\’, ’:’ or ’,’ (i.e., any character not allowed in a C
identifier), you must enclose it in double quotes as in the following example.

#pragma library ("\watcom\lib286\dos\graph.lib");
#pragma library ("\watcom\lib386\dos\graph.lib");

If you wish to specify more than one library in a library pragma you must separate them with spaces as in
the following example.

#pragma library (mylib "\watcom\lib286\dos\graph.lib");
#pragma library (mylib "\watcom\lib386\dos\graph.lib");

8.4 The ALIAS Pragma (C Only)
The "alias" pragma can be used to emit alias records in the object file, causing the linker to substitute
references to a specified symbol with references to another symbol. Either identifiers or names (strings)
may be used. Strings are used verbatim, while names corresponding to identifiers are derived as
appropriate for the kind and calling convention of the symbol. The following describes the form of the
"alias" pragma.

#pragma alias (alias, subst) [;]

where description:

alias is either a name or an identifier of the symbol to be aliased.

subst is either a name or an identifier of the symbol that references to alias will be replaced
with.

Consider the following example.

extern int var;

void fn(void)
{

var = 3;
}

#pragma alias (var, "other_var");

Instead of var the linker will reference symbol named "other_var". Symbol var need not be defined,
although "other_var" has to be.

138 The ALIAS Pragma (C Only)

16-bit Pragmas

8.5 The ALLOC_TEXT Pragma (C Only)
The "alloc_text" pragma can be used to specify the name of the text segment into which the generated code
for a function, or a list of functions, is to be placed. The following describes the form of the "alloc_text"
pragma.

#pragma alloc_text (seg_name, fn {, fn}) [;]

where description:

seg_name is the name of the text segment.

fn is the name of a function.

Consider the following example.

extern int fn1(int);
extern int fn2(void);
#pragma alloc_text (my_text, fn1, fn2);

The code for the functions fn1 and fn2 will be placed in the segment my_text. Note: function
prototypes for the named functions must exist prior to the "alloc_text" pragma.

8.6 The CODE_SEG Pragma
The "code_seg" pragma can be used to specify the name of the text segment into which the generated code
for functions is to be placed. The following describes the form of the "code_seg" pragma.

#pragma code_seg (seg_name [, class_name]) [;]

where description:

seg_name is the name of the text segment optionally enclosed in quotes. Also, seg_name may be a
macro as in:

#define seg_name "MY_CODE_SEG"
#pragma code_seg (seg_name);

class_name is the optional class name of the text segment and may be enclosed in quotes. Please note
that in order to be recognized by the linker as code, a class name has to end in "CODE".
Also, class_name may be a macro as in:

#define class_name "MY_CODE"
#pragma code_seg ("MY_CODE_SEG", class_name);

Consider the following example.

The CODE_SEG Pragma 139

16-bit Topics

#pragma code_seg (my_text);

int incr(int i)
{

return(i + 1);
}

int decr(int i)
{

return(i - 1);
}

The code for the functions incr and decr will be placed in the segment my_text.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma code_seg ();

8.7 The COMMENT Pragma
The "comment" pragma can be used to place a comment record in an object file or executable file. The
following describes the form of the "comment" pragma.

#pragma comment (comment_type [, "comment_string"]) [;]

where description:

comment_type specifies the type of comment record. The allowable comment types are:

lib Default libraries are specified in special object module records. Library
names are extracted from these special records by the Open Watcom
Linker. When unresolved references remain after processing all object
modules specified in linker "FILE" directives, these default libraries are
searched after all libraries specified in linker "LIBRARY" directives have
been searched.

The "lib" form of this pragma offers the same features as the "library"
pragma. See the section entitled "Using Pragmas to Specify Default
Libraries" on page 137 for more information.

"comment_string" is an optional string literal that provides additional information for some comment
types.

Consider the following example.

#pragma comment (lib, "mylib");

140 The COMMENT Pragma

16-bit Pragmas

8.8 The DATA_SEG Pragma
The "data_seg" pragma can be used to specify the name of the segment into which data is to be placed. The
following describes the form of the "data_seg" pragma.

#pragma data_seg (seg_name [, class_name]) [;]

where description:

seg_name is the name of the data segment and may be enclosed in quotes. Also, seg_name may be
a macro as in:

#define seg_name "MY_DATA_SEG"
#pragma data_seg (seg_name);

class_name is the optional class name of the data segment and may be enclosed in quotes. Also,
class_name may be a macro as in:

#define class_name "MY_CLASS"
#pragma data_seg ("MY_DATA_SEG", class_name);

Consider the following example.

#pragma data_seg (my_data);

static int i;
static int j;

The data for i and j will be placed in the segment my_data.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma data_seg ();

8.9 The DISABLE_MESSAGE Pragma (C Only)
The "disable_message" pragma disables the issuance of specified diagnostic messages. The form of the
"disable_message" pragma is as follows.

#pragma disable_message (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages" on page 301. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

The DISABLE_MESSAGE Pragma (C Only) 141

16-bit Topics

See also the description of "The ENABLE_MESSAGE Pragma (C Only)".

8.10 The DUMP_OBJECT_MODEL Pragma (C++ Only)
The "dump_object_model" pragma causes the C++ compiler to print information about the object model for
an indicated class or an enumeration name to the diagnostics file. For class names, this information
includes the offsets and sizes of fields within the class and within base classes. For enumeration names,
this information consists of a list of all the enumeration constants with their values.

The general form of the "dump_object_model" pragma is as follows.

#pragma dump_object_model class [;]
#pragma dump_object_model enumeration [;]
class ::= a defined C++ class free of errors
enumeration ::= a defined C++ enumeration name

This pragma is designed to be used for information purposes only.

8.11 The ENABLE_MESSAGE Pragma (C Only)
The "enable_message" pragma re-enables the issuance of specified diagnostic messages that have been
previously disabled. The form of the "enable_message" pragma is as follows.

#pragma enable_message (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages" on page 301. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

See also the description of "The DISABLE_MESSAGE Pragma (C Only)" on page 141.

8.12 The ENUM Pragma
The "enum" pragma affects the underlying storage-definition for subsequent enum declarations. The forms
of the "enum" pragma are as follows.

#pragma enum int [;]
#pragma enum minimum [;]
#pragma enum original [;]
#pragma enum pop [;]

142 The ENUM Pragma

16-bit Pragmas

where description:

int Make int the underlying storage definition (same as the "ei" compiler option).

minimum Minimize the underlying storage definition (same as not specifying the "ei" compiler
option).

original Reset back to the original compiler option setting (i.e., what was or was not specified on the
command line).

pop Restore the previous setting.

The first three forms all push the previous setting before establishing the new setting.

8.13 The ERROR Pragma
The "error" pragma can be used to issue an error message with the specified text. The following describes
the form of the "error" pragma.

#pragma error "error text" [;]

where description:

"error text" is the text of the message that you wish to display.

You should use the ISO #error directive rather than this pragma. This pragma is provided for compatibility
with legacy code. The following is an example.

#if defined(__386__)

...
#elseif defined(__86__)

...
#else
#pragma error ("neither __386__ or __86__ defined");
#endif

8.14 The EXTREF Pragma
The "extref" pragma is used to generate a reference to an external function or data item. The form of the
"extref" pragma is as follows.

#pragma extref name [;]

The EXTREF Pragma 143

16-bit Topics

where description:

name is the name of an external function or data item. It must be declared to be an external
function or data item before the pragma is encountered. In C++, when name is a function,
it must not be overloaded.

This pragma causes an external reference for the function or data item to be emitted into the object file even
if that function or data item is not referenced in the module. The external reference will cause the linker to
include the module containing that name in the linked program or DLL.

This is useful for debugging since you can cause debugging routines (callable from within debugger) to be
included into a program or DLL to be debugged.

In C++, you can also force constructors and/or destructors to be called for a data item without necessarily
referencing the data item anywhere in your code.

8.15 The FUNCTION Pragma
Certain functions, such as those listed in the description of the "oi" and "om" options, have intrinsic forms.
These functions are special functions that are recognized by the compiler and processed in a special way.
For example, the compiler may choose to generate in-line code for the function. The intrinsic attribute for
these special functions is set by specifying the "oi" or "om" option or using an "intrinsic" pragma. The
"function" pragma can be used to remove the intrinsic attribute for a specified list of functions.

The following describes the form of the "function" pragma.

#pragma function (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled using the "om" option so that when one of the special
math functions is referenced, the intrinsic form will be used. In our example, we have referenced the
function sin which does have an intrinsic form. By specifying sin in a "function" pragma, the intrinsic
attribute will be removed, causing the function sin to be treated as a regular user-defined function.

#include <math.h>
#pragma function(sin);

double test(double x)
{

return(sin(x));
}

144 The FUNCTION Pragma

16-bit Pragmas

8.16 The INCLUDE_ALIAS Pragma
In certain situations, it can be advantageous to remap the names of include files. Most commonly this
occurs on systems that do not support long file names when building source code that references header
files with long names.

The form of the "include_alias" pragma follows.

#pragma include_alias ("alias_name", "real_name") [;]
#pragma include_alias (<alias_name>, <real_name>) [;]

where description:

alias_name is the name referenced in include directives in source code.

real_name is the translated name that the compiler will reference instead.

The following is an example.

#pragma include_alias("LongFileName.h", "lfn.h")
#include "LongFileName.h"

In the example, the compiler will attempt to read lfn.h when LongFileName.h was included.

Note that only simple textual substitution is performed. The aliased name must match exactly, including
double quotes or angle brackets, as well as any directory separators. Also, double quotes and angle
brackets may not be mixed a single pragma.

The value of the predefined __FILE__ symbol, as well as the filename reported in error messages, will be
the true filename after substitution was performed.

8.17 Setting Priority of Static Data Initialization (C++ Only)
The "initialize" pragma sets the priority for initialization of static data in the file. This priority only applies
to initialization of static data that requires the execution of code. For example, the initialization of a class
that contains a constructor requires the execution of the constructor. Note that if the sequence in which
initialization of static data in your program takes place has no dependencies, the "initialize" pragma need
not be used.

The general form of the "initialize" pragma is as follows.

#pragma initialize [before | after] priority [;]

priority ::= n | library | program

Setting Priority of Static Data Initialization (C++ Only) 145

16-bit Topics

where description:

n is a number representing the priority and must be in the range 0-255. The larger the
priority, the later the point at which initialization will occur.

Priorities in the range 0-20 are reserved for the C++ compiler. This is to ensure that proper initialization of
the C++ run-time system takes place before the execution of your program. The "library" keyword
represents a priority of 32 and can be used for class libraries that require initialization before the program is
initialized. The "program" keyword represents a priority of 64 and is the default priority for any compiled
code. Specifying "before" adjusts the priority by subtracting one. Specifying "after" adjusts the priority by
adding one.

A source file containing the following "initialize" pragma specifies that the initialization of static data in the
file will take place before initialization of all other static data in the program since a priority of 63 will be
assigned.

Example:
#pragma initialize before program

If we specify "after" instead of "before", the initialization of the static data in the file will occur after
initialization of all other static data in the program since a priority of 65 will be assigned.

Note that the following is equivalent to the "before" example

Example:
#pragma initialize 63

and the following is equivalent to the "after" example.

Example:
#pragma initialize 65

The use of the "before", "after", and "program" keywords are more descriptive in the intent of the pragmas.

It is recommended that a priority of 32 (the priority used when the "library" keyword is specified) be used
when developing class libraries. This will ensure that initialization of static data defined by the class
library will take place before initialization of static data defined by the program. The following "initialize"
pragma can be used to achieve this.

Example:
#pragma initialize library

8.18 The INLINE_DEPTH Pragma (C++ Only)
When an in-line function is called, the function call may be replaced by the in-line expansion for that
function. This in-line expansion may include calls to other in-line functions which can also be expanded.
The "inline_depth" pragma can be used to set the number of times this expansion of in-line functions will
occur for a call.

The form of the "inline_depth" pragma is as follows.

146 The INLINE_DEPTH Pragma (C++ Only)

16-bit Pragmas

#pragma inline_depth [(] n [)] [;]

where description:

n is the depth of expansion. If n is 0, no expansion will occur. If n is 1, only the original call
is expanded. If n is 2, the original call and the in-line functions invoked by the original
function will be expanded. The default value for n is 3. The maximum value for n is 255.
Note that no expansion of recursive in-line functions occur unless enabled using the
"inline_recursion" pragma.

8.19 The INLINE_RECURSION Pragma (C++ Only)
The "inline_recursion" pragma controls the recursive expansion of inline functions. The form of the
"inline_recursion" pragma is as follows.

#pragma inline_recursion [(] on | off [)] [;]

Specifying "on" will enable expansion of recursive inline functions. The depth of expansion is specified by
the "inline_depth" pragma. The default depth is 3. Specifying "off" suppresses expansion of recursive
inline functions. This is the default.

8.20 The INTRINSIC Pragma
Certain functions, those listed in the description of the "oi" option, have intrinsic forms. These functions
are special functions that are recognized by the compiler and processed in a special way. For example, the
compiler may choose to generate in-line code for the function. The intrinsic attribute for these special
functions is set by specifying the "oi" option or using an "intrinsic" pragma.

The following describes the form of the "intrinsic" pragma.

#pragma intrinsic (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled without using the "oi" option so that no function had the
intrinsic attribute. If we wanted the intrinsic form of the sin function to be used, we could specify the
function in an "intrinsic" pragma.

The INTRINSIC Pragma 147

16-bit Topics

#include <math.h>
#pragma intrinsic(sin);

double test(double x)
{

return(sin(x));
}

8.21 The MESSAGE Pragma
The "message" pragma can be used to issue a message with the specified text to the standard output without
terminating compilation. The following describes the form of the "message" pragma.

#pragma message ("message text") [;]

where description:

"message text" is the text of the message that you wish to display.

The following is an example.

#if defined(__386__)

...
#else
#pragma message ("assuming 16-bit compile");
#endif

8.22 The ONCE Pragma
The "once" pragma can be used to indicate that the file which contains this pragma should only be opened
and processed "once". The following describes the form of the "once" pragma.

#pragma once [;]

Assume that the file "foo.h" contains the following text.

Example:
#ifndef _FOO_H_INCLUDED
#define _FOO_H_INCLUDED
#pragma once

.

.

.
#endif

The first time that the compiler processes "foo.h" and encounters the "once" pragma, it records the file’s
name. Subsequently, whenever the compiler encounters a #include statement that refers to "foo.h", it

148 The ONCE Pragma

16-bit Pragmas

will not open the include file again. This can help speed up processing of #include files and reduce the
time required to compile an application.

8.23 The PACK Pragma
The "pack" pragma can be used to control the way in which structures are stored in memory. There are 4
forms of the "pack" pragma.

The following form of the "pack" pragma can be used to change the alignment of structures and their fields
in memory.

#pragma pack (n) [;]

where description:

n is 1, 2, 4, 8 or 16 and specifies the method of alignment.

The alignment of structure members is described in the following table. If the size of the member is 1, 2, 4,
8 or 16, the alignment is given for each of the "zp" options. If the member of the structure is an array or
structure, the alignment is described by the row "x".

zp1 zp2 zp4 zp8 zp16

sizeof(member) \---------------------------------------
1 | 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
x | aligned to largest member

An alignment of 0 means no alignment, 2 means word boundary, 4 means doubleword boundary, etc. If the
largest member of structure "x" is 1 byte then "x" is not aligned. If the largest member of structure "x" is 2
bytes then "x" is aligned according to row 2. If the largest member of structure "x" is 4 bytes then "x" is
aligned according to row 4. If the largest member of structure "x" is 8 bytes then "x" is aligned according
to row 8. If the largest member of structure "x" is 16 bytes then "x" is aligned according to row 16.

If no value is specified in the "pack" pragma, a default value of 2 is used. Note that the default value can be
changed with the "zp" Open Watcom C/C++ compiler command line option.

The following form of the "pack" pragma can be used to save the current alignment amount on an internal
stack.

#pragma pack (push) [;]

The following form of the "pack" pragma can be used to save the current alignment amount on an internal
stack and set the current alignment.

The PACK Pragma 149

16-bit Topics

#pragma pack (push, number) [;]

The following form of the "pack" pragma can be used to restore the previous alignment amount from an
internal stack.

#pragma pack (pop) [;]

8.24 The READ_ONLY_FILE Pragma
Explicit listing of dependencies in a makefile can often be tedious in the development and maintenance
phases of a project. The Open Watcom C/C++ compiler will insert dependency information into the object
file as it processes source files so that a complete snapshot of the files necessary to build the object file are
recorded. The "read_only_file" pragma can be used to prevent the name of the source file that includes it
from being included in the dependency information that is written to the object file.

This pragma is commonly used in system header files since they change infrequently (and, when they do,
there should be no impact on source files that have included them).

The form of the "read_only_file" pragma follows.

#pragma read_only_file [;]

For more information on make dependencies, see the section entitled "Automatic Dependency Detection
(.AUTODEPEND)" in the Open Watcom C/C++ Tools User’s Guide.

8.25 The TEMPLATE_DEPTH Pragma (C++ Only)
The "template_depth" pragma provides a hard limit for the amount of nested template expansions allowed
so that infinite expansion can be detected.

The form of the "template_depth" pragma is as follows.

#pragma template_depth [(] n [)] [;]

where description:

n is the depth of expansion. If the value of n is less than 2, if will default to 2. If n is not
specified, a warning message will be issued and the default value for n will be 100.

The following example of recursive template expansion illustrates why this pragma can be useful.

150 The TEMPLATE_DEPTH Pragma (C++ Only)

16-bit Pragmas

Example:
#pragma template_depth(10);

template <class T>
struct S {

S<T*> x;
};

S<char> v;

8.26 The WARNING Pragma (C++ Only)
The "warning" pragma sets the level of warning messages. The form of the "warning" pragma is as
follows.

#pragma warning msg_num level [;]

where description:

msg_num is the number of the warning message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C++ Diagnostic
Messages" on page 333. If msg_num is "*", the level of all warning messages is changed
to the specified level. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

level is a number from 0 to 9 and represents the level of the warning message. When a value of
zero is specified, the warning becomes an error.

8.27 Auxiliary Pragmas
The following sections describe the capabilities provided by auxiliary pragmas.

8.27.1 Specifying Symbol Attributes
Auxiliary pragmas are used to describe attributes that affect code generation. Initially, the compiler defines
a default set of attributes. Each auxiliary pragma refers to one of the following.

1. a symbol (such as a variable or function)
2. a type definition that resolves to a function type
3. the default set of attributes defined by the compiler

When an auxiliary pragma refers to a particular symbol, a copy of the current set of default attributes is
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to the specified symbol and can only be changed by another auxiliary pragma that refers to the same
symbol.

An example of a type definition that resolves to a function type is the following.

Auxiliary Pragmas 151

16-bit Topics

typedef void (*func_type)();

When an auxiliary pragma refers to a such a type definition, a copy of the current set of default attributes is
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to each function whose type matches the specified type definition.

When "default" is specified instead of a symbol name, the attributes specified by the auxiliary pragma
change the default set of attributes. The resulting attributes are used by all symbols that have not been
specifically referenced by a previous auxiliary pragma.

Note that all auxiliary pragmas are processed before code generation begins. Consider the following
example.

code in which symbol x is referenced
#pragma aux y <attrs_1>;
code in which symbol y is referenced
code in which symbol z is referenced
#pragma aux default <attrs_2>;
#pragma aux x <attrs_3>;

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x is assigned the initial default attributes merged with the attributes specified by
<attrs_2> and <attrs_3>.

2. Symbol y is assigned the initial default attributes merged with the attributes specified by
<attrs_1>.

3. Symbol z is assigned the initial default attributes merged with the attributes specified by
<attrs_2>.

8.27.2 Alias Names
When a symbol referred to by an auxiliary pragma includes an alias name, the attributes of the alias name
are also assumed by the specified symbol.

There are two methods of specifying alias information. In the first method, the symbol assumes only the
attributes of the alias name; no additional attributes can be specified. The second method is more general
since it is possible to specify an alias name as well as additional auxiliary information. In this case, the
symbol assumes the attributes of the alias name as well as the attributes specified by the additional auxiliary
information.

The simple form of the auxiliary pragma used to specify an alias is as follows.

#pragma aux (sym, alias) [;]

152 Auxiliary Pragmas

16-bit Pragmas

where description:

sym is any valid C/C++ identifier.

alias is the alias name and is any valid C/C++ identifier.

Consider the following example.

#pragma aux push_args parm [] ;
#pragma aux (rtn, push_args) ;

The routine rtn assumes the attributes of the alias name push_args which specifies that the arguments
to rtn are passed on the stack.

Let us look at an example in which the symbol is a type definition.

typedef void (func_type)(int);

#pragma aux push_args parm [];
#pragma aux (func_type, push_args);

extern func_type rtn1;
extern func_type rtn2;

The first auxiliary pragma defines an alias name called push_args that specifies the mechanism to be
used to pass arguments. The mechanism is to pass all arguments on the stack. The second auxiliary
pragma associates the attributes specified in the first pragma with the type definition func_type. Since
rtn1 and rtn2 are of type func_type, arguments to either of those functions will be passed on the
stack.

The general form of an auxiliary pragma that can be used to specify an alias is as follows.

#pragma aux (alias) sym aux_attrs [;]

where description:

alias is the alias name and is any valid C/C++ identifier.

sym is any valid C/C++ identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

#pragma aux MS_C "_*" \

parm caller [] \
value struct float struct routine [ax]\
modify [ax bx cx dx es];

#pragma aux (MS_C) rtn1;
#pragma aux (MS_C) rtn2;
#pragma aux (MS_C) rtn3;

Auxiliary Pragmas 153

16-bit Topics

The routines rtn1, rtn2 and rtn3 assume the same attributes as the alias name MS_C which defines the
calling convention used by the Microsoft C compiler. Whenever calls are made to rtn1, rtn2 and
rtn3, the Microsoft C calling convention will be used.

Note that if the attributes of MS_C change, only one pragma needs to be changed. If we had not used an
alias name and specified the attributes in each of the three pragmas for rtn1, rtn2 and rtn3, we would
have to change all three pragmas. This approach also reduces the amount of memory required by the
compiler to process the source file.

WARNING! The alias name MS_C is just another symbol. If MS_C appeared in your source code, it
would assume the attributes specified in the pragma for MS_C.

8.27.3 Predefined Aliases
A number of symbols are predefined by the compiler with a set of attributes that describe a particular
calling convention. These symbols can be used as aliases. The following is a list of these symbols.

__cdecl __cdecl orcdecl defines the calling convention used by Microsoft compilers.

__fastcall __fastcall orfastcall defines the calling convention used by Microsoft compilers.

__fortran __fortran orfortran defines the calling convention used by Open Watcom
FORTRAN compilers.

__pascal __pascal orpascal defines the calling convention used by OS/2 1.x and Windows 3.x
API functions.

__stdcall __stdcall orstdcall defines the calling convention used by Microsoft compilers.

__watcall __watcall orwatcall defines the calling convention used by Open Watcom
compilers.

The following describes the attributes of the above alias names.

8.27.3.1 Predefined "__cdecl" Alias

#pragma aux __cdecl "_*" \

parm caller [] \
value struct float struct routine [ax] \
modify [ax bx cx dx es]

Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the called routine allocates space for the return value and returns a pointer to the return value in
register AX.

154 Auxiliary Pragmas

16-bit Pragmas

4. Registers AX, BX, CX and DX, and segment register ES are not saved and restored when a call
is made.

8.27.3.2 Predefined "__pascal" Alias

#pragma aux __pascal "^" \

parm reverse routine [] \
value struct float struct caller [] \
modify [ax bx cx dx es]

Notes:

1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is pushed first,
the second argument is pushed next, and so on. The routine being called will remove the
arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the caller allocates space on the stack. The address of the allocated space will be pushed on the
stack immediately before the call instruction. Upon returning from the call, register AX will
contain address of the space allocated for the return value.

4. Registers AX, BX, CX and DX, and segment register ES are not saved and restored when a call
is made.

8.27.3.3 Predefined "__watcall" Alias

#pragma aux __watcall "*_" \

parm routine [ax bx cx dx] \
value struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have
been exhausted). Arguments that are passed on the stack are pushed from right to left. The
calling routine will remove the arguments if any were pushed on the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of the allocated
space is put into SI register. The called routine then places the return value there. Upon
returning from the call, register AX will contain address of the space allocated for the return
value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using 80x87
floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

Auxiliary Pragmas 155

16-bit Topics

8.27.4 Alternate Names for Symbols
The following form of the auxiliary pragma can be used to describe the mapping of a symbol from its
source form to its object form.

#pragma aux sym obj_name [;]

where description:

sym is any valid C/C++ identifier.

obj_name is any character string enclosed in double quotes.

When specifying obj_name, some characters have a special meaning:

where description:

* is unmodified symbol name

^ is symbol name converted to uppercase

! is symbol name converted to lowercase

is a placeholder for "@nnn", where nnn is size of all function parameters on the stack; it is
ignored for functions with variable argument lists, or for symbols that are not functions

\ next character is treated as literal

Several examples of source to object form symbol name translation follow:

In the following example, the name "MyRtn" will be replaced by "MyRtn_" in the object file.

#pragma aux MyRtn "*_";

This is the default for all function names.

In the following example, the name "MyVar" will be replaced by "_MyVar" in the object file.

#pragma aux MyVar "_*";

This is the default for all variable names.

In the following example, the lower case version "myrtn" will be placed in the object file.

#pragma aux MyRtn "!";

In the following example, the upper case version "MYRTN" will be placed in the object file.

#pragma aux MyRtn "^";

In the following example, the name "MyRtn" will be replaced by "_MyRtn@nnn" in the object file. "nnn"
represents the size of all function parameters.

156 Auxiliary Pragmas

16-bit Pragmas

#pragma aux MyRtn "_*#";

In the following example, the name "MyRtn" will be replaced by "_MyRtn#" in the object file.

#pragma aux MyRtn "_*\#";

The default mapping for all symbols can also be changed as illustrated by the following example.

#pragma aux default "_*_";

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an underscore
character (’_’).

8.27.5 Describing Calling Information
The following form of the auxiliary pragma can be used to describe the way a function is to be called.

#pragma aux sym far [;]
or

#pragma aux sym near [;]
or

#pragma aux sym = in_line [;]

in_line ::= { const | (seg id) | (offset id) | (reloff id)
| (float fpinst) | "asm" }

where description:

sym is a function name.

const is a valid C/C++ integer constant.

id is any valid C/C++ identifier.

fpinst is a sequence of bytes that forms a valid 80x87 instruction. The keyword float must
precede fpinst so that special fixups are applied to the 80x87 instruction.

seg specifies the segment of the symbol id.

offset specifies the offset of the symbol id.

reloff specifies the relative offset of the symbol id for near control transfers.

asm is an assembly language instruction or directive.

In the following example, Open Watcom C/C++ will generate a far call to the function myrtn.

#pragma aux myrtn far;

Auxiliary Pragmas 157

16-bit Topics

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, a far call will be generated even if you are compiling for a memory model with a
small code model.

In the following example, Open Watcom C/C++ will generate a near call to the function myrtn.

#pragma aux myrtn near;

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, a near call will be generated even if you are compiling for a memory model with a
big code model.

In the following DOS example, Open Watcom C/C++ will generate the sequence of bytes following the "="
character in the auxiliary pragma whenever a call to mode4 is encountered. mode4 is called an in-line
function.

void mode4(void);
#pragma aux mode4 = \

0xb4 0x00 /* mov AH,0 */ \
0xb0 0x04 /* mov AL,4 */ \
0xcd 0x10 /* int 10H */ \
modify [AH AL];

The sequence in the above DOS example represents the following lines of assembly language instructions.

mov AH,0 ; select function "set mode"
mov AL,4 ; specify mode (mode 4)
int 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing an assembly
language function and calling it from your C/C++ program. The C prototype for the function mode4 is not
necessary but is included so that we can take advantage of the argument type checking provided by Open
Watcom C/C++.

The following DOS example is equivalent to the above example but mnemonics for the assembly language
instructions are used instead of the binary encoding of the assembly language instructions.

void mode4(void);
#pragma aux mode4 = \

"mov AH,0", \
"mov AL,4", \
"int 10H" \
modify [AH AL];

If a sequence of in-line assembly language instructions contains 80x87 floating-point instructions, each
floating-point instruction must be preceded by "float". Note that this is only required if you have specified
the "fpi" compiler option; otherwise it will be ignored.

The following example generates the 80x87 "square root" instruction.

double mysqrt(double);
#pragma aux mysqrt parm [8087] = \

float 0xd9 0xfa /* fsqrt */;

A sequence of in-line assembly language instructions may contain symbolic references. In the following
example, a near call to the function myalias is made whenever myrtn is called.

158 Auxiliary Pragmas

16-bit Pragmas

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0xe8 reloff myalias /* near call */;

In the following example, a far call to the function myalias is made whenever myrtn is called.

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0x9a offset myalias seg myalias /* far call */;

8.27.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the segment
address of the default data segment (group "DGROUP"). This is usually the case if you are using a large
data memory model. Suppose you wish to call a function that assumes that the segment register DS
contains the segment address of the default data segment. It would be very cumbersome if you were forced
to compile your application so that the segment register DS contained the default data segment (a small data
memory model).

The following form of the auxiliary pragma will cause the segment register DS to be loaded with the
segment address of the default data segment before calling the specified function.

#pragma aux sym parm loadds [;]

where description:

sym is a function name.

Alternatively, the following form of the auxiliary pragma will cause the segment register DS to be loaded
with the segment address of the default data segment as part of the prologue sequence for the specified
function.

#pragma aux sym loadds [;]

where description:

sym is a function name.

8.27.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in a dynamic link library is a symbol that can be referenced by an application that is
linked with that dynamic link library. Normally, symbols in dynamic link libraries are exported using the
Open Watcom Linker "EXPORT" directive. An alternative method is to use the following form of the
auxiliary pragma.

Auxiliary Pragmas 159

16-bit Topics

#pragma aux sym export [;]

where description:

sym is a function name.

8.27.5.3 Defining Windows Callback Functions

When compiling a Microsoft Windows application, you must use the "zW" option so that special
prologue/epilogue sequences are generated. Furthermore, callback functions require larger
prologue/epilogue sequences than those generated when the "zW" compiler option is specified. The
following form of the auxiliary pragma will cause a callback prologue/epilogue sequence to be generated
for a callback function when compiled using the "zW" option.

#pragma aux sym export [;]

where description:

sym is a callback function name.

Alternatively, the "zw" compiler option can be used to generate callback prologue/epilogue sequences.
However, all functions contained in a module compiled using the "zw" option will have a callback
prologue/epilogue sequence even if the functions are not callback functions.

8.27.5.4 Forcing a Stack Frame

Normally, a function contains a stack frame if arguments are passed on the stack or an automatic variable is
allocated on the stack. No stack frame will be generated if the above conditions are not satisfied. The
following form of the auxiliary pragma will force a stack frame to be generated under any circumstance.

#pragma aux sym frame [;]

where description:

sym is a function name.

8.27.6 Describing Argument Information
Using auxiliary pragmas, you can describe the calling convention that Open Watcom C/C++ is to use for
calling functions. This is particularly useful when interfacing to functions that have been compiled by
other compilers or functions written in other programming languages.

The general form of an auxiliary pragma that describes argument passing is the following.

160 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym parm { pop_info | reverse | {reg_set} } [;]

pop_info ::= caller | routine

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

8.27.6.1 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to pass
arguments to a particular function.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

Register sets establish a priority for register allocation during argument list processing. Register sets are
processed from left to right. However, within a register set, registers are chosen in any order. Once all
register sets have been processed, any remaining arguments are pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will be selected for
arguments of a particular type.

Note that arguments of type float and double are always pushed on the stack when the "fpi" or "fpi87"
option is used.

double Arguments of type double can only be passed in the following register combination:
AX:BX:CX:DX. For example, if the following register set was specified for a routine
having an argument of type double,

[AX BX SI DI]

the argument would be pushed on the stack since a valid register combination for 8-byte
arguments is not contained in the register set. Note that this method for passing arguments
of type double is supported only when the "fpc" option is used. Note that this argument
passing method does not include the passing of 8-byte structures.

Auxiliary Pragmas 161

16-bit Topics

far pointer A far pointer can only be passed in one of the following register pairs: DX:AX, CX:BX,
CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DI, DI:SI,
SI:BX, BX:AX, DS:CX, DS:DX, DS:DI, DS:SI, DS:BX, DS:AX, ES:CX, ES:DX, ES:DI,
ES:SI, ES:BX or ES:AX. For example, if a far pointer is passed to a function with the
following register set,

[ES BP]

the argument would be pushed on the stack since a valid register combination for a far
pointer is not contained in the register set.

long int, float The only registers that will be assigned to 4-byte arguments (e.g., arguments of type long
int,) are: DX:AX, CX:BX, CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX,
SI:AX, CX:DX, DX:DI, DI:SI, SI:BX and BX:AX. For example, if the following register
set was specified for a routine with one argument of type long int,

[ES DI]

the argument would be pushed on the stack since a valid register combination for 4-byte
arguments is not contained in the register set. Note that this argument passing method
includes 4-byte structures. Note that this argument passing method includes arguments of
type float but only when the "fpc" option is used.

int The only registers that will be assigned to 2-byte arguments (e.g., arguments of type int)
are: AX, BX, CX, DX, SI and DI. For example, if the following register set was specified
for a routine with one argument of type int,

[BP]

the argument would be pushed on the stack since a valid register combination for 2-byte
arguments is not contained in the register set.

char Arguments whose size is 1 byte (e.g., arguments of type char) are promoted to 2 bytes and
are then assigned registers as if they were 2-byte arguments.

others Arguments that do not fall into one of the above categories cannot be passed in registers
and are pushed on the stack. Once an argument has been assigned a position on the stack,
all remaining arguments will be assigned a position on the stack even if all register sets
have not yet been exhausted.

Notes:

1. The default register set is [AX BX CX DX].

2. Specifying registers AH and AL is equivalent to specifying register AX. Specifying registers
DH and DL is equivalent to specifying register DX. Specifying registers CH and CL is
equivalent to specifying register CX. Specifying registers BH and BL is equivalent to specifying
register BX.

3. If you are compiling for a memory model with a small data model, or the "zdp" compiler option
is specified, any register combination containing register DS becomes illegal. In a small data
model, segment register DS must remain unchanged as it points to the program’s data segment.
Note that the "zdf" compiler option can be used to specify that register DS does not contain that

162 Auxiliary Pragmas

16-bit Pragmas

segment address of the program’s data segment. In this case, register combinations containing
register DS are legal.

Consider the following example.

#pragma aux myrtn parm [ax bx cx dx] [bp si];

Suppose myrtn is a routine with 3 arguments each of type long int.

1. The first argument will be passed in the register pair DX:AX.
2. The second argument will be passed in the register pair CX:BX.
3. The third argument will be pushed on the stack since BP:SI is not a valid register pair for

arguments of type long int.

It is possible for registers from the second register set to be used before registers from the first register set
are used. Consider the following example.

#pragma aux myrtn parm [ax bx cx dx] [si di];

Suppose myrtn is a routine with 3 arguments, the first of type int and the second and third of type long
int.

1. The first argument will be passed in the register AX.
2. The second argument will be passed in the register pair CX:BX.
3. The third argument will be passed in the register set DI:SI.

Note that registers are no longer selected from a register set after registers are selected from subsequent
register sets, even if all registers from the original register set have not been exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty register set are
ignored; all remaining arguments are pushed on the stack.

Notes:

1. If a single empty register set is specified, all arguments are passed on the stack.

2. If no register set is specified, the default register set [AX BX CX DX] is used.

8.27.6.2 Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you have a function, say "mycopy", that
copies data. The first argument is the source, the second argument is the destination, and the third
argument is the length to copy. If we want the first argument to be passed in the register SI, the second
argument to be passed in register DI and the third argument to be passed in register CX, the following
auxiliary pragma can be used.

void mycopy(char near *, char *, int);
#pragma aux mycopy parm [SI] [DI] [CX];

Note that you must be aware of the size of the arguments to ensure that the arguments get passed in the
appropriate registers.

Auxiliary Pragmas 163

16-bit Topics

8.27.6.3 Passing Arguments to In-Line Functions

For functions whose code is generated by Open Watcom C/C++ and whose argument list is described by an
auxiliary pragma, Open Watcom C/C++ has some freedom in choosing how arguments are assigned to
registers. Since the code for in-line functions is specified by the programmer, the description of the
argument list must be very explicit. To achieve this, Open Watcom C/C++ assumes that each register set
corresponds to an argument. Consider the following DOS example of an in-line function called
scrollactivepgup.

void scrollactivepgup(char,char,char,char,char,char);
#pragma aux scrollactivepgup = \

"mov AH,6" \
"int 10h" \
parm [ch] [cl] [dh] [dl] [al] [bh] \
modify [ah];

The BIOS video call to scroll the active page up requires the following arguments.

1. The row and column of the upper left corner of the scroll window is passed in registers CH and
CL respectively.

2. The row and column of the lower right corner of the scroll window is passed in registers DH and
DL respectively.

3. The number of lines blanked at the bottom of the window is passed in register AL.

4. The attribute to be used on the blank lines is passed in register BH.

When passing arguments, Open Watcom C/C++ will convert the argument so that it fits in the register(s)
specified in the register set for that argument. For example, in the above example, if the first argument to
scrollactivepgup was called with an argument whose type was int, it would first be converted to
char before assigning it to register CH. Similarly, if an in-line function required its argument in register
pair DX:AX and the argument was of type short int, the argument would be converted to long int before
assigning it to register pair DX:AX.

In general, Open Watcom C/C++ assigns the following types to register sets.

1. A register set consisting of a single 8-bit register (1 byte) is assigned a type of unsigned char.

2. A register set consisting of a single 16-bit register (2 bytes) is assigned a type of unsigned short
int.

3. A register set consisting of two 16-bit registers (4 bytes) is assigned a type of unsigned long int.

4. A register set consisting of four 16-bit registers (8 bytes) is assigned a type of double.

8.27.6.4 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments that were
pushed on the stack.

164 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym parm (caller | routine) [;]

where description:

sym is a function name.

"caller" specifies that the caller will pop the arguments from the stack; "routine" specifies that the called
routine will pop the arguments from the stack. If "caller" or "routine" is omitted, "routine" is assumed
unless the default has been changed in a previous auxiliary pragma, in which case the new default is
assumed.

8.27.6.5 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse order.

#pragma aux sym parm reverse [;]

where description:

sym is a function name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost arguments
are passed on the stack (if the registers used for argument passing have been exhausted). Arguments that
are passed on the stack are pushed from left to right.

Reversing arguments is most useful for functions that require arguments to be passed on the stack in an
order opposite from the default. The following auxiliary pragma demonstrates such a function.

#pragma aux rtn parm reverse [];

8.27.7 Describing Function Return Information
Using auxiliary pragmas, you can describe the way functions are to return values. This is particularly
useful when interfacing to functions that have been compiled by other compilers or functions written in
other programming languages.

The general form of an auxiliary pragma that describes the way a function returns its value is the following.

#pragma aux sym value {no8087 | reg_set | struct_info} [;]
struct_info ::= struct {float | struct | (routine | caller) | reg_set}

Auxiliary Pragmas 165

16-bit Topics

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

8.27.7.1 Returning Function Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to return
a function’s value.

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

Note that the method described below for returning values of type float or double is supported only when
the "fpc" option is used.

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte For 1-byte return values, only the following registers are allowed: AL, AH, DL, DH, BL,
BH, CL or CH. If no register set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX, CX, SI or
DI. If no register set is specified, register AX will be used.

4-byte For 4-byte return values (except far pointers), only the following register pairs are allowed:
DX:AX, CX:BX, CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX,
CX:DX, DX:DI, DI:SI, SI:BX or BX:AX. If no register set is specified, registers DX:AX
will be used. This form of the auxiliary pragma is legal for functions of type float when
using the "fpc" option only.

far pointer For functions that return far pointers, the following register pairs are allowed: DX:AX,
CX:BX, CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DI,
DI:SI, SI:BX, BX:AX, DS:CX, DS:DX, DS:DI, DS:SI, DS:BX, DS:AX, ES:CX, ES:DX,
ES:DI, ES:SI, ES:BX or ES:AX. If no register set is specified, the registers DX:AX will be
used.

8-byte For 8-byte return values (including functions of type double), only the following register
combination is allowed: AX:BX:CX:DX. If no register set is specified, the registers
AX:BX:CX:DX will be used. This form of the auxiliary pragma is legal for functions of
type double when using the "fpc" option only.

166 Auxiliary Pragmas

16-bit Pragmas

Notes:

1. An empty register set is not allowed.

2. If you are compiling for a memory model which has a small data model, any of the above
register combinations containing register DS becomes illegal. In a small data model, segment
register DS must remain unchanged as it points to the program’s data segment.

8.27.7.2 Returning Structures

Typically, structures are not returned in registers. Instead, the caller allocates space on the stack for the
return value and sets register SI to point to it. The called routine then places the return value at the location
pointed to by register SI.

The following form of the auxiliary pragma can be used to specify the register that is to be used to point to
the return value.

#pragma aux sym value struct (caller|routine) reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

"caller" specifies that the caller will allocate memory for the return value. The address of the memory
allocated for the return value is placed in the register specified in the register set by the caller before the
function is called. If an empty register set is specified, the address of the memory allocated for the return
value will be pushed on the stack immediately before the call and will be returned in register AX by the
called routine. It is assumed that the memory for the return value is allocated from the stack segment (the
stack segment is contained in segment register SS).

"routine" specifies that the called routine will allocate memory for the return value. Upon returning to the
caller, the register specified in the register set will contain the address of the return value. An empty
register set is not allowed.

Only the following registers are allowed in the register set: AX, DX, BX, CX, SI or DI. Note that in a big
data model, the address in the return register is assumed to be in the segment specified by the value in the
SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The return
register will be selected from the register set in the following way.

1. A 1-byte structure will be returned in one of the following registers: AL, AH, DL, DH, BL, BH,
CL or CH. If no register set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers: AX, DX, BX, CX, SI or DI.
If no register set is specified, register AX will be used.

Auxiliary Pragmas 167

16-bit Topics

3. A 4-byte structure will be returned in one of the following register pairs: DX:AX, CX:BX,
CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DI, DI:SI, SI:BX
or BX:AX. If no register set is specified, register pair DX:AX will be used.

The following form of the auxiliary pragma can be used to specify that structures whose size is 1, 2 or 4
bytes are not to be returned in registers. Instead, the caller will allocate space on the stack for the structure
return value and point register SI to it.

#pragma aux sym value struct struct [;]

where description:

sym is a function name.

8.27.7.3 Returning Floating-Point Data

There are a few ways available for specifying how the value for a function whose type is float or double is
to be returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in registers. Instead, the caller will allocate space on the stack for the
return value and point register SI to it.

#pragma aux sym value struct float [;]

where description:

sym is a function name.

In other words, floating-point values are to be returned in the same way structures are returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in 80x87 registers when compiling with the "fpi" or "fpi87" option.
Instead, the value will be returned in 80x86 registers. This is the default behaviour for the "fpc" option.
Function return values whose type is float will be returned in registers DX:AX. Function return values
whose type is double will be returned in registers AX:BX:CX:DX. This is the default method for the "fpc"
option.

#pragma aux sym value no8087 [;]

where description:

sym is a function name.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are to be returned in ST(0) when compiling with the "fpi" or "fpi87" option. This form of
the auxiliary pragma is not legal for the "fpc" option.

168 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym value [8087] [;]

where description:

sym is a function name.

8.27.8 A Function that Never Returns
The following form of the auxiliary pragma can be used to describe a function that does not return to the
caller.

#pragma aux sym aborts [;]

where description:

sym is a function name.

Consider the following example.

#pragma aux exitrtn aborts;
extern void exitrtn(void);

void rtn()
{

exitrtn();
}

exitrtn is defined to be a function that does not return. For example, it may call exit to return to the
system. In this case, Open Watcom C/C++ generates a "jmp" instruction instead of a "call" instruction to
invoke exitrtn.

8.27.9 Describing How Functions Use Memory
The following form of the auxiliary pragma can be used to describe a function that does not modify any
memory (i.e., global or static variables) that is used directly or indirectly by the caller.

#pragma aux sym modify nomemory [;]

where description:

sym is a function name.

Consider the following example.

Auxiliary Pragmas 169

16-bit Topics

#pragma off (check_stack);

extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
while(i < 10000) {

i += 383;
}
myrtn();
i += 13143;

};

To compile the above program, "rtn.c", we issue the following command.

C>wcc rtn /oai /d1
C>wpp rtn /oai /d1
C>wcc386 rtn /oai /d1
C>wpp386 rtn /oai /d1

For illustrative purposes, we omit loop optimizations from the list of code optimizations that we want the
compiler to perform. The "d1" compiler option is specified so that the object file produced by Open
Watcom C/C++ contains source line information.

We can generate a file containing a disassembly of rtn.obj by issuing the following command.

C>wdis rtn /l /s /r

The "s" option is specified so that the listing file produced by the Open Watcom Disassembler contains
source lines taken from rtn.c. The listing file rtn.lst appears as follows.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE 0026 bytes

#pragma off (check_stack);

extern void MyRtn(void);

int i = { 1033 };

extern Rtn()
{

0000 52 Rtn_ push DX
0001 8b 16 00 00 mov DX,_i

while(i < 10000) {
0005 81 fa 10 27 L1 cmp DX,2710H
0009 7d 06 jge L2

i += 383;
}

000b 81 c2 7f 01 add DX,017fH
000f eb f4 jmp L1

170 Auxiliary Pragmas

16-bit Pragmas

MyRtn();
0011 89 16 00 00 L2 mov _i,DX
0015 e8 00 00 call MyRtn_
0018 8b 16 00 00 mov DX,_i

i += 13143;
001c 81 c2 57 33 add DX,3357H
0020 89 16 00 00 mov _i,DX

};
0024 5a pop DX
0025 c3 ret

No disassembly errors

--

Segment: ’_DATA’ WORD 0002 bytes
0000 09 04 _i - ..

No disassembly errors

--

Let us add the following auxiliary pragma to the source file.

#pragma aux myrtn modify nomemory;

If we compile the source file with the above pragma and disassemble the object file using the Open
Watcom Disassembler, we get the following listing file.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE 0022 bytes

#pragma off (check_stack);

extern void MyRtn(void);
#pragma aux MyRtn modify nomemory;

int i = { 1033 };

extern Rtn()
{

0000 52 Rtn_ push DX
0001 8b 16 00 00 mov DX,_i

while(i < 10000) {
0005 81 fa 10 27 L1 cmp DX,2710H
0009 7d 06 jge L2

i += 383;
}

000b 81 c2 7f 01 add DX,017fH
000f eb f4 jmp L1

MyRtn();
0011 89 16 00 00 L2 mov _i,DX
0015 e8 00 00 call MyRtn_

i += 13143;
0018 81 c2 57 33 add DX,3357H
001c 89 16 00 00 mov _i,DX

};
0020 5a pop DX
0021 c3 ret

Auxiliary Pragmas 171

16-bit Topics

No disassembly errors

--

Segment: ’_DATA’ WORD 0002 bytes
0000 09 04 _i - ..

No disassembly errors

--

Notice that the value of i is in register DX after completion of the "while" loop. After the call to myrtn,
the value of i is not loaded from memory into a register to perform the final addition. The auxiliary
pragma informs the compiler that myrtn does not modify any memory (i.e., global or static variables) that
is used directly or indirectly by Rtn and hence register DX contains the correct value of i.

The preceding auxiliary pragma deals with routines that modify memory. Let us consider the case where
routines reference memory. The following form of the auxiliary pragma can be used to describe a function
that does not reference any memory (i.e., global or static variables) that is used directly or indirectly by the
caller.

#pragma aux sym parm nomemory modify nomemory [;]

where description:

sym is a function name.

Notes:

1. You must specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragma in the above example with the following auxiliary pragma.

#pragma aux myrtn parm nomemory modify nomemory;

If you now compile our source file and disassemble the object file using WDIS, the result is the following
listing file.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE 001e bytes

#pragma off (check_stack);

extern void MyRtn(void);
#pragma aux MyRtn parm nomemory modify nomemory;

int i = { 1033 };

172 Auxiliary Pragmas

16-bit Pragmas

extern Rtn()
{

0000 52 Rtn_ push DX
0001 8b 16 00 00 mov DX,_i

while(i < 10000) {
0005 81 fa 10 27 L1 cmp DX,2710H
0009 7d 06 jge L2

i += 383;
}

000b 81 c2 7f 01 add DX,017fH
000f eb f4 jmp L1

MyRtn();
0011 e8 00 00 L2 call MyRtn_

i += 13143;
0014 81 c2 57 33 add DX,3357H
0018 89 16 00 00 mov _i,DX

};
001c 5a pop DX
001d c3 ret

No disassembly errors

--

Segment: ’_DATA’ WORD 0002 bytes
0000 09 04 _i - ..

No disassembly errors

--

Notice that after completion of the "while" loop we did not have to update i with the value in register DX
before calling myrtn. The auxiliary pragma informs the compiler that myrtn does not reference any
memory (i.e., global or static variables) that is used directly or indirectly by myrtn so updating i was not
necessary before calling myrtn.

8.27.10 Describing the Registers Modified by a Function
The following form of the auxiliary pragma can be used to describe the registers that a function will use
without saving.

#pragma aux sym modify [exact] reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

Specifying a register set informs Open Watcom C/C++ that the registers belonging to the register set are
modified by the function. That is, the value in a register before calling the function is different from its
value after execution of the function.

Registers that are used to pass arguments are assumed to be modified and hence do not have to be saved
and restored by the called function. Also, since the AX register is frequently used to return a value, it is

Auxiliary Pragmas 173

16-bit Topics

always assumed to be modified. If necessary, the caller will contain code to save and restore the contents
of registers used to pass arguments. Note that saving and restoring the contents of these registers may not
be necessary if the called function does not modify them. The following form of the auxiliary pragma can
be used to describe exactly those registers that will be modified by the called function.

#pragma aux sym modify exact reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

The above form of the auxiliary pragma tells Open Watcom C/C++ not to assume that the registers used to
pass arguments will be modified by the called function. Instead, only the registers specified in the register
set will be modified. This will prevent generation of the code which unnecessarily saves and restores the
contents of the registers used to pass arguments.

Also, any registers that are specified in the value register set are assumed to be unmodified unless
explicitly listed in the exact register set. In the following example, the code generator will not generate
code to save and restore the value of the stack pointer register since we have told it that "GetSP" does not
modify any register whatsoever.

Example:
unsigned GetSP(void);
#if defined(__386__)
#pragma aux GetSP = value [esp] modify exact [];
#else
#pragma aux GetSP = value [sp] modify exact [];
#endif

8.27.11 An Example
As mentioned in an earlier section, the following pragma defines the calling convention for functions
compiled by Microsoft C.

#pragma aux MS_C "_*" \

parm caller [] \
value struct float struct routine [ax]\
modify [ax bx cx dx es];

Let us discuss this pragma in detail.

"_*" specifies that all function and variable names are preceded by the underscore character (_)
when translated from source form to object form.

parm caller [] specifies that all arguments are to be passed on the stack (an empty register set was
specified) and the caller will remove the arguments from the stack.

value struct marks the section describing how the called routine returns structure information.

174 Auxiliary Pragmas

16-bit Pragmas

float specifies that floating-point arguments are returned in the same way as
structures are returned.

struct specifies that 1, 2 and 4-byte structures are not to be returned in registers.

routine specifies that the called routine allocates storage for the return structure and
returns with a register pointing at it.

[ax] specifies that register AX is used to point to the structure return value.

modify [ax bx cx dx es]

specifies that registers AX, BX, CX, DX and ES are not preserved by the called routine.

Note that the default method of returning integer values is used; 1-byte characters are returned in register
AL, 2-byte integers are returned in register AX, and 4-byte integers are returned in the register pair
DX:AX.

8.27.12 Auxiliary Pragmas and the 80x87
This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The discussion in
this chapter assumes that one of the "fpi" or "fpi87" options is used to compile functions. The following
areas are affected by the use of these options.

1. passing floating-point arguments to functions,
2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called routine.

8.27.12.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are never used to
pass floating-point arguments when a function is compiled with the "fpi" or "fpi87" option. However, they
can be used to pass arguments whose type is not floating-point such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be used to pass
arguments to functions.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is a register set. The register set can contain 80x86 registers and/or the string "8087".

Auxiliary Pragmas 175

16-bit Topics

Notes:

1. If an empty register set is specified, all arguments, including floating-point arguments, will be
passed on the 80x86 stack.

When the string "8087" appears in a register set, it simply means that floating-point arguments can be
passed in 80x87 floating-point registers if the source file is compiled with the "fpi" or "fpi87" option.
Before discussing argument passing in detail, some general notes on the use of the 80x87 floating-point
registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack pointer is called ST
and is a number between 0 and 7 identifying which 80x87 floating-point register is at the top of the stack.
ST is initially 0. 80x87 instructions reference these registers by specifying a floating-point register number.
This number is then added to the current value of ST. The sum (taken modulo 8) specifies the 80x87
floating-point register to be used. The notation ST(n), where "n" is between 0 and 7, is used to refer to the
position of an 80x87 floating-point register relative to ST.

When a floating-point value is loaded onto the 80x87 floating-point register stack, ST is decremented
(modulo 8), and the value is loaded into ST(0). When a floating-point value is stored and popped from the
80x87 floating-point register stack, ST is incremented (modulo 8) and ST(1) becomes ST(0). The
following illustrates the use of the 80x87 floating-point registers as a stack, assuming that the value of ST is
4 (4 values have been loaded onto the 80x87 floating-point register stack).

+----------------+

0 | 4th from top | ST(4)
+----------------+

1 | 5th from top | ST(5)
+----------------+

2 | 6th from top | ST(6)
+----------------+

3 | 7th from top | ST(7)
+----------------+

ST -> 4 | top of stack | ST(0)
+----------------+

5 | 1st from top | ST(1)
+----------------+

6 | 2nd from top | ST(2)
+----------------+

7 | 3rd from top | ST(3)
+----------------+

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers as a stack. The
initial state of the 80x87 register stack is empty before a program begins execution.

Note: For compatibility with code compiled with version 9.0 and earlier, you can compile with
the "fpr" option. In this case only four of the eight 80x87 registers are used as a stack.
These four registers were used to pass arguments. The other four registers form what was
called the 80x87 cache. The cache was used for local floating-point variables. The state of
the 80x87 registers before a program began execution was as follows.

1. The four 80x87 floating-point registers that form the stack are uninitialized.
2. The four 80x87 floating-point registers that form the 80x87 cache are initialized

with zero.

176 Auxiliary Pragmas

16-bit Pragmas

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and ST(3). ST had
the value 4 as in the above diagram. When a floating-point value was pushed on the stack
(as is the case when passing floating-point arguments), it became ST(0) and the 80x87
cache was comprised of ST(1), ST(2), ST(3) and ST(4). When the 80x87 stack was full,
ST(0), ST(1), ST(2) and ST(3) formed the stack and ST(4), ST(5), ST(6) and ST(7) formed
the 80x87 cache. Version 9.5 and later no longer use this strategy.

The rules for passing arguments are as follows.

1. If the argument is not floating-point, use the procedure described earlier in this chapter.

2. If the argument is floating-point, and a previous argument has been assigned a position on the
80x86 stack (instead of the 80x87 stack), the floating-point argument is also assigned a position
on the 80x86 stack. Otherwise proceed to the next step.

3. If the string "8087" appears in a register set in the pragma, and if the 80x87 stack is not full, the
floating-point argument is assigned floating-point register ST(0) (the top element of the 80x87
stack). The previous top element (if there was one) is now in ST(1). Since arguments are
pushed on the stack from right to left, the leftmost floating-point argument will be in ST(0).
Otherwise the floating-point argument is assigned a position on the 80x86 stack.

Consider the following example.

#pragma aux myrtn parm [8087];

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77;
j = 77;
myrtn(x, i, y, j);

}

myrtn is an assembly language function that requires four arguments. The first argument of type float (4
bytes), the second argument is of type int (2 bytes), the third argument is of type double (8 bytes) and the
fourth argument is of type long int (4 bytes). These arguments will be passed to myrtn in the following
way.

1. Since "8087" was specified in the register set, the first argument, being of type float, will be
passed in an 80x87 floating-point register.

2. The second argument will be passed on the stack since no 80x86 registers were specified in the
register set.

3. The third argument will also be passed on the stack. Remember the following rule: once an
argument is assigned a position on the stack, all remaining arguments will be assigned a position
on the stack. Note that the above rule holds even though there are some 80x87 floating-point
registers available for passing floating-point arguments.

Auxiliary Pragmas 177

16-bit Topics

4. The fourth argument will also be passed on the stack.

Let us change the auxiliary pragma in the above example as follows.

#pragma aux myrtn parm [ax 8087];

The arguments will now be passed to myrtn in the following way.

1. Since "8087" was specified in the register set, the first argument, being of type float will be
passed in an 80x87 floating-point register.

2. The second argument will be passed in register AX, exhausting the set of available 80x86
registers for argument passing.

3. The third argument, being of type double, will also be passed in an 80x87 floating-point register.

4. The fourth argument will be passed on the stack since no 80x86 registers remain in the register
set.

8.27.12.2 Using the 80x87 to Return Function Values

The following form of the auxiliary pragma can be used to describe a function that returns a floating-point
value in ST(0).

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

8.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use within a
function unless the "fpr" option is used to generate backward compatible code (older Open Watcom
compilers used four registers as a cache). The following form of the auxiliary pragma specifies that the
floating-point registers in the 80x87 cache may be modified by the specified function.

#pragma aux sym modify reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

This instructs Open Watcom C/C++ to save any local variables that are located in the 80x87 cache before
calling the specified routine.

178 Auxiliary Pragmas

32-bit Topics

32-bit Topics

180

9 32-bit Memory Models

9.1 Introduction
This chapter describes the various 32-bit memory models supported by Open Watcom C/C++. Each
memory model is distinguished by two properties; the code model used to implement function calls and the
data model used to reference data.

9.2 32-bit Code Models
There are two code models;

1. the small code model and
2. the big code model.

A small code model is one in which all calls to functions are made with near calls. In a near call, the
destination address is 32 bits and is relative to the segment value in segment register CS. Hence, in a small
code model, all code comprising your program, including library functions, must be less than 4GB.

A big code model is one in which all calls to functions are made with far calls. In a far call, the destination
address is 48 bits (a 16-bit segment value and a 32-bit offset relative to the segment value). This model
allows the size of the code comprising your program to exceed 4GB.

Note: If your program contains less than 4GB of code, you should use a memory model that employs
the small code model. This will result in smaller and faster code since near calls are smaller instructions
and are processed faster by the CPU.

9.3 32-bit Data Models
There are two data models;

1. the small data model and
2. the big data model.

A small data model is one in which all references to data are made with near pointers. Near pointers are 32
bits; all data references are made relative to the segment value in segment register DS. Hence, in a small
data model, all data comprising your program must be less than 4GB.

A big data model is one in which all references to data are made with far pointers. Far pointers are 48 bits
(a 16-bit segment value and a 32-bit offset relative to the segment value). This removes the 4GB limitation
on data size imposed by the small data model. However, when a far pointer is incremented, only the offset
is adjusted. Open Watcom C/C++ assumes that the offset portion of a far pointer will not be incremented
beyond 4GB. The compiler will assign an object to a new segment if the grouping of data in a segment will

32-bit Data Models 181

32-bit Topics

cause the object to cross a segment boundary. Implicit in this is the requirement that no individual object
exceed 4GB.

Note: If your program contains less than 4GB of data, you should use the small data model. This will
result in smaller and faster code since references using near pointers produce fewer instructions.

9.4 Summary of 32-bit Memory Models
As previously mentioned, a memory model is a combination of a code model and a data model. The
following table describes the memory models supported by Open Watcom C/C++.

Memory Code Data Default Default
Model Model Model Code Data

Pointer Pointer
-------- -------- -------- -------- --------

flat small small near near

small small small near near

medium big small far near

compact small big near far

large big big far far

9.5 Flat Memory Model
In the flat memory model, the application’s code and data must total less than 4GB in size. Segment
registers CS, DS, SS and ES point to the same linear address space (this does not imply that the segment
registers contain the same value). That is, a given offset in one segment refers to the same memory location
as that offset in another segment. Essentially, a flat model operates as if there were no segments.

9.6 Mixed 32-bit Memory Model
A mixed memory model application combines elements from the various code and data models. A mixed
memory model application might be characterized as one that uses the near, far, or huge keywords when
describing some of its functions or data objects.

For example, a medium memory model application that uses some far pointers to data can be described as a
mixed memory model. In an application such as this, most of the data is in a 4GB segment (DGROUP) and
hence can be referenced with near pointers relative to the segment value in segment register DS. This
results in more efficient code being generated and better execution times than one can expect from a big
data model. Data objects outside of the DGROUP segment are described with the far keyword.

182 Mixed 32-bit Memory Model

32-bit Memory Models

9.7 Linking Applications for the Various 32-bit Memory
Models

Each memory model requires different run-time and floating-point libraries. Each library assumes a
particular memory model and should be linked only with modules that have been compiled with the same
memory model. The following table lists the libraries that are to be used to link an application that has
been compiled for a particular memory model. Currently, only libraries for the flat/small memory model
are provided.

Memory Run-time Floating-Point Floating-Point
Model Library Library (80x87) Library (f-p calls)
---------- ---------- --------------- -------------------
flat/small CLIB3R.LIB MATH387R.LIB MATH3R.LIB

CLIB3S.LIB MATH387S.LIB MATH3S.LIB
PLIB3R.LIB CPLX73R.LIB CPLX3R.LIB
PLIB3S.LIB CPLX73S.LIB CPLX3S.LIB

The letter "R" or "S" which is affixed to the file name indicates the particular strategy with which the
modules in the library have been compiled.

R denotes a version of the Open Watcom C/C++ 32-bit libraries which have been compiled
for the "flat/small" memory models using the "3r", "4r" or "5r" option.

S denotes a version of the Open Watcom C/C++ 32-bit libraries which have been compiled
for the "flat/small" memory models using the "3s", "4s" or "5s" option.

9.8 Memory Layout
The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. all "USE16" segments. These segments are present in applications that execute in both real
mode and protected mode. They are first in the segment ordering so that the "REALBREAK"
option of the "RUNTIME" directive can be used to separate the real-mode part of the application
from the protected-mode part of the application. Currently, the "RUNTIME" directive is valid
for Phar Lap executables only.

2. all segments not belonging to group "DGROUP" with class "CODE"

3. all other segments not belonging to group "DGROUP"

4. all segments belonging to group "DGROUP" with class "BEGDATA"

5. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS" or "STACK"

6. all segments belonging to group "DGROUP" with class "BSS"

7. all segments belonging to group "DGROUP" with class "STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
data in segments belonging to group "DGROUP". Segments belonging to class "STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and

Memory Layout 183

32-bit Topics

"STACK" are last in the segment ordering so that uninitialized data need not take space in the executable
file.

In addition to these special segments, the following conventions are used by Open Watcom C/C++.

1. The "CODE" class contains the executable code for your application. In a small code model, this
consists of the segment "_TEXT". In a big code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory models (the
data threshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for a big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

184 Memory Layout

10 32-bit Assembly Language Considerations

10.1 Introduction
This chapter will deal with the following topics.

1. The data representation of the basic types supported by Open Watcom C/C++.

2. The memory layout of a Open Watcom C/C++ program.

3. The method for passing arguments and returning values.

4. The two methods for passing floating-point arguments and returning floating-point values.

One method is used when one of the Open Watcom C/C++ "fpi" or "fpi87" options is specified
for the generation of in-line 80x87 instructions. When the "fpi" option is specified, an 80x87
emulator is included from a math library if the application includes floating-point operations.
When the "fpi87" option is used exclusively, the 80x87 emulator will not be included.

The other method is used when the Open Watcom C/C++ "fpc" option is specified. In this case,
the compiler generates calls to floating-point support routines in the alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

10.2 Data Representation
This section describes the internal or machine representation of the basic types supported by Open Watcom
C/C++.

10.2.1 Type "char"
An item of type "char" occupies 1 byte of storage. Its value is in the following range.

0 <= n <= 255

Note that "char" is, by default, unsigned. The Open Watcom C/C++ compiler option "j" can be used to
change the default from unsigned to signed. If "char" is signed, an item of type "char" is in the following
range.

-128 <= n <= 127

You can force an item of type "char" to be unsigned or signed regardless of the default by defining them to
be of type "unsigned char" or "signed char" respectively.

Data Representation 185

32-bit Topics

10.2.2 Type "short int"
An item of type "short int" occupies 2 bytes of storage. Its value is in the following range.

-32768 <= n <= 32767

Note that "short int" is signed and hence "short int" and "signed short int" are equivalent. If an item of type
"short int" is to be unsigned, it must be defined as "unsigned short int". In this case, its value is in the
following range.

0 <= n <= 65535

10.2.3 Type "long int"
An item of type "long int" occupies 4 bytes of storage. Its value is in the following range.

-2147483648 <= n <= 2147483647

Note that "long int" is signed and hence "long int" and "signed long int" are equivalent. If an item of type
"long int" is to be unsigned, it must be defined as "unsigned long int". In this case, its value is in the
following range.

0 <= n <= 4294967295

10.2.4 Type "int"
An item of type "int" occupies 4 bytes of storage. Its value is in the following range.

-2147483648 <= n <= 2147483647

Note that "int" is signed and hence "int" and "signed int" are equivalent. If an item of type "int" is to be
unsigned, it must be defined as "unsigned int". In this case its value is in the following range.

0 <= n <= 4294967295

If you are generating code that executes in 32-bit mode, "long int" and "int" are equivalent, "unsigned long
int" and "unsigned int" are equivalent, and "signed long int" and "signed int" are equivalent. This may not
be the case in other environments where "int" and "short int" are 2 bytes.

10.2.5 Type "float"
A datum of type "float" is an approximate representation of a real number. Each datum of type "float"
occupies 4 bytes. If m is the magnitude of x (an item of type "float") then x can be approximated if

2-126 <= m < 2128

or in more approximate terms if

1.175494e-38 <= m <= 3.402823e38

Data of type "float" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

186 Data Representation

32-bit Assembly Language Considerations

+---+---------+---------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+---------------------+
31 30-23 22-0

Notes

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 127 (i.e., exponent value 1 represents 2-126; exponent value 127
represents 20; exponent value 254 represents 2127; etc.). The exponent field is 8 bits long.

Significand The leading bit of the significand is always 1, hence it is not stored in the significand field.
Thus the significand is always "normalized". The significand field is 23 bits long.

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then the
quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then the quantity
is a special value called a "denormal" or nonnormal number.

10.2.6 Type "double"
A datum of type "double" is an approximate representation of a real number. The precision of a datum of
type "double" is greater than or equal to one of type "float". Each datum of type "double" occupies 8 bytes.
If m is the magnitude of x (an item of type "double") then x can be approximated if

2-1022 <= m < 21024

or in more approximate terms if

2.2250738585072e-308 <= m <= 1.79769313486232e308

Data of type "double" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

+---+---------+--------------------------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+--------------------------------------+
63 62-52 51-0

Data Representation 187

32-bit Topics

Notes:

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 1023 (i.e., exponent value 1 represents 2-1022; exponent value 1023
represents 20; exponent value 2046 represents 21023; etc.). The exponent field is 11 bits
long.

Significand The leading bit of the significand is always 1, hence it is not stored in the significand field.
Thus the significand is always "normalized". The significand field is 52 bits long.

Zero A double precision zero quantity occurs when the sign bit, exponent, and significand are all
zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then the
quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then the quantity
is a special value called a "denormal" or nonnormal number.

10.3 Memory Layout
The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. all "USE16" segments. These segments are present in applications that execute in both real
mode and protected mode. They are first in the segment ordering so that the "REALBREAK"
option of the "RUNTIME" directive can be used to separate the real-mode part of the application
from the protected-mode part of the application. Currently, the "RUNTIME" directive is valid
for Phar Lap executables only.

2. all segments not belonging to group "DGROUP" with class "CODE"

3. all other segments not belonging to group "DGROUP"

4. all segments belonging to group "DGROUP" with class "BEGDATA"

5. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS" or "STACK"

6. all segments belonging to group "DGROUP" with class "BSS"

7. all segments belonging to group "DGROUP" with class "STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
data in segments belonging to group "DGROUP". Segments belonging to class "STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and
"STACK" are last in the segment ordering so that uninitialized data need not take space in the executable
file.

188 Memory Layout

32-bit Assembly Language Considerations

In addition to these special segments, the following conventions are used by Open Watcom C/C++.

1. The "CODE" class contains the executable code for your application. In a small code model, this
consists of the segment "_TEXT". In a big code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory models (the
data threshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for a big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

10.4 Calling Conventions for Non-80x87 Applications
The following sections describe the calling convention used when compiling with the "fpc" compiler
option.

10.4.1 Passing Arguments Using Register-Based Calling Conventions
How arguments are passed to a function with register-based calling conventions is determined by the size
(in bytes) of the argument and where in the argument list the argument appears. Depending on the size,
arguments are either passed in registers or on the stack. Arguments such as structures are almost always
passed on the stack since they are generally too large to fit in registers. Since arguments are processed
from left to right, the first few arguments are likely to be passed in registers (if they can fit) and, if the
argument list contains many arguments, the last few arguments are likely to be passed on the stack.

The registers used to pass arguments to a function are EAX, EBX, ECX and EDX. The following
algorithm describes how arguments are passed to functions.

Initially, we have the following registers available for passing arguments: EAX, EDX, EBX and ECX.
Note that registers are selected from this list in the order they appear. That is, the first register selected is
EAX and the last is ECX. For each argument Ai, starting with the left most argument, perform the
following steps.

1. If the size of Ai is 1 byte or 2 bytes, convert it to 4 bytes and proceed to the next step. If Ai is of
type "unsigned char" or "unsigned short int", it is converted to an "unsigned int". If Ai is of type
"signed char" or "signed short int", it is converted to a "signed int". If Ai is a 1-byte or 2-byte
structure, the padding is determined by the compiler.

Calling Conventions for Non-80x87 Applications 189

32-bit Topics

2. If an argument has already been assigned a position on the stack, Ai will also be assigned a
position on the stack. Otherwise, proceed to the next step.

3. If the size of Ai is 4 bytes, select a register from the list of available registers. If a register is
available, Ai is assigned that register. The register is then removed from the list of available
registers. If no registers are available, Ai will be assigned a position on the stack.

4. If the type of Ai is "far pointer", select a register pair from the following list of combinations:
[EDX EAX] or [ECX EBX]. The first available register pair is assigned to Ai and removed from
the list of available pairs. The segment value will actually be passed in register DX or CX and
the offset in register EAX or EBX. If none of the above register pairs is available, Ai will be
assigned a position on the stack. Note that 8 bytes will be pushed on the stack even though the
size of an item of type "far pointer" is 6 bytes.

5. If the type of Ai is "double" or "float" (in the absence of a function prototype), select a register
pair from the following list of combinations: [EDX EAX] or [ECX EBX]. The first available
register pair is assigned to Ai and removed from the list of available pairs. The high-order 32
bits of the argument are assigned to the first register in the pair; the low-order 32 bits are
assigned to the second register in the pair. If none of the above register pairs is available, Ai will
be assigned a position on the stack.

6. All other arguments will be assigned a position on the stack.

Notes:

1. Arguments that are assigned a position on the stack are padded to a multiple of 4 bytes. That is,
if a 3-byte structure is assigned a position on the stack, 4 bytes will be pushed on the stack.

2. Arguments that are assigned a position on the stack are pushed onto the stack starting with the
rightmost argument.

10.4.2 Sizes of Predefined Types
The following table lists the predefined types, their size as returned by the "sizeof" function, the size of an
argument of that type and the registers used to pass that argument if it was the only argument in the
argument list.

Basic Type "sizeof" Argument Registers
Size Used

char 1 4 [EAX]
short int 2 4 [EAX]
int 4 4 [EAX]
long int 4 4 [EAX]
float 4 8 [EDX EAX]
double 8 8 [EDX EAX]
near pointer 4 4 [EAX]
far pointer 6 8 [EDX EAX]

Note that the size of the argument listed in the table assumes that no function prototypes are specified.
Function prototypes affect the way arguments are passed. This will be discussed in the section entitled
"Effect of Function Prototypes on Arguments".

190 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

Notes:

1. Provided no function prototypes exist, an argument will be converted to a default type as
described in the following table.

Argument Type Passed As

char unsigned int
signed char signed int
unsigned char unsigned int
short unsigned int
signed short signed int
unsigned short unsigned int
float double

10.4.3 Size of Enumerated Types
The integral type of an enumerated type is determined by the values of the enumeration constants. In strict
ISO/ANSI C mode, all enumerated constants are of type int. In the extensions mode, the compiler will
use the smallest integral type possible (excluding long ints) that can represent all values of the enumerated
type. For instance, if the minimum and maximum values of the enumeration constants are in the range
−128 and 127, the enumerated type will be equivalent to a signed char (size = 1 byte). All references
to enumerated constants in the previous instance will have type signed char. An enumerated constant
is always promoted to an int when passed as an argument.

10.4.4 Effect of Function Prototypes on Arguments
Function prototypes define the types of the formal parameters of a function. Their appearance affects the
way in which arguments are passed. An argument will be converted to the type of the corresponding
formal parameter in the function prototype. Consider the following example.

void prototype(float x, int i);

void main()
{

float x;
int i;

x = 3.14;
i = 314;
prototype(x, i);
rtn(x, i);

}

The function prototype for prototype specifies that the first argument is to be passed as a "float" and the
second argument is to be passed as an "int". This results in the first argument being passed in register EAX
and the second argument being passed in register EDX.

If no function prototype is given, as is the case for the function rtn, the first argument will be passed as a
"double" and the second argument would be passed as an "int". This results in the first argument being
passed in registers EDX and EAX and the second argument being passed in register EBX.

Calling Conventions for Non-80x87 Applications 191

32-bit Topics

Note that even though both prototype and rtn were called with identical argument lists, the way in
which the arguments were passed was completely different simply because a function prototype for
prototype was specified. Function prototyping is an excellent way to guarantee that arguments will be
passed as expected to your assembly language function.

10.4.5 Interfacing to Assembly Language Functions
Consider the following example.

Example:
void main()
{

double x;
int i;
double y;

x = 7;
i = 77;
y = 777;
myrtn(x, i, y);

}

myrtn is an assembly language function that requires three arguments. The first argument is of type
"double", the second argument is of type "int" and the third argument is again of type "double". Using the
rules for register-based calling conventions, these arguments will be passed to myrtn in the following
way:

1. The first argument will be passed in registers EDX and EAX leaving EBX and ECX as available
registers for other arguments.

2. The second argument will be passed in register EBX leaving ECX as an available register for
other arguments.

3. The third argument will not fit in register ECX (its size is 8 bytes) and hence will be pushed on
the stack.

Let us look at the stack upon entry to myrtn.

Small Code Model
Offset

+----------------+
0 | return address | <- ESP points here

+----------------+
4 | argument #3 |

| |
+----------------+

12 | |

192 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

Big Code Model
Offset

+----------------+
0 | return address | <- ESP points here

| |
+----------------+

8 | argument #3 |
| |
+----------------+

16 | |

Notes:

1. The return address is the top element on the stack. In a small code model, the return address is 1
double word (32 bits); in a big code model, the return address is 2 double words (64 bits).

Register EBP is normally used to address arguments on the stack. Upon entry to the function, register EBP
is set to point to the stack but before doing so we must save its contents. The following two instructions
achieve this.

push EBP ; save current value of EBP
mov EBP,ESP ; get access to arguments

After executing these instructions, the stack looks like this.

Small Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

+----------------+
8 | argument #3 |

| |
+----------------+

16 | |

Big Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

| |
+----------------+

12 | argument #3 |
| |
+----------------+

20 | |

As the above diagrams show, the third argument is at offset 8 from register EBP in a small code model and
offset 12 in a big code model.

Upon exit from myrtn, we must restore the value of EBP. The following two instructions achieve this.

Calling Conventions for Non-80x87 Applications 193

32-bit Topics

mov ESP,EBP ; restore stack pointer
pop EBP ; restore EBP

The following is a sample assembly language function which implements myrtn.

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segment byte public ’CODE’

assume CS:_TEXT
assume DS:DGROUP
public myrtn_

myrtn_ proc near
push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret 8 ; return and pop last arg

myrtn_ endp
_TEXT ends

Large Memory Model (big code, big data)
DGROUP group _DATA, _BSS
MYRTN_TEXT segment byte public ’CODE’

assume CS:MYRTN_TEXT
public myrtn_

myrtn_ proc far
push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret 8 ; return and pop last arg

myrtn_ endp
MYRTN_TEXT ends

Notes:

1. Global function names must be followed with an underscore. Global variable names must be
preceded with an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and AX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option.

3. The direction flag must be clear before returning to the caller.

4. In a small code model, any segment containing executable code must belong to the segment
"_TEXT" and the class "CODE". The segment "_TEXT" must have a "combine" type of
"PUBLIC". On entry, CS contains the segment address of the segment "_TEXT". In a big code
model there is no restriction on the naming of segments which contain executable code.

194 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

5. In a small data model, segment register DS contains the segment address of the group
"DGROUP". This is not the case in a big data model.

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declare them as "far".

7. In general, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. If any of the arguments was pushed onto the stack, the called routine must pop those arguments
off the stack in the "ret" instruction.

10.4.6 Using Stack-Based Calling Conventions
Let us now consider the example in the previous section except this time we will use the stack-based calling
convention. The most significant difference between the stack-based calling convention and the
register-based calling convention is the way the arguments are passed. When using the stack-based calling
conventions, no registers are used to pass arguments. Instead, all arguments are passed on the stack.

Let us look at the stack upon entry to myrtn.

Small Code Model
Offset

+----------------+
0 | return address | <- ESP points here

+----------------+
4 | argument #1 |

| |
+----------------+

12 | argument #2 |
| |
+----------------+

16 | argument #3 |
| |
+----------------+

24 | |

Big Code Model
Offset

+----------------+
0 | return address | <- ESP points here

| |
+----------------+

8 | argument #1 |
| |
+----------------+

16 | argument #2 |
| |
+----------------+

20 | argument #3 |
| |
+----------------+

28 | |

Calling Conventions for Non-80x87 Applications 195

32-bit Topics

Notes:

1. The return address is the top element on the stack. In a small code model, the return address is 1
double word (32 bits); in a big code model, the return address is 2 double words (64 bits).

Register EBP is normally used to address arguments on the stack. Upon entry to the function, register EBP
is set to point to the stack but before doing so we must save its contents. The following two instructions
achieve this.

push EBP ; save current value of EBP
mov EBP,ESP ; get access to arguments

After executing these instructions, the stack looks like this.

Small Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

+----------------+
8 | argument #1 |

| |
+----------------+

16 | argument #2 |
| |
+----------------+

20 | argument #3 |
| |
+----------------+

28 | |

Big Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

| |
+----------------+

12 | argument #1 |
| |
+----------------+

20 | argument #2 |
| |
+----------------+

24 | argument #3 |
| |
+----------------+

32 | |

As the above diagrams show, the argument are all on the stack and are referenced by specifying an offset
from register EBP.

Upon exit from myrtn, we must restore the value of EBP. The following two instructions achieve this.

196 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

mov ESP,EBP ; restore stack pointer
pop EBP ; restore EBP

The following is a sample assembly language function which implements myrtn.

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segment byte public ’CODE’

assume CS:_TEXT
assume DS:DGROUP
public myrtn

myrtn proc near
push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret
; return

myrtn endp
_TEXT ends

Large Memory Model (big code, big data)
DGROUP group _DATA, _BSS
MYRTN_TEXT segment byte public ’CODE’

assume CS:MYRTN_TEXT
public myrtn

myrtn proc far
push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret
; return

myrtn endp
MYRTN_TEXT ends

Notes:

1. Global function names must not be followed with an underscore as was the case with the
register-based calling convention. Global variable names must not be preceded with an
underscore as was the case with the register-based calling convention.

2. All used 80x86 registers except registers EAX, ECX and EDX must be saved on entry and
restored on exit. Segment registers DS and ES must also be saved on entry and restored on exit.
Segment register ES does not have to be saved and restored when using a memory model that is
not a small data model. Note that segment registers only have to be saved and restored if you are
compiling your application with the "r" option.

3. The direction flag must be clear before returning to the caller.

Calling Conventions for Non-80x87 Applications 197

32-bit Topics

4. In a small code model, any segment containing executable code must belong to the segment
"_TEXT" and the class "CODE". The segment "_TEXT" must have a "combine" type of
"PUBLIC". On entry, CS contains the segment address of the segment "_TEXT". In a big code
model there is no restriction on the naming of segments which contain executable code.

5. In a small data model, segment register DS contains the segment address of the group
"DGROUP". This is not the case in a big data model.

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declare them as "far".

7. In general, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. The caller is responsible for removing arguments from the stack.

10.4.7 Functions with Variable Number of Arguments
A function prototype with a parameter list that ends with ",..." has a variable number of arguments. In this
case, all arguments are passed on the stack. Since no prototyping information exists for arguments
represented by ",...", those arguments are passed as described in the section "Passing Arguments".

10.4.8 Returning Values from Functions
The way in which function values are returned depends on the size of the return value. The following
examples describe how function values are to be returned. They are coded for a small code model.

1. 1-byte values are to be returned in register AL.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret1_

Ret1_ proc near ; char Ret1()
mov AL,’G’
ret

Ret1_ endp
_TEXT ends

end

2. 2-byte values are to be returned in register AX.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret2_

Ret2_ proc near ; short int Ret2()
mov AX,77
ret

Ret2_ endp
_TEXT ends

end

198 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

3. 4-byte values are to be returned in register EAX.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret4_

Ret4_ proc near ; int Ret4()
mov EAX,7777777
ret

Ret4_ endp
_TEXT ends

end

4. 8-byte values, except structures, are to be returned in registers EDX and EAX. When using the
"fpc" (floating-point calls) option, "float" and "double" are returned in registers. See section
"Returning Values in 80x87-based Applications" when using the "fpi" or "fpi87" options.

Example:
.8087

_TEXT segment byte public ’CODE’
assume CS:_TEXT
public Ret8_

Ret8_ proc near ; double Ret8()
mov EDX,dword ptr CS:Val8+4
mov EAX,dword ptr CS:Val8
ret

Val8: dq 7.7
Ret8_ endp
_TEXT ends

end

The ".8087" pseudo-op must be specified so that all floating-point constants are generated in
8087 format.

5. Otherwise, the caller allocates space on the stack for the return value and sets register ESI to
point to this area. In a big data model, register ESI contains an offset relative to the segment
value in segment register SS.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public RetX_

;
; struct int_values {
; int value1, value2, value3, value4, value5;
; };
;
RetX_ proc near ; struct int_values RetX()

mov dword ptr SS:0[ESI],71
mov dword ptr SS:4[ESI],72
mov dword ptr SS:8[ESI],73
mov dword ptr SS:12[ESI],74
mov dword ptr SS:16[ESI],75
ret

RetX_ endp
_TEXT ends

end

Calling Conventions for Non-80x87 Applications 199

32-bit Topics

When returning values on the stack, remember to use a segment override to the stack segment
(SS).

The following is an example of a Open Watcom C/C++ program calling the above assembly language
subprograms.

#include <stdio.h>

struct int_values {
int value1;
int value2;
int value3;
int value4;
int value5;

};

extern char Ret1(void);
extern short int Ret2(void);
extern long int Ret4(void);
extern double Ret8(void);
extern struct int_values RetX(void);

void main()
{

struct int_values x;

printf("Ret1 = %c\n", Ret1());
printf("Ret2 = %d\n", Ret2());
printf("Ret4 = %ld\n", Ret4());
printf("Ret8 = %f\n", Ret8());
x = RetX();
printf("RetX1 = %d\n", x.value1);
printf("RetX2 = %d\n", x.value2);
printf("RetX3 = %d\n", x.value3);
printf("RetX4 = %d\n", x.value4);
printf("RetX5 = %d\n", x.value5);

}

The above function should be compiled for a small code model (use the "mf", "ms" or "mc" compiler
option).

Note: Returning values from functions in the stack-based calling convention is the same as returning
values from functions in the register-based calling convention when using the "fpc" option.

10.5 Calling Conventions for 80x87-based Applications
When a source file is compiled by Open Watcom C/C++ with one of the "fpi" or "fpi87" options, all
floating-point arguments are passed on the 80x86 stack. The rules for passing arguments are as follows.

1. If the argument is not floating-point, use the procedure described earlier in this chapter.

2. If the argument is floating-point, it is assigned a position on the 80x86 stack.

200 Calling Conventions for 80x87-based Applications

32-bit Assembly Language Considerations

Note: When compiling using the "fpi" or "fpi87" options, the method used for passing floating-point
arguments in the stack-based calling convention is identical to the method used in the register-based
calling convention. However, when compiling using the "fpi" or "fpi87" options, the method used for
returning floating-point values in the stack-based calling convention is different from the method used
in the register-based calling convention. The register-based calling convention returns floating-point
values in ST(0), whereas the stack-based calling convention returns floating-point values in EDX and
EAX.

10.5.1 Passing Values in 80x87-based Applications
Consider the following example.

Example:
extern void myrtn(int,float,double,long int);

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77
j = 77;
myrtn(i, x, y, j);

}

myrtn is an assembly language function that requires four arguments. The first argument is of type "int" (
4 bytes), the second argument is of type "float" (4 bytes), the third argument is of type "double" (8 bytes)
and the fourth argument is of type "long int" (4 bytes).

When using the stack-based calling conventions, all of the arguments will be passed on the stack. When
using the register-based calling conventions, the above arguments will be passed to myrtn in the following
way:

1. The first argument will be passed in register EAX leaving EBX, ECX and EDX as available
registers for other arguments.

2. The second argument will be passed on the 80x86 stack since it is a floating-point argument.

3. The third argument will also be passed on the 80x86 stack since it is a floating-point argument.

4. The fourth argument will be passed on the 80x86 stack since a previous argument has been
assigned a position on the 80x86 stack.

Remember, arguments are pushed on the stack from right to left. That is, the rightmost argument is pushed
first.

Any assembly language function must obey the following rule.

Calling Conventions for 80x87-based Applications 201

32-bit Topics

1. All arguments passed on the stack must be removed by the called function.

The following is a sample assembly language function which implements myrtn.

Example:
.8087

_TEXT segment byte public ’CODE’
assume CS:_TEXT
public myrtn_

myrtn_ proc near
;
; body of function
;

ret 16 ; return and pop arguments
myrtn_ endp
_TEXT ends

end

Notes:

1. Function names must be followed by an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and EAX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option. In this example, EAX does not have to be saved as it was used to pass the first argument.
Floating-point registers can be modified without saving their contents.

3. The direction flag must be clear before returning to the caller.

4. This function has been written for a small code model. Any segment containing executable code
must belong to the class "CODE" and the segment "_TEXT". On entry, CS contains the segment
address of the segment "_TEXT". The above restrictions do not apply in a big code memory
model.

5. When writing assembly language functions for a small code model, you must declare them as
"near". If you wish to write assembly language functions for a big code model, you must declare
them as "far".

10.5.2 Returning Values in 80x87-based Applications
When using the stack-based calling conventions with "fpi" or "fpi87", floating-point values are returned in
registers. Single precision values are returned in EAX, and double precision values are returned in
EDX:EAX.

When using the register-based calling conventions with "fpi" or "fpi87", floating-point values are returned
in ST(0). All other values are returned in the manner described earlier in this chapter.

202 Calling Conventions for 80x87-based Applications

11 32-bit Pragmas

11.1 Introduction
A pragma is a compiler directive that provides the following capabilities.

• Pragmas allow you to specify certain compiler options.

• Pragmas can be used to direct the Open Watcom C/C++ code generator to emit specialized
sequences of code for calling functions which use argument passing and value return techniques that
differ from the default used by Open Watcom C/C++.

• Pragmas can be used to describe attributes of functions (such as side effects) that are not possible at
the C/C++ language level. The code generator can use this information to generate more efficient
code.

• Any sequence of in-line machine language instructions, including DOS and BIOS function calls, can
be generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is used to
describe the syntax of pragmas.

keywords A keyword is shown in a mono-spaced courier font.

program-item A program-item is shown in a roman bold-italics font. A program-item is a symbol name
or numeric value supplied by the programmer.

punctuation A punctuation character shown in a mono-spaced courier font must be entered as
is.

A punctuation character shown in a roman bold-italics font is used to describe syntax.
The following syntactical notation is used.

[abc] The item abc is optional.

{abc} The item abc may be repeated zero or more times.

a|b|c One of a, b or c may be specified.

a ::= b The item a is defined in terms of b.

(a) Item a is evaluated first.

The following classes of pragmas are supported.

Introduction 203

32-bit Topics

• pragmas that specify options

• pragmas that specify default libraries

• pragmas that describe the way structures are stored in memory

• pragmas that provide auxiliary information used for code generation

11.2 Using Pragmas to Specify Options
Currently, the following options can be specified with pragmas:

unreferenced The "unreferenced" option controls the way Open Watcom C/C++ handles unused symbols.
For example,

#pragma on (unreferenced);

will cause Open Watcom C/C++ to issue warning messages for all unused symbols. This is
the default. Specifying

#pragma off (unreferenced);

will cause Open Watcom C/C++ to ignore unused symbols. Note that if the warning level
is not high enough, warning messages for unused symbols will not be issued even if
"unreferenced" was specified.

check_stack The "check_stack" option controls the way stack overflows are to be handled. For
example,

#pragma on (check_stack);

will cause stack overflows to be detected and

#pragma off (check_stack);

will cause stack overflows to be ignored. When "check_stack" is on, Open Watcom C/C++
will generate a run-time call to a stack-checking routine at the start of every routine
compiled. This run-time routine will issue an error if a stack overflow occurs when
invoking the routine. The default is to check for stack overflows. Stack overflow checking
is particularly useful when functions are invoked recursively. Note that if the stack
overflows and stack checking has been suppressed, unpredictable results can occur.

If a stack overflow does occur during execution and you are sure that your program is not
in error (i.e. it is not unnecessarily recursing), you must increase the stack size. This is
done by linking your application again and specifying the "STACK" option to the Open
Watcom Linker with a larger stack size.

It is also possible to specify more than one option in a pragma as illustrated by the
following example.

#pragma on (check_stack unreferenced);

204 Using Pragmas to Specify Options

32-bit Pragmas

reuse_duplicate_strings (C only) (C Only) The "reuse_duplicate_strings" option controls the way Open
Watcom C handles identical strings in an expression. For example,

#pragma on (reuse_duplicate_strings);

will cause Open Watcom C to reuse identical strings in an expression. This is the default.
Specifying

#pragma off (reuse_duplicate_strings);

will cause Open Watcom C to generate additional copies of the identical string. The
following example shows where this may be of importance to the way the application
behaves.

Example:
#include <stdio.h>

#pragma off (reuse_duplicate_strings)

void poke(char *, char *);

void main()
{

poke("Hello world\n", "Hello world\n");
}

void poke(char *x, char *y)
{

x[3] = ’X’;
printf(x);
y[4] = ’Y’;
printf(y);

}
/*
Default output:
HelXo world
HelXY world
*/

11.3 Using Pragmas to Specify Default Libraries
Default libraries are specified in special object module records. Library names are extracted from these
special records by the Open Watcom Linker. When unresolved references remain after processing all
object modules specified in linker "FILE" directives, these default libraries are searched after all libraries
specified in linker "LIBRARY" directives have been searched.

By default, that is if no library pragma is specified, the Open Watcom C/C++ compiler generates, in the
object file defining the main program, default libraries corresponding to the memory model and
floating-point model used to compile the file. For example, if you have compiled the source file containing
the main program for the flat memory model and the floating-point calls floating-point model, the libraries
"clib3r" and "math3r" will be placed in the object file.

If you wish to add your own default libraries to this list, you can do so with a library pragma. Consider the
following example.

Using Pragmas to Specify Default Libraries 205

32-bit Topics

#pragma library (mylib);

The name "mylib" will be added to the list of default libraries specified in the object file.

If the library specification contains characters such as ’\’, ’:’ or ’,’ (i.e., any character not allowed in a C
identifier), you must enclose it in double quotes as in the following example.

#pragma library ("\watcom\lib286\dos\graph.lib");
#pragma library ("\watcom\lib386\dos\graph.lib");

If you wish to specify more than one library in a library pragma you must separate them with spaces as in
the following example.

#pragma library (mylib "\watcom\lib286\dos\graph.lib");
#pragma library (mylib "\watcom\lib386\dos\graph.lib");

11.4 The ALIAS Pragma (C Only)
The "alias" pragma can be used to emit alias records in the object file, causing the linker to substitute
references to a specified symbol with references to another symbol. Either identifiers or names (strings)
may be used. Strings are used verbatim, while names corresponding to identifiers are derived as
appropriate for the kind and calling convention of the symbol. The following describes the form of the
"alias" pragma.

#pragma alias (alias, subst) [;]

where description:

alias is either a name or an identifier of the symbol to be aliased.

subst is either a name or an identifier of the symbol that references to alias will be replaced
with.

Consider the following example.

extern int var;

void fn(void)
{

var = 3;
}

#pragma alias (var, "other_var");

Instead of var the linker will reference symbol named "other_var". Symbol var need not be defined,
although "other_var" has to be.

206 The ALIAS Pragma (C Only)

32-bit Pragmas

11.5 The ALLOC_TEXT Pragma (C Only)
The "alloc_text" pragma can be used to specify the name of the text segment into which the generated code
for a function, or a list of functions, is to be placed. The following describes the form of the "alloc_text"
pragma.

#pragma alloc_text (seg_name, fn {, fn}) [;]

where description:

seg_name is the name of the text segment.

fn is the name of a function.

Consider the following example.

extern int fn1(int);
extern int fn2(void);
#pragma alloc_text (my_text, fn1, fn2);

The code for the functions fn1 and fn2 will be placed in the segment my_text. Note: function
prototypes for the named functions must exist prior to the "alloc_text" pragma.

11.6 The CODE_SEG Pragma
The "code_seg" pragma can be used to specify the name of the text segment into which the generated code
for functions is to be placed. The following describes the form of the "code_seg" pragma.

#pragma code_seg (seg_name [, class_name]) [;]

where description:

seg_name is the name of the text segment optionally enclosed in quotes. Also, seg_name may be a
macro as in:

#define seg_name "MY_CODE_SEG"
#pragma code_seg (seg_name);

class_name is the optional class name of the text segment and may be enclosed in quotes. Please note
that in order to be recognized by the linker as code, a class name has to end in "CODE".
Also, class_name may be a macro as in:

#define class_name "MY_CODE"
#pragma code_seg ("MY_CODE_SEG", class_name);

Consider the following example.

The CODE_SEG Pragma 207

32-bit Topics

#pragma code_seg (my_text);

int incr(int i)
{

return(i + 1);
}

int decr(int i)
{

return(i - 1);
}

The code for the functions incr and decr will be placed in the segment my_text.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma code_seg ();

11.7 The COMMENT Pragma
The "comment" pragma can be used to place a comment record in an object file or executable file. The
following describes the form of the "comment" pragma.

#pragma comment (comment_type [, "comment_string"]) [;]

where description:

comment_type specifies the type of comment record. The allowable comment types are:

lib Default libraries are specified in special object module records. Library
names are extracted from these special records by the Open Watcom
Linker. When unresolved references remain after processing all object
modules specified in linker "FILE" directives, these default libraries are
searched after all libraries specified in linker "LIBRARY" directives have
been searched.

The "lib" form of this pragma offers the same features as the "library"
pragma. See the section entitled "Using Pragmas to Specify Default
Libraries" on page 205 for more information.

"comment_string" is an optional string literal that provides additional information for some comment
types.

Consider the following example.

#pragma comment (lib, "mylib");

208 The COMMENT Pragma

32-bit Pragmas

11.8 The DATA_SEG Pragma
The "data_seg" pragma can be used to specify the name of the segment into which data is to be placed. The
following describes the form of the "data_seg" pragma.

#pragma data_seg (seg_name [, class_name]) [;]

where description:

seg_name is the name of the data segment and may be enclosed in quotes. Also, seg_name may be
a macro as in:

#define seg_name "MY_DATA_SEG"
#pragma data_seg (seg_name);

class_name is the optional class name of the data segment and may be enclosed in quotes. Also,
class_name may be a macro as in:

#define class_name "MY_CLASS"
#pragma data_seg ("MY_DATA_SEG", class_name);

Consider the following example.

#pragma data_seg (my_data);

static int i;
static int j;

The data for i and j will be placed in the segment my_data.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma data_seg ();

11.9 The DISABLE_MESSAGE Pragma (C Only)
The "disable_message" pragma disables the issuance of specified diagnostic messages. The form of the
"disable_message" pragma is as follows.

#pragma disable_message (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages" on page 301. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

The DISABLE_MESSAGE Pragma (C Only) 209

32-bit Topics

See also the description of "The ENABLE_MESSAGE Pragma (C Only)".

11.10 The DUMP_OBJECT_MODEL Pragma (C++ Only)
The "dump_object_model" pragma causes the C++ compiler to print information about the object model for
an indicated class or an enumeration name to the diagnostics file. For class names, this information
includes the offsets and sizes of fields within the class and within base classes. For enumeration names,
this information consists of a list of all the enumeration constants with their values.

The general form of the "dump_object_model" pragma is as follows.

#pragma dump_object_model class [;]
#pragma dump_object_model enumeration [;]
class ::= a defined C++ class free of errors
enumeration ::= a defined C++ enumeration name

This pragma is designed to be used for information purposes only.

11.11 The ENABLE_MESSAGE Pragma (C Only)
The "enable_message" pragma re-enables the issuance of specified diagnostic messages that have been
previously disabled. The form of the "enable_message" pragma is as follows.

#pragma enable_message (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages" on page 301. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

See also the description of "The DISABLE_MESSAGE Pragma (C Only)" on page 209.

11.12 The ENUM Pragma
The "enum" pragma affects the underlying storage-definition for subsequent enum declarations. The forms
of the "enum" pragma are as follows.

#pragma enum int [;]
#pragma enum minimum [;]
#pragma enum original [;]
#pragma enum pop [;]

210 The ENUM Pragma

32-bit Pragmas

where description:

int Make int the underlying storage definition (same as the "ei" compiler option).

minimum Minimize the underlying storage definition (same as not specifying the "ei" compiler
option).

original Reset back to the original compiler option setting (i.e., what was or was not specified on the
command line).

pop Restore the previous setting.

The first three forms all push the previous setting before establishing the new setting.

11.13 The ERROR Pragma
The "error" pragma can be used to issue an error message with the specified text. The following describes
the form of the "error" pragma.

#pragma error "error text" [;]

where description:

"error text" is the text of the message that you wish to display.

You should use the ISO #error directive rather than this pragma. This pragma is provided for compatibility
with legacy code. The following is an example.

#if defined(__386__)

...
#elseif defined(__86__)

...
#else
#pragma error ("neither __386__ or __86__ defined");
#endif

11.14 The EXTREF Pragma
The "extref" pragma is used to generate a reference to an external function or data item. The form of the
"extref" pragma is as follows.

#pragma extref name [;]

The EXTREF Pragma 211

32-bit Topics

where description:

name is the name of an external function or data item. It must be declared to be an external
function or data item before the pragma is encountered. In C++, when name is a function,
it must not be overloaded.

This pragma causes an external reference for the function or data item to be emitted into the object file even
if that function or data item is not referenced in the module. The external reference will cause the linker to
include the module containing that name in the linked program or DLL.

This is useful for debugging since you can cause debugging routines (callable from within debugger) to be
included into a program or DLL to be debugged.

In C++, you can also force constructors and/or destructors to be called for a data item without necessarily
referencing the data item anywhere in your code.

11.15 The FUNCTION Pragma
Certain functions, such as those listed in the description of the "oi" and "om" options, have intrinsic forms.
These functions are special functions that are recognized by the compiler and processed in a special way.
For example, the compiler may choose to generate in-line code for the function. The intrinsic attribute for
these special functions is set by specifying the "oi" or "om" option or using an "intrinsic" pragma. The
"function" pragma can be used to remove the intrinsic attribute for a specified list of functions.

The following describes the form of the "function" pragma.

#pragma function (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled using the "om" option so that when one of the special
math functions is referenced, the intrinsic form will be used. In our example, we have referenced the
function sin which does have an intrinsic form. By specifying sin in a "function" pragma, the intrinsic
attribute will be removed, causing the function sin to be treated as a regular user-defined function.

#include <math.h>
#pragma function(sin);

double test(double x)
{

return(sin(x));
}

212 The FUNCTION Pragma

32-bit Pragmas

11.16 The INCLUDE_ALIAS Pragma
In certain situations, it can be advantageous to remap the names of include files. Most commonly this
occurs on systems that do not support long file names when building source code that references header
files with long names.

The form of the "include_alias" pragma follows.

#pragma include_alias ("alias_name", "real_name") [;]
#pragma include_alias (<alias_name>, <real_name>) [;]

where description:

alias_name is the name referenced in include directives in source code.

real_name is the translated name that the compiler will reference instead.

The following is an example.

#pragma include_alias("LongFileName.h", "lfn.h")
#include "LongFileName.h"

In the example, the compiler will attempt to read lfn.h when LongFileName.h was included.

Note that only simple textual substitution is performed. The aliased name must match exactly, including
double quotes or angle brackets, as well as any directory separators. Also, double quotes and angle
brackets may not be mixed a single pragma.

The value of the predefined __FILE__ symbol, as well as the filename reported in error messages, will be
the true filename after substitution was performed.

11.17 Setting Priority of Static Data Initialization (C++ Only)
The "initialize" pragma sets the priority for initialization of static data in the file. This priority only applies
to initialization of static data that requires the execution of code. For example, the initialization of a class
that contains a constructor requires the execution of the constructor. Note that if the sequence in which
initialization of static data in your program takes place has no dependencies, the "initialize" pragma need
not be used.

The general form of the "initialize" pragma is as follows.

#pragma initialize [before | after] priority [;]

priority ::= n | library | program

Setting Priority of Static Data Initialization (C++ Only) 213

32-bit Topics

where description:

n is a number representing the priority and must be in the range 0-255. The larger the
priority, the later the point at which initialization will occur.

Priorities in the range 0-20 are reserved for the C++ compiler. This is to ensure that proper initialization of
the C++ run-time system takes place before the execution of your program. The "library" keyword
represents a priority of 32 and can be used for class libraries that require initialization before the program is
initialized. The "program" keyword represents a priority of 64 and is the default priority for any compiled
code. Specifying "before" adjusts the priority by subtracting one. Specifying "after" adjusts the priority by
adding one.

A source file containing the following "initialize" pragma specifies that the initialization of static data in the
file will take place before initialization of all other static data in the program since a priority of 63 will be
assigned.

Example:
#pragma initialize before program

If we specify "after" instead of "before", the initialization of the static data in the file will occur after
initialization of all other static data in the program since a priority of 65 will be assigned.

Note that the following is equivalent to the "before" example

Example:
#pragma initialize 63

and the following is equivalent to the "after" example.

Example:
#pragma initialize 65

The use of the "before", "after", and "program" keywords are more descriptive in the intent of the pragmas.

It is recommended that a priority of 32 (the priority used when the "library" keyword is specified) be used
when developing class libraries. This will ensure that initialization of static data defined by the class
library will take place before initialization of static data defined by the program. The following "initialize"
pragma can be used to achieve this.

Example:
#pragma initialize library

11.18 The INLINE_DEPTH Pragma (C++ Only)
When an in-line function is called, the function call may be replaced by the in-line expansion for that
function. This in-line expansion may include calls to other in-line functions which can also be expanded.
The "inline_depth" pragma can be used to set the number of times this expansion of in-line functions will
occur for a call.

The form of the "inline_depth" pragma is as follows.

214 The INLINE_DEPTH Pragma (C++ Only)

32-bit Pragmas

#pragma inline_depth [(] n [)] [;]

where description:

n is the depth of expansion. If n is 0, no expansion will occur. If n is 1, only the original call
is expanded. If n is 2, the original call and the in-line functions invoked by the original
function will be expanded. The default value for n is 3. The maximum value for n is 255.
Note that no expansion of recursive in-line functions occur unless enabled using the
"inline_recursion" pragma.

11.19 The INLINE_RECURSION Pragma (C++ Only)
The "inline_recursion" pragma controls the recursive expansion of inline functions. The form of the
"inline_recursion" pragma is as follows.

#pragma inline_recursion [(] on | off [)] [;]

Specifying "on" will enable expansion of recursive inline functions. The depth of expansion is specified by
the "inline_depth" pragma. The default depth is 3. Specifying "off" suppresses expansion of recursive
inline functions. This is the default.

11.20 The INTRINSIC Pragma
Certain functions, those listed in the description of the "oi" option, have intrinsic forms. These functions
are special functions that are recognized by the compiler and processed in a special way. For example, the
compiler may choose to generate in-line code for the function. The intrinsic attribute for these special
functions is set by specifying the "oi" option or using an "intrinsic" pragma.

The following describes the form of the "intrinsic" pragma.

#pragma intrinsic (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled without using the "oi" option so that no function had the
intrinsic attribute. If we wanted the intrinsic form of the sin function to be used, we could specify the
function in an "intrinsic" pragma.

The INTRINSIC Pragma 215

32-bit Topics

#include <math.h>
#pragma intrinsic(sin);

double test(double x)
{

return(sin(x));
}

11.21 The MESSAGE Pragma
The "message" pragma can be used to issue a message with the specified text to the standard output without
terminating compilation. The following describes the form of the "message" pragma.

#pragma message ("message text") [;]

where description:

"message text" is the text of the message that you wish to display.

The following is an example.

#if defined(__386__)

...
#else
#pragma message ("assuming 16-bit compile");
#endif

11.22 The ONCE Pragma
The "once" pragma can be used to indicate that the file which contains this pragma should only be opened
and processed "once". The following describes the form of the "once" pragma.

#pragma once [;]

Assume that the file "foo.h" contains the following text.

Example:
#ifndef _FOO_H_INCLUDED
#define _FOO_H_INCLUDED
#pragma once

.

.

.
#endif

The first time that the compiler processes "foo.h" and encounters the "once" pragma, it records the file’s
name. Subsequently, whenever the compiler encounters a #include statement that refers to "foo.h", it

216 The ONCE Pragma

32-bit Pragmas

will not open the include file again. This can help speed up processing of #include files and reduce the
time required to compile an application.

11.23 The PACK Pragma
The "pack" pragma can be used to control the way in which structures are stored in memory. There are 4
forms of the "pack" pragma.

The following form of the "pack" pragma can be used to change the alignment of structures and their fields
in memory.

#pragma pack (n) [;]

where description:

n is 1, 2, 4, 8 or 16 and specifies the method of alignment.

The alignment of structure members is described in the following table. If the size of the member is 1, 2, 4,
8 or 16, the alignment is given for each of the "zp" options. If the member of the structure is an array or
structure, the alignment is described by the row "x".

zp1 zp2 zp4 zp8 zp16

sizeof(member) \---------------------------------------
1 | 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
x | aligned to largest member

An alignment of 0 means no alignment, 2 means word boundary, 4 means doubleword boundary, etc. If the
largest member of structure "x" is 1 byte then "x" is not aligned. If the largest member of structure "x" is 2
bytes then "x" is aligned according to row 2. If the largest member of structure "x" is 4 bytes then "x" is
aligned according to row 4. If the largest member of structure "x" is 8 bytes then "x" is aligned according
to row 8. If the largest member of structure "x" is 16 bytes then "x" is aligned according to row 16.

If no value is specified in the "pack" pragma, a default value of 8 is used. Note that the default value can be
changed with the "zp" Open Watcom C/C++ compiler command line option.

The following form of the "pack" pragma can be used to save the current alignment amount on an internal
stack.

#pragma pack (push) [;]

The following form of the "pack" pragma can be used to save the current alignment amount on an internal
stack and set the current alignment.

The PACK Pragma 217

32-bit Topics

#pragma pack (push, number) [;]

The following form of the "pack" pragma can be used to restore the previous alignment amount from an
internal stack.

#pragma pack (pop) [;]

11.24 The READ_ONLY_FILE Pragma
Explicit listing of dependencies in a makefile can often be tedious in the development and maintenance
phases of a project. The Open Watcom C/C++ compiler will insert dependency information into the object
file as it processes source files so that a complete snapshot of the files necessary to build the object file are
recorded. The "read_only_file" pragma can be used to prevent the name of the source file that includes it
from being included in the dependency information that is written to the object file.

This pragma is commonly used in system header files since they change infrequently (and, when they do,
there should be no impact on source files that have included them).

The form of the "read_only_file" pragma follows.

#pragma read_only_file [;]

For more information on make dependencies, see the section entitled "Automatic Dependency Detection
(.AUTODEPEND)" in the Open Watcom C/C++ Tools User’s Guide.

11.25 The TEMPLATE_DEPTH Pragma (C++ Only)
The "template_depth" pragma provides a hard limit for the amount of nested template expansions allowed
so that infinite expansion can be detected.

The form of the "template_depth" pragma is as follows.

#pragma template_depth [(] n [)] [;]

where description:

n is the depth of expansion. If the value of n is less than 2, if will default to 2. If n is not
specified, a warning message will be issued and the default value for n will be 100.

The following example of recursive template expansion illustrates why this pragma can be useful.

218 The TEMPLATE_DEPTH Pragma (C++ Only)

32-bit Pragmas

Example:
#pragma template_depth(10);

template <class T>
struct S {

S<T*> x;
};

S<char> v;

11.26 The WARNING Pragma (C++ Only)
The "warning" pragma sets the level of warning messages. The form of the "warning" pragma is as
follows.

#pragma warning msg_num level [;]

where description:

msg_num is the number of the warning message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C++ Diagnostic
Messages" on page 333. If msg_num is "*", the level of all warning messages is changed
to the specified level. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

level is a number from 0 to 9 and represents the level of the warning message. When a value of
zero is specified, the warning becomes an error.

11.27 Auxiliary Pragmas
The following sections describe the capabilities provided by auxiliary pragmas.

11.27.1 Specifying Symbol Attributes
Auxiliary pragmas are used to describe attributes that affect code generation. Initially, the compiler defines
a default set of attributes. Each auxiliary pragma refers to one of the following.

1. a symbol (such as a variable or function)
2. a type definition that resolves to a function type
3. the default set of attributes defined by the compiler

When an auxiliary pragma refers to a particular symbol, a copy of the current set of default attributes is
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to the specified symbol and can only be changed by another auxiliary pragma that refers to the same
symbol.

An example of a type definition that resolves to a function type is the following.

Auxiliary Pragmas 219

32-bit Topics

typedef void (*func_type)();

When an auxiliary pragma refers to a such a type definition, a copy of the current set of default attributes is
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to each function whose type matches the specified type definition.

When "default" is specified instead of a symbol name, the attributes specified by the auxiliary pragma
change the default set of attributes. The resulting attributes are used by all symbols that have not been
specifically referenced by a previous auxiliary pragma.

Note that all auxiliary pragmas are processed before code generation begins. Consider the following
example.

code in which symbol x is referenced
#pragma aux y <attrs_1>;
code in which symbol y is referenced
code in which symbol z is referenced
#pragma aux default <attrs_2>;
#pragma aux x <attrs_3>;

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x is assigned the initial default attributes merged with the attributes specified by
<attrs_2> and <attrs_3>.

2. Symbol y is assigned the initial default attributes merged with the attributes specified by
<attrs_1>.

3. Symbol z is assigned the initial default attributes merged with the attributes specified by
<attrs_2>.

11.27.2 Alias Names
When a symbol referred to by an auxiliary pragma includes an alias name, the attributes of the alias name
are also assumed by the specified symbol.

There are two methods of specifying alias information. In the first method, the symbol assumes only the
attributes of the alias name; no additional attributes can be specified. The second method is more general
since it is possible to specify an alias name as well as additional auxiliary information. In this case, the
symbol assumes the attributes of the alias name as well as the attributes specified by the additional auxiliary
information.

The simple form of the auxiliary pragma used to specify an alias is as follows.

#pragma aux (sym, [far16] alias) [;]

220 Auxiliary Pragmas

32-bit Pragmas

where description:

sym is any valid C/C++ identifier.

alias is the alias name and is any valid C/C++ identifier.

The far16 attribute should only be used on systems that permit the calling of 16-bit code from 32-bit
code. Currently, the only supported operating system that allows this is 32-bit OS/2. If you have any
libraries of functions or APIs that are only available as 16-bit code and you wish to access these functions
and APIs from 32-bit code, you must specify the far16 attribute. If the far16 attribute is specified, the
compiler will generate special code which allows the 16-bit code to be called from 32-bit code. Note that a
far16 function must be a function whose attributes are those specified by one of the alias names
__cdecl or__pascal. These alias names will be described in a later section.

Consider the following example.

#pragma aux push_args parm [] ;
#pragma aux (rtn, push_args) ;

The routine rtn assumes the attributes of the alias name push_args which specifies that the arguments
to rtn are passed on the stack.

Let us look at an example in which the symbol is a type definition.

typedef void (func_type)(int);

#pragma aux push_args parm [];
#pragma aux (func_type, push_args);

extern func_type rtn1;
extern func_type rtn2;

The first auxiliary pragma defines an alias name called push_args that specifies the mechanism to be
used to pass arguments. The mechanism is to pass all arguments on the stack. The second auxiliary
pragma associates the attributes specified in the first pragma with the type definition func_type. Since
rtn1 and rtn2 are of type func_type, arguments to either of those functions will be passed on the
stack.

The general form of an auxiliary pragma that can be used to specify an alias is as follows.

#pragma aux (alias) sym aux_attrs [;]

where description:

alias is the alias name and is any valid C/C++ identifier.

sym is any valid C/C++ identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

Auxiliary Pragmas 221

32-bit Topics

#pragma aux HIGH_C "*" \

parm caller [] \
value no8087 \
modify [eax ecx edx fs gs];

#pragma aux (HIGH_C) rtn1;
#pragma aux (HIGH_C) rtn2;
#pragma aux (HIGH_C) rtn3;

The routines rtn1, rtn2 and rtn3 assume the same attributes as the alias name HIGH_C which defines
the calling convention used by the MetaWare High C compiler. Note that register ES must also be
specified in the "modify" register set when using a memory model that is not a small data model.
Whenever calls are made to rtn1, rtn2 and rtn3, the MetaWare High C calling convention will be
used.

Note that if the attributes of HIGH_C change, only one pragma needs to be changed. If we had not used an
alias name and specified the attributes in each of the three pragmas for rtn1, rtn2 and rtn3, we would
have to change all three pragmas. This approach also reduces the amount of memory required by the
compiler to process the source file.

WARNING! The alias name HIGH_C is just another symbol. If HIGH_C appeared in your source
code, it would assume the attributes specified in the pragma for HIGH_C.

11.27.3 Predefined Aliases
A number of symbols are predefined by the compiler with a set of attributes that describe a particular
calling convention. These symbols can be used as aliases. The following is a list of these symbols.

__cdecl __cdecl orcdecl defines the calling convention used by Microsoft compilers.

__fastcall __fastcall orfastcall defines the calling convention used by Microsoft compilers.

__fortran __fortran orfortran defines the calling convention used by Open Watcom
FORTRAN compilers.

__pascal __pascal orpascal defines the calling convention used by OS/2 1.x and Windows 3.x
API functions.

__stdcall __stdcall orstdcall defines a special calling convention used by the Win32 API
functions.

__syscall __syscall orsyscall defines the calling convention used by the 32-bit OS/2 API
functions.

__system __system orsystem are identical to __syscall.

__watcall __watcall orwatcall defines the calling convention used by Open Watcom
compilers.

The following describes the attributes of the above alias names.

222 Auxiliary Pragmas

32-bit Pragmas

11.27.3.1 Predefined "__cdecl" Alias

#pragma aux __cdecl "_*" \

parm caller [] \
value struct float struct routine [eax] \
modify [eax ecx edx]

Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the called routine allocates space for the return value and returns a pointer to the return value in
register EAX.

4. Registers EAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.2 Predefined "__pascal" Alias

#pragma aux __pascal "^" \

parm reverse routine [] \
value struct float struct caller [] \
modify [eax ebx ecx edx]

Notes:

1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is pushed first,
the second argument is pushed next, and so on. The routine being called will remove the
arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the caller allocates space on the stack. The address of the allocated space will be pushed on the
stack immediately before the call instruction. Upon returning from the call, register EAX will
contain address of the space allocated for the return value.

4. Registers EAX, EBX, ECX and EDX are not saved and restored when a call is made.

11.27.3.3 Predefined "__stdcall" Alias

#pragma aux __stdcall "_*@nnn" \

parm routine [] \
value struct struct caller [] \
modify [eax ecx edx]

Auxiliary Pragmas 223

32-bit Topics

Notes:

1. All symbols are preceded by an underscore character.

2. All C symbols (extern "C" symbols in C++) are suffixed by "@nnn" where "nnn" is the sum of
the argument sizes (each size is rounded up to a multiple of 4 bytes so that char and short are size
4). When the argument list contains "...", the "@nnn" suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The called routine will remove the arguments from the stack.

4. When a structure is returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.
Floating-point values are returned in 80x87 register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.4 Predefined "__syscall" Alias

#pragma aux __syscall "*" \

parm caller [] \
value struct struct caller [] \
modify [eax ecx edx]

Notes:

1. Symbols names are not modified, that is, they are not adorned with leading or trailing
underscores.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.
Floating-point values are returned in 80x87 register ST(0).

4. Registers EAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.5 Predefined "__watcall" Alias (register calling convention)

#pragma aux __watcall "*_" \

parm routine [eax ebx ecx edx] \
value struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have

224 Auxiliary Pragmas

32-bit Pragmas

been exhausted). Arguments that are passed on the stack are pushed from right to left. The
calling routine will remove the arguments if any were pushed on the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of the allocated
space is put into ESI register. The called routine then places the return value there. Upon
returning from the call, register EAX will contain address of the space allocated for the return
value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using 80x87
floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

11.27.3.6 Predefined "__watcall" Alias (stack calling convention)

#pragma aux __watcall "*" \

parm caller [] \
value no8087 struct caller \
modify [eax ecx edx 8087]

Notes:

1. All symbols appear in object form as they do in source form.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.

4. Floating-point values are returned only using 80x86 registers.

5. Registers EAX, ECX and EDX are not preserved by the called routine.

6. Any local variables that are located in the 80x87 cache are not preserved by the called routine.

11.27.4 Alternate Names for Symbols
The following form of the auxiliary pragma can be used to describe the mapping of a symbol from its
source form to its object form.

#pragma aux sym obj_name [;]

where description:

sym is any valid C/C++ identifier.

obj_name is any character string enclosed in double quotes.

When specifying obj_name, some characters have a special meaning:

Auxiliary Pragmas 225

32-bit Topics

where description:

* is unmodified symbol name

^ is symbol name converted to uppercase

! is symbol name converted to lowercase

is a placeholder for "@nnn", where nnn is size of all function parameters on the stack; it is
ignored for functions with variable argument lists, or for symbols that are not functions

\ next character is treated as literal

Several examples of source to object form symbol name translation follow:

In the following example, the name "MyRtn" will be replaced by "MyRtn_" in the object file.

#pragma aux MyRtn "*_";

This is the default for all function names.

In the following example, the name "MyVar" will be replaced by "_MyVar" in the object file.

#pragma aux MyVar "_*";

This is the default for all variable names.

In the following example, the lower case version "myrtn" will be placed in the object file.

#pragma aux MyRtn "!";

In the following example, the upper case version "MYRTN" will be placed in the object file.

#pragma aux MyRtn "^";

In the following example, the name "MyRtn" will be replaced by "_MyRtn@nnn" in the object file. "nnn"
represents the size of all function parameters.

#pragma aux MyRtn "_*#";

In the following example, the name "MyRtn" will be replaced by "_MyRtn#" in the object file.

#pragma aux MyRtn "_*\#";

The default mapping for all symbols can also be changed as illustrated by the following example.

#pragma aux default "_*_";

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an underscore
character (’_’).

226 Auxiliary Pragmas

32-bit Pragmas

11.27.5 Describing Calling Information
The following form of the auxiliary pragma can be used to describe the way a function is to be called.

#pragma aux sym far [;]
or

#pragma aux sym near [;]
or

#pragma aux sym = in_line [;]

in_line ::= { const | (seg id) | (offset id) | (reloff id)
| "asm" }

where description:

sym is a function name.

const is a valid C/C++ integer constant.

id is any valid C/C++ identifier.

seg specifies the segment of the symbol id.

offset specifies the offset of the symbol id.

reloff specifies the relative offset of the symbol id for near control transfers.

asm is an assembly language instruction or directive.

In the following example, Open Watcom C/C++ will generate a far call to the function myrtn.

#pragma aux myrtn far;

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, a far call will be generated even if you are compiling for a memory model with a
small code model.

In the following example, Open Watcom C/C++ will generate a near call to the function myrtn.

#pragma aux myrtn near;

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, a near call will be generated even if you are compiling for a memory model with a
big code model.

In the following DOS example, Open Watcom C/C++ will generate the sequence of bytes following the "="
character in the auxiliary pragma whenever a call to mode4 is encountered. mode4 is called an in-line
function.

Auxiliary Pragmas 227

32-bit Topics

void mode4(void);
#pragma aux mode4 = \

0xb4 0x00 /* mov AH,0 */ \
0xb0 0x04 /* mov AL,4 */ \
0xcd 0x10 /* int 10H */ \
modify [AH AL];

The sequence in the above DOS example represents the following lines of assembly language instructions.

mov AH,0 ; select function "set mode"
mov AL,4 ; specify mode (mode 4)
int 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing an assembly
language function and calling it from your C/C++ program. The C prototype for the function mode4 is not
necessary but is included so that we can take advantage of the argument type checking provided by Open
Watcom C/C++.

The following DOS example is equivalent to the above example but mnemonics for the assembly language
instructions are used instead of the binary encoding of the assembly language instructions.

void mode4(void);
#pragma aux mode4 = \

"mov AH,0", \
"mov AL,4", \
"int 10H" \
modify [AH AL];

A sequence of in-line assembly language instructions may contain symbolic references. In the following
example, a near call to the function myalias is made whenever myrtn is called.

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0xe8 reloff myalias /* near call */;

In the following example, a far call to the function myalias is made whenever myrtn is called.

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0x9a offset myalias seg myalias /* far call */;

11.27.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the segment
address of the default data segment (group "DGROUP"). This is usually the case if you are using a large
data memory model. Suppose you wish to call a function that assumes that the segment register DS
contains the segment address of the default data segment. It would be very cumbersome if you were forced
to compile your application so that the segment register DS contained the default data segment (a small data
memory model).

The following form of the auxiliary pragma will cause the segment register DS to be loaded with the
segment address of the default data segment before calling the specified function.

228 Auxiliary Pragmas

32-bit Pragmas

#pragma aux sym parm loadds [;]

where description:

sym is a function name.

Alternatively, the following form of the auxiliary pragma will cause the segment register DS to be loaded
with the segment address of the default data segment as part of the prologue sequence for the specified
function.

#pragma aux sym loadds [;]

where description:

sym is a function name.

11.27.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in a dynamic link library is a symbol that can be referenced by an application that is
linked with that dynamic link library. Normally, symbols in dynamic link libraries are exported using the
Open Watcom Linker "EXPORT" directive. An alternative method is to use the following form of the
auxiliary pragma.

#pragma aux sym export [;]

where description:

sym is a function name.

11.27.5.3 Forcing a Stack Frame

Normally, a function contains a stack frame if arguments are passed on the stack or an automatic variable is
allocated on the stack. No stack frame will be generated if the above conditions are not satisfied. The
following form of the auxiliary pragma will force a stack frame to be generated under any circumstance.

#pragma aux sym frame [;]

where description:

sym is a function name.

Auxiliary Pragmas 229

32-bit Topics

11.27.6 Describing Argument Information
Using auxiliary pragmas, you can describe the calling convention that Open Watcom C/C++ is to use for
calling functions. This is particularly useful when interfacing to functions that have been compiled by
other compilers or functions written in other programming languages.

The general form of an auxiliary pragma that describes argument passing is the following.

#pragma aux sym parm { pop_info | reverse | {reg_set} } [;]

pop_info ::= caller | routine

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

11.27.6.1 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to pass
arguments to a particular function.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

Register sets establish a priority for register allocation during argument list processing. Register sets are
processed from left to right. However, within a register set, registers are chosen in any order. Once all
register sets have been processed, any remaining arguments are pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will be selected for
arguments of a particular type.

Note that arguments of type float and double are always pushed on the stack when the "fpi" or "fpi87"
option is used.

230 Auxiliary Pragmas

32-bit Pragmas

double Arguments of type double can only be passed in one of the following register pairs:
EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI, EDX:EBX, EDI:EAX, ECX:EDI, EDX:ESI,
EDI:EBX, ESI:EAX, ECX:EDX, EDX:EDI, EDI:ESI, ESI:EBX or EBX:EAX. For
example, if the following register set was specified for a routine having an argument of
type double,

[EBP EBX]

the argument would be pushed on the stack since a valid register combination for 8-byte
arguments is not contained in the register set. Note that this method for passing arguments
of type double is supported only when the "fpc" option is used. Note that this argument
passing method does not include the passing of 8-byte structures.

far pointer A far pointer can only be passed in one of the following register pairs: DX:EAX, CX:EBX,
CX:EAX, CX:ESI, DX:EBX, DI:EAX, CX:EDI, DX:ESI, DI:EBX, SI:EAX, CX:EDX,
DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS:ECX, FS:EDX, FS:EDI, FS:ESI, FS:EBX,
FS:EAX, GS:ECX, GS:EDX, GS:EDI, GS:ESI, GS:EBX, GS:EAX, DS:ECX, DS:EDX,
DS:EDI, DS:ESI, DS:EBX, DS:EAX, ES:ECX, ES:EDX, ES:EDI, ES:ESI, ES:EBX or
ES:EAX. For example, if a far pointer is passed to a function with the following register
set,

[ES EBP]

the argument would be pushed on the stack since a valid register combination for a far
pointer is not contained in the register set.

int The only registers that will be assigned to 4-byte arguments (e.g., arguments of type int)
are: EAX, EBX, ECX, EDX, ESI and EDI. For example, if the following register set was
specified for a routine with one argument of type int,

[EBP]

the argument would be pushed on the stack since a valid register combination for 4-byte
arguments is not contained in the register set. Note that this argument passing method
includes 4-byte structures. Note that this argument passing method also includes arguments
of type float but only when the "fpc" option is used.

char, short int Arguments whose size is 1 byte or 2 bytes (e.g., arguments of type char and short int as
well as 2-byte structures) are promoted to 4 bytes and are then assigned registers as if they
were 4-byte arguments.

others Arguments that do not fall into one of the above categories cannot be passed in registers
and are pushed on the stack. Once an argument has been assigned a position on the stack,
all remaining arguments will be assigned a position on the stack even if all register sets
have not yet been exhausted.

Notes:

1. The default register set is [EAX EBX ECX EDX].

2. Specifying registers AH and AL is equivalent to specifying register AX. Specifying registers
DH and DL is equivalent to specifying register DX. Specifying registers CH and CL is
equivalent to specifying register CX. Specifying registers BH and BL is equivalent to specifying
register BX. Specifying register EAX implies that register AX has been specified. Specifying

Auxiliary Pragmas 231

32-bit Topics

register EBX implies that register BX has been specified. Specifying register ECX implies that
register CX has been specified. Specifying register EDX implies that register DX has been
specified. Specifying register EDI implies that register DI has been specified. Specifying
register ESI implies that register SI has been specified. Specifying register EBP implies that
register BP has been specified. Specifying register ESP implies that register SP has been
specified.

3. If you are compiling for a memory model with a small data model, or the "zdp" compiler option
is specified, any register combination containing register DS becomes illegal. In a small data
model, segment register DS must remain unchanged as it points to the program’s data segment.
Note that the "zdf" compiler option can be used to specify that register DS does not contain that
segment address of the program’s data segment. In this case, register combinations containing
register DS are legal.

4. If you are compiling for the flat memory model, any register combination containing DS or ES
becomes illegal. In a flat memory model, code and data reside in the same segment. Segment
registers DS and ES point to this segment and must remain unchanged.

Consider the following example.

#pragma aux myrtn parm [eax ebx ecx edx] [ebp esi];

Suppose myrtn is a routine with 3 arguments each of type double.

1. The first argument will be passed in the register pair EDX:EAX.
2. The second argument will be passed in the register pair ECX:EBX.
3. The third argument will be pushed on the stack since EBP:ESI is not a valid register pair for

arguments of type double.

It is possible for registers from the second register set to be used before registers from the first register set
are used. Consider the following example.

#pragma aux myrtn parm [eax ebx ecx edx] [esi edi];

Suppose myrtn is a routine with 3 arguments, the first of type int and the second and third of type double.

1. The first argument will be passed in the register EAX.
2. The second argument will be passed in the register pair ECX:EBX.
3. The third argument will be passed in the register set EDI:ESI.

Note that registers are no longer selected from a register set after registers are selected from subsequent
register sets, even if all registers from the original register set have not been exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty register set are
ignored; all remaining arguments are pushed on the stack.

Notes:

1. If a single empty register set is specified, all arguments are passed on the stack.

2. If no register set is specified, the default register set [EAX EBX ECX EDX] is used.

232 Auxiliary Pragmas

32-bit Pragmas

11.27.6.2 Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you have a function, say "mycopy", that
copies data. The first argument is the source, the second argument is the destination, and the third
argument is the length to copy. If we want the first argument to be passed in the register ESI, the second
argument to be passed in register EDI and the third argument to be passed in register ECX, the following
auxiliary pragma can be used.

void mycopy(char near *, char *, int);
#pragma aux mycopy parm [ESI] [EDI] [ECX];

Note that you must be aware of the size of the arguments to ensure that the arguments get passed in the
appropriate registers.

11.27.6.3 Passing Arguments to In-Line Functions

For functions whose code is generated by Open Watcom C/C++ and whose argument list is described by an
auxiliary pragma, Open Watcom C/C++ has some freedom in choosing how arguments are assigned to
registers. Since the code for in-line functions is specified by the programmer, the description of the
argument list must be very explicit. To achieve this, Open Watcom C/C++ assumes that each register set
corresponds to an argument. Consider the following DOS example of an in-line function called
scrollactivepgup.

void scrollactivepgup(char,char,char,char,char,char);
#pragma aux scrollactivepgup = \

"mov AH,6" \
"int 10h" \
parm [ch] [cl] [dh] [dl] [al] [bh] \
modify [ah];

The BIOS video call to scroll the active page up requires the following arguments.

1. The row and column of the upper left corner of the scroll window is passed in registers CH and
CL respectively.

2. The row and column of the lower right corner of the scroll window is passed in registers DH and
DL respectively.

3. The number of lines blanked at the bottom of the window is passed in register AL.

4. The attribute to be used on the blank lines is passed in register BH.

When passing arguments, Open Watcom C/C++ will convert the argument so that it fits in the register(s)
specified in the register set for that argument. For example, in the above example, if the first argument to
scrollactivepgup was called with an argument whose type was int, it would first be converted to
char before assigning it to register CH. Similarly, if an in-line function required its argument in register
EAX and the argument was of type short int, the argument would be converted to long int before
assigning it to register EAX.

In general, Open Watcom C/C++ assigns the following types to register sets.

1. A register set consisting of a single 8-bit register (1 byte) is assigned a type of unsigned char.

Auxiliary Pragmas 233

32-bit Topics

2. A register set consisting of a single 16-bit register (2 bytes) is assigned a type of unsigned short
int.

3. A register set consisting of a single 32-bit register (4 bytes) is assigned a type of unsigned long
int.

4. A register set consisting of two 32-bit registers (8 bytes) is assigned a type of double.

11.27.6.4 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments that were
pushed on the stack.

#pragma aux sym parm (caller | routine) [;]

where description:

sym is a function name.

"caller" specifies that the caller will pop the arguments from the stack; "routine" specifies that the called
routine will pop the arguments from the stack. If "caller" or "routine" is omitted, "routine" is assumed
unless the default has been changed in a previous auxiliary pragma, in which case the new default is
assumed.

11.27.6.5 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse order.

#pragma aux sym parm reverse [;]

where description:

sym is a function name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost arguments
are passed on the stack (if the registers used for argument passing have been exhausted). Arguments that
are passed on the stack are pushed from left to right.

Reversing arguments is most useful for functions that require arguments to be passed on the stack in an
order opposite from the default. The following auxiliary pragma demonstrates such a function.

#pragma aux rtn parm reverse [];

234 Auxiliary Pragmas

32-bit Pragmas

11.27.7 Describing Function Return Information
Using auxiliary pragmas, you can describe the way functions are to return values. This is particularly
useful when interfacing to functions that have been compiled by other compilers or functions written in
other programming languages.

The general form of an auxiliary pragma that describes the way a function returns its value is the following.

#pragma aux sym value {no8087 | reg_set | struct_info} [;]
struct_info ::= struct {float | struct | (routine | caller) | reg_set}

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

11.27.7.1 Returning Function Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to return
a function’s value.

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

Note that the method described below for returning values of type float or double is supported only when
the "fpc" option is used.

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte For 1-byte return values, only the following registers are allowed: AL, AH, DL, DH, BL,
BH, CL or CH. If no register set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX, CX, SI or
DI. If no register set is specified, register AX will be used.

4-byte For 4-byte return values (including near pointers), only the following register are allowed:
EAX, EDX, EBX, ECX, ESI or EDI. If no register set is specified, register EAX will be
used. This form of the auxiliary pragma is legal for functions of type float when using the
"fpc" option only.

Auxiliary Pragmas 235

32-bit Topics

far pointer For functions that return far pointers, the following register pairs are allowed: DX:EAX,
CX:EBX, CX:EAX, CX:ESI, DX:EBX, DI:EAX, CX:EDI, DX:ESI, DI:EBX, SI:EAX,
CX:EDX, DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS:ECX, FS:EDX, FS:EDI, FS:ESI,
FS:EBX, FS:EAX, GS:ECX, GS:EDX, GS:EDI, GS:ESI, GS:EBX, GS:EAX, DS:ECX,
DS:EDX, DS:EDI, DS:ESI, DS:EBX, DS:EAX, ES:ECX, ES:EDX, ES:EDI, ES:ESI,
ES:EBX or ES:EAX. If no register set is specified, the registers DX:EAX will be used.

8-byte For 8-byte return values (including functions of type double), only the following register
pairs are allowed: EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI, EDX:EBX, EDI:EAX,
ECX:EDI, EDX:ESI, EDI:EBX, ESI:EAX, ECX:EDX, EDX:EDI, EDI:ESI, ESI:EBX or
EBX:EAX. If no register set is specified, the registers EDX:EAX will be used. This form
of the auxiliary pragma is legal for functions of type double when using the "fpc" option
only.

Notes:

1. An empty register set is not allowed.

2. If you are compiling for a memory model which has a small data model, any of the above
register combinations containing register DS becomes illegal. In a small data model, segment
register DS must remain unchanged as it points to the program’s data segment.

3. If you are compiling for the flat memory model, any register combination containing DS or ES
becomes illegal. In a flat memory model, code and data reside in the same segment. Segment
registers DS and ES point to this segment and must remain unchanged.

11.27.7.2 Returning Structures

Typically, structures are not returned in registers. Instead, the caller allocates space on the stack for the
return value and sets register ESI to point to it. The called routine then places the return value at the
location pointed to by register ESI.

The following form of the auxiliary pragma can be used to specify the register that is to be used to point to
the return value.

#pragma aux sym value struct (caller|routine) reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

"caller" specifies that the caller will allocate memory for the return value. The address of the memory
allocated for the return value is placed in the register specified in the register set by the caller before the
function is called. If an empty register set is specified, the address of the memory allocated for the return
value will be pushed on the stack immediately before the call and will be returned in register EAX by the
called routine.

236 Auxiliary Pragmas

32-bit Pragmas

"routine" specifies that the called routine will allocate memory for the return value. Upon returning to the
caller, the register specified in the register set will contain the address of the return value. An empty
register set is not allowed.

Only the following registers are allowed in the register set: EAX, EDX, EBX, ECX, ESI or EDI. Note that
in a big data model, the address in the return register is assumed to be in the segment specified by the value
in the SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The return
register will be selected from the register set in the following way.

1. A 1-byte structure will be returned in one of the following registers: AL, AH, DL, DH, BL, BH,
CL or CH. If no register set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers: AX, DX, BX, CX, SI or DI.
If no register set is specified, register AX will be used.

3. A 4-byte structure will be returned in one of the following registers: EAX, EDX, EBX, ECX,
ESI or EDI. If no register set is specified, register EAX will be used.

The following form of the auxiliary pragma can be used to specify that structures whose size is 1, 2 or 4
bytes are not to be returned in registers. Instead, the caller will allocate space on the stack for the structure
return value and point register ESI to it.

#pragma aux sym value struct struct [;]

where description:

sym is a function name.

11.27.7.3 Returning Floating-Point Data

There are a few ways available for specifying how the value for a function whose type is float or double is
to be returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in registers. Instead, the caller will allocate space on the stack for the
return value and point register ESI to it.

#pragma aux sym value struct float [;]

where description:

sym is a function name.

In other words, floating-point values are to be returned in the same way structures are returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in 80x87 registers when compiling with the "fpi" or "fpi87" option.

Auxiliary Pragmas 237

32-bit Topics

Instead, the value will be returned in 80x86 registers. This is the default behaviour for the "fpc" option.
Function return values whose type is float will be returned in register EAX. Function return values whose
type is double will be returned in registers EDX:EAX. This is the default method for the "fpc" option.

#pragma aux sym value no8087 [;]

where description:

sym is a function name.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are to be returned in ST(0) when compiling with the "fpi" or "fpi87" option. This form of
the auxiliary pragma is not legal for the "fpc" option.

#pragma aux sym value [8087] [;]

where description:

sym is a function name.

11.27.8 A Function that Never Returns
The following form of the auxiliary pragma can be used to describe a function that does not return to the
caller.

#pragma aux sym aborts [;]

where description:

sym is a function name.

Consider the following example.

#pragma aux exitrtn aborts;
extern void exitrtn(void);

void rtn()
{

exitrtn();
}

exitrtn is defined to be a function that does not return. For example, it may call exit to return to the
system. In this case, Open Watcom C/C++ generates a "jmp" instruction instead of a "call" instruction to
invoke exitrtn.

238 Auxiliary Pragmas

32-bit Pragmas

11.27.9 Describing How Functions Use Memory
The following form of the auxiliary pragma can be used to describe a function that does not modify any
memory (i.e., global or static variables) that is used directly or indirectly by the caller.

#pragma aux sym modify nomemory [;]

where description:

sym is a function name.

Consider the following example.

#pragma off (check_stack);

extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
while(i < 10000) {

i += 383;
}
myrtn();
i += 13143;

};

To compile the above program, "rtn.c", we issue the following command.

C>wcc rtn /oai /d1
C>wpp rtn /oai /d1
C>wcc386 rtn /oai /d1
C>wpp386 rtn /oai /d1

For illustrative purposes, we omit loop optimizations from the list of code optimizations that we want the
compiler to perform. The "d1" compiler option is specified so that the object file produced by Open
Watcom C/C++ contains source line information.

We can generate a file containing a disassembly of rtn.obj by issuing the following command.

C>wdis rtn /l /s /r

The "s" option is specified so that the listing file produced by the Open Watcom Disassembler contains
source lines taken from rtn.c. The listing file rtn.lst appears as follows.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE USE32 00000036 bytes

#pragma off (check_stack);

extern void myrtn(void);

int i = { 1033 };

Auxiliary Pragmas 239

32-bit Topics

extern Rtn() {
0000 52 Rtn_ push EDX
0001 8b 15 00 00 00 00 mov EDX,_i

while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cmp EDX,00002710H
000d 7d 08 jge L2

i += 383;
}

000f 81 c2 7f 01 00 00 add EDX,0000017fH
0015 eb f0 jmp L1

myrtn();
0017 89 15 00 00 00 00 L2 mov _i,EDX
001d e8 00 00 00 00 call myrtn_
0022 8b 15 00 00 00 00 mov EDX,_i

i += 13143;
0028 81 c2 57 33 00 00 add EDX,00003357H
002e 89 15 00 00 00 00 mov _i,EDX

}
0034 5a pop EDX
0035 c3 ret

No disassembly errors

--

Segment: ’_DATA’ WORD USE32 00000004 bytes
0000 09 04 00 00 _i -

No disassembly errors

--

Let us add the following auxiliary pragma to the source file.

#pragma aux myrtn modify nomemory;

If we compile the source file with the above pragma and disassemble the object file using the Open
Watcom Disassembler, we get the following listing file.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE USE32 00000030 bytes

#pragma off (check_stack);
#pragma aux myrtn modify nomemory;

extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
0000 52 Rtn_ push EDX
0001 8b 15 00 00 00 00 mov EDX,_i

while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cmp EDX,00002710H
000d 7d 08 jge L2

i += 383;
}

000f 81 c2 7f 01 00 00 add EDX,0000017fH
0015 eb f0 jmp L1

240 Auxiliary Pragmas

32-bit Pragmas

myrtn();
0017 89 15 00 00 00 00 L2 mov _i,EDX
001d e8 00 00 00 00 call myrtn_

i += 13143;
0022 81 c2 57 33 00 00 add EDX,00003357H
0028 89 15 00 00 00 00 mov _i,EDX

}
002e 5a pop EDX
002f c3 ret

No disassembly errors

--

Segment: ’_DATA’ WORD USE32 00000004 bytes
0000 09 04 00 00 _i -

No disassembly errors

--

Notice that the value of i is in register EDX after completion of the "while" loop. After the call to
myrtn, the value of i is not loaded from memory into a register to perform the final addition. The
auxiliary pragma informs the compiler that myrtn does not modify any memory (i.e., global or static
variables) that is used directly or indirectly by Rtn and hence register EDX contains the correct value of
i.

The preceding auxiliary pragma deals with routines that modify memory. Let us consider the case where
routines reference memory. The following form of the auxiliary pragma can be used to describe a function
that does not reference any memory (i.e., global or static variables) that is used directly or indirectly by the
caller.

#pragma aux sym parm nomemory modify nomemory [;]

where description:

sym is a function name.

Notes:

1. You must specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragma in the above example with the following auxiliary pragma.

#pragma aux myrtn parm nomemory modify nomemory;

If you now compile our source file and disassemble the object file using WDIS, the result is the following
listing file.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE USE32 0000002a bytes

#pragma off (check_stack);
#pragma aux myrtn parm nomemory modify nomemory;

Auxiliary Pragmas 241

32-bit Topics

extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
0000 52 Rtn_ push EDX
0001 8b 15 00 00 00 00 mov EDX,_i

while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cmp EDX,00002710H
000d 7d 08 jge L2

i += 383;
}

000f 81 c2 7f 01 00 00 add EDX,0000017fH
0015 eb f0 jmp L1

myrtn();
0017 e8 00 00 00 00 L2 call myrtn_

i += 13143;
001c 81 c2 57 33 00 00 add EDX,00003357H
0022 89 15 00 00 00 00 mov _i,EDX

}
0028 5a pop EDX
0029 c3 ret

No disassembly errors

--

Segment: ’_DATA’ WORD USE32 00000004 bytes
0000 09 04 00 00 _i -

No disassembly errors

--

Notice that after completion of the "while" loop we did not have to update i with the value in register EDX
before calling myrtn. The auxiliary pragma informs the compiler that myrtn does not reference any
memory (i.e., global or static variables) that is used directly or indirectly by myrtn so updating i was not
necessary before calling myrtn.

11.27.10 Describing the Registers Modified by a Function
The following form of the auxiliary pragma can be used to describe the registers that a function will use
without saving.

#pragma aux sym modify [exact] reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

Specifying a register set informs Open Watcom C/C++ that the registers belonging to the register set are
modified by the function. That is, the value in a register before calling the function is different from its
value after execution of the function.

242 Auxiliary Pragmas

32-bit Pragmas

Registers that are used to pass arguments are assumed to be modified and hence do not have to be saved
and restored by the called function. Also, since the EAX register is frequently used to return a value, it is
always assumed to be modified. If necessary, the caller will contain code to save and restore the contents
of registers used to pass arguments. Note that saving and restoring the contents of these registers may not
be necessary if the called function does not modify them. The following form of the auxiliary pragma can
be used to describe exactly those registers that will be modified by the called function.

#pragma aux sym modify exact reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

The above form of the auxiliary pragma tells Open Watcom C/C++ not to assume that the registers used to
pass arguments will be modified by the called function. Instead, only the registers specified in the register
set will be modified. This will prevent generation of the code which unnecessarily saves and restores the
contents of the registers used to pass arguments.

Also, any registers that are specified in the value register set are assumed to be unmodified unless
explicitly listed in the exact register set. In the following example, the code generator will not generate
code to save and restore the value of the stack pointer register since we have told it that "GetSP" does not
modify any register whatsoever.

Example:
unsigned GetSP(void);
#if defined(__386__)
#pragma aux GetSP = value [esp] modify exact [];
#else
#pragma aux GetSP = value [sp] modify exact [];
#endif

11.27.11 An Example
As mentioned in an earlier section, the following pragma defines the calling convention for functions
compiled by MetaWare’s High C compiler.

#pragma aux HIGH_C "*" \

parm caller [] \
value no8087 \
modify [eax ecx edx fs gs];

Note that register ES must also be specified in the "modify" register set when using a memory model with a
non-small data model. Let us discuss this pragma in detail.

"*" specifies that all function and variable names appear in object form as they do in source
form.

parm caller [] specifies that all arguments are to be passed on the stack (an empty register set was
specified) and the caller will remove the arguments from the stack.

Auxiliary Pragmas 243

32-bit Topics

value no8087 specifies that floating-point values are to be returned using 80x86 registers and not 80x87
floating-point registers.

modify [eax ecx edx fs gs] specifies that registers EAX, ECX, EDX, FS and GS are not preserved by the
called routine.

Note that the default method of returning integer values is used; 1-byte characters are returned in register
AL, 2-byte integers are returned in register AX, and 4-byte integers are returned in register EAX.

11.27.12 Auxiliary Pragmas and the 80x87
This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The discussion in
this chapter assumes that one of the "fpi" or "fpi87" options is used to compile functions. The following
areas are affected by the use of these options.

1. passing floating-point arguments to functions,
2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called routine.

11.27.12.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are never used to
pass floating-point arguments when a function is compiled with the "fpi" or "fpi87" option. However, they
can be used to pass arguments whose type is not floating-point such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be used to pass
arguments to functions.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is a register set. The register set can contain 80x86 registers and/or the string "8087".

Notes:

1. If an empty register set is specified, all arguments, including floating-point arguments, will be
passed on the 80x86 stack.

When the string "8087" appears in a register set, it simply means that floating-point arguments can be
passed in 80x87 floating-point registers if the source file is compiled with the "fpi" or "fpi87" option.
Before discussing argument passing in detail, some general notes on the use of the 80x87 floating-point
registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack pointer is called ST
and is a number between 0 and 7 identifying which 80x87 floating-point register is at the top of the stack.
ST is initially 0. 80x87 instructions reference these registers by specifying a floating-point register number.
This number is then added to the current value of ST. The sum (taken modulo 8) specifies the 80x87

244 Auxiliary Pragmas

32-bit Pragmas

floating-point register to be used. The notation ST(n), where "n" is between 0 and 7, is used to refer to the
position of an 80x87 floating-point register relative to ST.

When a floating-point value is loaded onto the 80x87 floating-point register stack, ST is decremented
(modulo 8), and the value is loaded into ST(0). When a floating-point value is stored and popped from the
80x87 floating-point register stack, ST is incremented (modulo 8) and ST(1) becomes ST(0). The
following illustrates the use of the 80x87 floating-point registers as a stack, assuming that the value of ST is
4 (4 values have been loaded onto the 80x87 floating-point register stack).

+----------------+

0 | 4th from top | ST(4)
+----------------+

1 | 5th from top | ST(5)
+----------------+

2 | 6th from top | ST(6)
+----------------+

3 | 7th from top | ST(7)
+----------------+

ST -> 4 | top of stack | ST(0)
+----------------+

5 | 1st from top | ST(1)
+----------------+

6 | 2nd from top | ST(2)
+----------------+

7 | 3rd from top | ST(3)
+----------------+

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers as a stack. The
initial state of the 80x87 register stack is empty before a program begins execution.

Note: For compatibility with code compiled with version 9.0 and earlier, you can compile with
the "fpr" option. In this case only four of the eight 80x87 registers are used as a stack.
These four registers were used to pass arguments. The other four registers form what was
called the 80x87 cache. The cache was used for local floating-point variables. The state of
the 80x87 registers before a program began execution was as follows.

1. The four 80x87 floating-point registers that form the stack are uninitialized.
2. The four 80x87 floating-point registers that form the 80x87 cache are initialized

with zero.

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and ST(3). ST had
the value 4 as in the above diagram. When a floating-point value was pushed on the stack
(as is the case when passing floating-point arguments), it became ST(0) and the 80x87
cache was comprised of ST(1), ST(2), ST(3) and ST(4). When the 80x87 stack was full,
ST(0), ST(1), ST(2) and ST(3) formed the stack and ST(4), ST(5), ST(6) and ST(7) formed
the 80x87 cache. Version 9.5 and later no longer use this strategy.

The rules for passing arguments are as follows.

1. If the argument is not floating-point, use the procedure described earlier in this chapter.

2. If the argument is floating-point, and a previous argument has been assigned a position on the
80x86 stack (instead of the 80x87 stack), the floating-point argument is also assigned a position
on the 80x86 stack. Otherwise proceed to the next step.

Auxiliary Pragmas 245

32-bit Topics

3. If the string "8087" appears in a register set in the pragma, and if the 80x87 stack is not full, the
floating-point argument is assigned floating-point register ST(0) (the top element of the 80x87
stack). The previous top element (if there was one) is now in ST(1). Since arguments are
pushed on the stack from right to left, the leftmost floating-point argument will be in ST(0).
Otherwise the floating-point argument is assigned a position on the 80x86 stack.

Consider the following example.

#pragma aux myrtn parm [8087];

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77;
j = 77;
myrtn(x, i, y, j);

}

myrtn is an assembly language function that requires four arguments. The first argument of type float (4
bytes), the second argument is of type int (4 bytes), the third argument is of type double (8 bytes) and the
fourth argument is of type long int (4 bytes). These arguments will be passed to myrtn in the following
way.

1. Since "8087" was specified in the register set, the first argument, being of type float, will be
passed in an 80x87 floating-point register.

2. The second argument will be passed on the stack since no 80x86 registers were specified in the
register set.

3. The third argument will also be passed on the stack. Remember the following rule: once an
argument is assigned a position on the stack, all remaining arguments will be assigned a position
on the stack. Note that the above rule holds even though there are some 80x87 floating-point
registers available for passing floating-point arguments.

4. The fourth argument will also be passed on the stack.

Let us change the auxiliary pragma in the above example as follows.

#pragma aux myrtn parm [eax 8087];

The arguments will now be passed to myrtn in the following way.

1. Since "8087" was specified in the register set, the first argument, being of type float will be
passed in an 80x87 floating-point register.

2. The second argument will be passed in register EAX, exhausting the set of available 80x86
registers for argument passing.

3. The third argument, being of type double, will also be passed in an 80x87 floating-point register.

246 Auxiliary Pragmas

32-bit Pragmas

4. The fourth argument will be passed on the stack since no 80x86 registers remain in the register
set.

11.27.12.2 Using the 80x87 to Return Function Values

The following form of the auxiliary pragma can be used to describe a function that returns a floating-point
value in ST(0).

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

11.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use within a
function unless the "fpr" option is used to generate backward compatible code (older Open Watcom
compilers used four registers as a cache). The following form of the auxiliary pragma specifies that the
floating-point registers in the 80x87 cache may be modified by the specified function.

#pragma aux sym modify reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

This instructs Open Watcom C/C++ to save any local variables that are located in the 80x87 cache before
calling the specified routine.

Auxiliary Pragmas 247

32-bit Topics

248 Auxiliary Pragmas

In-line Assembly Language

In-line Assembly Language

250

12 In-line Assembly Language

The chapters entitled "16-bit Pragmas" on page 135 and "32-bit Pragmas" on page 203 briefly describe the
use of the auxiliary pragma to create a sequence of assembly language instructions that can be placed
anywhere executable C/C++ statements can appear in your source code. This chapter is devoted to an
in-depth look at in-line assembly language programming.

The reasons for resorting to in-line assembly code are varied:

• Speed - You may be interested in optimizing a heavily-used section of code.

• Size - You may wish to optimize a module for size by replacing a library function call with a direct
system call.

• Architecture - You may want to access certain features of the Intel x86 architecture that cannot be
done so with C/C++ statements.

There are also some reasons for not resorting to in-line assembly code.

• Portability - The code is not portable to different architectures.

• Optimization - Sometimes an optimizing compiler can do a better job of arranging the instruction
stream so that it is optimal for a particular processor (such as the 486 or Pentium).

12.1 In-line Assembly Language Default Environment
In next table is description of the default in-line assembler environment in dependency on C/C++ compilers
CPU switch for x86 target platform.

Compiler CPU FPU CPU extension

directive directive directives
-------- --------- --------- --------------------------
-0 .8086 .8087
-1 .186 .8087
-2 .286p .287
-3 .386p .387
-4 .486p .387
-5 .586p .387 .K3D+.MMX
-6 .686p .387 .K3D+.MMX+.XMM+.XMM2+.XMM3

This environment can be simply changed by appropriate directives.

Note:

This change is valid only for the block of assembly source code. After this block, default setting is
restored.

In-line Assembly Language Default Environment 251

In-line Assembly Language

12.2 In-line Assembly Language Tutorial
Doing in-line assembly is reasonably straight-forward with Open Watcom C/C++ although care must be
exercised. You can generate a sequence of in-line assembly anywhere in your C/C++ code stream. The
first step is to define the sequence of instructions that you wish to place in-line. The auxiliary pragma is
used to do this. Here is a simple example based on a DOS function call that returns a far pointer to the
Double-Byte Character Set (DBCS) encoding table.

Example:
extern unsigned short far *dbcs_table(void);
#pragma aux dbcs_table = \

"mov ax,6300h" \
"int 21h" \
value [ds si] \
modify [ax];

To set up the DOS call, the AH register must contain the hexadecimal value "63" (63h). A DOS function
call is invoked by interrupt 21h. DOS returns a far pointer in DS:SI to a table of byte pairs in the form
(start of range, end of range). On a non-DBCS system, the first pair will be (0,0). On a Japanese DBCS
system, the first pair will be (81h,9Fh).

With each pragma, we define a corresponding function prototype that explains the behaviour of the
function in terms of C/C++. Essentially, it is a function that does not take any arguments and that returns a
far pointer to a unsigned short item.

The pragma indicates that the result of this "function" is returned in DS:SI (value [ds si]). The pragma also
indicates that the AX register is modified by the sequence of in-line assembly code (modify [ax]).

Having defined our in-line assembly code, let us see how it is used in actual C code.

Example:
#include <stdio.h>

extern unsigned short far *dbcs_table(void);
#pragma aux dbcs_table = \

"mov ax,6300h" \
"int 21h" \
value [ds si] \
modify [ax];

void main()
{

if(*dbcs_table() != 0) {
/*

we are running on a DOS system that
supports double-byte characters

*/
printf("DBCS supported\n");

}
}

Before you attempt to compile and run this example, consider this: The program will not work! At least, it
will not work in most 16-bit memory models. And it doesn’t work at all in 32-bit protected mode using a
DOS extender. What is wrong with it?

252 In-line Assembly Language Tutorial

In-line Assembly Language

We can examine the disassembled code for this program in order to see why it does not always work in
16-bit real-mode applications.

if(*dbcs_table() != 0) {

/*
we are running on a DOS system that
supports double-byte characters

*/
0007 b8 00 63 mov ax,6300H
000a cd 21 int 21H
000c 83 3c 00 cmp word ptr [si],0000H
000f 74 0a je L1

printf("DBCS supported\n");
}

0011 be 00 00 mov si,offset L2
0014 56 push si
0015 e8 00 00 call printf_
0018 83 c4 02 add sp,0002H

}

After the DOS interrupt call, the DS register has been altered and the code generator does nothing to
recover the previous value. In the small memory model, the contents of the DS register never change (and
any code that causes a change to DS must save and restore its value). It is the programmer’s responsibility
to be aware of the restrictions imposed by certain memory models especially with regards to the use of
segmentation registers. So we must make a small change to the pragma.

extern unsigned short far *dbcs_table(void);
#pragma aux dbcs_table = \

"push ds" \
"mov ax,6300h" \
"int 21h" \
"mov di,ds" \
"pop ds" \
value [di si] \
modify [ax];

If we compile and run this example with a 16-bit compiler, it will work properly. We can examine the
disassembled code for this revised program.

if(*dbcs_table() != 0) {

/*
we are running on a DOS system that
supports double-byte characters

*/
0008 1e push ds
0009 b8 00 63 mov ax,6300H
000c cd 21 int 21H
000e 8c df mov di,ds
0010 1f pop ds
0011 8e c7 mov es,di
0013 26 83 3c 00 cmp word ptr es:[si],0000H
0017 74 0a je L1

printf("DBCS supported\n");
}

0019 be 00 00 mov si,offset L2
001c 56 push si
001d e8 00 00 call printf_
0020 83 c4 02 add sp,0002H

If you examine this code, you can see that the DS register is saved and restored by the in-line assembly
code. The code generator, having been informed that the far pointer is returned in (DI:SI), loads up the ES
register from DI in order to reference the far data correctly.

In-line Assembly Language Tutorial 253

In-line Assembly Language

That takes care of the 16-bit real-mode case. What about 32-bit protected mode? When using a DOS
extender, you must examine the accompanying documentation to see if the system call that you wish to
make is supported by the DOS extender. One of the reasons that this particular DOS call is not so clear-cut
is that it returns a 16-bit real-mode segment:offset pointer. A real-mode pointer must be converted by the
DOS extender into a protected-mode pointer in order to make it useful. As it turns out, neither the
Tenberry Software DOS/4G(W) nor Phar Lap DOS extenders support this particular DOS call (although
others may). The issues with each DOS extender are complex enough that the relative merits of using
in-line assembly code are not worth it. We present an excerpt from the final solution to this problem.

Example:
#ifndef __386__

extern unsigned short far *dbcs_table(void);
#pragma aux dbcs_table = \

"push ds" \
"mov ax,6300h" \
"int 21h" \
"mov di,ds" \
"pop ds" \
value [di si] \
modify [ax];

#else

unsigned short far * dbcs_table(void)
{

union REGPACK regs;
static short dbcs_dummy = 0;

memset(®s, 0, sizeof(regs));
if(_IsPharLap()) {

PHARLAP_block pblock;

memset(&pblock, 0, sizeof(pblock));
pblock.real_eax = 0x6300; /* get DBCS vector table */
pblock.int_num = 0x21; /* DOS call */
regs.x.eax = 0x2511; /* issue real-mode interrupt */
regs.x.edx = FP_OFF(&pblock); /* DS:EDX -> parameter block */
regs.w.ds = FP_SEG(&pblock);
intr(0x21, ®s);
return(firstmeg(pblock.real_ds, regs.w.si));

} else if(_IsDOS4G()) {
DPMI_block dblock;

memset(&dblock, 0, sizeof(dblock));
dblock.eax = 0x6300; /* get DBCS vector table */
regs.w.ax = 0x300; /* DPMI Simulate R-M intr */
regs.h.bl = 0x21; /* DOS call */
regs.h.bh = 0; /* flags */
regs.w.cx = 0; /* # bytes from stack */
regs.x.edi = FP_OFF(&dblock);
regs.x.es = FP_SEG(&dblock);
intr(0x31, ®s);
return(firstmeg(dblock.ds, dblock.esi));

} else {
return(&dbcs_dummy);

}
}

#endif

The 16-bit version will use in-line assembly code but the 32-bit version will use a C function that has been
crafted to work with both Tenberry Software DOS/4G(W) and Phar Lap DOS extenders. The firstmeg
function used in the example is shown below.

254 In-line Assembly Language Tutorial

In-line Assembly Language

#define REAL_SEGMENT 0x34

void far *firstmeg(unsigned segment, unsigned offset)
{

void far *meg1;

if(_IsDOS4G()) {
meg1 = MK_FP(FP_SEG(&meg1), (segment << 4) + offset);

} else {
meg1 = MK_FP(REAL_SEGMENT, (segment << 4) + offset);

}
return(meg1);

}

We have taken a brief look at two features of the auxiliary pragma, the "modify" and "value" attributes.

The "modify" attribute describes those registers that are modified by the execution of the sequence of
in-line code. You usually have two choices here; you can save/restore registers that are affected by the
code sequence in which case they need not appear in the modify list or you can let the code generator
handle the fact that the registers are modified by the code sequence. When you invoke a system function
(such as a DOS or BIOS call), you should be careful about any side effects that the call has on registers. If
a register is modified by a call and you have not listed it in the modify list or saved/restored it, this can have
a disastrous affect on the rest of the code in the function where you are including the in-line code.

The "value" attribute describes the register or registers in which a value is returned (we use the term
"returned", not in the sense that a function returns a value, but in the sense that a result is available after
execution of the code sequence).

This leads the discussion into the third feature of the auxiliary pragma, the feature that allows us to place
the results of C expressions into specific registers as part of the "setup" for the sequence of in-line code. To
illustrate this, let us look at another example.

Example:
extern void BIOSSetCurPos(unsigned short __rowcol,

unsigned char __page);
#pragma aux BIOSSetCurPos = \

"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
parm [dx] [bh] \
modify [ah];

The "parm" attribute specifies the list of registers into which values are to be placed as part of the prologue
to the in-line code sequence. In the above example, the "set cursor position" function requires three pieces
of information. It requires that the cursor row value be placed in the DH register, that the cursor column
value be placed in the DL register, and that the screen page number be placed in the BH register. In this
example, we have decided to combine the row and column information into a single "argument" to the
function. Note that the function prototype for BIOSSetCurPos is important. It describes the types and
number of arguments to be set up for the in-line code. It also describes the type of the return value (in this
case there is none).

Once again, having defined our in-line assembly code, let us see how it is used in actual C code.

In-line Assembly Language Tutorial 255

In-line Assembly Language

Example:
#include <stdio.h>

extern void BIOSSetCurPos(unsigned short __rowcol,
unsigned char __page);

#pragma aux BIOSSetCurPos = \
"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
parm [dx] [bh] \
modify [ah];

void main()
{

BIOSSetCurPos((5 << 8) | 20, 0);
printf("Hello world\n");

}

To see how the code generator set up the register values for the in-line code, let us take a look at the
disassembled code.

BIOSSetCurPos((5 << 8) | 20, 0);

0008 ba 14 05 mov dx,0514H
000b 30 ff xor bh,bh
000d 55 push bp
000e b4 02 mov ah,02H
0010 cd 10 int 10H
0012 5d pop bp

As we expected, the result of the expression for the row and column is placed in the DX register and the
page number is placed in the BH register. The remaining instructions are our in-line code sequence.

Although our examples have been simple, you should be able to generalize them to your situation.

To review, the "parm", "value" and "modify" attributes are used to:

1. convey information to the code generator about the way data values are to be placed in registers
in preparation for the code burst (parm),

2. convey information to the code generator about the result, if any, from the code burst (value),
and

3. convey information to the code generator about any side effects to the registers after the code
burst has executed (modify). It is important to let the code generator know all of the side effects
on registers when the in-line code is executed; otherwise it assumes that all registers, other than
those used for parameters, are preserved. In our examples, we chose to push/pop some of the
registers that are modified by the code burst.

256 In-line Assembly Language Tutorial

In-line Assembly Language

12.3 Labels in In-line Assembly Code
Labels can be used in in-line assembly code. Here is an example.

Example:
extern void _disable_video(unsigned);
#pragma aux _disable_video = \
"again: in al,dx" \

"test al,8" \
"jz again" \
"mov dx,03c0h" \
"mov al,11h" \
"out dx,al" \
"mov al,0" \
"out dx,al" \
parm [dx] \
modify [al dx];

12.4 Variables in In-line Assembly Code
To finish our discussion, we provide examples that illustrate the use of variables in the in-line assembly
code. The following example illustrates the use of static variable references in the auxiliary pragma.

Example:
#include <stdio.h>

static short _rowcol;
static unsigned char _page;

extern void BIOSSetCurPos(void);
#pragma aux BIOSSetCurPos = \

"mov dx,_rowcol" \
"mov bh,_page" \
"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
modify [ah bx dx];

void main()
{

_rowcol = (5 << 8) | 20;
_page = 0;
BIOSSetCurPos();
printf("Hello world\n");

}

The only rule to follow here is that the auxiliary pragma must be defined after the variables are defined.
The in-line assembler is passed information regarding the sizes of variables so they must be defined first.

If we look at a fragment of the disassembled code, we can see the result.

Variables in In-line Assembly Code 257

In-line Assembly Language

_rowcol = (5 << 8) | 20;

0008 c7 06 00 00 14 05 mov word ptr __rowcol,0514H

_page = 0;
000e c6 06 00 00 00 mov byte ptr __page,00H

BIOSSetCurPos();
0013 8b 16 00 00 mov dx,__rowcol
0017 8a 3e 00 00 mov bh,__page
001b 55 push bp
001c b4 02 mov ah,02H
001e cd 10 int 10H
0020 5d pop bp

The following example illustrates the use of automatic variable references in the auxiliary pragma. Again,
the auxiliary pragma must be defined after the variables are defined so the pragma is placed in-line with the
function.

Example:
#include <stdio.h>

void main()
{

short _rowcol;
unsigned char _page;

extern void BIOSSetCurPos(void);
pragma aux BIOSSetCurPos = \

"mov dx,_rowcol" \
"mov bh,_page" \
"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
modify [ah bx dx];

_rowcol = (5 << 8) | 20;
_page = 0;
BIOSSetCurPos();
printf("Hello world\n");

}

If we look at a fragment of the disassembled code, we can see the result.

_rowcol = (5 << 8) | 20;
000e c7 46 fc 14 05 mov word ptr -4H[bp],0514H

_page = 0;
0013 c6 46 fe 00 mov byte ptr -2H[bp],00H

BIOSSetCurPos();
0017 8b 96 fc ff mov dx,-4H[bp]
001b 8a be fe ff mov bh,-2H[bp]
001f 55 push bp
0020 b4 02 mov ah,02H
0022 cd 10 int 10H
0024 5d pop bp

You should try to avoid references to automatic variables as illustrated by this last example. Referencing
automatic variables in this manner causes them to be marked as volatile and the optimizer will not be able
to do a good job of optimizing references to these variables.

258 Variables in In-line Assembly Code

In-line Assembly Language

12.5 In-line Assembly Language using _asm
There is an alternative to Open Watcom’s auxiliary pragma method for creating in-line assembly code.
You can use one of the _asm or __asm keywords to imbed assembly code into the generated code. The
following is a revised example of the cursor positioning example introduced above.

Example:
#include <stdio.h>

void main()
{

unsigned short _rowcol;
unsigned char _page;

_rowcol = (5 << 8) | 20;
_page = 0;
_asm {

mov dx,_rowcol
mov bh,_page
push bp
mov ah,2
int 10h
pop bp

};
printf("Hello world\n");

}

The assembly language sequence can reference program variables to retrieve or store results. There are a
few incompatibilities between Microsoft and Open Watcom implementation of this directive.

__LOCAL_SIZE is not supported by Open Watcom C/C++. This is illustrated in the following example.

Example:
void main()
{

int i;
int j;

_asm {
push bp
mov bp,sp
sub sp,__LOCAL_SIZE

};
}

structure references are not supported by Open Watcom C/C++. This is illustrated in the following
example.

In-line Assembly Language using _asm 259

In-line Assembly Language

Example:
#include <stdio.h>

struct rowcol {
unsigned char col;
unsigned char row;

};

void main()
{

struct rowcol _pos;
unsigned char _page;

_pos.row = 5;
_pos.col = 20;
_page = 0;
_asm {

mov dl,_pos.col
mov dh,_pos.row
mov bh,_page
push bp
mov ah,2
int 10h
pop bp

};
printf("Hello world\n");

}

12.6 In-line Assembly Directives and Opcodes
It is not the intention of this chapter to describe assembly-language programming in any detail. You should
consult a book that deals with this topic. However, we present a list of the directives, opcodes and register
names that are recognized by the assembler built into the compiler’s auxiliary pragma processor.

.186 .286 .286c .286p

.287 .386 .386p .387

.486 .486p .586 .586p

.686 .686p .8086 .8087
aaa aad aam aas
adc add addpd addps
addsd addss addsubpd addsubps
ah al and andnpd
andnps andpd andps arpl
ax bh bl bound
bp bsf bsr bswap
bt btc btr bts
bx byte c call
callf cbw cdq ch
cl clc cld clflush
cli clts cmc cmova
cmovae cmovb cmovbe cmovc
cmove cmovg cmovge cmovl
cmovle cmovna cmovnae cmovnb
cmovnbe cmovnc cmovne cmovng
cmovnge cmovnl cmovnle cmovno
cmovnp cmovns cmovnz cmovo

260 In-line Assembly Directives and Opcodes

In-line Assembly Language

cmovp cmovpe cmovpo cmovs
cmovz cmp cmpeqpd cmpeqps
cmpeqsd cmpeqss cmplepd cmpleps
cmplesd cmpless cmpltpd cmpltps
cmpltsd cmpltss cmpneqpd cmpneqps
cmpneqsd cmpneqss cmpnlepd cmpnleps
cmpnlesd cmpnless cmpnltpd cmpnltps
cmpnltsd cmpnltss cmpordpd cmpordps
cmpordsd cmpordss cmppd cmpps
cmps cmpsb cmpsd cmpss
cmpsw cmpunordpd cmpunordps cmpunordsd
cmpunordss cmpxchg cmpxchg8b comisd
comiss cpuid cr0 cr2
cr3 cr4 cs cvtdq2pd
cvtdq2ps cvtpd2dq cvtpd2pi cvtpd2ps
cvtpi2pd cvtpi2ps cvtps2dq cvtps2pd
cvtps2pi cvtsd2si cvtsd2ss cvtsi2sd
cvtsi2ss cvtss2sd cvtss2si cvttpd2dq
cvttpd2pi cvttps2dq cvttps2pi cvttsd2si
cvttss2si cwd cwde cx
daa das db dd
dec df dh di
div divpd divps divsd
divss dl dp dq
dr0 dr1 dr2 dr3
dr6 dr7 ds dt
dup dw dword dx
eax ebp ebx ecx
edi edx emms enter
es esi esp f2xm1
fabs fadd faddp far
fbld fbstp fchs fclex
fcmovb fcmovbe fcmove fcmovnb
fcmovnbe fcmovne fcmovnu fcmovu
fcom fcomi fcomip fcomp
fcompp fcos fdecstp fdisi
fdiv fdivp fdivr fdivrp
femms feni ffree fiadd
ficom ficomp fidiv fidivr
fild fimul fincstp finit
fist fistp fisttp fisub
fisubr flat fld fld1
fldcw fldenv fldenvd fldenvw
fldl2e fldl2t fldlg2 fldln2
fldpi fldz fmul fmulp
fnclex fndisi fneni fninit
fnop fnrstor fnrstord fnrstorw
fnsave fnsaved fnsavew fnstcw
fnstenv fnstenvd fnstenvw fnstsw
fpatan fprem fprem1 fptan
frndint frstor frstord frstorw
fs fsave fsaved fsavew
fscale fsetpm fsin fsincos
fsqrt fst fstcw fstenv
fstenvd fstenvw fstp fstsw
fsub fsubp fsubr fsubrp
ftst fucom fucomi fucomip
fucomp fucompp fwait fword
fxam fxch fxrstor fxsave

In-line Assembly Directives and Opcodes 261

In-line Assembly Language

fxtract fyl2x fyl2xp1 gs
haddpd haddps hlt hsubpd
hsubps idiv imul in
inc ins insb insd
insw int into invd
invlpg iret iretd iretdf
iretf ja jae jb
jbe jc jcxz je
jecxz jg jge jl
jle jmp jmpf jna
jnae jnb jnbe jnc
jne jng jnge jnl
jnle jno jnp jns
jnz jo jp jpe
jpo js jz .k3d
lahf lar lddqu ldmxcsr
lds lea leave les
lfence lfs lgdt lgs
lidt lldt lmsw lock
lods lodsb lodsd lodsw
loop loopd loope looped
loopew loopne loopned loopnew
loopnz loopnzd loopnzw loopw
loopz loopzd loopzw lsl
lss ltr maskmovdqu maskmovq
maxpd maxps maxsd maxss
mfence minpd minps minsd
minss mm0 mm1 mm2
mm3 mm4 mm5 mm6
mm7 .mmx monitor mov
movapd movaps movd movddup
movdq2q movdqa movdqu movhlps
movhpd movhps movlhps movlpd
movlps movmskpd movmskps movntdq
movnti movntpd movntps movntq
movq movq2dq movs movsb
movsd movshdup movsldup movss
movsw movsx movupd movups
movzx mul mulpd mulps
mulsd mulss mwait near
neg .no87 nop not
offset or orpd orps
out outs outsb outsd
outsw oword packssdw packsswb
packuswb paddb paddd paddq
paddsb paddsw paddusb paddusw
paddw pand pandn pause
pavgb pavgusb pavgw pcmpeqb
pcmpeqd pcmpeqw pcmpgtb pcmpgtd
pcmpgtw pextrw pf2id pf2iw
pfacc pfadd pfcmpeq pfcmpge
pfcmpgt pfmax pfmin pfmul
pfnacc pfpnacc pfrcp pfrcpit1
pfrcpit2 pfrsqit1 pfrsqrt pfsub
pfsubr pi2fd pi2fw pinsrw
pmaddwd pmaxsw pmaxub pminsw
pminub pmovmskb pmulhrw pmulhuw
pmulhw pmullw pmuludq pop
popa popad popf popfd

262 In-line Assembly Directives and Opcodes

In-line Assembly Language

por prefetch prefetchnta prefetcht0
prefetcht1 prefetcht2 prefetchw psadbw
pshufd pshufhw pshuflw pshufw
pslld pslldq psllq psllw
psrad psraw psrld psrldq
psrlq psrlw psubb psubd
psubq psubsb psubsw psubusb
psubusw psubw pswapd ptr
punpckhbw punpckhdq punpckhqdq punpckhwd
punpcklbw punpckldq punpcklqdq punpcklwd
push pusha pushad pushd
pushf pushfd pushw pword
pxor qword rcl rcpps
rcpss rcr rdmsr rdpmc
rdtsc rep repe repne
repnz rept repz ret
retd retf retfd retn
rol ror rsm rsqrtps
rsqrtss sahf sal sar
sbb scas scasb scasd
scasw seg seta setae
setb setbe setc sete
setg setge setl setle
setna setnae setnb setnbe
setnc setne setng setnge
setnl setnle setno setnp
setns setnz seto setp
setpe setpo sets setz
sfence sgdt shl shld
short shr shrd shufpd
shufps si sidt sldt
smsw sp sqrtpd sqrtps
sqrtsd sqrtss ss st
stc std stdcall sti
stmxcsr stos stosb stosd
stosw str sub subpd
subps subsd subss syscall
sysenter sysexit tbyte test
tr3 tr4 tr5 tr6
tr7 ucomisd ucomiss unpckhpd
unpckhps unpcklpd unpcklps verr
verw wait wbinvd word
wrmsr xadd xchg xlat
xlatb .xmm xmm0 xmm1
.xmm2 xmm2 .xmm3 xmm3
xmm4 xmm5 xmm6 xmm7
xor xorpd xorps

A separate assembler is also included with this product and is described in the Open Watcom C/C++ Tools
User’s Guide

In-line Assembly Directives and Opcodes 263

In-line Assembly Language

264 In-line Assembly Directives and Opcodes

Structured Exception Handling in C

Structured Exception Handling in C

266

13 Structured Exception Handling

Microsoft-style Structured Exception Handling (SEH) is supported by the Open Watcom C compiler only.
MS SEH is supported under the Win32, Win32s and OS/2 platforms. You should not confuse SEH with
C++ exception handling. The Open Watcom C++ compiler supports the standard C++ syntax for exception
handling.

The following sections introduce some of the aspects of SEH. For a good description of SEH, please refer
to Advanced Windows NT by Jeffrey Richter (Microsoft Press, 1994). You may also wish to read the
article "Clearer, More Comprehensive Error Processing with Win32 Structured Exception Handling" by
Kevin Goodman in the January, 1994 issue of Microsoft Systems Journal.

13.1 Termination Handlers
We begin our look at SEH with a simple model. In this model, there are two blocks of code — the
"guarded" block and the "termination" block. The termination code is guaranteed to be executed regardless
of how the "guarded" block of code is exited (including execution of any "return" statement).

_try {

/* guarded code */
.
.
.

}
_finally {

/* termination handler */
.
.
.

}

The _finally block of code is guaranteed to be executed no matter how the guarded block is exited (break,
continue, return, goto, or longjmp()). Exceptions to this are calls to abort(), exit() or _exit() which
terminate the execution of the process.

There can be no intervening code between try and finally blocks.

The following is a contrived example of the use of _try and _finally.

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

int docopy(char *in, char *out)
{

FILE *in_file = NULL;
FILE *out_file = NULL;
char buffer[256];

Termination Handlers 267

Structured Exception Handling in C

_try {

in_file = fopen(in, "r");
if(in_file == NULL) return(EXIT_FAILURE);
out_file = fopen(out, "w");
if(out_file == NULL) return(EXIT_FAILURE);

while(fgets((char *)buffer, 255, in_file) != NULL) {
fputs((char *)buffer, out_file);

}
}
_finally {

if(in_file != NULL) {
printf("Closing input file\n");
fclose(in_file);

}
if(out_file != NULL) {

printf("Closing output file\n");
fclose(out_file);

}
printf("End of processing\n");

}
return(EXIT_SUCCESS);

}

void main(int argc, char **argv)
{

if(argc < 3) {
printf("Usage: mv [in_filename] [out_filename]\n");
exit(EXIT_FAILURE);

}
exit(docopy(argv[1], argv[2]));

}

The try block ignores the messy details of what to do when either one of the input or output files cannot be
opened. It simply tests whether a file can be opened and quits if it cannot. The finally block ensures that
the files are closed if they were opened, releasing the resources associated with open files. This simple
example could have been written in C without the use of SEH.

There are two ways to enter the finally block. One way is to exit the try block using a statement like
return. The other way is to fall through the end of the try block and into the finally block (the normal
execution flow for this program). Any code following the finally block is only executed in the second case.
You can think of the finally block as a special function that is invoked whenever an exit (other than falling
out the bottom) is attempted from a corresponding try block.

More formally stated, a local unwind occurs when the system executes the contents of a finally block
because of the premature exit of code in a try block.

Note: Kevin Goodman describes "unwinds" in his article. "There are two types of unwinds: global and
local. A global unwind occurs when there are nested functions and an exception takes place. A local
unwind takes place when there are multiple handlers within one function. Unwinding means that the
stack is going to be clean by the time your handler’s code gets executed."

The try/finally structure is a rejection mechanism which is useful when a set of statements is to be
conditionally chosen for execution, but not all of the conditions required to make the selection are available

268 Termination Handlers

Structured Exception Handling

beforehand. It is an extension to the C language. You start out with the assumption that a certain task can
be accomplished. You then introduce statements into the code that test your hypothesis. The try block
consists of the code that you assume, under normal conditions, will succeed. Statements like if ... return
can be used as tests. Execution begins with the statements in the try block. If a condition is detected which
indicates that the assumption of a normal state of affairs is wrong, a return statement may be executed to
cause control to be passed to the statements in the finally block. If the try block completes execution
without executing a return statement (i.e., all statements are executed up to the final brace), then control is
passed to the first statement following the try block (i.e., the first statement in the finally block).

In the following example, two sets of codes and letters are read in and some simple sequence checking is
performed. If a sequence error is detected, an error message is printed and processing terminates; otherwise
the numbers are processed and another pair of numbers is read.

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

void main(int argc, char **argv)
{

read_file(fopen(argv[1], "r"));
}

void read_file(FILE *input)
{

int line = 0;
char buffer[256];
char icode;
char x, y;

if(input == NULL) {
printf("Unable to open file\n");
return;

}

_try {
for(;;) {

line++;
if(fgets(buffer, 255, input) == NULL) break;
icode = buffer[0];
if(icode != ’1’) return;
x = buffer[1];
line++;
if(fgets(buffer, 255, input) == NULL) return;
icode = buffer[0];
if(icode != ’2’) return;
y = buffer[1];
process(x, y);

}
printf("Processing complete\n");
fclose(input);
input = NULL;

}

Termination Handlers 269

Structured Exception Handling in C

_finally {

if(input != NULL) {
printf("Invalid sequence: line = %d\n", line);
fclose(input);

}
}

}

void process(char x, char y)
{

printf("processing pair %c,%c\n", x, y);
}

The above example attempts to read a code and letter. If an end of file occurs then the loop is terminated
by the break statement.

If the code is not 1 then we did not get what we expected and an error condition has arisen. Control is
passed to the first statement in the finally block by the return statement. An error message is printed and
the open file is closed.

If the code is 1 then a second code and number are read. If an end of file occurs then we are missing a
complete set of data and an error condition has arisen. Control is passed to the first statement in the finally
block by the return statement. An error message is printed and the open file is closed.

Similarly if the expected code is not 2 an error condition has arisen. The same error handling procedure
occurs.

If the second code is 2, the values of variables x and y are processed (printed). The for loop is repeated
again.

The above example illustrates the point that all the information required to test an assumption (that the file
contains valid pairs of data) is not available from the start. We write our code with the assumption that the
data values are correct (our hypothesis) and then test the assumption at various points in the algorithm. If
any of the tests fail, we reject the hypothesis.

Consider the following example. What values are printed by the program?

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

void main(int argc, char **argv)
{

int ctr = 0;

while(ctr < 10) {
printf("%d\n", ctr);
_try {

if(ctr == 2) continue;
if(ctr == 3) break;

}
_finally {

ctr++;
}

270 Termination Handlers

Structured Exception Handling

ctr++;

}
printf("%d\n", ctr);

}

At the top of the loop, the value of ctr is 0. The next time we reach the top of the loop, the value of ctr
is 2 (having been incremented twice, once by the finally block and once at the bottom of the loop). When
ctr has the value 2, the continue statement will cause the finally block to be executed (resulting in ctr
being incremented to 3), after which execution continues at the top of the while loop. When ctr has the
value 3, the break statement will cause the finally block to be executed (resulting in ctr being incremented
to 4), after which execution continues after the while loop. Thus the output is:

0
2
3
4

The point of this exercise was that after the finally block is executed, the normal flow of execution is
resumed at the break, continue, return, etc. statement and the normal behaviour for that statement occurs.
It is as if the compiler had inserted a function call just before the statement that exits the try block.

_try {

if(ctr == 2) invoke_finally_block() continue;
if(ctr == 3) invoke_finally_block() break;

}

There is some overhead associated with local unwinds such as that incurred by the use of break, continue,
return, etc. To avoid this overhead, a new transfer keyword called _leave can be used. The use of this
keyword causes a jump to the end of the try block. Consider the following modified version of an earlier
example.

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

void main(int argc, char **argv)
{

read_file(fopen(argv[1], "r"));
}

void read_file(FILE *input)
{

int line = 0;
char buffer[256];
char icode;
char x, y;

if(input == NULL) {
printf("Unable to open file\n");
return;

}

Termination Handlers 271

Structured Exception Handling in C

_try {

for(;;) {
line++;
if(fgets(buffer, 255, input) == NULL) break;
icode = buffer[0];
if(icode != ’1’) _leave;
x = buffer[1];
line++;
if(fgets(buffer, 255, input) == NULL) _leave;
icode = buffer[0];
if(icode != ’2’) _leave;
y = buffer[1];
process(x, y);

}
printf("Processing complete\n");
fclose(input);
input = NULL;

}

_finally {
if(input != NULL) {

printf("Invalid sequence: line = %d\n", line);
fclose(input);

}
}

}

void process(char x, char y)
{

printf("processing pair %c,%c\n", x, y);
}

There are two ways to enter the finally block. One way is caused by unwinds — either local (by the use of
break, continue, return, or goto) or global (more on global unwinds later). The other way is through the
normal flow of execution (i.e., simply by falling through the bottom of the try block). There is a function
called AbnormalTermination that can be used to determine which of these two methods was used to enter
the finally block. If the function returns TRUE (1) then the finally block was entered using the first method;
if the function returns FALSE (0) then the finally block was entered using the second method. This
information may be useful in some circumstances. For example, you may wish to avoid executing any code
in a finally block if the block was entered through the normal flow of execution.

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

void main(int argc, char **argv)
{

read_file(fopen(argv[1], "r"));
}

272 Termination Handlers

Structured Exception Handling

void read_file(FILE *input)
{

int line = 0;
char buffer[256];
char icode;
char x, y;

if(input == NULL) {
printf("Unable to open file\n");
return;

}

_try {
for(;;) {

line++;
if(fgets(buffer, 255, input) == NULL) break;
icode = buffer[0];
if(icode != ’1’) return;
x = buffer[1];
line++;
if(fgets(buffer, 255, input) == NULL) return;
icode = buffer[0];
if(icode != ’2’) return;
y = buffer[1];
process(x, y);

}
printf("Processing complete\n");

}

_finally {
if(AbnormalTermination())

printf("Invalid sequence: line = %d\n", line);
fclose(input);

}
}

void process(char x, char y)
{

printf("processing pair %c,%c\n", x, y);
}

In the above example, we reverted back to the use of the return statement since the execution of a _leave
statement is considered part of the normal flow of execution and is not considered an "abnormal
termination" of the try block. Note that since it is not possible to determine whether the finally block is
executing as the result of a local or global unwind, it may not be appropriate to use the
AbnormalTermination function as a way to determine what has gone on. However, in our simple example,
we expect that nothing could go wrong in the "processing" routine.

Termination Handlers 273

Structured Exception Handling in C

13.2 Exception Filters and Exception Handlers
We would all like to create flawless software but situations arise for which we did not plan. An event that
we did not expect which causes the software to cease to function properly is called an exception. The
computer can generate a hardware exception when the software attempts to execute an illegal instruction.
We can force this quite easily in C by dereferencing a NULL pointer as shown in the following sample
fragment of code.

Example:
char *nullp = NULL;

*nullp = ’\1’;

We can also generate software exceptions from software by calling a special function for this purpose. We
will look at software exceptions in more detail later on.

Given that exceptions are generally very difficult to avoid in large software projects, we can acknowledge
that they are a fact of life and prepare for them. A mechanism similar to try/finally has been devised that
makes it possible to gain control when an exception occurs and to execute procedures to handle the
situation.

The exception handling mechanism involves the pairing up of a _try block with an _except block. This is
illustrated in the following example.

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

void main(int argc, char **argv)
{

char *nullp = NULL;

printf("Attempting illegal memory reference.\n");
_try {

*nullp = ’\1’;
}
_except (EXCEPTION_EXECUTE_HANDLER) {

printf("Oh no! We had an exception!\n");
}
printf("We recovered fine...\n");

}

In this example, any exception that occurs while executing "inside" the try block will cause the except block
to execute. Unlike the finally block, execution of the except block occurs only when an exception is
generated and only when the expression after the _except keyword evaluates to
EXCEPTION_EXECUTE_HANDLER. The expression can be quite complex and can involve the execution
of a function that returns one of the permissible values. The expression is called the exception "filter" since
it determines whether or not the exception is to be handled by the except block. The permissible result
values for the exception filer are:

274 Exception Filters and Exception Handlers

Structured Exception Handling

EXCEPTION_EXECUTE_HANDLER
meaning "I will handle the exception".

EXCEPTION_CONTINUE_EXECUTION
meaning "I want to resume execution at the point where the exception was generated".

EXCEPTION_CONTINUE_SEARCH
meaning "I do not want to handle the exception so continue looking down the try/except
chain until you find an exception handler that does want to handle the exception".

13.3 Resuming Execution After an Exception
Why would you want to resume execution of the instruction that caused the exception? Since the exception
filter can involve a function call, that function can attempt to correct the problem. For example, if it is
determined that the exception has occurred because of the NULL pointer dereference, the function could
modify the pointer so that it is no longer NULL.

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

char *NullP = NULL;

int filter(void)
{

if(NullP == NULL) {
NullP = malloc(20);
return(EXCEPTION_CONTINUE_EXECUTION)

}
return(EXCEPTION_EXECUTE_HANDLER)

}

void main(int argc, char **argv)
{

printf("Attempting illegal memory reference.\n");
_try {

*NullP = ’\1’;
}

_except (filter()) {

printf("Oh no! We had an exception!\n");
}
printf("We recovered fine...\n");

}

Unfortunately, this is does not solve the problem. Understanding why it does not involves looking at the
sequence of computer instructions that is generated for the expression in question.

*NullP = ’\1’;

mov eax,dword ptr _NullP
mov byte ptr [eax],01H

Resuming Execution After an Exception 275

Structured Exception Handling in C

The exception is caused by the second instruction which contains a pointer to the referenced memory
location (i.e., 0) in register EAX. This is the instruction that will be repeated when the filter returns
EXCEPTION_CONTINUE_EXECUTION. Since EAX did not get changed by our fix, the exception will
reoccur. Fortunately, NullP is changed and this prevents our program from looping forever. The moral
here is that there are very few instances where you can correct "on the fly" a problem that is causing an
exception to occur. Certainly, any attempt to do so must involve a careful inspection of the computer
instruction sequence that is generated by the compiler (and this sequence usually varies with the selection
of compiler optimization options). The best solution is to add some more code to detect the problem before
the exception occurs.

13.4 Mixing and Matching _try/_finally and _try/_except
Where things really get interesting is in the interaction between try/finally blocks and try/except blocks.
These blocks can be nested within each other. In an earlier part of the discussion, we talked about global
unwinds and how they can be caused by exceptions being generated in nested function calls. All of this
should become clear after studying the following example.

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

void func_level4(void)
{

char *nullp = NULL;

printf("Attempting illegal memory reference\n");
_try {

*nullp = ’\1’;
}
_finally {

if(AbnormalTermination())
printf("Unwind in func_level4\n");

}
printf("Normal return from func_level4\n");

}
void func_level3(void)
{

_try {
func_level4();

}
_finally {

if(AbnormalTermination())
printf("Unwind in func_level3\n");

}
printf("Normal return from func_level3\n");

}
void func_level2(void)
{

_try {
_try {

func_level3();
}
_except (EXCEPTION_CONTINUE_SEARCH) {

printf("Exception never handled in func_level2\n");
}

}
_finally {

if(AbnormalTermination())
printf("Unwind in func_level2\n");

}
printf("Normal return from func_level2\n");

}

276 Mixing and Matching _try/_finally and _try/_except

Structured Exception Handling

void func_level1(void)
{

_try {
func_level2();

}
_finally {

if(AbnormalTermination())
printf("Unwind in func_level1\n");

}
printf("Normal return from func_level1\n");

}
void func_level0(void)
{

_try {
_try {

func_level1();
}
_except (EXCEPTION_EXECUTE_HANDLER) {

printf("Exception handled in func_level0\n");
}

}
_finally {

if(AbnormalTermination())
printf("Unwind in func_level0\n");

}
printf("Normal return from func_level0\n");

}
void main(int argc, char **argv)
{

_try {
_try {

func_level0();
}
_except (EXCEPTION_EXECUTE_HANDLER) {

printf("Exception handled in main\n");
}

}
_finally {

if(AbnormalTermination())
printf("Unwind in main\n");

}
printf("Normal return from main\n");

}

In this example,

1. main calls func_level0

2. func_level0 calls func_level1

3. func_level1 calls func_level2

4. func_level2 calls func_level3

5. func_level3 calls func_level4

It is in func_level4 where the exception occurs. The run-time system traps the exception and performs
a search of the active try blocks looking for one that is paired up with an except block.

When it finds one, the filter is executed and, if the result is EXCEPTION_EXECUTE_HANDLER, then the
except block is executed after performing a global unwind.

If the result is EXCEPTION_CONTINUE_EXECUTION, the run-time system resumes execution at the
instruction that caused the exception.

Mixing and Matching _try/_finally and _try/_except 277

Structured Exception Handling in C

If the result is EXCEPTION_CONTINUE_SEARCH, the run-time system continues its search for an except
block with a filter that returns one of the other possible values. If it does not find any exception handler
that is prepared to handle the exception, the application will be terminated with the appropriate exception
notification.

Let us look at the result of executing the example program. The following messages are printed.

Attempting illegal memory reference
Unwind in func_level4
Unwind in func_level3
Unwind in func_level2
Unwind in func_level1
Exception handled in func_level0
Normal return from func_level0
Normal return from main

The run-time system searched down the try/except chain until it got to func_level0 which had an
except filter that evaluated to EXCEPTION_EXECUTE_HANDLER. It then performed a global unwind in
which the try/finally blocks of func_level4, func_level3, func_level2, and func_level1
were executed. After this, the exception handler in func_level0 did its thing and execution resumed in
func_level0 which returned back to main which returned to the run-time system for normal program
termination. Note the use of the built-in AbnormalTermination function in the finally blocks of each
function.

This sequence of events permits each function to do any cleaning up that it deems necessary before it is
wiped off the execution stack.

13.5 Refining Exception Handling
The decision to handle an exception must be weighed carefully. It is not necessarily a desirable thing for an
exception handler to handle all exceptions. In the previous example, the expression in the exception filter
in func_level0 always evaluates to EXCEPTION_EXECUTE_HANDLER which means it will snag
every exception that comes its way. There may be other exception handlers further on down the chain that
are better equipped to handle certain types of exceptions. There is a way to determine the exact type of
exception using the built-in GetExceptionCode() function. It may be called only from within the
exception handler filter expression or within the exception handler block. Here is a description of the
possible return values from the GetExceptionCode() function.

Value Meaning

EXCEPTION_ACCESS_VIOLATION
The thread tried to read from or write to a virtual address for which it does not
have the appropriate access.

EXCEPTION_BREAKPOINT
A breakpoint was encountered.

EXCEPTION_DATATYPE_MISALIGNMENT
The thread tried to read or write data that is misaligned on hardware that does
not provide alignment. For example, 16-bit values must be aligned on 2-byte
boundaries; 32-bit values on 4-byte boundaries, and so on.

278 Refining Exception Handling

Structured Exception Handling

EXCEPTION_SINGLE_STEP
A trace trap or other single-instruction mechanism signaled that one instruction
has been executed.

EXCEPTION_ARRAY_BOUNDS_EXCEEDED
The thread tried to access an array element that is out of bounds and the
underlying hardware supports bounds checking.

EXCEPTION_FLT_DENORMAL_OPERAND
One of the operands in a floating-point operation is denormal. A denormal value
is one that is too small to represent as a standard floating-point value.

EXCEPTION_FLT_DIVIDE_BY_ZERO
The thread tried to divide a floating-point value by a floating-point divisor of
zero.

EXCEPTION_FLT_INEXACT_RESULT
The result of a floating-point operation cannot be represented exactly as a
decimal fraction.

EXCEPTION_FLT_INVALID_OPERATION
This exception represents any floating-point exception not included in this list.

EXCEPTION_FLT_OVERFLOW
The exponent of a floating-point operation is greater than the magnitude allowed
by the corresponding type.

EXCEPTION_FLT_STACK_CHECK
The stack overflowed or underflowed as the result of a floating-point operation.

EXCEPTION_FLT_UNDERFLOW
The exponent of a floating-point operation is less than the magnitude allowed by
the corresponding type.

EXCEPTION_INT_DIVIDE_BY_ZERO
The thread tried to divide an integer value by an integer divisor of zero.

EXCEPTION_INT_OVERFLOW
The result of an integer operation caused a carry out of the most significant bit of
the result.

EXCEPTION_PRIV_INSTRUCTION
The thread tried to execute an instruction whose operation is not allowed in the
current machine mode.

EXCEPTION_NONCONTINUABLE_EXCEPTION
The thread tried to continue execution after a non-continuable exception
occurred.

These constants are defined by including WINDOWS.H in the source code.

The following example is a refinement of the func_level1() function in our previous example.

Refining Exception Handling 279

Structured Exception Handling in C

Example:
#include <windows.h>

void func_level0(void)
{

_try {
_try {

func_level1();
}
_except (

(GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION)
? EXCEPTION_EXECUTE_HANDLER
: EXCEPTION_CONTINUE_SEARCH
) {

printf("Exception handled in func_level0\n");
}

}
_finally {

if(AbnormalTermination())
printf("Unwind in func_level0\n");

}
printf("Normal return from func_level0\n");

}

In this version, only an "access violation" will be handled by the exception handler in the
func_level0() function. All other types of exceptions will be passed on to main (which can also be
modified to be somewhat more selective about the types of exceptions it should handle).

More information on the exception that has occurred can be obtained by the use of the
GetExceptionInformation() function. The use of this function is also restricted. It can be called
only from within the filter expression of an exception handler. However, the return value of
GetExceptionInformation() can be passed as a parameter to a filter function. This is illustrated in
the following example.

Example:
int GetCode(LPEXCEPTION_POINTERS exceptptrs)
{

return (exceptptrs->ExceptionRecord->ExceptionCode);
}

void func_level0(void)
{

_try {
_try {

func_level1();
}
_except (

(GetCode(GetExceptionInformation())
== EXCEPTION_ACCESS_VIOLATION)

? EXCEPTION_EXECUTE_HANDLER
: EXCEPTION_CONTINUE_SEARCH
) {

printf("Exception handled in func_level0\n");
}

}
_finally {

if(AbnormalTermination())
printf("Unwind in func_level0\n");

}
printf("Normal return from func_level0\n");

}

The return value of GetExceptionInformation() is a pointer to an EXCEPTION_POINTERS
structure that contains pointers to two other structures: an EXCEPTION_RECORD structure containing a
description of the exception, and a CONTEXT structure containing the machine-state information. The filter

280 Refining Exception Handling

Structured Exception Handling

function can make a copy of the structures if a more permanent copy is desired. Check your Win32 SDK
documentation for more information on these structures.

13.6 Throwing Your Own Exceptions
You can use the same exception handling mechanisms to deal with software exceptions raised by your
application. The RaiseException() function can be used to throw your own application-defined
exceptions. The first argument to this function is the exception code. It would be wise to define your
exception codes so that they do not collide with system defined ones. The following example shows how to
throw an exception.

Example:
#define MY_EXCEPTION ((DWORD) 123L)

RaiseException(MY_EXCEPTION,
EXCEPTION_NONCONTINUABLE,
0, NULL);

In this example, the GetExceptionCode() function, when used in an exception handler filter
expression or in the body of an exception handler, would return the value 123.

See the Win32 SDK documentation for more information on the arguments to the RaiseException()
function.

Throwing Your Own Exceptions 281

Structured Exception Handling in C

282 Throwing Your Own Exceptions

Embedded Systems

Embedded Systems

284

14 Creating ROM-based Applications

14.1 Introduction
This chapter provides information for developers who wish to write applications to be placed in read-only
memory (ROM).

14.2 ROMable Functions
The following functions in the Open Watcom C/C++ library are not dependent on any operating system.
Therefore they can be used for embedded applications. The math functions are listed here because they are
ROMable, however you must supply a different _matherr function if you are not running in the DOS,
OS/2 or Windows NT environment.

abs acos alloca
asctime asin atan
atan2 atexit atof
atoi atol bsearch
cabs ceil _chain_intr
_clear87 _control87 cos
cosh difftime _disable
div _enable exp
fabs floor _fmemccpy
_fmemchr _fmemcmp _fmemcpy
_fmemicmp _fmemmove _fmemset
fmod FP_OFF FP_SEG
_fpreset frexp _fstrcat
_fstrchr _fstrcmp _fstrcpy
_fstrcspn _fstricmp _fstrlen
_fstrlwr _fstrncat _fstrncmp
_fstrncpy _fstrnicmp _fstrnset
_fstrpbrk _fstrrchr _fstrrev
_fstrset _fstrspn _fstrstr
_fstrtok _fstrupr gmtime
hypot inp inpw
int86 (1) int86x (1) int386 (2)
int386x (2) intr isalnum
isalpha isascii iscntrl
isdigit isgraph islower
isprint ispunct isspace
isupper isxdigit itoa
j0 j1 jn
labs ldexp ldiv
lfind localeconv log
log10 longjmp _lrotl
_lrotr lsearch ltoa
matherr mblen mbstowcs
mbtowc memccpy memchr
memcmp memcpy memicmp

ROMable Functions 285

Embedded Systems

memmove memset MK_FP
modf movedata offsetof
outp outpw pow
qsort rand _rotl
_rotr segread setjmp
setlocale sin sinh
sprintf sqrt srand
sscanf stackavail _status87
strcat strchr strcmp
strcmpi strcoll strcpy
strcspn strdup strerror
stricmp strlen strlwr
strncat strncmp strncpy
strnicmp strnset strpbrk
strrchr strrev strset
strspn strstr strtod
strtok strtol strtoul
strupr strxfrm swab
tan tanh tolower
toupper ultoa utoa
va_arg va_end va_start
vsprintf vsscanf wcstombs
wctomb y0 y1
yn

* (1) 16-bit libraries
* (2) 32-bit libraries

14.3 System-Dependent Functions
The following functions in the C/C++ library directly or indirectly make use of operating system functions.
They cannot be used on systems that are not running on one of the DOS, OS/2 or Windows NT operating
systems.

abort access assert
bdos _beginthread _bios_disk
_bios_equiplist _bios_keybrd _bios_memsize
_bios_printer _bios_serialcom _bios_timeofday
calloc cgets chdir
chmod chsize clearerr
clock close closedir
cprintf cputs creat
cscanf ctime cwait
delay _dos_allocmem _dos_close
_dos_creat _dos_creatnew _dos_findfirst
_dos_findnext _dos_freemem _dos_getdate
_dos_getdiskfree _dos_getdrive _dos_getfileattr
_dos_getftime _dos_gettime _dos_getvect
_dos_keep _dos_open _dos_read
_dos_setblock _dos_setdate _dos_setdrive
_dos_setfileattr _dos_setftime _dos_settime
_dos_setvect _dos_write dosexterr
dup dup2 _endthread
eof execl (1) execle (1)
execlp (1) execlpe (1) execv (1)
execve (1) execvp (1) execvpe (1)

286 System-Dependent Functions

Creating ROM-based Applications

exit _exit fclose
fcloseall fdopen feof
ferror fflush _ffree
_fheapchk _fheapgrow (1) _fheapmin
_fheapset _fheapshrink _fheapwalk
fgetc fgetpos fgets
filelength fileno flushall
_fmalloc fopen fprintf
fputc fputs fread
_frealloc free freopen
fscanf fseek fsetpos
fstat ftell fwrite
getc getch getchar
getche getcmd getcwd
getenv getpid gets
halloc _heapchk _heapgrow
_heapmin _heapset _heapshrink
_heapwalk hfree intdos
intdosx isatty kbhit
localtime lock locking
lseek _makepath malloc
mkdir mktime _nfree
_nheapchk _nheapgrow _nheapmin
_nheapset _nheapshrink _nheapwalk
_nmalloc _nrealloc nosound
open opendir perror
printf putc putch
putchar putenv puts
raise read readdir
realloc remove rename
rewind rmdir sbrk
scanf _searchenv setbuf
setmode setvbuf signal
sleep sopen sound
spawnl spawnle spawnlp
spawnlpe spawnv spawnve
spawnvp spawnvpe _splitpath
stat strftime system
tell time tmpfile
tmpnam tzset umask
ungetc ungetch unlink
unlock utime vfprintf
vfscanf vprintf vscanf
wait write

* (1) 16-bit libraries

14.4 Modifying the Startup Code
Source files are included in the package for the Open Watcom C/C++ application start-up (or initialization)
sequence. These files are described in the section entitled "The Open Watcom C/C++ Run-time
Initialization Routines" on page 108. The startup code will have to be modified if you are creating a
ROMable application or you are not running in a DOS, OS/2, QNX, or Windows environment.

Modifying the Startup Code 287

Embedded Systems

14.5 Choosing the Correct Floating-Point Option
If there will be a math coprocessor chip in your embedded system, then you should compile your
application with the "fpi87" option and one of "fp2", "fp3" or "fp5" depending on which math coprocessor
chip will be in your embedded system. If there will not be a math coprocessor chip in your embedded
system, then you should compile your application with the "fpc" option. You should not use the "fpi"
option since that will cause extra code to be linked into your application to decode and emulate the 80x87
instructions contained in your application.

288 Choosing the Correct Floating-Point Option

Appendices

Appendices

290

Use of Environment Variables

A. Use of Environment Variables

In the Open Watcom C/C++ software development package, a number of environment variables are used.
This appendix summarizes their use with a particular component of the package.

A.1 FORCE
The FORCE environment variable identifies a file that is to be included as part of the source input stream.
This variable is used by Open Watcom C/C++.

SET FORCE=[d:][path]filename[.ext]

The specified file is included as if a

#include "[d:][path]filename[.ext]"

directive were placed at the start of the source file.

Example:
C>set force=\watcom\h\common.cnv
C>wcc report

The FORCE environment variable can be overridden by use of the Open Watcom C/C++ "fi" option.

A.2 INCLUDE
The INCLUDE environment variable describes the location of the C and C++ header files (files with the
".h" filename extension). This variable is used by Open Watcom C/C++.

SET include=[d:][path];[d:][path]...

The INCLUDE environment string is like the PATH string in that you can specify one or more directories
separated by semicolons (";").

A.3 LIB
The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directive is
recommended over the use of this environment variable.

The LIB environment variable is used to select the libraries that will be used when the application is linked.
This variable is used by the Open Watcom Linker (WLINK.EXE). The LIB environment string is like the
PATH string in that you can specify one or more directories separated by semicolons (";").

LIB 291

Appendices

If you have the 286 development system, 16-bit applications can be linked for DOS, Microsoft Windows,
OS/2, and QNX depending on which libraries are selected. If you have the 386 development system, 32-bit
applications can be linked for DOS Extender systems, Microsoft Windows and QNX.

A.4 LIBDOS
The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directive is
recommended over the use of this environment variable.

If you are developing a DOS application, the LIBDOS environment variable must include the location of
the 16-bit Open Watcom C/C++ DOS library files (files with the ".lib" filename extension). This variable
is used by the Open Watcom Linker (WLINK.EXE). The default installation directory for the 16-bit Open
Watcom C/C++ DOS libraries is \WATCOM\LIB286\DOS. The LIBDOS environment variable must
also include the location of the 16-bit Open Watcom C/C++ math library files. The default installation
directory for the 16-bit Open Watcom C/C++ math libraries is \WATCOM\LIB286.

Example:
C>set libdos=c:\watcom\lib286\dos;c:\watcom\lib286

A.5 LIBWIN
The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directive is
recommended over the use of this environment variable.

If you are developing a 16-bit Microsoft Windows application, the LIBWIN environment variable must
include the location of the 16-bit Open Watcom C/C++ Windows library files (files with the ".lib" filename
extension). This variable is used by the Open Watcom Linker (WLINK.EXE). If you are developing a
32-bit Microsoft Windows application, see the description of the LIBPHAR environment variable. The
default installation directory for the 16-bit Open Watcom C/C++ Windows libraries is
\WATCOM\LIB286\WIN. The LIBWIN environment variable must also include the location of the
16-bit Open Watcom C/C++ math library files. The default installation directory for the 16-bit Open
Watcom C/C++ math libraries is \WATCOM\LIB286.

Example:
C>set libwin=c:\watcom\lib286\win;c:\watcom\lib286

A.6 LIBOS2
The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directive is
recommended over the use of this environment variable.

If you are developing an OS/2 application, the LIBOS2 environment variable must include the location of
the 16-bit Open Watcom C/C++ OS/2 library files (files with the ".lib" filename extension). This variable
is used by the Open Watcom Linker (WLINK.EXE). The default installation directory for the 16-bit Open
Watcom C/C++ OS/2 libraries is \WATCOM\LIB286\OS2. The LIBOS2 environment variable must
also include the directory of the OS/2 DOSCALLS.LIB file which is usually \OS2. The LIBOS2
environment variable must also include the location of the 16-bit Open Watcom C/C++ math library files.
The default installation directory for the 16-bit Open Watcom C/C++ math libraries is
\WATCOM\LIB286.

292 LIBOS2

Use of Environment Variables

Example:
C>set libos2=c:\watcom\lib286\os2;c:\watcom\lib286;c:\os2

A.7 LIBPHAR
The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directive is
recommended over the use of this environment variable.

If you are developing a 32-bit Windows or DOS Extender application, the LIBPHAR environment variable
must include the location of the 32-bit Open Watcom C/C++ DOS Extender library files or the 32-bit Open
Watcom C/C++ Windows library files (files with the ".lib" filename extension). This variable is used by
the Open Watcom Linker (WLINK.EXE). The default installation directory for the 32-bit Open Watcom
C/C++ DOS Extender libraries is \WATCOM\LIB386\DOS. The default installation directory for the
32-bit Open Watcom C/C++ Windows libraries is \WATCOM\LIB386\WIN. The LIBPHAR
environment variable must also include the location of the 32-bit Open Watcom C/C++ math library files.
The default installation directory for the 32-bit Open Watcom C/C++ math libraries is
\WATCOM\LIB386.

Example:
C>set libphar=c:\watcom\lib386\dos;c:\watcom\lib386

or
C>set libphar=c:\watcom\lib386\win;c:\watcom\lib386

A.8 NO87
The NO87 environment variable is checked by the Open Watcom run-time math libraries that include
floating-point emulation support. Normally, these libraries will detect the presence of a numeric data
processor (80x87) and use it. If you have a numeric data processor in your system but you wish to test a
version of your application that will use floating-point emulation, you can define the NO87 environment
variable. Using the "SET" command, define the environment variable as follows:

SET NO87=1

Now, when you run your application, the 80x87 will be ignored. To undefine the environment variable,
enter the command:

SET NO87=

A.9 PATH
The PATH environment variable is used by DOS "COMMAND.COM" or OS/2 "CMD.EXE" to locate
programs.

PATH [d:][path];[d:][path]...

The PATH environment variable should include the disk and directory of the Open Watcom C/C++ binary
program files when using Open Watcom C/C++ and its related tools.

If your host system is DOS:

PATH 293

Appendices

The default installation directory for 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ DOS
binaries is called \WATCOM\BINW.

Example:
C>path c:\watcom\binw;c:\dos;c:\windows

If your host system is OS/2:

The default installation directories for 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ OS/2
binaries are called \WATCOM\BINP and \WATCOM\BINW.

Example:
[C:\]path c:\watcom\binp;c:\watcom\binw

If your host system is Windows NT:

The default installation directories for 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++
Windows NT binaries are called \WATCOM\BINNT and \WATCOM\BINW.

Example:
C>path c:\watcom\binnt;c:\watcom\binw

The PATH environment variable is also used by the following programs in the described manner.

1. Open Watcom Compile and Link to locate the 16-bit Open Watcom C/C++ and 32-bit Open
Watcom C/C++ compilers and the Open Watcom Linker.

2. "WD.EXE" to locate programs and debugger command files.

A.10 TMP
The TMP environment variable describes the location (disk and path) for temporary files created by the
16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ compilers and the Open Watcom Linker.

SET TMP=[d:][path]

Normally, Open Watcom C/C++ will create temporary spill files in the current directory. However, by
defining the TMP environment variable to be a certain disk and directory, you can tell Open Watcom
C/C++ where to place its temporary files. The same is true of the Open Watcom Linker temporary file.

Consider the following definition of the TMP environment variable.

Example:
C>set tmp=d:\watcom\tmp

The Open Watcom C/C++ compiler and Open Watcom Linker will create its temporary files in
d:\watcom\tmp.

294 TMP

Use of Environment Variables

A.11 WATCOM
In order for the Open Watcom Linker to locate the 16-bit Open Watcom C/C++ and 32-bit Open Watcom
C/C++ library files, the WATCOM environment variable should be defined. The WATCOM environment
variable is used to locate the libraries that will be used when the application is linked. The default directory
for 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ files is "\WATCOM".

Example:
C>set watcom=c:\watcom

A.12 WCC
The WCC environment variable can be used to specify commonly-used options for the 16-bit C compiler.

SET WCC=/option1 /option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

Example:
C>set wcc=/d1 /ox

Once the WCC environment variable has been defined, those options listed become the default each time
the WCC command is used.

A.13 WCC386
The WCC386 environment variable can be used to specify commonly-used options for the 32-bit C
compiler.

SET WCC386=/option1 /option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

Example:
C>set wcc386=/d1 /ox

Once the WCC386 environment variable has been defined, those options listed become the default each
time the WCC386 command is used.

WCC386 295

Appendices

A.14 WCL
The WCL environment variable can be used to specify commonly-used WCL options.

SET WCL=/option1 /option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "mm" (compile code for medium memory model), "d1" (include line number
debug information in the object file), and "ox" (compile for maximum number of code optimizations).

Example:
C>set wcl=/mm /d1 /ox

Once the WCL environment variable has been defined, those options listed become the default each time
the WCL command is used.

A.15 WCL386
The WCL386 environment variable can be used to specify commonly-used WCL386 options.

SET WCL386=/option1 /option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "3s" (compile code for stack-based argument passing convention), "d1" (include
line number debug information in the object file), and "ox" (compile for maximum number of code
optimizations).

Example:
C>set wcl386=/3s /d1 /ox

Once the WCL386 environment variable has been defined, those options listed become the default each
time the WCL386 command is used.

A.16 WCGMEMORY
The WCGMEMORY environment variable may be used to request a report of the amount of memory used
by the compiler’s code generator for its work area.

Example:
C>set WCGMEMORY=?

When the memory amount is "?" then the code generator will report how much memory was used to
generate the code.

It may also be used to instruct the compiler’s code generator to allocate a fixed amount of memory for a
work area.

296 WCGMEMORY

Use of Environment Variables

Example:
C>set WCGMEMORY=128

When the memory amount is "nnn" then exactly "nnnK" bytes will be used. In the above example, 128K
bytes is requested. If less than "nnnK" is available then the compiler will quit with a fatal error message. If
more than "nnnK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more memory available
to the code generator, the more optimal code it will generate. Thus, for two personal computers with
different amounts of memory, the code generator may produce different (although correct) object code. If
you have a software quality assurance requirement that the same results (i.e., code) be produced on two
different machines then you should use this feature. To generate identical code on two personal computers
with different memory configurations, you must ensure that the WCGMEMORY environment variable is
set identically on both machines.

The second reason where this feature is useful is on virtual memory paging systems (e.g., OS/2) where an
unlimited amount of memory can be used by the code generator. If a very large module is being compiled,
it may take a very long time to compile it. The code generator will continue to allocate more and more
memory and cause an excessive amount of paging. By restricting the amount of memory that the code
generator can use, you can reduce the amount of time required to compile a routine.

A.17 WD
The WD environment variable can be used to specify commonly-used Open Watcom Debugger options.
This environment variable is not used by the Windows version of the debugger, WDW.

SET WD=/option1 /option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "noinvoke" (do not execute the profile.dbg file) and "reg=10" (retain up to 10
register sets while tracing).

Example:
C>set wd=/noinvoke /reg#10

Once the WD environment variable has been defined, those options listed become the default each time the
WD command is used.

A.18 WDW
The WDW environment variable can be used to specify commonly-used Open Watcom Debugger options.
This environment variable is used by the Windows version of the debugger, WDW.

SET WDW=/option1 /option2 ...

These options are processed before options specified in the WDW prompt dialogue box. The following
example defines the default options to be "noinvoke" (do not execute the profile.dbg file) and
"reg=10" (retain up to 10 register sets while tracing).

WDW 297

Appendices

Example:
C>set wdw=/noinvoke /reg#10

Once the WDW environment variable has been defined, those options listed become the default each time
the WDW command is used.

A.19 WLANG
The WLANG environment variable can be used to control which language is used to display diagnostic
and program usage messages by various Open Watcom software tools. The two currently-supported values
for this variable are "English" or "Japanese".

SET WLANG=English
SET WLANG=Japanese

Alternatively, a numeric value of 0 (for English) or 1 (for Japanese) can be specified.

Example:
C>set wlang=0

By default, Japanese messages are displayed when the current codepage is 932 and English messages are
displayed otherwise. Normally, use of the WLANG environment variable should not be required.

A.20 WPP
The WPP environment variable can be used to specify commonly-used options for the 16-bit C++
compiler.

SET WPP=/option1 /option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

Example:
C>set wpp=/d1 /ox

Once the WPP environment variable has been defined, those options listed become the default each time
the WPP command is used.

A.21 WPP386
The WPP386 environment variable can be used to specify commonly-used options for the 32-bit C++
compiler.

SET WPP386=/option1 /option2 ...

These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

298 WPP386

Use of Environment Variables

Example:
C>set wpp386=/d1 /ox

Once the WPP386 environment variable has been defined, those options listed become the default each
time the WPP386 command is used.

WPP386 299

Appendices

300 WPP386

Open Watcom C Diagnostic Messages

B. Open Watcom C Diagnostic Messages

The following is a list of all warning and error messages produced by the Open Watcom C compilers.
Diagnostic messages are issued during compilation and execution.

The messages listed in the following sections contain references to %s, %d and %u. They represent
strings that are substituted by the Open Watcom C compilers to make the error message more exact. %d
and %u represent a string of digits; %s a string, usually a symbolic name.

Consider the following program, named err.c, which contains errors.

Example:
#include <stdio.h>

void main()
{

int i;
float i;

i = 383;
x = 13143.0;
printf("Integer value is %d\n", i);
printf("Floating-point value is %f\n", x);

}

If we compile the above program, the following messages will appear on the screen.

err.c(6): Error! E1034: Symbol ’i’ already defined
err.c(9): Error! E1011: Symbol ’x’ has not been declared
err.c: 12 lines, included 191, 0 warnings, 2 errors

The diagnostic messages consist of the following information:

1. the name of the file being compiled,
2. the line number of the line containing the error (in parentheses),
3. a message number, and
4. text explaining the nature of the error.

In the above example, the first error occurred on line 6 of the file err.c. Error number 1034 (with the
appropriate substitutions) was diagnosed. The second error occurred on line 9 of the file err.c. Error
number 1011 (with the appropriate substitutions) was diagnosed.

The following sections contain a complete list of the messages. Run-time messages (messages displayed
during execution) do not have message numbers associated with them.

Open Watcom C Diagnostic Messages 301

Appendices

B.1 Warning Level 1 Messages
W100 Parameter %d contains inconsistent levels of indirection

The function is expecting something like char ** and it is being passed a char * for
instance.

W101 Non-portable pointer conversion

This message is issued whenever you convert a non-zero constant to a pointer.

W102 Type mismatch (warning)

This message is issued for a function return value or an assignment where both types are
pointers, but they are pointers to different kinds of objects.

W103 Parameter count does not agree with previous definition (warning)

You have either not enough parameters or too many parameters in a call to a function. If
the function is supposed to have a variable number of parameters, then you can ignore this
warning, or you can change the function declaration and prototypes to use the ",..." to
indicate that the function indeed takes a variable number of parameters.

W104 Inconsistent levels of indirection

This occurs in an assignment or return statement when one of the operands has more levels
of indirection than the other operand. For example, a char ** is being assigned to a
char *.

Solution: Correct the levels of indirection or use a void *.

W105 Assignment found in boolean expression

An assignment of a constant has been detected in a boolean expression. For example: "if(
var = 0)". It is most likely that you want to use "==" for testing for equality.

W106 Constant out of range - truncated

This message is issued if a constant cannot be represented in 32 bits or if a constant is
outside the range of valid values that can be assigned to a variable.

W107 Missing return value for function ’%s’

A function has been declared with a function return type, but no return statement was
found in the function. Either add a return statement or change the function return type to
void.

302 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W108 Duplicate typedef already defined

A duplicate typedef is not allowed in ISO C. This warning is issued when compiling with
extensions enabled. You should delete the duplicate typedef definition.

W109 not used

unused message

W110 ’fortran’ pragma not defined

You have used the fortran keyword in your program, but have not defined a #pragma for
fortran.

W111 Meaningless use of an expression

The line contains an expression that does nothing useful. In the example "i = (1,5);", the
expression "1," is meaningless.

W112 Pointer truncated

A far pointer is being passed to a function that is expecting a near pointer, or a far pointer is
being assigned to a near pointer.

W113 Pointer type mismatch

You have two pointers that either point to different objects, or the pointers are of different
size, or they have different modifiers.

W114 Missing semicolon

You are missing the semicolon ";" on the field definition just before the right curly brace
"}".

W115 &array may not produce intended result

The type of the expression "&array" is different from the type of the expression "array".
Suppose we have the declaration char buffer[80] Then the expression (&buffer
+ 3) will be evaluated as (buffer + 3 * sizeof(buffer)) which is (buffer
+ 3 * 80) and not (buffer + 3 * 1) which is what most people expect to happen.
The address of operator "&" is not required for getting the address of an array.

W116 Attempt to return address of auto variable

This warning usually indicates a serious programming error. When a function exits, the
storage allocated on the stack for auto variables is released. This storage will be
overwritten by further function calls and/or hardware interrupt service routines. Therefore,
the data pointed to by the return value may be destroyed before your program has a chance
to reference it or make a copy of it.

Warning Level 1 Messages 303

Appendices

W117 ’##’ tokens did not generate a single token (rest discarded)

When two tokens are pasted together using ##, they must form a string that can be parsed
as a single token.

W118 Label ’%s’ has been defined but not referenced

You have defined a label that is not referenced in a goto statement. It is possible that you
are missing the case keyword when using an enumerated type name as a case in a switch
statement. If not, then the label can be deleted.

W119 Address of static function ’%s’ has been taken

This warning may indicate a potential problem when the program is overlayed.

W120 lvalue cast is not standard C

A cast operation does not yield an lvalue in ISO C. However, to provide compatibility with
code written prior to the availability of ISO compliant C compilers, if an expression was an
lvalue prior to the cast operation, and the cast operation does not cause any conversions, the
compiler treats the result as an lvalue and issues this warning.

W121 Text following pre-processor directives is not standard C

Arbitrary text is not allowed following a pre-processor directive. Only comments are
allowed following a pre-processor directive.

W122 Literal string too long for array - truncated

The supplied literal string contains more characters than the specified dimension of the
array. Either shorten the literal string, or increase the dimension of the array to hold all of
the characters from the literal string.

W123 ’//’ style comment continues on next line

The compiler has detected a line continuation during the processing of a C++ style
comment ("//"). The warning can be removed by switching to a C style comment ("/**/").
If you require the comment to be terminated at the end of the line, make sure that the
backslash character is not the last character in the line.

Example:
#define XX 23 // comment start \
comment \
end

int x = XX; // comment start ...\
comment end

304 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W124 Comparison result always %d

The line contains a comparison that is always true (1) or false (0). For example comparing
an unsigned expression to see if it is >= 0 or < 0 is redundant. Check to see if the
expression should be signed instead of unsigned.

W125 Nested include depth of %d exceeded

The number of nested include files has reached a preset limit, check for recursive include
statements.

W126 Constant must be zero for pointer compare

A pointer is being compared using == or != to a non-zero constant.

W127 trigraph found in string

Trigraph expansion occurs inside a string literal. This warning can be disabled via the
command line or #pragma warning directive.

Example:
// string expands to "(?]?????"!
char *e = "(???)???-????";
// possible work-arounds
char *f = "(" "???" ")" "???" "-" "????";
char *g = "(\?\?\?)\?\?\?-\?\?\?\?";

W128 %d padding byte(s) added

The compiler has added slack bytes to align a member to the correct offset.

W129 #endif matches #if in different source file ’%s’

This warning may indicate a #endif nesting problem since the traditional usage of #if
directives is confined to the same source file. This warning may often come before an error
and it is hoped will provide information to solve a preprocessing directive problem.

W130 Possible loss of precision

This warning indicates that you may be converting a argument of one size to another,
different size. For instance, you may be losing precision by passing a long argument to a
function that takes a short. This warning is initially disabled. It must be explicitly enabled
with #pragma enable_message(130) or option "-wce=130". It can be disabled later by
using #pragma disable_message(130).

W131 No prototype found for function ’%s’

A reference for a function appears in your program, but you do not have a prototype for
that function defined. Implicit prototype will be used, but this will cause problems if the
assumed prototype does not match actual function definition.

Warning Level 1 Messages 305

Appendices

W132 No storage class or type specified

When declaring a data object, either storage class or data type must be given. If no type is
specified, int is assumed. If no storage class is specified, the default depends on scope (see
the C Language Reference for details). For instance

Example:
auto i;

is a valid declaration, as is

Example:
short i;

However,

Example:
i;

is not a correctly formed declaration.

W133 Symbol name truncated for ’%s’

Symbol is longer than the object file format allows and has been truncated to fit. Maximum
length is 255 characters for OMF and 1024 characters for COFF or ELF object files.

W134 Shift amount negative

The right operand of a left or right shift operator is a negative value. The result of the shift
operation is undefined.

Example:
int a = 1 << -2;

The value of ’a’ in the above example is undefined.

W135 Shift amount too large

The right operand of a left or right shift operator is a value greater than or equal to the
width in bits of the type of the promoted left operand. The result of the shift operation is
undefined.

Example:
int a = 1 >> 123;

The value of ’a’ in the above example is undefined.

306 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W136 Comparison equivalent to ’unsigned == 0’

Comparing an unsigned expression to see whether it is <= 0 is equivalent to testing for ==
0. Check to see if the expression should be signed instead of unsigned.

W137 Extern function ’%s’ redeclared as static

The specified function was either explicitly or implicitly declared as extern and later
redeclared as static. This is not allowed in ISO C and may produce unexpected results with
ISO compliant compilers.

Example:
int bar(void);

void foo(void)
{

bar();
}

static int bar(void)
{

return(0);
}

W138 No newline at end of file

ISO C requires that a non-empty source file must include a newline character at the end of
the last line. If no newline was found, it will be automatically inserted.

W139 Divisor for modulo or division operation is zero

The right operand of a division or modulo operation is zero. The result of this operation is
undefined and you should rewrite the offending code to avoid divisions by zero.

Example:
int foo(void)
{

return(7 / 0);
}

B.2 Warning Level 2 Messages
W200 ’%s’ has been referenced but never assigned a value

You have used the variable in an expression without previously assigning a value to that
variable.

Warning Level 2 Messages 307

Appendices

W201 Unreachable code

The statement will never be executed, because there is no path through the program that
causes control to reach this statement.

W202 Symbol ’%s’ has been defined, but not referenced

There are no references to the declared variable. The declaration for the variable can be
deleted.

In some cases, there may be a valid reason for retaining the variable. You can prevent the
message from being issued through use of #pragma off(unreferenced).

W203 Preprocessing symbol ’%s’ has not been declared

The symbol has been used in a preprocessor expression. The compiler assumes the symbol
has a value of 0 and continues. A #define may be required for the symbol, or you may
have forgotten to include the file which contains a #define for the symbol.

B.3 Warning Level 3 Messages
W300 Nested comment found in comment started on line %u

While scanning a comment for its end, the compiler detected /* for the start of another
comment. Nested comments are not allowed in ISO C. You may be missing the */ for the
previous comment.

W301 not used

unused message

W302 Expression is only useful for its side effects

You have an expression that would have generated the warning "Meaningless use of an
expression", except that it also contains a side-effect, such as ++, −−, or a function call.

W303 Parameter ’%s’ has been defined, but not referenced

There are no references to the declared parameter. The declaration for the parameter can be
deleted. Since it is a parameter to a function, all calls to the function must also have the
value for that parameter deleted.

In some cases, there may be a valid reason for retaining the parameter. You can prevent the
message from being issued through use of #pragma off(unreferenced).

This warning is initially disabled. It must be specifically enabled with #pragma
enable_message(303) or option "-wce=303". It can be disabled later by using #pragma
disable_message(303).

308 Warning Level 3 Messages

Open Watcom C Diagnostic Messages

W304 Return type ’int’ assumed for function ’%s’

If a function is declared without specifying return type, such as

Example:
foo(void);

then its return type will be assumed to be int

W305 Type ’int’ assumed in declaration of ’%s’

If an object is declared without specifying its type, such as

Example:
register count;

then its type will be assumed to be int

W306 Assembler warning: ’%s’

A problem has been detected by the in-line assembler. The message indicates the problem
detected.

W307 Obsolete non-prototype declarator

Function parameter declarations containing only empty parentheses, that is, non-prototype
declarations, are an obsolescent language feature. Their use is dangerous and discouraged.

Example:
int func();

W308 Unprototyped function ’%s’ called

A call to an unprototyped function was made, preventing the compiler from checking the
number of function arguments and their types. Use of unprototyped functions is
obsolescent, dangerous and discouraged.

Example:
int func();

void bar(void)
{

func(4, "s"); /* possible argument mismatch */
}

W309 Unprototyped function indirectly called

An indirect call to an unprototyped function was made, preventing the compiler from
checking the number of function arguments and their types. Use of unprototyped functions
is obsolescent, dangerous and discouraged.

Warning Level 3 Messages 309

Appendices

Example:
int (*func)();

void bar(void)
{

func(4, "s"); /* possible argument mismatch */
}

B.4 Warning Level 4 Messages
W400 Array subscript is of type plain char

Array subscript expression is of plain char type. Such expression may be interpreted as
either signed or unsigned, depending on compiler settings. A different type should be
chosen instead of char. A cast may be used in cases when the value of the expression is
known to never fall outside the 0-127 range.

Example:
int foo(int arr[], char c)
{

return(arr[c]);
}

B.5 Error Messages
E1000 BREAK must appear in while, do, for or switch statement

A break statement has been found in an illegal place in the program. You may be missing
an opening brace { for a while, do, for or switch statement.

E1001 CASE must appear in switch statement

A case label has been found that is not inside a switch statement.

E1002 CONTINUE must appear in while, do or for statement

The continue statement must be inside a while, do or for statement. You may have too
many } between the while, do or for statement and the continue statement.

E1003 DEFAULT must appear in switch statement

A default label has been found that is not inside a switch statement. You may have too
many } between the start of the switch and the default label.

310 Error Messages

Open Watcom C Diagnostic Messages

E1004 Misplaced ’}’ or missing earlier ’{’

An extra } has been found which cannot be matched up with an earlier {.

E1005 Misplaced #elif directive

The #elif directive must be inside an #if preprocessing group and before the #else
directive if present.

E1006 Misplaced #else directive

The #else directive must be inside an #if preprocessing group and follow all #elif
directives if present.

E1007 Misplaced #endif directive

A preprocessing directive has been found without a matching #if directive. You either
have an extra or you are missing an #if directive earlier in the file.

E1008 Only 1 DEFAULT per switch allowed

You cannot have more than one default label in a switch statement.

E1009 Expecting ’%s’ but found ’%s’

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

E1010 Type mismatch

For pointer subtraction, both pointers must point to the same type. For other operators,
both expressions must be assignment compatible.

E1011 Symbol ’%s’ has not been declared

The compiler has found a symbol which has not been previously declared. The symbol
may be spelled differently than the declaration, or you may need to #include a header
file that contains the declaration.

E1012 Expression is not a function

The compiler has found an expression that looks like a function call, but it is not defined as
a function.

E1013 Constant variable cannot be modified

An expression or statement has been found which modifies a variable which has been
declared with the const keyword.

Error Messages 311

Appendices

E1014 Left operand must be an ’lvalue’

The operand on the left side of an "=" sign must be a variable or memory location which
can have a value assigned to it.

E1015 ’%s’ is already defined as a variable

You are trying to declare a function with the same name as a previously declared variable.

E1016 Expecting identifier

The token following "->" and "." operators must be the name of an identifier which appears
in the struct or union identified by the operand preceding the "->" and "." operators.

E1017 Label ’%s’ already defined

All labels within a function must be unique.

E1018 Label ’%s’ not defined in function

A goto statement has referenced a label that is not defined in the function. Add the
necessary label or check the spelling of the label(s) in the function.

E1019 Tag ’%s’ already defined

All struct, union and enum tag names must be unique.

E1020 Dimension cannot be 0 or negative

The dimension of an array must be positive and non-zero.

E1021 Dimensions of multi-dimension array must be specified

All dimensions of a multiple dimension array must be specified. The only exception is the
first dimension which can declared as "[]".

E1022 Missing or misspelled data type near ’%s’

The compiler has found an identifier that is not a predefined type or the name of a
"typedef". Check the identifier for a spelling mistake.

E1023 Storage class of parameter must be register or unspecified

The only storage class allowed for a parameter declaration is register.

E1024 Declared symbol ’%s’ is not in parameter list

Make sure that all the identifiers in the parameter list match those provided in the
declarations between the start of the function and the opening brace "{".

312 Error Messages

Open Watcom C Diagnostic Messages

E1025 Parameter ’%s’ already declared

A declaration for the specified parameter has already been processed.

E1026 Invalid declarator

A syntax error has occurred while parsing a declaration.

E1027 Invalid storage class for function

If a storage class is given for a function, it must be static or extern.

E1028 Variable ’%s’ cannot be void

You cannot declare a void variable.

E1029 Expression must be ’pointer to ...’

An attempt has been made to de-reference (*) a variable or expression which is not
declared to be a pointer.

E1030 Cannot take the address of an rvalue

You can only take the address of a variable or memory location.

E1031 Name ’%s’ not found in struct/union %s

The specified identifier is not one of the fields declared in the struct or union. Check that
the field name is spelled correctly, or that you are pointing to the correct struct or union.

E1032 Expression for ’.’ must be a ’structure’ or ’union’

The compiler has encountered the pattern "expression" "." "field_name" where the
expression is not a struct or union type.

E1033 Expression for ’->’ must be ’pointer to struct or union’

The compiler has encountered the pattern "expression" "->" "field_name" where the
expression is not a pointer to struct or union type.

E1034 Symbol ’%s’ already defined

The specified symbol has already been defined.

E1035 static function ’%s’ has not been defined

A prototype has been found for a static function, but a definition for the static function has
not been found in the file.

Error Messages 313

Appendices

E1036 Right operand of ’%s’ is a pointer

The right operand of "+=" and "−=" cannot be a pointer. The right operand of "−" cannot
be a pointer unless the left operand is also a pointer.

E1037 Type cast must be a scalar type

You cannot type cast an expression to be a struct, union, array or function.

E1038 Expecting label for goto statement

The goto statement requires the name of a label.

E1039 Duplicate case value ’%s’ found

Every case value in a switch statement must be unique.

E1040 Field width too large

The maximum field width allowed is 16 bits.

E1041 Field width of 0 with symbol not allowed

A bit field must be at least one bit in size.

E1042 Field width must be positive

You cannot have a negative field width.

E1043 Invalid type specified for bit field

The types allowed for bit fields are signed or unsigned varieties of char, short and int.

E1044 Variable ’%s’ has incomplete type

A full definition of a struct or union has not been given.

E1045 Subscript on non-array

One of the operands of "[]" must be an array.

E1046 Incomplete comment started on line %u

The compiler did not find */ to mark the end of a comment.

E1047 Argument for # must be a macro parm

The argument for the stringize operator "#" must be a macro parameter.

314 Error Messages

Open Watcom C Diagnostic Messages

E1048 Unknown preprocessing directive ’#%s’

An unrecognized preprocessing directive has been encountered. Check for correct spelling.

E1049 Invalid #include directive

A syntax error has been encountered in a #include directive.

E1050 Not enough parameters given for macro ’%s’

You have not supplied enough parameters to the specified macro.

E1051 Not expecting a return value for function ’%s’

The specified function is declared as a void function. Delete the return statement, or
change the type of the function.

E1052 Expression has void type

You tried to use the value of a void expression inside another expression.

E1053 Cannot take the address of a bit field

The smallest addressable unit is a byte. You cannot take the address of a bit field.

E1054 Expression must be constant

The compiler expects a constant expression. This message can occur during static
initialization if you are trying to initialize a non-pointer type with an address expression.

E1055 Unable to open ’%s’

The file specified in an #include directive could not be located. Make sure that the file
name is spelled correctly, or that the appropriate path for the file is included in the list of
paths specified in the INCLUDE environment variable or the "-I" option on the command
line.

E1056 Too many parameters given for macro ’%s’

You have supplied too many parameters for the specified macro.

E1057 Modifiers disagree with previous definition of ’%s’

You have more than one definition or prototype for the variable or function which have
different type modifiers.

Error Messages 315

Appendices

E1058 Cannot use typedef ’%s’ as a variable

The name of a typedef has been found when an operand or operator is expected. If you are
trying to use a type cast, make sure there are parentheses around the type, otherwise check
for a spelling mistake.

E1059 Invalid storage class for non-local variable

A variable with module scope cannot be defined with the storage class of auto or register.

E1060 Invalid type

An invalid combination of the following keywords has been specified in a type declaration:
const, volatile, signed, unsigned, char, int, short, long, float and double.

E1061 Expecting data or function declaration, but found ’%s’

The compiler is expecting the start of a data or function declaration. If you are only part
way through a function, then you have too many closing braces "}".

E1062 Inconsistent return type for function ’%s’

Two prototypes for the same function disagree.

E1063 Missing operand

An operand is required in the expression being parsed.

E1064 Out of memory

The compiler has run out of memory to store information about the file being compiled.
Try reducing the number of data declarations and or the size of the file being compiled. Do
not #include header files that are not required.

For the 16-bit C compiler, the "-d2" option causes the compiler to use more memory. Try
compiling with the "-d1" option instead.

E1065 Invalid character constant

This message is issued for an improperly formed character constant.

E1066 Cannot perform operation with pointer to void

You cannot use a "pointer to void" with the operators +, −, ++, −−, += and −=.

E1067 Cannot take address of variable with storage class ’register’

If you want to take the address of a local variable, change the storage class from register to
auto.

316 Error Messages

Open Watcom C Diagnostic Messages

E1068 Variable ’%s’ already initialized

The specified variable has already been statically initialized.

E1069 String literal not terminated before end of line

A string literal is enclosed by double quote " characters.

The compiler did not find a closing double quote " or line continuation character \ before
the end of a line or before the end of the source file.

E1070 Data for aggregate type must be enclosed in curly braces

When an array, struct or union is statically initialized, the data must be enclosed in curly
braces {}.

E1071 Type of parameter %d does not agree with previous definition

The type of the specified parameter is incompatible with the prototype for that function.
The following example illustrates a problem that can arise when the sequence of
declarations is in the wrong order.

Example:
/* Uncommenting the following line will

eliminate the error */
/* struct foo; */

void fn1(struct foo *);

struct foo {
int a,b;

};

void fn1(struct foo *bar)
{

fn2(bar);
}

The problem can be corrected by reordering the sequence in which items are declared (by
moving the description of the structure foo ahead of its first reference or by adding the
indicated statement). This will assure that the first instance of structure foo is defined at
the proper outer scope.

E1072 Storage class disagrees with previous definition of ’%s’

The previous definition of the specified variable has a storage class of static. The current
definition must have a storage class of static or extern.

Alternatively, a variable was previously declared as extern and later defined as static.

Error Messages 317

Appendices

E1073 Invalid option ’%s’

The specified option is not recognized by the compiler.

E1074 Invalid optimization option ’%s’

The specified option is an unrecognized optimization option.

E1075 Invalid memory model ’%s’

Memory model option must be one of "ms", "mm", "mc", "ml", "mh" or "mf" which selects
the Small, Medium, Compact, Large, Huge or Flat memory model.

E1076 Missing semicolon at end of declaration

You are missing a semicolon ";" on the declaration just before the left curly brace "{".

E1077 Missing ’}’

The compiler detected end of file before finding a right curly brace "}" to end the current
function.

E1078 Invalid type for switch expression

The type of a switch expression must be integral.

E1079 Expression must be integral

An integral expression is required.

E1080 Expression must be arithmetic

Both operands of the "*", "/" and "%" operators must be arithmetic. The operand of the
unary minus must also be arithmetic.

E1081 Expression must be scalar type

A scalar expression is required.

E1082 Statement required after label

The C language definition requires a statement following a label. You can use a null
statement which consists of just a semicolon (";").

E1083 Statement required after ’do’

A statement is required between the do and while keywords.

318 Error Messages

Open Watcom C Diagnostic Messages

E1084 Statement required after ’case’

The C language definition requires a statement following a case label. You can use a null
statement which consists of just a semicolon (";").

E1085 Statement required after ’default’

The C language definition requires a statement following a default label. You can use a
null statement which consists of just a semicolon (";").

E1086 Expression too complicated, split it up and try again

The expression contains too many levels of nested parentheses. Divide the expression up
into two or more sub-expressions.

E1087 Missing matching #endif directive

You are missing a to terminate a #if, #ifdef or #ifndef preprocessing directive.

E1088 Invalid macro definition, missing)

The right parenthesis ")" is required for a function-like macro definition.

E1089 Missing) for expansion of ’%s’ macro

The compiler encountered end-of-file while collecting up the argument for a function-like
macro. A right parenthesis ")" is required to mark the end of the argument(s) for a
function-like macro.

E1090 Invalid conversion

A struct or union cannot be converted to anything. A float or double cannot be converted
to a pointer and a pointer cannot be converted to a float or double.

E1091 %s

This is a user message generated with the #error preprocessing directive.

E1092 Cannot define an array of functions

You can have an array of pointers to functions, but not an array of functions.

E1093 Function cannot return an array

A function cannot return an array. You can return a pointer to an array.

Error Messages 319

Appendices

E1094 Function cannot return a function

You cannot return a function. You can return a pointer to a function.

E1095 Cannot take address of local variable in static initialization

You cannot take the address of an auto variable at compile time.

E1096 Inconsistent use of return statements

The compiler has found a return statement which returns a value and a return statement
that does not return a value both in the same function. The return statement which does
not return a value needs to have a value specified to be consistent with the other return
statement in the function.

E1097 Missing ? or misplaced :

The compiler has detected a syntax error related to the "?" and ":" operators. You may
need parenthesis around the expressions involved so that it can be parsed correctly.

E1098 Maximum struct or union size is 64K

The size of a struct or union is limited to 64K so that the compiler can represent the offset
of a member in a 16-bit register.

E1099 Statement must be inside function. Probable cause: missing {

The compiler has detected a statement such as for, while, switch, etc., which must be inside
a function. You either have too many closing braces "}" or you are missing an opening
brace "{" earlier in the function.

E1100 Definition of macro ’%s’ not identical to previous definition

If a macro is defined more than once, the definitions must be identical. If you want to
redefine a macro to have a different definition, you must #undef it before you can define
it with a new definition.

E1101 Cannot #undef ’%s’

The special macros __LINE__, __FILE__, __DATE__, __TIME__,
__STDC__, __FUNCTION__ and__func__, and the identifier "defined", cannot be
deleted by the #undef directive.

E1102 Cannot #define the name ’defined’

You cannot define a macro called defined.

320 Error Messages

Open Watcom C Diagnostic Messages

E1103 ## must not be at start or end of replacement tokens

There must be a token on each side of the "##" (token pasting) operator.

E1104 Type cast not allowed in #if or #elif expression

A type cast is not allowed in a preprocessor expression.

E1105 ’sizeof’ not allowed in #if or #elif expression

The sizeof operator is not allowed in a preprocessor expression.

E1106 Cannot compare a struct or union

A struct or union cannot be compared with "==" or "!=". You must compare each member
of a struct or union to determine equality or inequality. If the struct or union is packed
(has no holes in it for alignment purposes) then you can compare two structs using
memcmp.

E1107 Enumerator list cannot be empty

You must have at least one identifier in an enum list.

E1108 Invalid floating-point constant

The exponent part of the floating-point constant is not formed correctly.

E1109 Cannot take sizeof a bit field

The smallest object that you can ask for the size of is a char.

E1110 Cannot initialize variable with storage class of extern

A storage class of extern is used to associate the variable with its actual definition
somewhere else in the program.

E1111 Invalid storage class for parameter

The only storage class allowed for a parameter is register.

E1112 Initializer list cannot be empty

An initializer list must have at least one item specified.

E1113 Expression has incomplete type

An attempt has been made to access a struct or union whose definition is not known, or an
array whose dimensions are not known.

Error Messages 321

Appendices

E1114 Struct or union cannot contain itself

You cannot have a struct or union contain itself. You can have a pointer in the struct
which points to an instance of itself. Check for a missing "*" in the declaration.

E1115 Incomplete enum declaration

The enumeration tag has not been previously defined.

E1116 An id list not allowed except for function definition

A function prototype must contain type information.

E1117 Must use ’va_start’ macro inside function with variable parameters

The va_start macro is used to setup access to the parameters in a function that takes a
variable number of parameters. A function is defined with a variable number of parameters
by declaring the last parameter in the function as "...".

E1118 ***FATAL*** %s

A fatal error has been detected during code generation time. The type of error is displayed
in the message.

E1119 Internal compiler error %d

A bug has been encountered in the C compiler. Please report the specified internal
compiler error number and any other helpful details about the program being compiled to
compiler developers so that we can fix the problem.

E1120 Parameter number %d - invalid register in #pragma

The designated registers cannot hold the value for the parameter.

E1121 Procedure ’%s’ has invalid return register in #pragma

The size of the return register does not match the size of the result returned by the function.

E1122 Illegal register modified by ’%s’ #pragma

For the 16-bit C compiler: The BP, CS, DS, and SS registers cannot be modified in small
data models. The BP, CS, and SS registers cannot be modified in large data models.

For the 32-bit C compiler: The EBP, CS, DS, ES, and SS registers cannot be modified in
flat memory models. The EBP, CS, DS, and SS registers cannot be modified in small data
models. The EBP, CS, and SS registers cannot be modified in large data models.

322 Error Messages

Open Watcom C Diagnostic Messages

E1123 File must contain at least one external definition

Every file must contain at least one global object, (either a data variable or a function).
This message is only issued in strict ANSI mode (-za).

E1124 Out of macro space

The compiler ran out of memory for storing macro definitions.

E1125 Keyboard interrupt detected

The compile has been aborted with Ctrl/C or Ctrl/Break.

E1126 Array, struct or union cannot be placed in a register

Only scalar objects can be specified with the register class.

E1127 Type required in parameter list

If the first parameter in a function definition or prototype is defined with a type, then all of
the parameters must have a type specified.

E1128 Enum constant is out of range %s

All of the constants must fit into appropriate value range.

E1129 Type does not agree with previous definition of ’%s’

You have more than one definition of a variable or function that do not agree.

E1130 Duplicate name ’%s’ not allowed in struct or union

All the field names in a struct or union must be unique.

E1131 Duplicate macro parameter ’%s’

The parameters specified in a macro definition must be unique.

E1132 Unable to open work file: error code = %d

The compiler tries to open a new work file by the name "__wrkN__.tmp" where N is the
digit 0 to 9. This message will be issued if all of those files already exist.

E1133 Write error on work file: error code = %d

An error was encountered trying to write information to the work file. The disk could be
full.

Error Messages 323

Appendices

E1134 Read error on work file: error code = %d

An error was encountered trying to read information from the work file.

E1135 Seek error on work file: error code = %d

An error was encountered trying to seek to a position in the work file.

E1136 not used

unused message

E1137 Out of enum space

The compiler has run out of space allocated to store information on all of the enum
constants defined in your program.

E1138 Filename required on command line

The name of a file to be compiled must be specified on the command line.

E1139 Command line contains more than one file to compile

You have more than one file name specified on the command line to be compiled. The
compiler can only compile one file at a time. You can use the Open Watcom Compile and
Link utility to compile multiple files with a single command.

E1140 _leave must appear in a _try statement

The _leave keyword must be inside a _try statement. The _leave keyword causes the
program to jump to the start of the _finally block.

E1141 Expecting end of line but found ’%s’

A syntax error has been detected. The token displayed in the message should help you
determine the problem.

E1142 Too many bytes specified in #pragma

There is an internal limit on the number of bytes for in-line code that can be specified with
a pragma. Try splitting the function into two or more smaller functions.

E1143 Cannot resolve linkage conventions for routine ’%s’ #pragma

The compiler cannot generate correct code for the specified routine because of register
conflicts. Change the registers used by the parameters of the pragma.

324 Error Messages

Open Watcom C Diagnostic Messages

E1144 Symbol ’%s’ in pragma must be global

The in-line code for a pragma can only reference a global variable or function. You can
only reference a parameter or local variable by passing it as a parameter to the in-line code
pragma.

E1145 Internal compiler limit exceeded, break module into smaller pieces

The compiler can handle 65535 quadruples, 65535 leaves, and 65535 symbol table entries
and literal strings. If you exceed one of these limits, the program must be broken into
smaller pieces until it is capable of being processed by the compiler.

E1146 Invalid initializer for integer data type

Integer data types (int and long) can be initialized with numeric expressions or address
expressions that are the same size as the integer data type being initialized.

E1147 Too many errors: compilation aborted

The compiler stops compiling when the number of errors generated exceeds the error limit.
The error limit can be set with the "-e" option. The default error limit is 20.

E1148 Expecting identifier but found ’%s’

A syntax error has been detected. The token displayed in the message should help you
determine the problem.

E1149 Expecting constant but found ’%s’

The #line directive must be followed by a constant indicating the desired line number.

E1150 Expecting \"filename\" but found ’%s’

The second argument of the #line directive must be a filename enclosed in quotes.

E1151 Parameter count does not agree with previous definition

You have either not enough parameters or too many parameters in a call to a function. If
the function is supposed to have a variable number of parameters, then you are missing the
", ..." in the function prototype.

E1152 Segment name required

A segment name must be supplied in the form of a literal string to the __segname()
directive.

Error Messages 325

Appendices

E1153 Invalid __based declaration

The compiler could not recognize one of the allowable forms of __based declarations. See
the C Language Reference document for description of all the allowable forms of __based
declarations.

E1154 Variable for __based declaration must be of type __segment or pointer

A based pointer declaration must be based on a simple variable of type __segment or
pointer.

E1155 Duplicate external symbol %s

Duplicate external symbols will exist when the specified symbol name is truncated to 8
characters.

E1156 Assembler error: ’%s’

An error has been detected by the in-line assembler. The message indicates the error
detected.

E1157 Variable must be ’huge’

A variable or an array that requires more than 64K of storage in the 16-bit compiler must be
declared as huge.

E1158 Too many parm sets

Too many parameter register sets have been specified in the pragma.

E1159 I/O error reading ’%s’: %s

An I/O error has been detected by the compiler while reading the source file. The system
dependent reason is also displayed in the message.

E1160 Attempt to access far memory with all segment registers disabled in ’%s’

The compiler does not have any segment registers available to access the desired far
memory location.

E1161 No identifier provided for ’-D’ option

The command line option "-D" must be followed by the name of the macro to be defined.

E1162 Invalid register pegged to a segment in ’%s’

The register specified in a #pragma data_seg, or a __segname expression must be a valid
segment register.

326 Error Messages

Open Watcom C Diagnostic Messages

E1163 Invalid octal constant

An octal constant cannot contain the digits 8 or 9.

E1164 Invalid hexadecimal constant

The token sequence "0x" must be followed by a hexadecimal character (0-9, a-f, or A-F).

E1165 Unexpected ’)’. Probable cause: missing ’(’

A closing parenthesis was found in an expression without a corresponding opening
parenthesis.

E1166 Symbol ’%s’ is unreachable from #pragma

The in-line assembler found a jump instruction to a label that is too far away.

E1167 Division or remainder by zero in a constant expression

The compiler found a constant expression containing a division or remainder by zero.

E1168 Cannot end string literal with backslash

The argument to a macro that uses the stringize operator ’#’ on that argument must not end
in a backslash character.

Example:
#define str(x) #x
str(@#\)

E1169 Invalid __declspec declaration

The only valid __declspec declarations are "__declspec(thread)", "__declspec(dllexport)",
and "__declspec(dllimport)".

E1170 Too many storage class specifiers

You can only specify one storage class specifier in a declaration.

E1171 Expecting ’%s’ but found end of file

A syntax error has been detected. The compiler is still expecting more input when it
reached the end of the source program.

E1172 Expecting struct/union tag but found ’%s’

The compiler expected to find an identifier following the struct or union keyword.

Error Messages 327

Appendices

E1173 Operand of __builtin_isfloat() must be a type

The __builtin_isfloat() function is used by the va_arg macro to determine if a type is a
floating-point type.

E1174 Invalid constant

The token sequence does not represent a valid numeric constant.

E1175 Too many initializers

There are more initializers than objects to initialize. For example int X[2] = { 0, 1, 2 }; The
variable "X" requires two initializers not three.

E1176 Parameter %d, pointer type mismatch

You have two pointers that either point to different objects, or the pointers are of different
size, or they have different modifiers.

E1177 Modifier repeated in declaration

You have repeated the use of a modifier like "const" (an error) or "far" (a warning) in a
declaration.

E1178 Type qualifier mismatch

You have two pointers that have different "const" or "volatile" qualifiers.

E1179 Parameter %d, type qualifier mismatch

You have two pointers that have different const or "volatile" qualifiers.

E1180 Sign specifier mismatch

You have two pointers that point to types that have different sign specifiers.

E1181 Parameter %d, sign specifier mismatch

You have two pointers that point to types that have different sign specifiers.

E1182 Missing \\ for string literal

You need a ’\’ to continue a string literal across a line.

E1183 Expecting ’%s’ after ’%s’ but found ’%s’

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

328 Error Messages

Open Watcom C Diagnostic Messages

E1184 Expecting ’%s’ after ’%s’ but found end of file

A syntax error has been detected. The compiler is still expecting more input when it
reached the end of the source program.

E1185 Invalid register name ’%s’ in #pragma

The register name is invalid/unknown.

E1186 Storage class of ’for’ statement declaration not register or auto

The only storage class allowed for the optional declaration part of a for statement is auto or
register.

E1187 No type specified in declaration

A declaration specifier must include a type specifier.

Example:
auto i;

E1188 Symbol ’%s’ declared in ’for’ statement must be object

Any identifier declared in the optional declaration part of a for statement must denote an
object. Functions, structures, or enumerations may not be declared in this context.

Example:
for(int i = 0, j(void); i < 5; ++i) {

...
}

E1189 Unexpected declaration

Within a function body, in C99 mode a declaration is only allowed in a compound
statement and in the opening clause of a for loop. Declarations are not allowed after if,
while, or switch statement, etc.

Example:
void foo(int a)
{

if(a > 0)
int j = 3;

}

In C89 mode, declarations within a function body are only allowed at the beginning of a
compound statement.

Error Messages 329

Appendices

Example:
void foo(int a)
{

++a;
int j = 3;

}

B.6 Informational Messages
I2000 Not enough memory to fully optimize procedure ’%s’

The compiler did not have enough memory to fully optimize the specified procedure. The
code generated will still be correct and execute properly. This message is purely
informational.

I2001 Not enough memory to maintain full peephole

Certain optimizations benefit from being able to store the entire module in memory during
optimization. All functions will be individually optimized but the optimizer will not be
able to share code between functions if this message appears. The code generated will still
be correct and execute properly. This message is purely informational. It is only printed if
the warning level is greater than or equal to 4.

The main reason for this message is for those people who are concerned about reproducing
the exact same object code when the same source file is compiled on a different machine.
You may not be able to reproduce the exact same object code from one compile to the next
unless the available memory is exactly the same.

I2002 ’%s’ defined in: %s(%u)

This informational message indicates where the symbol in question was defined. The
message is displayed following an error or warning diagnostic for the symbol in question.

Example:
static int a = 9;
int b = 89;

The variable ’a’ is not referenced in the preceding example and so will cause a warning to
be generated. Following the warning, the informational message indicates the line at which
’a’ was declared.

I2003 source conversion type is ’%s’

This informational message indicates the type of the source operand, for the preceding
conversion diagnostic.

330 Informational Messages

Open Watcom C Diagnostic Messages

I2004 target conversion type is ’%s’

This informational message indicates the target type of the conversion, for the preceding
conversion diagnostic.

I2005 Including file ’%s’

This informational message indicates that the specified file was opened as a result of
#include directive processing.

B.7 Pre-compiled Header Messages
H3000 Error reading PCH file

The pre-compiled header file does not follow the correct format.

H3001 PCH file header is out of date

The pre-compiled header file is out of date with the compiler. The current version of the
compiler is expecting a different format.

H3002 Compile options differ with PCH file

The command line options are not the same as used when making the pre-compiled header
file. This can effect the values of the pre-compiled information.

H3003 Current working directory differs with PCH file

The pre-compiled header file was compiled in a different directory.

H3004 Include file ’%s’ has been modified since PCH file was made

The include files have been modified since the pre-compiled header file was made.

H3005 PCH file was made from a different include file

The pre-compiled header file was made using a different include file.

H3006 Include path differs with PCH file

The include paths have changed.

H3007 Preprocessor macro definition differs with PCH file

The definition of a preprocessor macro has changed.

Pre-compiled Header Messages 331

Appendices

H3008 PCH cannot have data or code definitions.

The include files used to build the pre-compiled header contain function or data definitions.
This is not currently supported.

B.8 Miscellaneous Messages and Phrases
M4000 Code size

String used in message construction.

M4001 Error!

String used in message construction.

M4002 Warning!

String used in message construction.

M4003 Note!

String used in message construction.

M4004 (Press return to continue)

String used in message construction.

332 Miscellaneous Messages and Phrases

Open Watcom C++ Diagnostic Messages

C. Open Watcom C++ Diagnostic Messages

The following is a list of all warning and error messages produced by the Open Watcom C++ compilers.
Diagnostic messages are issued during compilation and execution.

The messages listed in the following sections contain references to %N, %S, %T, %s, %d and %u. They
represent strings that are substituted by the Open Watcom C++ compilers to make the error message more
exact. %d and %u represent a string of digits; %N, %S, %T and %s a string, usually a symbolic name.

Consider the following program, named err.cpp, which contains errors.

Example:
#include <stdio.h>

void main()
{

int i;
float i;

i = 383;
x = 13143.0;
printf("Integer value is %d\n", i);
printf("Floating-point value is %f\n", x);

}

If we compile the above program, the following messages will appear on the screen.

File: err.cpp
(6,12): Error! E042: symbol ’i’ already defined

’i’ declared at: (5,9)
(9,5): Error! E029: symbol ’x’ has not been declared
err.cpp: 12 lines, included 174, no warnings, 2 errors

The diagnostic messages consist of the following information:

1. the name of the file being compiled,
2. the line number and column of the line containing the error (in parentheses),
3. a message number, and
4. text explaining the nature of the error.

In the above example, the first error occurred on line 6 of the file err.cpp. Error number 042 (with the
appropriate substitutions) was diagnosed. The second error occurred on line 9 of the file err.cpp. Error
number 029 (with the appropriate substitutions) was diagnosed.

The following sections contain a complete list of the messages. Run-time messages (messages displayed
during execution) do not have message numbers associated with them.

Open Watcom C++ Diagnostic Messages 333

Appendices

A number of messages contain a reference to the ARM. This is the "Annotated C++ Reference Manual"
written by Margaret A. Ellis and Bjarne Stroustrup and published by Addison-Wesley (ISBN
0-201-51459-1).

C.1 Diagnostic Messages
000 internal compiler error

If this message appears, please report the problem directly to the Open Watcom
development team. See http://www.openwatcom.org/.

001 assignment of constant found in boolean expression

An assignment of a constant has been detected in a boolean expression. For example: "if(
var = 0)". It is most likely that you want to use "==" for testing for equality.

002 constant out of range; truncated

This message is issued if a constant cannot be represented in 32 bits or if a constant is
outside the range of valid values that can be assigned to a variable.

Example:
int a = 12345678901234567890;

003 missing return value

A function has been declared with a non-void return type, but no return statement was
found in the function. Either add a return statement or change the function return type to
void.

Example:
int foo(int a)
{

int b = a + a;
}

The message will be issued at the end of the function.

004 base class ’%T’ does not have a virtual destructor

A virtual destructor has been declared in a class with base classes. However, one of those
base classes does not have a virtual destructor. A delete of a pointer cast to such a base
class will not function properly in all circumstances.

Example:
struct Base {

~Base();
};
struct Derived : Base {

virtual ~Derived();
};

334 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

It is considered good programming practice to declare virtual destructors in all classes used
as base classes of classes having virtual destructors.

005 pointer or reference truncated

The expression contains a transfer of a pointer value to another pointer value of smaller
size. This can be caused by __near or __far qualifiers (i.e., assigning a far pointer to a
near pointer). Function pointers can also have a different size than data pointers in certain
memory models. This message indicates that some information is being lost so check the
code carefully.

Example:
extern int __far *foo();
int __far *p_far = foo();
int __near *p_near = p_far; // truncated

006 syntax error; probable cause: missing ’;’

The compiler has found a complete expression (or declaration) during parsing but could not
continue. The compiler has detected that it could have continued if a semicolon was
present so there may be a semicolon missing.

Example:
enum S {
} // missing ’;’

class X {
};

007 ’&array’ may not produce intended result

The type of the expression ’&array’ is different from the type of the expression ’array’.
Suppose we have the declaration char buffer[80]. Then the expression (&buffer
+ 3) will be evaluated as (buffer + 3 * sizeof(buffer)) which is (buffer
+ 3 * 80) and not (buffer + 3 * 1) which is what one may have expected. The
address-of operator ’&’ is not required for getting the address of an array.

008 returning address of function argument or of auto or register variable

This warning usually indicates a serious programming error. When a function exits, the
storage allocated on the stack for auto variables is released. This storage will be
overwritten by further function calls and/or hardware interrupt service routines. Therefore,
the data pointed to by the return value may be destroyed before your program has a chance
to reference it or make a copy of it.

Example:
int *foo()
{

int k = 123;
return &k; // k is automatic variable

}

Diagnostic Messages 335

Appendices

009 option requires a file name

The specified option is not recognized by the compiler since there was no file name after it
(i.e., "-fo=my.obj").

010 asm directive ignored

The asm directive (e.g., asm("mov r0,1");) is a non-portable construct. The Open
Watcom C++ compiler treats all asm directives like comments.

011 all members are private

This message warns the programmer that there will be no way to use the contents of the
class because all accesses will be flagged as erroneous (i.e., accessing a private member).

Example:
class Private {

int a;
Private();
~Private();
Private(const Private&);

};

012 template argument cannot be type ’%T’

A template argument can be either a generic type (e.g., template < class T >), a
pointer, or an integral type. These types are required for expressions that can be checked at
compile time.

013 unreachable code

The indicated statement will never be executed because there is no path through the
program that causes control to reach that statement.

Example:
void foo(int *p)
{

*p = 4;
return;
*p = 6;

}

The statement following the return statement cannot be reached.

014 no reference to symbol ’%S’

There are no references to the declared variable. The declaration for the variable can be
deleted. If the variable is a parameter to a function, all calls to the function must also have
the value for that parameter deleted.

In some cases, there may be a valid reason for retaining the variable. You can prevent the
message from being issued through use of #pragma off(unreferenced), or adding a
statement that assigns the variable to itself.

336 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

015 nested comment found in comment started on line %u

While scanning a comment for its end, the compiler detected /* for the start of another
comment. Nested comments are not allowed in ISO/ANSI C. You may be missing the */
for the previous comment.

016 template argument list cannot be empty

An empty template argument list would result in a template that could only define a single
class or function.

017 label ’%s’ has not been referenced by a goto

The indicated label has not been referenced and, as such, is useless. This warning can be
safely ignored.

Example:
int foo(int a, int b)
{
un_refed:

return a + b;
}

018 no reference to anonymous union member ’%S’

The declaration for the anonymous member can be safely deleted without any effect.

019 ’break’ may only appear in a for, do, while, or switch statement

A break statement has been found in an illegal place in the program. You may be missing
an opening brace { for a while, do, for or switch statement.

Example:
int foo(int a, int b)
{

break; // illegal
return a+b;

}

020 ’case’ may only appear in a switch statement

A case label has been found that is not inside a switch statement.

Example:
int foo(int a, int b)
{

case 4: // illegal
return a+b;

}

Diagnostic Messages 337

Appendices

021 ’continue’ may only appear in a for, do, or while statement

The continue statement must be inside a while, do or for statement. You may have too
many } between the while, do or for statement and the continue statement.

Example:
int foo(int a, int b)
{

continue; // illegal
return a+b;

}

022 ’default’ may only appear in a switch statement

A default label has been found that is not inside a switch statement. You may have too
many } between the start of the switch and the default label.

Example:
int foo(int a, int b)
{

default: // illegal
return a+b;

}

023 misplaced ’}’ or missing earlier ’{’

An extra } has been found which cannot be matched up with an earlier {.

024 misplaced #elif directive

The #elif directive must be inside an #if preprocessing group and before the #else directive
if present.

Example:
int a;
#else
int c;
#elif IN_IF
int b;
#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.

025 misplaced #else directive

The #else directive must be inside an #if preprocessing group and follow all #elif directives
if present.

338 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int a;
#else
int c;
#elif IN_IF
int b;
#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.

026 misplaced #endif directive

A #endif preprocessing directive has been found without a matching #if directive. You
either have an extra #endif or you are missing an #if directive earlier in the file.

Example:
int a;
#else
int c;
#elif IN_IF
int b;
#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.

027 only one ’default’ per switch statement is allowed

You cannot have more than one default label in a switch statement.

Example:
int translate(int a)
{

switch(a) {
case 1:

a = 8;
break;

default:
a = 9;
break;

default: // illegal
a = 10;
break;
}
return a;

}

Diagnostic Messages 339

Appendices

028 expecting ’%s’ but found ’%s’

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

029 symbol ’%N’ has not been declared

The compiler has found a symbol which has not been previously declared. The symbol
may be spelled differently than the declaration, or you may need to #include a header file
that contains the declaration.

Example:
int a = b; // b has not been declared

030 left expression must be a function or a function pointer

The compiler has found an expression that looks like a function call, but it is not defined as
a function.

Example:
int a;
int b = a(12);

031 operand must be an lvalue

The operand on the left side of an "=" sign must be a variable or memory location which
can have a value assigned to it.

Example:
void foo(int a)
{

(a + 1) = 7;
int b = ++ (a + 6);

}

Both statements within the function are erroneous, since lvalues are expected where the
additions are shown.

032 label ’%s’ already defined

All labels within a function must be unique.

Example:
void bar(int *p)
{
label:

*p = 0;
label:

return;
}

The second label is illegal.

340 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

033 label ’%s’ is not defined in function

A goto statement has referenced a label that is not defined in the function. Add the
necessary label or check the spelling of the label(s) in the function.

Example:
void bar(int *p)
{
labl:

*p = 0;
goto label;

}

The label referenced in the goto is not defined.

034 dimension cannot be zero

The dimension of an array must be non-zero.

Example:
int array[0]; // not allowed

035 dimension cannot be negative

The dimension of an array must be positive.

Example:
int array[-1]; // not allowed

036 dimensions of multi-dimension array must be specified

All dimensions of a multiple dimension array must be specified. The only exception is the
first dimension which can declared as "[]".

Example:
int array[][]; // not allowed

037 invalid storage class for function

If a storage class is given for a function, it must be static or extern.

Example:
auto void foo()
{
}

038 expression must have pointer type

An attempt has been made to de-reference a variable or expression which is not declared to
be a pointer.

Diagnostic Messages 341

Appendices

Example:
int a;
int b = *a;

039 cannot take address of an rvalue

You can only take the address of a variable or memory location.

Example:
char c;
char *p1 = & & c; // not allowed
char *p2 = & (c+1); // not allowed

040 expression for ’.’ must be a class, struct or union

The compiler has encountered the pattern "expression" "." "field_name" where the
expression is not a class, struct or union type.

Example:
struct S
{

int a;
};
int &fun();
int a = fun().a;

041 expression for ’->’ must be pointer to class, struct or union

The compiler has encountered the pattern "expression" "->" "field_name" where the
expression is not a pointer to class, struct or union type.

Example:
struct S
{

int a;
};
int *fun();
int a = fun()->a;

042 symbol ’%S’ already defined

The specified symbol has already been defined.

Example:
char a = 2;
char a = 2; // not allowed

043 static function ’%S’ has not been defined

A prototype has been found for a static function, but a definition for the static function has
not been found in the file.

342 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
static int fun(void);
int k = fun();
// fun not defined by end of program

044 expecting label for goto statement

The goto statement requires the name of a label.

Example:
int fun(void)
{

goto;
}

045 duplicate case value ’%s’ found

Every case value in a switch statement must be unique.

Example:
int fun(int a)
{

switch(a) {
case 1:

return 7;
case 2:

return 9;
case 1: // duplicate not allowed

return 7;
}
return 79;

}

046 bit-field width is too large

The maximum field width allowed is 16 bits in the 16-bit compiler and 32 bits in the 32-bit
compiler.

Example:
struct S
{

unsigned bitfield :48; // too wide
};

047 width of a named bit-field must not be zero

A bit field must be at least one bit in size.

Diagnostic Messages 343

Appendices

Example:
struct S {

int bitfield :10;
int :0; // okay, aligns to int
int h :0; // error, field is named

};

048 bit-field width must be positive

You cannot have a negative field width.

Example:
struct S
{

unsigned bitfield :-10; // cannot be negative
};

049 bit-field base type must be an integral type

The types allowed for bit fields are signed or unsigned varieties of char, short and int.

Example:
struct S
{

float bitfield : 10; // must be integral
};

050 subscript on non-array

One of the operands of ’[]’ must be an array or a pointer.

Example:
int array[10];
int i1 = array[0]; // ok
int i2 = 0[array]; // same as above
int i3 = 0[1]; // illegal

051 incomplete comment

The compiler did not find */ to mark the end of a comment.

052 argument for # must be a macro parm

The argument for the stringize operator ’#’ must be a macro parameter.

053 unknown preprocessing directive ’#%s’

An unrecognized preprocessing directive has been encountered. Check for correct spelling.

344 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#i_goofed // not valid

054 invalid #include directive

A syntax error has been encountered in a #include directive.

Example:
#include // no header file
#include stdio.h

Both examples are illegal.

055 not enough parameters given for macro ’%s’

You have not supplied enough parameters to the specified macro.

Example:
#define mac(a,b) a+b
int i = mac(123); // needs 2 parameters

056 not expecting a return value

The specified function is declared as a void function. Delete the return value, or change
the type of the function.

Example:
void fun()
{

return 14; // not expecting return value
}

057 cannot take address of a bit-field

The smallest addressable unit is a byte. You cannot take the address of a bit field.

Example:
struct S
{ int bits :6;

int bitfield :10;
};
S var;
void* p = &var.bitfield; // illegal

058 expression must be a constant

The compiler expects a constant expression. This message can occur during static
initialization if you are trying to initialize a non-pointer type with an address expression.

Diagnostic Messages 345

Appendices

059 unable to open ’%s’

The file specified in an #include directive could not be located. Make sure that the file
name is spelled correctly, or that the appropriate path for the file is included in the list of
paths specified in the INCLUDE or INCLUDE environment variables or in the "i=" option
on the command line.

060 too many parameters given for macro ’%s’

You have supplied too many parameters for the specified macro. The extra parameters are
ignored.

Example:
#define mac(a,b) a+b
int i = mac(1,2,3); // needs 2 parameters

061 cannot use __based or __far16 pointers in this context

The use of __based and __far16 pointers is prohibited in throw expressions and catch
statements.

Example:
extern int __based(__segname("myseg")) *pi;

void bad()
{

try {
throw pi;
} catch(int __far16 *p16) {
*p16 = 87;
}

}

Both the throw expression and catch statements cause this error to be diagnosed.

062 only one type is allowed in declaration specifiers

Only one type is allowed for the first part of a declaration. A common cause of this
message is that there may be a missing semi-colon (’;’) after a class definition.

Example:
class C
{
public:

C();
} // needs ";"

int foo() { return 7; }

346 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

063 out of memory

The compiler has run out of memory to store information about the file being compiled.
Try reducing the number of data declarations and or the size of the file being compiled. Do
not #include header files that are not required.

064 invalid character constant

This message is issued for an improperly formed character constant.

Example:
char c = ’12345’;
char d = ’’’;

065 taking address of variable with storage class ’register’

You can take the address of a register variable in C++ (but not in ISO/ANSI C). If there is
a chance that the source will be compiled using a C compiler, change the storage class from
register to auto.

Example:
extern int foo(char*);
int bar()
{

register char c = ’c’;
return foo(&c);

}

066 ’delete’ expression size is not allowed

The C++ language has evolved to the point where the delete expression size is no longer
required for a correct deletion of an array.

Example:
void fn(unsigned n, char *p) {

delete [n] p;
}

067 ending " missing for string literal

The compiler did not find a second double quote to end the string literal.

Example:
char *a = "no_ending_quote;

068 invalid option

The specified option is not recognized by the compiler.

Diagnostic Messages 347

Appendices

069 invalid optimization option

The specified option is an unrecognized optimization option.

070 invalid memory model

Memory model option must be one of "ms", "mm", "mc", "ml", "mh" or "mf" which selects
the Small, Medium, Compact, Large, Huge or Flat memory model.

071 expression must be integral

An integral expression is required.

Example:
int foo(int a, float b, int *p)
{

switch(a) {
case 1.3: // must be integral

return p[b]; // index not integer
case 2:

b <<= 2; // can only shift integers
default:

return b;
}

}

072 expression must be arithmetic

Arithmetic operations, such as "/" and "*", require arithmetic operands unless the operation
has been overloaded or unless the operands can be converted to arithmetic operands.

Example:
class C
{
public:

int c;
};
C cv;
int i = cv / 2;

073 statement required after label

The C language definition requires a statement following a label. You can use a null
statement which consists of just a semicolon (";").

Example:
extern int bar(int);
void foo(int a)
{

if(a) goto ending;
bar(a);

ending:
// needs statement following

}

348 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

074 statement required after ’do’

A statement is required between the do and while keywords.

075 statement required after ’case’

The C language definition requires a statement following a case label. You can use a null
statement which consists of just a semicolon (";").

Example:
int foo(int a)
{

switch(a) {
default:

return 7;
case 1: // needs statement following

}
return 18;

}

076 statement required after ’default’

The C language definition requires a statement following a default label. You can use a
null statement which consists of just a semicolon (";").

Example:
int foo(int a)
{

switch(a) {
case 7:

return 7;
default:

// needs statement following
}
return 18;

}

077 missing matching #endif directive

You are missing a #endif to terminate a #if, #ifdef or #ifndef preprocessing directive.

Example:
#if 1
int a;
// needs #endif

078 invalid macro definition, missing ’)’

The right parenthesis ")" is required for a function-like macro definition.

Diagnostic Messages 349

Appendices

Example:
#define bad_mac(a, b

079 missing ’)’ for expansion of ’%s’ macro

The compiler encountered end-of-file while collecting up the argument for a function-like
macro. A right parenthesis ")" is required to mark the end of the argument(s) for a
function-like macro.

Example:
#define mac(a, b) a+b
int d = mac(1, 2

080 %s

This is a user message generated with the #error preprocessing directive.

Example:
#error my very own error message

081 cannot define an array of functions

You can have an array of pointers to functions, but not an array of functions.

Example:
typedef int TD(float);
TD array[12];

082 function cannot return an array

A function cannot return an array. You can return a pointer to an array.

Example:
typedef int ARR[10];
ARR fun(float);

083 function cannot return a function

You cannot return a function. You can return a pointer to a function.

Example:
typedef int TD();
TD fun(float);

084 function templates can only have type arguments

A function template argument can only be a generic type (e.g., template < class T >
). This is a restriction in the C++ language that allows compilers to automatically
instantiate functions purely from the argument types of calls.

350 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

085 maximum class size has been exceeded

The 16-bit compiler limits the size of a struct or union to 64K so that the compiler can
represent the offset of a member in a 16-bit register. This error also occurs if the size of a
structure overflows the size of an unsigned integer.

Example:
struct S
{

char arr1[0xfffe];
char arr2[0xfffe];
char arr3[0xfffe];
char arr4[0xfffffffe];

};

086 definition of macro ’%s’ not identical to previous definition

If a macro is defined more than once, the definitions must be identical. If you want to
redefine a macro to have a different definition, you must #undef it before you can define it
with a new definition.

Example:
#define CON 123
#define CON 124 // not same as previous

087 initialization of ’%S’ must be in file scope

A file scope variable must be initialized in file scope.

Example:
void fn()
{

extern int v = 1;
}

088 default argument for ’%S’ declared outside of class definition

Problems can occur with member functions that do not declare all of their default
arguments during the class definition. For instance, a copy constructor is declared if a class
does not define a copy constructor. If a default argument is added later on to a constructor
that makes it a copy constructor, an ambiguity results.

Example:
struct S {

S(S const &, int);
// S(S const &); <-- declared by compiler

};
// ambiguity with compiler
// generated copy constructor
// S(S const &);
S::S(S const &, int = 0)
{
}

Diagnostic Messages 351

Appendices

089 ## must not be at start or end of replacement tokens

There must be a token on each side of the "##" (token pasting) operator.

Example:
#define badmac(a, b) ## a ## b

090 invalid floating-point constant

The exponent part of the floating-point constant is not formed correctly.

Example:
float f = 123.9E+Q;

091 ’sizeof’ is not allowed for a bit-field

The smallest object that you can ask for the size of is a char.

Example:
struct S
{ int a;

int b :10;
} v;
int k = sizeof(v.b);

092 option requires a path

The specified option is not recognized by the compiler since there was no path after it (i.e.,
"-i=d:\include;d:\path").

093 must use ’va_start’ macro inside function with variable arguments

The va_start macro is used to setup access to the parameters in a function that takes a
variable number of parameters. A function is defined with a variable number of parameters
by declaring the last parameter in the function as "...".

Example:
#include <stdarg.h>
int foo(int a, int b)
{

va_list args;
va_start(args, a);
va_end(args);
return b;

}

094 ***FATAL*** %s

A fatal error has been detected during code generation time. The type of error is displayed
in the message.

352 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

095 internal compiler error %d

A bug has been encountered in the compiler. Please report the specified internal compiler
error number and any other helpful details about the program being compiled to the Open
Watcom development team so that we can fix the problem. See
http://www.openwatcom.org/.

096 argument number %d - invalid register in #pragma

The designated registers cannot hold the value for the parameter.

097 procedure ’%s’ has invalid return register in #pragma

The size of the return register does not match the size of the result returned by the function.

098 illegal register modified by ’%s’ #pragma

For the 16-bit Open Watcom C/C++ compiler: The BP, CS, DS, and SS registers cannot
be modified in small data models. The BP, CS, and SS registers cannot be modified in
large data models.

For the 32-bit Open Watcom C/C++ compiler: The EBP, CS, DS, ES, and SS registers
cannot be modified in flat memory models. The EBP, CS, DS, and SS registers cannot be
modified in small data models. The EBP, CS, and SS registers cannot be modified in large
data models.

099 file must contain at least one external definition

Every file must contain at least one global object, (either a data variable or a function).

Note: This message has been disabled starting with Open Watcom v1.4. The ISO 1998
C++ standard allows empty translation units.

100 out of macro space

The compiler ran out of memory for storing macro definitions.

101 keyboard interrupt detected

The compilation has been aborted with Ctrl/C or Ctrl/Break.

102 duplicate macro parameter ’%s’

The parameters specified in a macro definition must be unique.

Example:
#define badmac(a, b, a) a ## b

Diagnostic Messages 353

Appendices

103 unable to open work file: error code = %d

The compiler tries to open a new work file by the name "__wrkN__.tmp" where N is the
digit 0 to 9. This message will be issued if all of those files already exist.

104 write error on work file: error code = %d

An error was encountered trying to write information to the work file. The disk could be
full.

105 read error on work file: error code = %d

An error was encountered trying to read information from the work file.

106 token too long; truncated

The token must be less than 510 bytes in length.

107 filename required on command line

The name of a file to be compiled must be specified on the command line.

108 command line contains more than one file to compile

You have more than one file name specified on the command line to be compiled. The
compiler can only compile one file at a time. You can use the Open Watcom Compile and
Link utility to compile multiple files with a single command.

109 virtual member functions are not allowed in a union

A union can only be used to overlay the storage of data. The storage of virtual function
information (in a safe manner) cannot be done if storage is overlaid.

Example:
struct S1{ int f(int); };
struct S2{ int f(int); };
union un { S1 s1;

S2 s2;
virtual int vf(int);

};

110 union cannot be used as a base class

This restriction prevents C++ programmers from viewing a union as an encapsulation unit.
If it is necessary, one can encapsulate the union into a class and achieve the same effect.

354 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
union U { int a; int b; };
class S : public U { int s; };

111 union cannot have a base class

This restriction prevents C++ programmers from viewing a union as an encapsulation unit.
If it is necessary, one can encapsulate the union into a class and inherit the base classes
normally.

Example:
class S { public: int s; };
union U : public S { int a; int b; };

112 cannot inherit an undefined base class ’%T’

The storage requirements for a class type must be known when inheritance is involved
because the layout of the final class depends on knowing the complete contents of all base
classes.

Example:
class Undefined;
class C : public Undefined {

int c;
};

113 repeated direct base class will cause ambiguities

Almost all accesses will be ambiguous. This restriction is useful in catching programming
errors. The repeated base class can be encapsulated in another class if the repetition is
required.

Example:
class Dup
{

int d;
};
class C : public Dup, public Dup
{

int c;
};

114 templates may only be declared in namespace scope

Currently, templates can only be declared in namespace scope. This simple restriction was
chosen in favour of more freedom with possibly subtle restrictions.

Diagnostic Messages 355

Appendices

115 linkages may only be declared in file scope

A common source of errors for C and C++ result from the use of prototypes inside of
functions. This restriction attempts to prevent such errors.

116 unknown linkage ’%s’

Only the linkages "C" and "C++" are supported by Open Watcom C++.

Example:
extern "APL" void AplFunc(int*);

117 too many storage class specifiers

This message is a result of duplicating a previous storage class or having a different storage
class. You can only have one of the following storage classes, extern, static, auto, register,
or typedef.

Example:
extern typedef int (*fn)(void);

118 nameless declaration is not allowed

A type was used in a declaration but no name was given.

Example:
static int;

119 illegal combination of type specifiers

An incorrect scalar type was found. Either a scalar keyword was repeated or the
combination is illegal.

Example:
short short x;
short long y;

120 illegal combination of type qualifiers

A repetition of a type qualifier has been detected. Some compilers may ignore repetitions
but strictly speaking it is incorrect code.

Example:
const const x;
struct S {

int virtual virtual fn();
};

356 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

121 syntax error

The C++ compiler was unable to interpret the text starting at the location of the message.
The C++ language is sufficiently complicated that it is difficult for a compiler to correct the
error itself.

122 parser stack corrupted

The C++ parser has detected an internal problem that usually indicates a compiler problem.
Please report this directly to the Open Watcom development team. See
http://www.openwatcom.org/.

123 template declarations cannot be nested within each other

Currently, templates can only be declared in namespace scope. Furthermore, a template
declaration must be finished before another template can be declared.

124 expression is too complicated

The expression contains too many levels of nested parentheses. Divide the expression up
into two or more sub-expressions.

125 invalid redefinition of the typedef name ’%S’

Redefinition of typedef names is only allowed if you are redefining a typedef name to
itself. Any other redefinition is illegal. You should delete the duplicate typedef definition.

Example:
typedef int TD;
typedef float TD; // illegal

126 class ’%T’ has already been defined

This message usually results from the definition of two classes in the same scope. This is
illegal regardless of whether the class definitions are identical.

Example:
class C {
};
class C {
};

127 ’sizeof’ is not allowed for an undefined type

If a type has not been defined, the compiler cannot know how large it is.

Diagnostic Messages 357

Appendices

Example:
class C;
int x = sizeof(C);

128 initializer for variable ’%S’ cannot be bypassed

The variable may not be initialized when code is executing at the position indicated in the
message. The C++ language places these restrictions to prevent the use of uninitialized
variables.

Example:
int foo(int a)
{

switch(a) {
case 1:

int b = 2;
return b;

default: // b bypassed
return b + 5;
}

}

129 division by zero in a constant expression

Division by zero is not allowed in a constant expression. The value of the expression
cannot be used with this error.

Example:
int foo(int a)
{

switch(a) {
case 4 / 0: // illegal

return a;
}
return a + 2;

}

130 arithmetic overflow in a constant expression

The multiplication of two integral values cannot be represented. The value of the
expression cannot be used with this error.

Example:
int foo(int a)
{

switch(a) {
case 0x7FFF * 0x7FFF * 0x7FFF: // overflow

return a;
}
return a + 2;

}

358 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

131 not enough memory to fully optimize procedure ’%s’

The indicated procedure cannot be fully optimized with the amount of memory available.
The code generated will still be correct and execute properly. This message is purely
informational (i.e., buy more memory).

132 not enough memory to maintain full peephole

Certain optimizations benefit from being able to store the entire module in memory during
optimization. All functions will be individually optimized but the optimizer will not be
able to share code between functions if this message appears. The code generated will still
be correct and execute properly. This message is purely informational (i.e., buy more
memory).

133 too many errors: compilation aborted

The Open Watcom C++ compiler sets a limit to the number of error messages it will issue.
Once the number of messages reaches the limit the above message is issued. This limit can
be changed via the "/e" command line option.

134 too many parm sets

An extra parameter passing description has been found in the aux pragma text. Only one
parameter passing description is allowed.

135 ’friend’, ’virtual’ or ’inline’ modifiers may only be used on functions

This message indicates that you are trying to declare a strange entity like an inline variable.
These qualifiers can only be used on function declarations and definitions.

136 more than one calling convention has been specified

A function cannot have more than one #pragma modifier applied to it. Combine the
pragmas into one pragma and apply it once.

137 pure member function constant must be ’0’

The constant must be changed to ’0’ in order for the Open Watcom C++ compiler to accept
the pure virtual member function declaration.

Example:
struct S {

virtual int wrong(void) = 91;
};

138 based modifier has been repeated

A repeated based modifier has been detected. There are no semantics for combining base
modifiers so this is not allowed.

Diagnostic Messages 359

Appendices

Example:
char *ptr;
char __based(void) __based(ptr) *a;

139 enumeration variable is not assigned a constant from its enumeration

In C++ (as opposed to C), enums represent values of distinct types. Thus, the compiler will
not automatically convert an integer value to an enum type if you are compiling your
source in strict ISO/ANSI C++ mode. If you have extensions enabled, this message is
treated as a warning.

Example:
enum Days { sun, mod, tues, wed, thur, fri, sat };
enum Days day = 2;

140 bit-field declaration cannot have a storage class specifier

Bit-fields (along with most members) cannot have storage class specifiers in their
declaration. Remove the storage class specifier to correct the code.

Example:
class C
{
public:

extern unsigned bitf :10;
};

141 bit-field declaration must have a base type specified

A bit-field cannot make use of a default integer type. Specify the type int to correct the
code.

Example:
class C
{
public:

bitf :10;
};

142 illegal qualification of a bit-field declaration

A bit-field can only be declared const or volatile. Qualifications like friend are not
allowed.

Example:
struct S {

friend int bit1 :10;
inline int bit2 :10;
virtual int bit3 :10;

};

All three declarations of bit-fields are illegal.

360 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

143 duplicate base qualifier

The compiler has found a repetition of base qualifiers like protected or virtual.

Example:
struct Base { int b; };
struct Derived : public public Base { int d; };

144 only one access specifier is allowed

The compiler has found more than one access specifier for a base class. Since the compiler
cannot choose one over the other, remove the unwanted access specifier to correct the code.

Example:
struct Base { int b; };
struct Derived : public protected Base { int d; };

145 unexpected type qualifier found

Type specifiers cannot have const or volatile qualifiers. This shows up in new expressions
because one cannot allocate a const object.

146 unexpected storage class specifier found

Type specifiers cannot have auto or static storage class specifiers. This shows up in new
expressions because one cannot allocate a static object.

147 access to ’%S’ is not allowed because it is ambiguous

There are two ways that this error can show up in C++ code. The first way a member can
be ambiguous is that the same name can be used in two different classes. If these classes
are combined with multiple inheritance, accesses of the name will be ambiguous.

Example:
struct S1 { int s; };
struct S2 { int s; };
struct Der : public S1, public S2
{

void foo() { s = 2; }; // s is ambiguous
};

The second way a member can be ambiguous involves multiple inheritance. If a class is
inherited non-virtually by two different classes which then get combined with multiple
inheritance, an access of the member is faced with deciding which copy of the member is
intended. Use the ’::’ operator to clarify what member is being accessed or access the
member with a different class pointer or reference.

Diagnostic Messages 361

Appendices

Example:
struct Top { int t; };
struct Mid : public Top { int m; };
struct Bot : public Top, public Mid
{

void foo() { t = 2; }; // t is ambiguous
};

148 access to private member ’%S’ is not allowed

The indicated member is being accessed by an expression that does not have permission to
access private members of the class.

Example:
struct Top { int t; };
class Bot : private Top
{

int foo() { return t; }; // t is private
};
Bot b;
int k = b.foo(); // foo is private

149 access to protected member ’%S’ is not allowed

The indicated member is being accessed by an expression that does not have permission to
access protected members of the class. The compiler also requires that protected members
be accessed through a derived class to ensure that an unrelated base class cannot be quietly
modified. This is a fairly recent change to the C++ language that may cause Open Watcom
C++ to not accept older C++ code. See Section 11.5 in the ARM for a discussion of
protected access.

Example:
struct Top { int t; };
struct Mid : public Top { int m; };
class Bot : protected Mid
{
protected:

// t cannot be accessed
int foo() { return t; };

};
Bot b;
int k = b.foo(); // foo is protected

150 operation does not allow both operands to be pointers

There may be a missing indirection in the code exhibiting this error. An example of this
error is adding two pointers.

362 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn()
{

char *p, *q;

p += q;
}

151 operand is neither a pointer nor an arithmetic type

An example of this error is incrementing a class that does not have any overloaded
operators.

Example:
struct S { } x;
void fn()
{

++x;
}

152 left operand is neither a pointer nor an arithmetic type

An example of this error is trying to add 1 to a class that does not have any overloaded
operators.

Example:
struct S { } x;
void fn()
{

x = x + 1;
}

153 right operand is neither a pointer nor an arithmetic type

An example of this error is trying to add 1 to a class that does not have any overloaded
operators.

Example:
struct S { } x;
void fn()
{

x = 1 + x;
}

154 cannot subtract a pointer from an arithmetic operand

The subtract operands are probably in the wrong order.

Diagnostic Messages 363

Appendices

Example:
int fn(char *p)
{

return(10 - p);
}

155 left expression must be arithmetic

Certain operations like multiplication require both operands to be of arithmetic types.

Example:
struct S { } x;
void fn()
{

x = x * 1;
}

156 right expression must be arithmetic

Certain operations like multiplication require both operands to be of arithmetic types.

Example:
struct S { } x;
void fn()
{

x = 1 * x;
}

157 left expression must be integral

Certain operators like the bit manipulation operators require both operands to be of integral
types.

Example:
struct S { } x;
void fn()
{

x = x ^ 1;
}

158 right expression must be integral

Certain operators like the bit manipulation operators require both operands to be of integral
types.

Example:
struct S { } x;
void fn()
{

x = 1 ^ x;
}

364 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

159 cannot assign a pointer value to an arithmetic item

The pointer value must be cast to the desired type before the assignment takes place.

Example:
void fn(char *p)
{

int a;

a = p;
}

160 attempt to destroy a far object when data model is near

Destructors cannot be applied to objects which are stored in far memory when the default
memory model for data is near.

Example:
struct Obj
{ char *p;

~Obj();
};

Obj far obj;

The last line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for data is near.

161 attempt to call member function for far object when the data model is near

Member functions cannot be called for objects which are stored in far memory when the
default memory model for data is near.

Example:
struct Obj
{ char *p;

int foo();
};

Obj far obj;
int integer = obj.foo();

The last line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for data is near.

162 template type argument cannot have a default argument

This message was produced by earlier versions of the Open Watcom C++ compiler.
Support for default template arguments was added in version 1.3 and this message was
removed at that time.

Diagnostic Messages 365

Appendices

163 attempt to delete a far object when the data model is near

delete cannot be used to deallocate objects which are stored in far memory when the default
memory model for data is near.

Example:
struct Obj
{ char *p;
};

void foo(Obj far *p)
{

delete p;
}

The second last line causes this error to be displayed when the memory model is small
(switch -ms), since the memory model for data is near.

164 first operand is not a class, struct or union

The offsetof operation can only be performed on a type that can have members. It is
meaningless for any other type.

Example:
#include <stddef.h>

int fn(void)
{

return offsetof(double, sign);
}

165 syntax error: class template cannot be processed

The class template contains unbalanced braces. The class definition cannot be processed in
this form.

166 cannot convert right pointer to type of left operand

The C++ language will not allow the implicit conversion of unrelated class pointers. An
explicit cast is required.

Example:
class C1;
class C2;

void fun(C1* pc1, C2* pc2)
{

pc2 = pc1;
}

366 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

167 left operand must be an lvalue

The left operand must be an expression that is valid on the left side of an assignment.
Examples of incorrect lvalues include constants and the results of most operators.

Example:
int i, j;
void fn()
{

(i - 1) = j;
1 = j;

}

168 static data members are not allowed in an union

A union should only be used to organize memory in C++. Enclose the union in a class if
you need a static data member associated with the union.

Example:
union U
{

static int a;
int b;
int c;

};

169 invalid storage class for a member

A class member cannot be declared with auto, register, or extern storage class.

Example:
class C
{

auto int a; // cannot specify auto
};

170 declaration is too complicated

The declaration contains too many declarators (i.e., pointer, array, and function types).
Break up the declaration into a series of typedefs ending in a final declaration.

Example:
int ************p;

Example:
// transform this to ...
typedef int ****PD1;
typedef PD1 ****PD2;
PD2 ****p;

Diagnostic Messages 367

Appendices

171 exception declaration is too complicated

The exception declaration contains too many declarators (i.e., pointer, array, and function
types). Break up the declaration into a series of typedefs ending in a final declaration.

172 floating-point constant too large to represent

The Open Watcom C++ compiler cannot represent the floating-point constant because the
magnitude of the positive exponent is too large.

Example:
float f = 1.2e78965;

173 floating-point constant too small to represent

The Open Watcom C++ compiler cannot represent the floating-point constant because the
magnitude of the negative exponent is too large.

Example:
float f = 1.2e-78965;

174 class template ’%S’ cannot be overloaded

A class template name must be unique across the entire C++ program. Furthermore, a class
template cannot coexist with another class template of the same name.

175 range of enum constants cannot be represented

If one integral type cannot be chosen to represent all values of an enumeration, the values
cannot be used reliably in the generated code. Shrink the range of enumerator values used
in the enum declaration.

Example:
enum E
{ e1 = 0xFFFFFFFF
, e2 = -1
};

176 ’%S’ cannot be in the same scope as a class template

A class template name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the class template.

177 invalid storage class in file scope

A declaration in file scope cannot have a storage class of auto or register.

368 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
auto int a;

178 const object must be initialized

Constant objects cannot be modified so they must be initialized before use.

Example:
const int a;

179 declaration cannot be in the same scope as class template ’%S’

A class template name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the class template.

180 template arguments must be named

A member function of a template class cannot be defined outside the class declaration
unless all template arguments have been named.

181 class template ’%S’ is already defined

A class template cannot have its definition repeated regardless of whether it is identical to
the previous definition.

182 invalid storage class for an argument

An argument declaration cannot have a storage class of extern, static, or typedef.

Example:
int foo(extern int a)
{

return a;
}

183 unions cannot have members with constructors

A union should only be used to organize memory in C++. Allowing union members to
have constructors would mean that the same piece of memory could be constructed twice.

Example:
class C
{

C();
};
union U
{

int a;
C c; // has constructor

};

Diagnostic Messages 369

Appendices

184 statement is too complicated

The statement contains too many nested constructs. Break up the statement into multiple
statements.

185 ’%s’ is not the name of a class or namespace

The right hand operand of a ’::’ operator turned out not to reference a class type or
namespace. Because the name is followed by another ’::’, it must name a class or
namespace.

186 attempt to modify a constant value

Modification of a constant value is not allowed. If you must force this to work, take the
address and cast away the constant nature of the type.

Example:
static int const con = 12;
void foo()
{

con = 13; // error
(int)&con = 13; // ok

}

187 ’offsetof’ is not allowed for a bit-field

A bit-field cannot have a simple offset so it cannot be referenced in an offsetof expression.

Example:
#include <stddef.h>
struct S
{

unsigned b1 :10;
unsigned b2 :15;
unsigned b3 :11;

};
int k = offsetof(S, b2);

188 base class is inherited with private access

This warning indicates that the base class was originally declared as a class as opposed to a
struct. Furthermore, no access was specified so the base class defaults to private
inheritance. Add the private or public access specifier to prevent this message depending
on the intended access.

189 overloaded function cannot be selected for arguments used in call

Either conversions were not possible for an argument to the function or a function with the
right number of arguments was not available.

370 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C1;
class C2;
int foo(C1*);
int foo(C2*);
int k = foo(5);

190 base operator operands must be " __segment :> pointer "

The base operator (:>) requires the left operand to be of type __segment and the right
operand to be a pointer.

Example:
char _based(void) *pcb;
char __far *pcf = pcb; // needs :> operator

Examples of typical uses are as follows:

Example:
const __segment mySegAbs = 0x4000;
char __based(void) *c_bv = 24;
char __far *c_fp_1 = mySegAbs :> c_bv;
char __far *c_fp_2 = __segname("_DATA") :> c_bv;

191 expression must be a pointer or a zero constant

In a conditional expression, if one side of the ’:’ is a pointer then the other side must also be
a pointer or a zero constant.

Example:
extern int a;
int *p = (a > 7) ? &a : 12;

192 left expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers to functions,
arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.

Example:
void *p;
void *q = p + 2;

193 right expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers to functions,
arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.

Diagnostic Messages 371

Appendices

Example:
void *p;
void *q = 2 + p;

194 expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers to functions,
arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.

Example:
void *p;
void *q = ++p;

195 ’sizeof’ is not allowed for a function

A function has no size defined for it by the C++ language specification.

Example:
typedef int FT(int);

unsigned y = sizeof(FT);

196 ’sizeof’ is not allowed for type void

The type void has no size defined for it by the C++ language specification.

Example:
void *p;
unsigned size = sizeof(*p);

197 type cannot be defined in this context

A type cannot be defined in certain contexts. For example, a new type cannot be defined in
an argument list, a new expression, a conversion function identifier, or a catch handler.

Example:
extern int goop();
int foo()
{

try {
return goop();
} catch(struct S { int s; }) {
return 2;
}

}

372 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

198 expression cannot be used as a class template parameter

The compiler has to be able to compare expressions during compilation so this limits the
complexity of expressions that can be used for template parameters. The only types of
expressions that can be used for template parameters are constant integral expressions and
addresses. Any symbols must have external linkage or must be static class members.

199 premature end-of-file encountered during compilation

The compiler expects more source code at this point. This can be due to missing
parentheses (’)’) or missing closing braces (’}’).

200 duplicate case value ’%s’ after conversion to type of switch expression

A duplicate case value has been found. Keep in mind that all case values must be
converted to the type of the switch expression. Constants that may be different initially
may convert to the same value.

Example:
enum E { e1, e2 };
void foo(short a)
{

switch(a) {
case 1:
case 0x10001: // converts to 1 as short

break;
}

}

201 declaration statement follows an if statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended.

Example:
void foo(int a)
{

if(a)
int b = 14;

}

202 declaration statement follows an else statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended.

Diagnostic Messages 373

Appendices

Example:
void foo(int a)
{

if(a)
int c = 15;
else
int b = 14;

}

203 declaration statement follows a switch statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended.

Example:
void foo(int a)
{

switch(a)
int b = 14;

}

204 ’this’ pointer is not defined

The this value can only be used from within non-static member functions.

Example:
void *fn()
{

return this;
}

205 declaration statement cannot follow a while statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended.

Example:
void foo(int a)
{

while(a)
int b = 14;

}

206 declaration statement cannot follow a do statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended.

374 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void foo(int a)
{

do
int b = 14;
while(a);

}

207 declaration statement cannot follow a for statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended. A for loop with an initial declaration is allowed to be
used within another for loop, so this code is legal C++:

Example:
void fn(int **a)
{

for(int i = 0; i < 10; ++i)
for(int j = 0; j < 10; ++j)

a[i][j] = i + j;
}

The following example, however, illustrates a potentially erroneous situation.

Example:
void foo(int a)
{

for(; a<10;)
int b = 14;

}

208 pointer to virtual base class converted to pointer to derived class

Since the relative position of a virtual base can change through repeated derivations, this
conversion is very dangerous. All C++ translators must report an error for this type of
conversion.

Example:
struct VBase { int v; };
struct Der : virtual public VBase { int d; };
extern VBase *pv;
Der *pd = (Der *)pv;

209 cannot use far pointer in this context

Only near pointers can be thrown when the data memory model is near.

Diagnostic Messages 375

Appendices

Example:
extern int __far *p;
void foo()
{

throw p;
}

When the small memory model (-ms switch) is selected, the throw expression is diagnosed
as erroneous. Similarly, only near pointers can be specified in catch statements when the
data memory model is near.

210 returning reference to function argument or to auto or register variable

The storage for the automatic variable will be destroyed immediately upon function return.
Returning a reference effectively allows the caller to modify storage which does not exist.

Example:
class C
{

char *p;
public:

C();
~C();

};

C& foo()
{

C auto_var;
return auto_var; // not allowed

}

211 #pragma attributes for ’%S’ may be inconsistent

A pragma attribute was changed to a value which matches neither the current default not
the previous value for that attribute. A warning is issued since this usually indicates an
attribute is being set twice (or more) in an inconsistent way. The warning can also occur
when the default attribute is changed between two pragmas for the same object.

212 function arguments cannot be of type void

Having more than one void argument is not allowed. The special case of one void
argument indicates that the function accepts no parameters.

Example:
void fn1(void) // OK
{
}
void fn2(void, void, void) // Error!
{
}

376 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

213 class template requires more parameters for instantiation

The class template instantiation has too few parameters supplied so the class cannot be
instantiated properly.

214 class template requires fewer parameters for instantiation

The class template instantiation has too many parameters supplied so the class cannot be
instantiated properly.

215 no declared ’operator new’ has arguments that match

An operator new could not be found to match the new expression. Supply the correct
arguments for special operator new functions that are defined with the placement syntax.

Example:
#include <stddef.h>

struct S {
void *operator new(size_t, char);

};

void fn()
{

S *p = new (’a’) S;
}

216 wide character string concatenated with a simple character string

There are no semantics defined for combining a wide character string with a simple
character string. To correct the problem, make the simple character string a wide character
string by prefixing it with a L.

Example:
char *p = "1234" L"5678";

217 ’offsetof’ is not allowed for a static member

A static member does not have an offset like simple data members. If this is required, use
the address of the static member.

Example:
#include <stddef.h>
class C
{
public:

static int stat;
int memb;

};

int size_1 = offsetof(C, stat); // not allowed
int size_2 = offsetof(C, memb); // ok

Diagnostic Messages 377

Appendices

218 cannot define an array of void

Since the void type has no size and there are no values of void type, one cannot declare an
array of void.

Example:
void array[24];

219 cannot define an array of references

References are not objects, they are simply a way of creating an efficient alias to another
name. Creating an array of references is currently not allowed in the C++ language.

Example:
int& array[24];

220 cannot define a reference to void

One cannot create a reference to a void because there can be no void variables to supply for
initializing the reference.

Example:
void& ref;

221 cannot define a reference to another reference

References are not objects, they are simply a way of creating an efficient alias to another
name. Creating a reference to another reference is currently not allowed in the C++
language.

Example:
int & & ref;

222 cannot define a pointer to a reference

References are not objects, they are simply a way of creating an efficient alias to another
name. Creating a pointer to a reference is currently not allowed in the C++ language.

Example:
char& *ptr;

223 cannot initialize array with ’operator new’

The initialization of arrays created with operator new can only be done with default
constructors. The capability of using another constructor with arguments is currently not
allowed in the C++ language.

378 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S
{

S(int);
};
S *p = new S[10] (12);

224 ’%N’ is a variable of type void

A variable cannot be of type void. The void type can only be used in restricted
circumstances because it has no size. For instance, a function returning void means that it
does not return any value. A pointer to void is used as a generic pointer but it cannot be
dereferenced.

225 cannot define a member pointer to a reference

References are not objects, they are simply a way of creating an efficient alias to another
name. Creating a member pointer to a reference is currently not allowed in the C++
language.

Example:
struct S
{

S();
int &ref;

};

int& S::* p;

226 function ’%S’ is not distinct

The function being declared is not distinct enough from the other functions of the same
name. This means that all function overloads involving the function’s argument types will
be ambiguous.

Example:
struct S {

int s;
};
extern int foo(S*);
extern int foo(S* const); // not distinct enough

227 overloaded function is ambiguous for arguments used in call

The compiler could not find an unambiguous choice for the function being called.

Example:
extern int foo(char);
extern int foo(short);
int k = foo(4);

Diagnostic Messages 379

Appendices

228 declared ’operator new’ is ambiguous for arguments used

The compiler could not find an unambiguous choice for operator new.

Example:
#include <stdlib.h>
struct Der
{

int s[2];
void* operator new(size_t, char);
void* operator new(size_t, short);

};
Der *p = new(10) Der;

229 function ’%S’ has already been defined

The function being defined has already been defined elsewhere. Even if the two function
bodies are identical, there must be only one definition for a particular function.

Example:
int foo(int s) { return s; }
int foo(int s) { return s; } // illegal

230 expression on left is an array

The array expression is being used in a context where only pointers are allowed.

Example:
void fn(void *p)
{

int a[10];

a = 0;
a = p;
a++;

}

231 user-defined conversion has a return type

A user-defined conversion cannot be declared with a return type. The "return type" of the
user-defined conversion is implicit in the name of the user-defined conversion.

Example:
struct S {

int operator int(); // cannot have return type
};

232 user-defined conversion must be a function

The operator name describing a user-defined conversion can only be used to designate
functions.

380 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
// operator char can only be a function
int operator char = 9;

233 user-defined conversion has an argument list

A user-defined conversion cannot have an argument list. Since user-defined conversions
can only be non-static member functions, they have an implicit this argument.

Example:
struct S {

operator int(S&); // cannot have arguments
};

234 destructor cannot have a return type

A destructor cannot have a return type (even void). The destructor is a special member
function that is not required to be identical in form to all other member functions. This
allows different implementations to have different uses for any return values.

Example:
struct S {

void* ~S();
};

235 destructor must be a function

The tilde (’~’) style of name is reserved for declaring destructor functions. Variable names
cannot make use of the destructor style of names.

Example:
struct S {

int ~S; // illegal
};

236 destructor has an argument list

A destructor cannot have an argument list. Since destructors can only be non-static
member functions, they have an implicit this argument.

Example:
struct S {

~S(S&);
};

237 ’%N’ must be a function

The operator style of name is reserved for declaring operator functions. Variable names
cannot make use of the operator style of names.

Diagnostic Messages 381

Appendices

Example:
struct S {

int operator+; // illegal
};

238 ’%N’ is not a function

The compiler has detected what looks like a function body. The message is a result of not
finding a function being declared. This can happen in many ways, such as dropping the ’:’
before defining base classes, or dropping the ’=’ before initializing a structure via a braced
initializer.

Example:
struct D B { int i; };

239 nested type class ’%s’ has not been declared

A nested class has not been found but is required by the use of repeated ’::’ operators. The
construct "A::B::C" requires that ’A’ be a class type, and ’B’ be a nested class within the
scope of ’A’.

Example:
struct B {

static int b;
};
struct A : public B {
};
int A::B::b = 2; // B not nested in A

The preceding example is illegal; the following is legal

Example:
struct A {

struct B {
static int b;
};

};
int A::B::b = 2; // B nested in A

240 enum ’%s’ has not been declared

An elaborated reference to an enum could not be satisfied. All enclosing scopes have been
searched for an enum name. Visible variable declarations do not affect the search.

Example:
struct D {

int i;
enum E { e1, e2, e3 };

};
enum E enum_var; // E not visible

382 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

241 class or namespace ’%s’ has not been declared

The construct "A::B::C" requires that ’A’ be a class type or a namespace, and ’B’ be a
nested class or namespace within the scope of ’A’. The reference to ’A’ could not be
satisfied. All enclosing scopes have been searched for a class or namespace name. Visible
variable declarations do not affect the search.

Example:
struct A{ int a; };

int b;
int c = B::A::b;

242 only one initializer argument allowed

The comma (’,’) in a function like cast is treated like an argument list comma (’,’). If a
comma expression is desired, use parentheses to enclose the comma expression.

Example:
void fn()
{

int a;

a = int(1, 2); // Error!
a = int((1, 2)); // OK

}

243 default arguments are not part of a function’s type

This message indicates that a declaration has been found that requires default arguments to
be part of a function’s type. Either declaring a function typedef or a pointer to a function
with default arguments are examples of incorrect declarations.

Example:
typedef int TD(int, int a = 14);
int (*p)(int, int a = 14) = 0;

244 missing default arguments

Gaps in a succession of default arguments are not allowed in the C++ language.

Example:
void fn(int = 1, int, int = 3);

245 overloaded operator cannot have default arguments

Preventing overloaded operators from having default arguments enforces the property that
binary operators will only be called from a use of a binary operator. Allowing default
arguments would allow a binary operator + to function as a unary operator +.

Diagnostic Messages 383

Appendices

Example:
class C
{
public:

C operator +(int a = 10);
};

246 left expression is not a pointer to a constant object

One cannot assign a pointer to a constant type to a pointer to a non-constant type. This
would allow a constant object to be modified via the non-constant pointer. Use a cast if
this is absolutely necessary.

Example:
char* fun(const char* p)
{

char* q;
q = p;
return q;

}

247 cannot redefine default argument for ’%S’

Default arguments can only be defined once in a program regardless of whether the value
of the default argument is identical.

Example:
static int foo(int a = 10);
static int foo(int a = 10)
{

return a+a;
}

248 using default arguments would be overload ambiguous with ’%S’

The declaration declares enough default arguments that the function is indistinguishable
from another function of the same name.

Example:
void fn(int);
void fn(int, int = 1);

Calling the function ’fn’ with one argument is ambiguous because it could match either the
first ’fn’ without any default arguments or the second ’fn’ with a default argument applied.

249 using default arguments would be overload ambiguous with ’%S’ using default arguments

The declaration declares enough default arguments that the function is indistinguishable
from another function of the same name with default arguments.

384 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn(int, int = 1);
void fn(int, char = ’a’);

Calling the function ’fn’ with one argument is ambiguous because it could match either the
first ’fn’ with a default argument or the second ’fn’ with a default argument applied.

250 missing default argument for ’%S’

In C++, one is allowed to add default arguments to the right hand arguments of a function
declaration in successive declarations. The message indicates that the declaration is only
valid if there was a default argument previously declared for the next argument.

Example:
void fn1(int , int);
void fn1(int , int = 3);
void fn1(int = 2, int); // OK

void fn2(int , int);
void fn2(int = 2, int); // Error!

251 enum references must have an identifier

There is no way to reference an anonymous enum. If all enums are named, the cause of
this message is most likely a missing identifier.

Example:
enum { X, Y, Z }; // anonymous enum
void fn()
{

enum *p;
}

252 class declaration has not been seen for ’~%s’

A destructor has been used in a context where its class is not visible.

Example:
class C;

void fun(C* p)
{

p->~S();
}

253 ’::’ qualifier cannot be used in this context

Qualified identifiers in a class context are allowed for declaring friend member functions.
The Open Watcom C++ compiler also allows code that is qualified with its own class so
that declarations can be moved in and out of class definitions easily.

Diagnostic Messages 385

Appendices

Example:
struct N {

void bar();
};
struct S {

void S::foo() { // OK
}
void N::bar() { // error
}

};

254 ’%S’ has not been declared as a member

In a definition of a class member, the indicated declaration must already have been declared
when the class was defined.

Example:
class C
{
public:

int c;
int goop();

};
int C::x = 1;
C::not_decled() { }

255 default argument expression cannot use function argument ’%S’

Default arguments must be evaluated at each call. Since the order of evaluation for
arguments is undefined, a compiler must diagnose all default arguments that depend on
other arguments.

Example:
void goop(int d)
{

struct S {
// cannot access "d"
int foo(int c, int b = d)

{
return b + c;
};

};
}

256 default argument expression cannot use local variable ’%S’

Default arguments must be evaluated at each call. Since a local variable is not always
available in all contexts (e.g., file scope initializers), a compiler must diagnose all default
arguments that depend on local variables.

386 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void goop(void)
{

int a;
struct S {
// cannot access "a"
int foo(int c, int b = a)

{
return b + c;
};

};
}

257 access declarations may only be ’public’ or ’protected’

Access declarations are used to increase access. A private access declaration is useless
because there is no access level for which private is an increase in access.

Example:
class Base
{

int pri;
protected:

int pro;
public:

int pub;
};
class Derived : public Base
{

private: Base::pri;
};

258 cannot declare both a function and variable of the same name (’%N’)

Functions can be overloaded in C++ but they cannot be overloaded in the presence of a
variable of the same name. Likewise, one cannot declare a variable in the same scope as a
set of overloaded functions of the same name.

Example:
int foo();
int foo;
struct S {

int bad();
int bad;

};

259 class in access declaration (’%T’) must be a direct base class

Access declarations can only be applied to direct (immediate) base classes.

Diagnostic Messages 387

Appendices

Example:
struct B {

int f;
};
struct C : B {

int g;
};
struct D : private C {

B::f;
};

In the above example, "C" is a direct base class of "D" and "B" is a direct base class of "C",
but "B" is not a direct base class of "D".

260 overloaded functions (’%N’) do not have the same access

If an access declaration is referencing a set of overloaded functions, then they all must have
the same access. This is due to the lack of a type in an access declaration.

Example:
class C
{

static int foo(int); // private
public:

static int foo(float); // public
};

class B : private C
{
public: C::foo;
};

261 cannot grant access to ’%N’

A derived class cannot change the access of a base class member with an access
declaration. The access declaration can only be used to restore access changed by
inheritance.

Example:
class Base
{
public:

int pub;
protected:

int pro;
};
class Der : private Base
{

public: Base::pub; // ok
public: Base::pro; // changes access

};

388 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

262 cannot reduce access to ’%N’

A derived class cannot change the access of a base class member with an access
declaration. The access declaration can only be used to restore access changed by
inheritance.

Example:
class Base
{
public:

int pub;
protected:

int pro;
};
class Der : public Base
{

protected: Base::pub; // changes access
protected: Base::pro; // ok

};

263 nested class ’%N’ has not been defined

The current state of the C++ language supports nested types. Unfortunately, this means
that some working C code will not work unchanged.

Example:
struct S {

struct T;
T *link;

};

In the above example, the class "T" will be reported as not being defined by the end of the
class declaration. The code can be corrected in the following manner.

Example:
struct S {

struct T;
T *link;
struct T {
};

};

264 user-defined conversion must be a non-static member function

A user-defined conversion is a special member function that allows the class to be
converted implicitly (or explicitly) to an arbitrary type. In order to do this, it must have
access to an instance of the class so it is restricted to being a non-static member function.

Diagnostic Messages 389

Appendices

Example:
struct S
{

static operator int();
};

265 destructor must be a non-static member function

A destructor is a special member function that will perform cleanup on a class before the
storage for the class will be released. In order to do this, it must have access to an instance
of the class so it is restricted to being a non-static member function.

Example:
struct S
{

static ~S();
};

266 ’%N’ must be a non-static member function

The operator function in the message is restricted to being a non-static member function.
This usually means that the operator function is treated in a special manner by the compiler.

Example:
class C
{
public:

static operator =(C&, int);
};

267 ’%N’ must have one argument

The operator function in the message is only allowed to have one argument. An operator
like operator ~ is one such example because it represents a unary operator.

Example:
class C
{
public: int c;
};
C& operator~(const C&, int);

268 ’%N’ must have two arguments

The operator function in the message must have two arguments. An operator like operator
+= is one such example because it represents a binary operator.

390 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C
{
public: int c;
};
C& operator += (const C&);

269 ’%N’ must have either one argument or two arguments

The operator function in the message must have either one argument or two arguments. An
operator like operator + is one such example because it represents either a unary or a
binary operator.

Example:
class C
{
public: int c;
};
C& operator+(const C&, int, float);

270 ’%N’ must have at least one argument

The operator new and operator new [] member functions must have at least one argument
for the size of the allocation. After that, any arguments are up to the programmer. The
extra arguments can be supplied in a new expression via the placement syntax.

Example:
#include <stddef.h>

struct S {
void * operator new(size_t, char);

};

void fn()
{

S *p = new (’a’) S;
}

271 ’%N’ must have a return type of void

The C++ language requires that operator delete and operator delete [] have a return type of
void.

Example:
class C
{
public:

int c;
C* operator delete(void*);
C* operator delete [](void*);

};

Diagnostic Messages 391

Appendices

272 ’%N’ must have a return type of pointer to void

The C++ language requires that both operator new and operator new [] have a return type
of void *.

Example:
#include <stddef.h>
class C
{
public:

int c;
C* operator new(size_t size);
C* operator new [](size_t size);

};

273 the first argument of ’%N’ must be of type size_t

The C++ language requires that the first argument for operator new and operator new [] be
of the type "size_t". The definition for "size_t" can be included by using the standard
header file <stddef.h>.

Example:
void *operator new(int size);
void *operator new(double size, char c);
void *operator new [](int size);
void *operator new [](double size, char c);

274 the first argument of ’%N’ must be of type pointer to void

The C++ language requires that the first argument for operator delete and operator delete
[] be a void *.

Example:
class C;
void operator delete(C*);
void operator delete [](C*);

275 the second argument of ’%N’ must be of type size_t

The C++ language requires that the second argument for operator delete and operator
delete [] be of type "size_t". The two argument form of operator delete and operator delete
[] is optional and it can only be present inside of a class declaration. The definition for
"size_t" can be included by using the standard header file <stddef.h>.

Example:
struct S {

void operator delete(void *, char);
void operator delete [](void *, char);

};

392 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

276 the second argument of ’operator ++’ or ’operator --’ must be int

The C++ language requires that the second argument for operator ++ be int. The two
argument form of operator ++ is used to overload the postfix operator "++". The postfix
operator "--" can be overloaded similarly.

Example:
class C {
public:

long cv;
};
C& operator ++(C&, unsigned);

277 return type of ’%S’ must allow the ’->’ operator to be applied

This restriction is a result of the transformation that the compiler performs when the
operator -> is overloaded. The transformation involves transforming the expression to
invoke the operator with "->" applied to the result of operator ->.

Example:
struct S {

int a;
S *operator ->();

};

void fn(S &q)
{

q->a = 1; // becomes (q.operator ->())->a = 1;
}

278 ’%N’ must take at least one argument of a class/enum or a reference to a class/enum

Overloaded operators can only be defined for classes and enumerations. At least one
argument, must be a class or an enum type in order for the C++ compiler to distinguish the
operator from the built-in operators.

Example:
class C {
public:

long cv;
};
C& operator ++(unsigned, int);

279 too many initializers

The compiler has detected extra initializers.

Example:
int a[3] = { 1, 2, 3, 4 };

Diagnostic Messages 393

Appendices

280 too many initializers for character string

A string literal used in an initialization of a character array is viewed as providing the
terminating null character. If the number of array elements isn’t enough to accept the
terminating character, this message is output.

Example:
char ac[3] = "abc";

281 expecting ’%s’ but found expression

This message is output when some bracing or punctuation is expected but an expression
was encountered.

Example:
int b[3] = 3;

282 anonymous struct/union member ’%N’ cannot be declared in this class

An anonymous member cannot be declared with the same name as its containing class.

Example:
struct S {

union {
int S; // Error!
char b;
};

};

283 unexpected ’%s’ during initialization

This message is output when some unexpected bracing or punctuation is encountered
during initialization.

Example:
int e = { { 1 };

284 nested type ’%N’ cannot be declared in this class

A nested type cannot be declared with the same name as its containing class.

Example:
struct S {

typedef int S; // Error!
};

285 enumerator ’%N’ cannot be declared in this class

An enumerator cannot be declared with the same name as its containing class.

394 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

enum E {
S, // Error!
T
};

};

286 static member ’%N’ cannot be declared in this class

A static member cannot be declared with the same name as its containing class.

Example:
struct S {

static int S; // Error!
};

287 constructor cannot have a return type

A constructor cannot have a return type (even void). The constructor is a special member
function that is not required to be identical in form to all other member functions. This
allows different implementations to have different uses for any return values.

Example:
class C {
public:

C& C(int);
};

288 constructor cannot be a static member

A constructor is a special member function that takes raw storage and changes it into an
instance of a class. In order to do this, it must have access to storage for the instance of the
class so it is restricted to being a non-static member function.

Example:
class C {
public:

static C(int);
};

289 invalid copy constructor argument list (causes infinite recursion)

A copy constructor’s first argument must be a reference argument. Furthermore, any
default arguments must also be reference arguments. Without the reference, a copy
constructor would require a copy constructor to execute in order to prepare its arguments.
Unfortunately, this would be calling itself since it is the copy constructor.

Diagnostic Messages 395

Appendices

Example:
struct S {

S(S const &); // copy constructor
};

290 constructor cannot be declared const or volatile

A constructor must be able to operate on all instances of classes regardless of whether they
are const or volatile.

Example:
class C {
public:

C(int) const;
C(float) volatile;

};

291 constructor cannot be virtual

Virtual functions cannot be called for an object before it is constructed. For this reason, a
virtual constructor is not allowed in the C++ language. Techniques for simulating a virtual
constructor are known, one such technique is described in the ARM p.263.

Example:
class C {
public:

virtual C(int);
};

292 types do not match in simple type destructor

A simple type destructor is available for "destructing" simple types. The destructor has no
effect. Both of the types must be identical, for the destructor to have meaning.

Example:
void foo(int *p)
{

p->int::~double();
}

293 overloaded operator is ambiguous for operands used

The Open Watcom C++ compiler performs exhaustive analysis using formalized
techniques in order to decide what implicit conversions should be applied for overloading
operators. Because of this, Open Watcom C++ detects ambiguities that may escape other
C++ compilers. The most common ambiguity that Open Watcom C++ detects involves
classes having constructors with single arguments and a user-defined conversion.

396 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

S(int);
operator int();
int a;

};

int fn(int b, int i, S s)
{

// i : s.operator int()
// OR S(i) : s
return b ? i : s;

}

In the above example, "i" and "s" must be brought to a common type. Unfortunately, there
are two common types so the compiler cannot decide which one it should choose, hence an
ambiguity.

294 feature not implemented

The compiler does not support the indicated feature.

295 invalid friend declaration

This message indicates that the compiler found extra declaration specifiers like auto, float,
or const in the friend declaration.

Example:
class C
{

friend float;
};

296 friend declarations may only be declared in a class

This message indicates that a friend declaration was found outside a class scope (i.e., a
class definition). Friends are only meaningful for class types.

Example:
extern void foo();
friend void foo();

297 class friend declaration needs ’class’ or ’struct’ keyword

The C++ language has evolved to require that all friend class declarations be of the form
"class S" or "struct S". The Open Watcom C++ compiler accepts the older syntax with a
warning but rejects the syntax in pure ISO/ANSI C++ mode.

Diagnostic Messages 397

Appendices

Example:
struct S;
struct T {

friend S; // should be "friend class S;"
};

298 class friend declarations cannot contain a class definition

A class friend declaration cannot define a new class. This is a restriction required in the
C++ language.

Example:
struct S {

friend struct X {
int f;
};

};

299 ’%T’ has already been declared as a friend

The class in the message has already been declared as a friend. Remove the extra friend
declaration.

Example:
class S;
class T {

friend class S;
int tv;
friend class S;

};

300 function ’%S’ has already been declared as a friend

The function in the message has already been declared as a friend. Remove the extra friend
declaration.

Example:
extern void foo();
class T {

friend void foo();
int tv;
friend void foo();

};

301 ’friend’, ’virtual’ or ’inline’ modifiers are not part of a function’s type

This message indicates that the modifiers may be incorrectly placed in the declaration. If
the declaration is intended, it cannot be accepted because the modifiers can only be applied
to functions that have code associated with them.

398 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
typedef friend (*PF)(void);

302 cannot assign right expression to element on left

This message indicates that the assignment cannot be performed. It usually arises in
assignments of a class type to an arithmetic type.

Example:
struct S
{ int sv;
};
S s;
int foo()
{

int k;
k = s;
return k;

}

303 constructor is ambiguous for operands used

The operands provided for the constructor did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

S x = S(1.0);

304 class ’%s’ has not been defined

The name before a ’::’ scope resolution operator must be defined unless a member pointer
is being declared.

Example:
struct S;

int S::* p; // OK
int S::a = 1; // Error!

305 all bit-fields in a union must be named

This is a restriction in the C++ language. The same effect can be achieved with a named
bitfield.

Diagnostic Messages 399

Appendices

Example:
union u
{ unsigned bit1 :10;

unsigned :6;
};

306 cannot convert expression to type of cast

The cast is trying to convert an expression to a completely unrelated type. There is no way
the compiler can provide any meaning for the intended cast.

Example:
struct T {
};

void fn()
{

T y = (T) 0;
}

307 conversion ambiguity: [expression] to [cast type]

The cast caused a constructor overload to occur. The operands provided for the constructor
did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

void fn()
{

S x = (S) 1.0;
}

308 an anonymous class without a declarator is useless

There is no way to reference the type in this kind of declaration. A name must be provided
for either the class or a variable using the class as its type.

Example:
struct {

int a;
int b;

};

309 global anonymous union must be declared static

This is a restriction in the C++ language. Since there is no unique name for the anonymous
union, it is difficult for C++ translators to provide a correct implementation of external
linkage anonymous unions.

400 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
static union {

int a;
int b;

};

310 anonymous struct/union cannot have storage class in this context

Anonymous unions (or structs) declared in class scopes cannot be static. Any other storage
class is also disallowed.

Example:
struct S {

static union {
int iv;
unsigned us;
};

};

311 union contains a protected member

A union cannot have a protected member because a union cannot be a base class.

Example:
static union {

int iv;
protected:

unsigned sv;
} u;

312 anonymous struct/union contains a private member ’%S’

An anonymous union (or struct) cannot have member functions or friends so it cannot have
private members since no code could access them.

Example:
static union {

int iv;
private:

unsigned sv;
};

313 anonymous struct/union contains a function member ’%S’

An anonymous union (or struct) cannot have any function members. This is a restriction in
the C++ language.

Example:
static union {

int iv;
void foo(); // error
unsigned sv;

};

Diagnostic Messages 401

Appendices

314 anonymous struct/union contains a typedef member ’%S’

An anonymous union (or struct) cannot have any nested types. This is a restriction in the
C++ language.

Example:
static union {

int iv;
unsigned sv;
typedef float F;
F fv;

};

315 anonymous struct/union contains an enumeration member ’%S’

An anonymous union (or struct) cannot have any enumeration members. This is a
restriction in the C++ language.

Example:
static union {

int iv;
enum choice { good, bad, indifferent };
choice c;
unsigned sv;

};

316 anonymous struct/union member ’%s’ is not distinct in enclosing scope

Since an anonymous union (or struct) provides its member names to the enclosing scope,
the names must not collide with other names in the enclosing scope.

Example:
int iv;
unsigned sv;
static union {

int iv;
unsigned sv;

};

317 unions cannot have members with destructors

A union should only be used to organize memory in C++. Allowing union members to
have destructors would mean that the same piece of memory could be destructed twice.

Example:
struct S {

int sv1, sv2, sv3;
};
struct T {

~T();
};
static union
{

S su;
T tu;

};

402 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

318 unions cannot have members with user-defined assignment operators

A union should only be used to organize memory in C++. Allowing union members to
have assignment operators would mean that the same piece of memory could be assigned
twice.

Example:
struct S {

int sv1, sv2, sv3;
};
struct T {

int tv;
operator = (int);
operator = (float);

};
static union
{

S su;
T tu;

} u;

319 anonymous struct/union cannot have any friends

An anonymous union (or struct) cannot have any friends. This is a restriction in the C++
language.

Example:
struct S {

int sv1, sv2, sv3;
};
static union {

S su1;
S su2;
friend class S;

};

320 specific versions of template classes can only be defined in file scope

Currently, specific versions of class templates can only be declared at file scope. This
simple restriction was chosen in favour of more freedom with possibly subtle restrictions.

Example:

Diagnostic Messages 403

Appendices

template <class G> class S {
G x;

};

struct Q {
struct S<int> {
int x;
};

};

void foo()
{

struct S<double> {
double x;
};

}

321 anonymous union in a function may only be static or auto

The current C++ language definition only allows auto anonymous unions. The Open
Watcom C++ compiler allows static anonymous unions. Any other storage class is not
allowed.

322 static data members are not allowed in a local class

Static data members are not allowed in a local class because there is no way to define the
static member in file scope.

Example:
int foo()
{

struct local {
static int s;
};

local lv;

lv.s = 3;
return lv.s;

}

323 conversion ambiguity: [return value] to [return type of function]

The cast caused a constructor overload to occur. The operands provided for the constructor
did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

S fn()
{

return 1.0;
}

404 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

324 conversion of return value is impossible

The return is trying to convert an expression to a completely unrelated type. There is no
way the compiler can provide any meaning for the intended return type.

Example:
struct T {
};

T fn()
{

return 0;
}

325 function cannot return a pointer based on __self

A function cannot return a pointer that is based on __self.

Example:
void __based(__self) *fn(unsigned);

326 defining ’%S’ is not possible because its type has unknown size

In order to define a variable, the size must be known so that the correct amount of storage
can be reserved.

Example:
class S;
S sv;

327 typedef cannot be initialized

Initializing a typedef is meaningless in the C++ language.

Example:
typedef int INT = 15;

328 storage class of ’%S’ conflicts with previous declaration

The symbol declaration conflicts with a previous declaration with regard to storage class.
A symbol cannot be both static and extern.

329 modifiers of ’%S’ conflict with previous declaration

The symbol declaration conflicts with a previous declaration with regard to modifiers.
Correct the program by using the same modifiers for both declarations.

Diagnostic Messages 405

Appendices

330 function cannot be initialized

A function cannot be initialized with an initializer syntax intended for variables. A
function body is the only way to provide a definition for a function.

331 access permission of nested class ’%T’ conflicts with previous declaration

Example:
struct S {

struct N; // public
private:

struct N { // private
};

};

332 *** FATAL *** internal error in front end

If this message appears, please report the problem directly to the Open Watcom
development team. See http://www.openwatcom.org/.

333 cannot convert argument to type specified in function prototype

It is impossible to convert the indicated argument in the function.

Example:
extern int foo(int&);

extern int m;
extern int n;

int k = foo(m + n);

In the example, the value of "m+n" cannot be converted to a reference (it could be
converted to a constant reference), as shown in the following example.

Example:
extern int foo(const int&);

extern int m;
extern int n;

int k = foo(m + n);

334 conversion ambiguity: [argument] to [argument type in prototype]

An argument in the function call could not be converted since there is more than one
constructor or user-defined conversion which could be used to convert the argument.

406 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S;

struct T
{

T(S&);
};

struct S
{

operator T();
};

S s;
extern int foo(T);
int k = foo(s); // ambiguous

In the example, the argument "s" could be converted by both the constructor in class "T"
and by the user-conversion in class "S".

335 cannot be based on based pointer ’%S’

A based pointer cannot be based on another based pointer.

Example:
__segment s;
void __based(s) *p;
void __based(p) *q;

336 declaration specifiers are required to declare ’%N’

The compiler has detected that the name does not represent a function. Only function
declarations can leave out declaration specifiers. This error also shows up when a typedef
name declaration is missing.

Example:
x;
typedef int;

337 static function declared in block scope

The C++ language does not allow static functions to be declared in block scope. This error
can be triggered when the intent is to define a static variable. Due to the complexities of
parsing C++, statements that appear to be variable definitions may actually parse as
function prototypes. A work-around for this problem is contained in the example.

Example:

Diagnostic Messages 407

Appendices

struct C {
};
struct S {

S(C);
};
void foo()
{

static S a(C()); // function prototype!
static S b((C()));// variable definition

}

338 cannot define a __based reference

A C++ reference cannot be based on anything. Based modifiers can only be used with
pointers.

Example:
__segment s;
void fn(int __based(s) & x);

339 conversion ambiguity: conversion to common pointer type

A conversion to a common base class of two different pointers has been attempted. The
pointer conversion could not be performed because the destination type points to an
ambiguous base class of one of the source types.

340 cannot construct object from argument(s)

There is not an appropriate constructor for the set of arguments provided.

341 number of arguments for function ’%S’ is incorrect

The number of arguments in the function call does not match the number declared for the
indicated non-overloaded function.

Example:
extern int foo(int, int);
int k = foo(1, 2, 3);

In the example, the function was declared to have two arguments. Three arguments were
used in the call.

342 private base class accessed to convert cast expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

408 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct Priv
{

int p;
};
struct Der : private Priv
{

int d;
};

extern Der *pd;
Priv *pp = (Priv*)pd;

343 private base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Priv
{

int p;
};
struct Der : private Priv
{

int d;
};

Priv *foo(Der *p)
{

return p;
}

344 cannot subtract pointers to different objects

Pointer subtraction can be performed only for objects of the same type.

Example:
#include <stddef.h>
ptrdiff_t diff(float *fp, int *ip)
{

return fp - ip;
}

In the example, a diagnostic results from the attempt to subtract a pointer to an int object
from a pointer to a float object.

345 private base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Diagnostic Messages 409

Appendices

Example:
struct Priv
{

int p;
};
struct Der : private Priv
{

int d;
};

int foo(Der *pd, Priv *pp)
{

return pd == pp;
}

346 protected base class accessed to convert cast expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
{

int p;
};
struct Der : protected Prot
{

int d;
};

extern Der *pd;
Prot *pp = (Prot*)pd;

347 protected base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
{

int p;
};
struct Der : protected Prot
{

int d;
};

Prot *foo(Der *p)
{

return p;
}

410 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

348 cannot define a member pointer with a memory model modifier

A member pointer describes how to access a field from a class. Because of this a member
pointer must be independent of any memory model considerations.

Example:
struct S;

int near S::*mp;

349 protected base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
{

int p;
};
struct Der : protected Prot
{

int d;
};

int foo(Der *pd, Prot *pp)
{

return pd == pp;
}

350 non-type parameter supplied for a type argument

A non-type parameter (e.g., an address or a constant expression) has been supplied for a
template type argument. A type should be used instead.

351 type parameter supplied for a non-type argument

A type parameter (e.g., int) has been supplied for a template non-type argument. An
address or a constant expression should be used instead.

352 cannot access enclosing function’s auto variable ’%S’

A local class member function cannot access its enclosing function’s automatic variables.

Example:
void goop(void)
{

int a;
struct S
{
int foo(int c, int b)

{
return b + c + a;
};

};
}

Diagnostic Messages 411

Appendices

353 cannot initialize pointer to non-constant with a pointer to constant

A pointer to a non-constant type cannot be initialized with a pointer to a constant type
because this would allow constant data to be modified via the non-constant pointer to it.

Example:
extern const int *pic;
extern int *pi = pic;

354 pointer expression is always >= 0

The indicated pointer expression will always be true because the pointer value is always
treated as an unsigned quantity, which will be greater or equal to zero.

Example:
extern char *p;
unsigned k = (0 <= p); // always 1

355 pointer expression is never < 0

The indicated pointer expression will always be false because the pointer value is always
treated as an unsigned quantity, which will be greater or equal zero.

Example:
extern char *p;
unsigned k = (0 >= p); // always 0

356 type cannot be used in this context

This message is issued when a type name is being used in a context where a non-type name
should be used.

Example:
struct S {

typedef int T;
};

void fn(S *p)
{

p->T = 1;
}

357 virtual function may only be declared in a class

Virtual functions can only be declared inside of a class. This error may be a result of
forgetting the "C::" qualification of a virtual function’s name.

412 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
virtual void foo();
struct S
{

int f;
virtual void bar();

};
virtual void bar()
{

f = 9;
}

358 ’%T’ referenced as a union

A class type defined as a class or struct has been referenced as a union (i.e., union S).

Example:
struct S
{

int s1, s2;
};
union S var;

359 union ’%T’ referenced as a class

A class type defined as a union has been referenced as a struct or a class (i.e., class S).

Example:
union S
{

int s1, s2;
};
struct S var;

360 typedef ’%N’ defined without an explicit type

The typedef declaration was found to not have an explicit type in the declaration. If int is
the desired type, use an explicit int keyword to specify the type.

Example:
typedef T;

361 member function was not defined in its class

Member functions of local classes must be defined in their class if they will be defined at
all. This is a result of the C++ language not allowing nested function definitions.

Example:
void fn()
{

struct S {
int bar();
};

}

Diagnostic Messages 413

Appendices

362 local class can only have its containing function as a friend

A local class can only be referenced from within its containing function. It is impossible to
define an external function that can reference the type of the local class.

Example:
extern void ext();
void foo()
{

class S
{
int s;
public:
friend void ext();
int q;
};

}

363 local class cannot have ’%S’ as a friend

The only classes that a local class can have as a friend are classes within its own containing
scope.

Example:
struct ext
{

goop();
};
void foo()
{

class S
{
int s;
public:
friend class ext;
int q;
};

}

364 adjacent >=, <=, >, < operators

This message is warning about the possibility that the code may not do what was intended.
An expression like "a > b > c" evaluates one relational operator to a 1 or a 0 and then
compares it against the other variable.

Example:
extern int a;
extern int b;
extern int c;
int k = a > b > c;

414 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

365 cannot access enclosing function’s argument ’%S’

A local class member function cannot access its enclosing function’s arguments.

Example:
void goop(int d)
{

struct S
{
int foo(int c, int b)

{
return b + c + d;
};

};
}

366 support for switch ’%s’ is not implemented

Actions for the indicated switch have not been implemented. The switch is supported for
compatibility with the Open Watcom C compiler.

367 conditional expression in if statement is always true

The compiler has detected that the expression will always be true. If this is not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially true expressions.

Example:
#define TEST 143
int foo(int a, int b)
{

if(TEST) return a;
return b;

}

368 conditional expression in if statement is always false

The compiler has detected that the expression will always be false. If this is not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

Example:
#define TEST 14-14
int foo(int a, int b)
{

if(TEST) return a;
return b;

}

Diagnostic Messages 415

Appendices

369 selection expression in switch statement is a constant value

The expression in the switch statement is a constant. This means that only one case label
will be executed. If this is not the expected behaviour, check the switch expression.

Example:
#define TEST 0
int foo(int a, int b)
{

switch (TEST) {
case 0:

return a;
default:

return b;
}

}

370 constructor is required for a class with a const member

If a class has a constant member, a constructor is required in order to initialize it.

Example:
struct S
{

const int s;
int i;

};

371 constructor is required for a class with a reference member

If a class has a reference member, a constructor is required in order to initialize it.

Example:
struct S
{

int& r;
int i;

};

372 inline member friend function ’%S’ is not allowed

A friend that is a member function of another class cannot be defined. Inline friend rules
are currently in flux so it is best to avoid inline friends.

373 invalid modifier for auto variable

An automatic variable cannot have a memory model adjustment because they are always
located on the stack (or in a register). There are also other types of modifiers that are not
allowed for auto variables such as thread-specific data modifiers.

416 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int fn(int far x)
{

int far y = x + 1;
return y;

}

374 object (or object pointer) required to access non-static data member

A reference to a member in a class has occurred. The member is non-static so in order to
access it, an object of the class is required.

Example:
struct S {

int m;
static void fn()
{
m = 1; // Error!
}

};

375 user-defined conversion has not been declared

The named user-defined conversion has not been declared in the class of any of its base
classes.

Example:
struct S {

operator int();
int a;

};

double fn(S *p)
{

return p->operator double();
}

376 virtual function must be a non-static member function

A member function cannot be both a static function and a virtual function. A static
member function does not have a this argument whereas a virtual function must have a this
argument so that the virtual function table can be accessed in order to call it.

Example:
struct S
{

static virtual int foo(); // error
virtual int bar(); // ok
static int stat(); // ok

};

Diagnostic Messages 417

Appendices

377 protected base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
class C
{
protected:

C(int);
public:

int c;
};

int cfun(C);

int i = cfun(14);

The last line is erroneous since the constructor is protected.

378 private base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Example:
class C
{

C(int);
public:

int c;
};

int cfun(C);

int i = cfun(14);

The last line is erroneous since the constructor is private.

379 delete expression will invoke a non-virtual destructor

In C++, it is possible to assign a base class pointer the value of a derived class pointer so
that code that makes use of base class virtual functions can be used. A problem that occurs
is that a delete has to know the correct size of the type in some instances (i.e., when a two
argument version of operator delete is defined for a class). This problem is solved by
requiring that a destructor be defined as virtual if polymorphic deletes must work. The
delete expression will virtually call the correct destructor, which knows the correct size of
the complete object. This message informs you that the class you are deleting has virtual
functions but it has a non-virtual destructor. This means that the delete will not work
correctly in all circumstances.

418 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#include <stddef.h>

struct B {
int b;
void operator delete(void *, size_t);
virtual void fn();
~B();

};
struct D : B {

int d;
void operator delete(void *, size_t);
virtual void fn();
~D();

};

void dfn(B *p)
{

delete p; // could be a pointer to D!
}

380 ’offsetof’ is not allowed for a function

A member function does not have an offset like simple data members. If this is required,
use a member pointer.

Example:
#include <stddef.h>

struct S
{

int fun();
};

int s = offsetof(S, fun);

381 ’offsetof’ is not allowed for an enumeration

An enumeration does not have an offset like simple data members.

Example:
#include <stddef.h>

struct S
{

enum SE { S1, S2, S3, S4 };
SE var;

};

int s = offsetof(S, SE);

Diagnostic Messages 419

Appendices

382 could not initialize for code generation

The source code has been parsed and fully analysed when this error is emitted. The
compiler attempted to start generating object code but due to some problem (e.g., out of
memory, no file handles) could not initialize itself. Try changing the compilation
environment to eliminate this error.

383 ’offsetof’ is not allowed for an undefined type

The class type used in offsetof must be completely defined, otherwise data member offsets
will not be known.

Example:
#include <stddef.h>

struct S {
int a;
int b;
int c[offsetof(S, b)];

};

384 attempt to override virtual function ’%S’ with a different return type

A function cannot be overloaded with identical argument types and a different return type.
This is due to the fact that the C++ language does not consider the function’s return type
when overloading. The exception to this rule in the C++ language involves restricted
changes in the return type of virtual functions. The derived virtual function’s return type
can be derived from the return type of the base virtual function.

Example:
struct B {

virtual B *fn();
};
struct D : B {

virtual D *fn();
};

385 attempt to overload function ’%S’ with a different return type

A function cannot be overloaded with identical argument types and a different return type.
This is due to the fact that the C++ language does not consider the function’s return type
when overloading.

Example:
int foo(char);
unsigned foo(char);

420 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

386 attempt to use pointer to undefined class

An attempt was made to indirect or increment a pointer to an undefined class. Since the
class is undefined, the size is not known so the compiler cannot compile the expression
properly.

Example:
class C;
extern C* pc1;
C* pc2 = ++pc1; // C not defined

int foo(C*p)
{

return p->x; // C not defined
}

387 expression is useful only for its side effects

The indicated expression is not meaningful. The expression, however, does contain one or
more side effects.

Example:
extern int* i;
void func()
{

*(i++);
}

In the example, the expression is a reference to an integer which is meaningless in itself.
The incrementation of the pointer in the expression is a side effect.

388 integral constant will be truncated during assignment or initialization

This message indicates that the compiler knows that a constant value will not be preserved
after the assignment. If this is acceptable, cast the constant value to the appropriate type in
the assignment.

Example:
unsigned char c = 567;

389 integral value may be truncated during assignment or initialization

This message indicates that the compiler knows that all values will not be preserved after
the assignment. If this is acceptable, cast the value to the appropriate type in the
assignment.

Example:
extern unsigned s;
unsigned char c = s;

Diagnostic Messages 421

Appendices

390 cannot generate default constructor to initialize ’%T’ since constructors were declared

A default constructor will not be generated by the compiler if there are already constructors
declared. Try using default arguments to change one of the constructors to a default
constructor or define a default constructor explicitly.

Example:
class C {

C(const C&);
public :

int c;
};
C cv;

391 assignment found in boolean expression

This is a construct that can lead to errors if it was intended to be an equality (using "==")
test.

Example:
int foo(int a, int b)
{

if(a = b) {
return b;
}
return a; // always return 1 ?

}

392 definition: ’%F’

This informational message indicates where the symbol in question was defined. The
message is displayed following an error or warning diagnostic for the symbol in question.

Example:
static int a = 9;
int b = 89;

The variable ’a’ is not referenced in the preceding example and so will cause a warning to
be generated. Following the warning, the informational message indicates the line at which
’a’ was declared.

393 included from %s(%u)

This informational message indicates the line number of the file including the file in which
an error or warning was diagnosed. A number of such messages will allow you to trace
back through the #include directives which are currently being processed.

422 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

394 reference object must be initialized

A reference cannot be set except through initialization. Also references cannot be 0 so they
must always be initialized.

Example:
int & ref;

395 option requires an identifier

The specified option is not recognized by the compiler since there was no identifier after it
(i.e., "-nt=module").

396 ’main’ cannot be overloaded

There can only be one entry point for a C++ program. The "main" function cannot be
overloaded.

Example:
int main();
int main(int);

397 ’new’ expression cannot allocate a void

Since the void type has no size and there are no values of void type, one cannot allocate an
instance of void.

Example:
void *p = new void;

398 ’new’ expression cannot allocate a function

A function type cannot be allocated since there is no meaningful size that can be used. The
new expression can allocate a pointer to a function.

Example:
typedef int tdfun(int);
tdfun *tdv = new tdfun;

399 ’new’ expression allocates a const or volatile object

The pool of raw memory cannot be guaranteed to support const or volatile semantics.
Usually const and volatile are used for statically allocated objects.

Example:
typedef const int con_int;
con_int* p = new con_int;

Diagnostic Messages 423

Appendices

400 cannot convert right expression for initialization

The initialization is trying to convert an argument expression to a completely unrelated
type. There is no way the compiler can provide any meaning for the intended conversion.

Example:
struct T {
};

T x = 0;

401 conversion ambiguity: [initialization expression] to [type of object]

The initialization caused a constructor overload to occur. The operands provided for the
constructor did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

S x = 1.0;

402 class template ’%S’ has already been declared as a friend

The class template in the message has already been declared as a friend. Remove the extra
friend declaration.

Example:
template <class T>

class S;

class X {
friend class S;
int f;
friend class S;

};

403 private base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

404 protected base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

424 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

405 cannot return a pointer or reference to a constant object

A pointer or reference to a constant object cannot be returned.

Example:
int *foo(const int *p)
{

return p;
}

406 cannot pass a pointer or reference to a constant object

A pointer or reference to a constant object could not be passed as an argument.

Example:
int *bar(int *);
int *foo(const int *p)
{

return bar(p);
}

407 class templates must be named

There is no syntax in the C++ language to reference an unnamed class template.

Example:
template <class T>

class {
};

408 function templates can only name functions

Variables cannot be overloaded in C++ so it is not possible to have many different
instances of a variable with different types.

Example:
template <class T>

T x[1];

409 template argument ’%S’ is not used in the function argument list

This restriction ensures that function templates can be bound to types during overload
resolution. Functions currently can only be overloaded based on argument types.

Example:
template <class T>

int foo(int *);
template <class T>

T bar(int *);

Diagnostic Messages 425

Appendices

410 destructor cannot be declared const or volatile

A destructor must be able to operate on all instances of classes regardless of whether they
are const or volatile.

411 static member function cannot be declared const or volatile

A static member function does not have an implicit this argument so the const and volatile
function qualifiers cannot be used.

412 only member functions can be declared const or volatile

A non-member function does not have an implicit this argument so the const and volatile
function qualifiers cannot be used.

413 ’const’ or ’volatile’ modifiers are not part of a function’s type

The const and volatile qualifiers for a function cannot be used in typedefs or pointers to
functions. The trailing qualifiers are used to change the type of the implicit this argument
so that member functions that do not modify the object can be declared accurately.

Example:
// const is illegal
typedef void (*baddcl)() const;

struct S {
void fun() const;
int a;

};

// "this" has type "S const *"
void S::fun() const
{

this->a = 1; // Error!
}

414 type cannot be defined in an argument

A new type cannot be defined in an argument because the type will only be visible within
the function. This amounts to defining a function that can never be called because C++
uses name equivalence for type checking.

Example:
extern foo(struct S { int s; });

415 type cannot be defined in return type

This is a restriction in the current C++ language. A function prototype should only use
previously declared types in order to guarantee that it can be called from other functions.
The restriction is required for templates because the compiler would have to wait until the
end of a class definition before it could decide whether a class template or function
template is being defined.

426 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
template <class T>

class C {
T value;
} fn(T x) {
C y;

y.x = 0;
return y;
};

A common problem that results in this error is to forget to terminate a class or enum
definition with a semicolon.

Example:
struct S {

int x,y;
S(int, int);

} // missing semicolon ’;’

S::S(int x, int y) : x(x), y(y) {
}

416 data members cannot be initialized inside a class definition

This message appears when an initialization is attempted inside of a class definition. In the
case of static data members, initialization must be done outside the class definition.
Ordinary data members can be initialized in a constructor.

Example:
struct S {

static const int size = 1;
};

417 only virtual functions may be declared pure

The C++ language requires that all pure functions be declared virtual. A pure function
establishes an interface that must consist of virtual functions because the functions are
required to be defined in the derived class.

Example:
struct S {

void foo() = 0;
};

418 destructor is not declared in its proper class

The destructor name is not declared in its own class or qualified by its own class. This is
required in the C++ language.

Diagnostic Messages 427

Appendices

419 cannot call non-const function for a constant object

A function that does not promise to not modify an object cannot be called for a constant
object. A function can declare its intention to not modify an object by using the const
qualifier.

Example:
struct S {

void fn();
};

void cfn(const S *p)
{

p->fn(); // Error!
}

420 memory initializer list may only appear in a constructor definition

A memory initializer list should be declared along with the body of the constructor
function.

421 cannot initialize member ’%N’ twice

A member cannot be initialized twice in a member initialization list.

422 cannot initialize base class ’%T’ twice

A base class cannot be constructed twice in a member initialization list.

423 ’%T’ is not a direct base class

A base class initializer in a member initialization list must either be a direct base class or a
virtual base class.

424 ’%N’ cannot be initialized because it is not a member

The name used in the member initialization list does not name a member in the class.

425 ’%N’ cannot be initialized because it is a member function

The name used in the member initialization list does not name a non-static data member in
the class.

426 ’%N’ cannot be initialized because it is a static member

The name used in the member initialization list does not name a non-static data member in
the class.

428 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

427 ’%N’ has not been declared as a member

This message indicates that the member does not exist in the qualified class. This usually
occurs in the context of access declarations.

428 const/reference member ’%S’ must have an initializer

The const or reference member does not have an initializer so the constructor is not
completely defined. The member initialization list is the only way to initialize these types
of members.

429 abstract class ’%T’ cannot be used as an argument type

An abstract class can only exist as a base class of another class. The C++ language does
not allow an abstract class to be used as an argument type.

430 abstract class ’%T’ cannot be used as a function return type

An abstract class can only exist as a base class of another class. The C++ language does
not allow an abstract class to be used as a return type.

431 defining ’%S’ is not possible because ’%T’ is an abstract class

An abstract class can only exist as a base class of another class. The C++ language does
not allow an abstract class to be used as either a member or a variable.

432 cannot convert to an abstract class ’%T’

An abstract class can only exist as a base class of another class. The C++ language does
not allow an abstract class to be used as the destination type in a conversion.

433 mangled name for ’%S’ has been truncated

The name used in the object file that encodes the name and full type of the symbol is often
called a mangled name. The warning indicates that the mangled name had to be truncated
due to limitations in the object file format.

434 cannot convert to a type of unknown size

A completely unknown type cannot be used in a conversion because its size is not known.
The behaviour of the conversion would be undefined also.

435 cannot convert a type of unknown size

A completely unknown type cannot be used in a conversion because its size is not known.
The behaviour of the conversion would be undefined also.

Diagnostic Messages 429

Appendices

436 cannot construct an abstract class

An instance of an abstract class cannot be created because an abstract class can only be
used as a base class.

437 cannot construct an undefined class

An instance of an undefined class cannot be created because the size is not known.

438 string literal concatenated during array initialization

This message indicates that a missing comma (’,’) could have made a quiet change in the
program. Otherwise, ignore this message.

439 maximum size of segment ’%s’ has been exceeded for ’%S’

The indicated symbol has grown in size to a point where it has caused the segment it is
defined inside of to be exhausted.

440 maximum data item size has been exceeded for ’%S’

A non-huge data item is larger than 64k bytes in size. This message only occurs during
16-bit compilation of C++ code.

441 function attribute has been repeated

A function attribute (like the __export attribute) has been repeated. Remove the extra
attribute to correct the declaration.

442 modifier has been repeated

A modifier (like the far modifier) has been repeated. Remove the extra modifier to correct
the declaration.

443 illegal combination of memory model modifiers

Memory model modifiers must be used individually because they cannot be combined
meaningfully.

444 argument name ’%N’ has already been used

The indicated argument name has already been used in the same argument list. This is not
allowed in the C++ language.

445 function definition for ’%S’ must be declared with an explicit argument list

A function cannot be defined with a typedef. The argument list must be explicit.

430 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

446 user-defined conversion cannot convert to its own class or base class

A user-defined conversion cannot be declared as a conversion either to its own class or to a
base class of itself.

Example:
struct B {
};
struct D : private B {

operator B();
};

447 user-defined conversion cannot convert to void

A user-defined conversion cannot be declared as a conversion to void.

Example:
struct S {

operator void();
};

448 expecting identifier

An identifier was expected during processing.

449 symbol ’%S’ does not have a segment associated with it

A pointer cannot be based on a member because it has no segment associated with it. A
member describes a layout of storage that can occur in any segment.

450 symbol ’%S’ must have integral or pointer type

If a symbol is based on another symbol, it must be integral or a pointer type. An integral
type indicates the segment value that will be used. A pointer type means that all accesses
will be added to the pointer value to construct a full pointer.

451 symbol ’%S’ cannot be accessed in all contexts

The symbol that the pointer is based on is in another class so it cannot be accessed in all
contexts that the based pointer can be accessed.

452 cannot convert class expression to be copied

A convert class expression could not be copied.

453 conversion ambiguity: multiple copy constructors

More than one constructor could be used to copy a class object.

Diagnostic Messages 431

Appendices

454 function template ’%S’ already has a definition

The function template has already been defined with a function body. A function template
cannot be defined twice even if the function body is identical.

Example:
template <class T>

void f(T *p)
{
}

template <class T>
void f(T *p)
{
}

455 function templates cannot have default arguments

A function template must not have default arguments because there are certain types of
default arguments that do not force the function argument to be a specific type.

Example:
template <class T>

void f2(T *p = 0)
{
}

456 ’main’ cannot be a function template

This is a restriction in the C++ language because "main" cannot be overloaded. A function
template provides the possibility of having more than one "main" function.

457 ’%S’ was previously declared as a typedef

The C++ language only allows function and variable names to coexist with names of
classes or enumerations. This is due to the fact that the class and enumeration names can
still be referenced in their elaborated form after the non-type name has been declared.

Example:
typedef int T;
int T(int) // error!
{
}

enum E { A, B, C };
void E()
{

enum E x = A; // use "enum E"
}

class C { };
void C()
{

class C x; // use "class C"
}

432 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

458 ’%S’ was previously declared as a variable/function

The C++ language only allows function and variable names to coexist with names of
classes or enumerations. This is due to the fact that the class and enumeration names can
still be referenced in their elaborated form after the non-type name has been declared.

Example:
int T(int)
{
}
typedef int T; // error!

void E()
{
}
enum E { A, B, C };

enum E x = A; // use "enum E"

void C()
{
}
class C { };

class C x; // use "class C"

459 private base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

460 protected base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

461 maximum size of DGROUP has been exceeded for ’%S’ in segment ’%s’

The indicated symbol’s size has caused the DGROUP contribution of this module to exceed
64k. Changing memory models or declaring some data as far data are two ways of fixing
this problem.

462 type of return value is not the enumeration type of function

The return value does not have the proper enumeration type. Keep in mind that integral
values are not automatically converted to enum types like the C language.

Diagnostic Messages 433

Appendices

463 linkage must be first in a declaration; probable cause: missing ’;’

This message usually indicates a missing semicolon (’;’). The linkage specification must
be the first part of a declaration if it is used.

464 ’main’ cannot be a static function

This is a restriction in the C++ language because "main" must have external linkage.

465 ’main’ cannot be an inline function

This is a restriction in the C++ language because "main" must have external linkage.

466 ’main’ cannot be referenced

This is a restriction in the C++ language to prevent implementations from having to work
around multiple invocations of "main". This can occur if an implementation has to
generate special code in "main" to construct all of the statically allocated classes.

467 cannot call a non-volatile function for a volatile object

A function that does not promise to not modify an object using volatile semantics cannot be
called for a volatile object. A function can declare its intention to modify an object only
through volatile semantics by using the volatile qualifier.

Example:
struct S {

void fn();
};

void cfn(volatile S *p)
{

p->fn(); // Error!
}

468 cannot convert pointer to constant or volatile objects to pointer to void

You cannot convert a pointer to constant or volatile objects to ’void*’.

Example:
extern const int* pci;
extern void *vp;

int k = (pci == vp);

469 cannot convert pointer to constant or non-volatile objects to pointer to volatile void

You cannot convert a pointer to constant or non-volatile objects to ’volatile void*’.

434 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
extern const int* pci;
extern volatile void *vp;

int k = (pci == vp);

470 address of function is too large to be converted to pointer to void

The address of a function can be converted to ’void*’ only when the size of a ’void*’
object is large enough to contain the function pointer.

Example:
void __far foo();
void __near *v = &foo;

471 address of data object is too large to be converted to pointer to void

The address of an object can be converted to ’void*’ only when the size of a ’void*’ object
is large enough to contain the pointer.

Example:
int __far *ip;
void __near *v = ip;

472 expression with side effect in sizeof discarded

The indicated expression will be discarded; consequently, any side effects in that
expression will not be executed.

Example:
int a = 14;
int b = sizeof(a++);

In the example, the variable a will still have a value 14 after b has been initialized.

473 function argument(s) do not match those in prototype

The C++ language requires great precision in specifying arguments for a function. For
instance, a pointer to char is considered different than a pointer to unsigned char
regardless of whether char is an unsigned quantity. This message occurs when a
non-overloaded function is invoked and one or more of the arguments cannot be converted.
It also occurs when the number of arguments differs from the number specified in the
prototype.

474 conversion ambiguity: [expression] to [class object]

The conversion of the expression to a class object is ambiguous.

Diagnostic Messages 435

Appendices

475 cannot assign right expression to class object

The expression on the right cannot be assigned to the indicated class object.

476 argument count is %d since there is an implicit ’this’ argument

This informational message indicates the number of arguments for the function mentioned
in the error message. The function is a member function with a this argument so it may
have one more argument than expected.

477 argument count is %d since there is no implicit ’this’ argument

This informational message indicates the number of arguments for the function mentioned
in the error message. The function is a member function without a this argument so it may
have one less argument than expected.

478 argument count is %d for a non-member function

This informational message indicates the number of arguments for the function mentioned
in the error message. The function is not a member function but it could be declared as a
friend function.

479 conversion ambiguity: multiple copy constructors to copy array ’%S’

More than one constructor to copy the indicated array exists.

480 variable/function has the same name as the class/enum ’%S’

In C++, a class or enum name can coexist with a variable or function of the same name in a
scope. This warning is indicating that the current declaration is making use of this feature
but the typedef name was declared in another file. This usually means that there are two
unrelated uses of the same name.

481 class/enum has the same name as the function/variable ’%S’

In C++, a class or enum name can coexist with a variable or function of the same name in a
scope. This warning is indicating that the current declaration is making use of this feature
but the function/variable name was declared in another file. This usually means that there
are two unrelated uses of the same name. Furthermore, all references to the class or enum
must be elaborated (i.e., use ’class C’ instead of ’C’) in order for subsequent references to
compile properly.

482 cannot create a default constructor

A default constructor could not be created, because other constructors were declared for the
class in question.

436 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct X {

X(X&);
};
struct Y {

X a[10];
};
Y yvar;

In the example, the variable "yvar" causes a default constructor for the class "Y" to be
generated. The default constructor for "Y" attempts to call the default constructor for "X"
in order to initialize the array "a" in class "Y". The default constructor for "X" cannot be
defined because another constructor has been declared.

483 attempting to access default constructor for %T

This informational message indicates that a default constructor was referenced but could
not be generated.

484 cannot align symbol ’%S’ to segment boundary

The indicated symbol requires more than one segment of storage and the symbol’s
components cannot be aligned to the segment boundary.

485 friend declaration does not specify a class or function

A class or function must be declared as a friend.

Example:
struct T {

// should be class or function declaration
friend int;

};

486 cannot take address of overloaded function

This message indicates that an overloaded function’s name was used in a context where a
final type could not be found. Because a final type was not specified, the compiler cannot
select one function to use in the expression. Initialize a properly-typed temporary with the
appropriate function and use the temporary in the expression.

Example:
int foo(char);
int foo(unsigned);
extern int (*p)(char);
int k = (p == &foo); // fails

The first foo can be passed as follows:

Diagnostic Messages 437

Appendices

Example:
int foo(char);
int foo(unsigned);
extern int (*p)(char);

// introduce temporary
static int (*temp)(char) = &foo;

// ok
int k = (p == temp);

487 cannot use address of overloaded function as a variable argument

This message indicates that an overloaded function’s name was used as a argument for a
"..." style function. Because a final function type is not present, the compiler cannot select
one function to use in the expression. Initialize a properly-typed temporary with the
appropriate function and use the temporary in the call.

Example:
int foo(char);
int foo(unsigned);
int ellip_fun(int, ...);
int k = ellip_fun(14, &foo); // fails

The first foo can be passed as follows:

Example:
int foo(char);
int foo(unsigned);
int ellip_fun(int, ...);

static int (*temp)(char) = &foo; // introduce
temporary

int k = ellip_fun(14, temp); // ok

488 ’%N’ cannot be overloaded

The indicated function cannot be overloaded. Functions that fall into this category include
operator delete.

489 symbol ’%S’ has already been initialized

The indicated symbol has already been initialized. It cannot be initialized twice even if the
initialization value is identical.

490 delete expression is a pointer to a function

A pointer to a function cannot be allocated so it cannot be deleted.

438 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

491 delete of a pointer to const data

Since deleting a pointer may involve modification of data, it is not always safe to delete a
pointer to const data.

Example:
struct S { };
void fn(S const *p, S const *q) {

delete p;
delete [] q;

}

492 delete expression is not a pointer to data

A delete expression can only delete pointers. For example, trying to delete an int is not
allowed in the C++ language.

Example:
void fn(int a)
{

delete a; // Error!
}

493 template argument is not a constant expression

The compiler has found an incorrect expression provided as the value for a constant value
template argument. The only expressions allowed for scalar template arguments are
integral constant expressions.

494 template argument is not an external linkage symbol

The compiler has found an incorrect expression provided as the value for a pointer value
template argument. The only expressions allowed for pointer template arguments are
addresses of symbols. Any symbols must have external linkage or must be static class
members.

495 conversion of const reference to volatile reference

The constant value can be modified by assigning into the volatile reference. This would
allow constant data to be modified quietly.

Example:
void fn(const int &rci)
{

int volatile &r = rci; // Error!
}

Diagnostic Messages 439

Appendices

496 conversion of volatile reference to const reference

The volatile value can be read incorrectly by accessing the const reference. This would
allow volatile data to be accessed without correct volatile semantics.

Example:
void fn(volatile int &rvi)
{

int const &r = rvi; // Error!
}

497 conversion of const or volatile reference to plain reference

The constant value can be modified by assigning into the plain reference. This would allow
constant data to be modified quietly. In the case of volatile data, any access to the plain
reference will not respect the volatility of the data and thus would be incorrectly accessing
the data.

Example:
void fn(const int &rci, volatile int &rvi)
{

int &r1 = rci; // Error!
int &r2 = rvi; // Error!

}

498 syntax error before ’%s’; probable cause: incorrectly spelled type name

The identifier in the error message has not been declared as a type name in any scope at this
point in the code. This may be the cause of the syntax error.

499 object (or object pointer) required to access non-static member function

A reference to a member function in a class has occurred. The member is non-static so in
order to access it, an object of the class is required.

Example:
struct S {

int m();
static void fn()
{
m(); // Error!
}

};

500 object (or object pointer) cannot be used to access function

The indicated object (or object pointer) cannot be used to access function.

440 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

501 object (or object pointer) cannot be used to access data

The indicated object (or object pointer) cannot be used to access data.

502 cannot access member function in enclosing class

A member function in enclosing class cannot be accessed.

503 cannot access data member in enclosing class

A data member in enclosing class cannot be accessed.

504 syntax error before type name ’%s’

The identifier in the error message has been declared as a type name at this point in the
code. This may be the cause of the syntax error.

505 implementation restriction: cannot generate thunk from ’%S’

This implementation restriction is due to the use of a shared code generator between Open
Watcom compilers. The virtual this adjustment thunks are generated as functions linked
into the virtual function table. The functions rely on knowing the correct number of
arguments to pass on to the overriding virtual function but in the case of ellipsis (...)
functions, the number of arguments cannot be known when the thunk function is being
generated by the compiler. The target symbol is listed in a diagnostic message. The work
around for this problem is to recode the source so that the virtual functions make use of the
va_list type found in the stdarg header file.

Example:

Diagnostic Messages 441

Appendices

#include <iostream.h>
#include <stdarg.h>

struct B {
virtual void fun(char *, ...);

};
struct D : B {

virtual void fun(char *, ...);
};
void B::fun(char *f, ...)
{

va_list args;

va_start(args, f);
while(*f) {
cout << va_arg(args, char) << endl;
++f;
}
va_end(args);

}
void D::fun(char *f, ...)
{

va_list args;

va_start(args, f);
while(*f) {
cout << va_arg(args, int) << endl;
++f;
}
va_end(args);

}

The previous example can be changed to the following code with corresponding changes to
the contents of the virtual functions.

Example:
#include <iostream.h>
#include <stdarg.h>

struct B {
void fun(char *f, ...)
{
va_list args;

va_start(args, f);
_fun(f, args);
va_end(args);
}
virtual void _fun(char *, va_list);

};

442 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

~b
struct D : B {

// this can be removed since using B::fun
// will result in the same behaviour
// since _fun is a virtual function
void fun(char *f, ...)
{
va_list args;

va_start(args, f);
_fun(f, args);
va_end(args);
}
virtual void _fun(char *, va_list);

};
~b
void B::_fun(char *f, va_list args)
{

while(*f) {
cout << va_arg(args, char) << endl;
++f;
}

}
~b
void D::_fun(char *f, va_list args)
{

while(*f) {
cout << va_arg(args, int) << endl;
++f;
}

}

~b
// no changes are required for users of the class
B x;
D y;

void dump(B *p)
{

p->fun("1234", ’a’, ’b’, ’c’, ’d’);
p->fun("12", ’a’, ’b’);

}

~b
void main()
{

dump(&x);
dump(&y);

}

Diagnostic Messages 443

Appendices

506 conversion of __based(void) pointer to virtual base class

An __based(void) pointer to a class object cannot be converted to a pointer to virtual base
class, since this conversion applies only to specific objects.

Example:
struct Base {};
struct Derived : virtual Base {};
Derived __based(void) *p_derived;
Base __based(void) *p_base = p_derived; // error

The conversion would be allowed if the base class were not virtual.

507 class for target operand is not derived from class for source operand

A member pointer conversion can only be performed safely when converting a base class
member pointer to a derived class member pointer.

508 conversion ambiguity: [pointer to class member] to [assignment object]

The base class in the original member pointer is not a unique base class of the derived class.

509 conversion of pointer to class member involves a private base class

The member pointer conversion required access to a private base class. The access check
did not succeed so the conversion is not allowed.

510 conversion of pointer to class member involves a protected base class

The member pointer conversion required access to a protected base class. The access check
did not succeed so the conversion is not allowed.

511 item is neither a non-static member function nor data member

A member pointer can only be created for non-static member functions and non-static data
members. Static members can have their address taken just like their file scope
counterparts.

512 function address cannot be converted to pointer to class member

The indicated function address cannot be converted to pointer to class member.

513 conversion ambiguity: [address of function] to [pointer to class member]

The indicated conversion is ambiguous.

444 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

514 addressed function is in a private base class

The addressed function is in a private base class.

515 addressed function is in a protected base class

The addressed function is in a protected base class.

516 class for object is not defined

The left hand operand for the "." or ".*" operator must be of a class type that is completely
defined.

Example:
class C;

int fun(C& x)
{

return x.y; // class C not defined
}

517 left expression is not a class object

The left hand operand for the ".*" operator must be of a class type since member pointers
can only be used with classes.

518 right expression is not a pointer to class member

The right hand operand for the ".*" operator must be a member pointer type.

519 cannot convert pointer to class of member pointer

The class of the left hand operand cannot be converted to the class of the member pointer
because it is not a derived class.

520 conversion ambiguity: [pointer] to [class of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand operand.

521 conversion of pointer to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand operand.

522 conversion of pointer to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand operand.

Diagnostic Messages 445

Appendices

523 cannot convert object to class of member pointer

The class of the left hand operand cannot be converted to the class of the member pointer
because it is not a derived class.

524 conversion ambiguity: [object] to [class object of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand operand.

525 conversion of object to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand operand.

526 conversion of object to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand operand.

527 conversion of pointer to class member from a derived to a base class

A member pointer can only be converted from a base class to a derived class. This is the
opposite of the conversion rule for pointers.

528 form is ’#pragma inline_recursion en’ where ’en’ is ’on’ or ’off’

This pragma indicates whether inline expansion will occur for an inline function which is
called (possibly indirectly) a subsequent time during an inline expansion. Either ’on’ or
’off’ must be specified.

529 expression for number of array elements must be integral

The expression for the number of elements in a new expression must be integral because it
is used to calculate the size of the allocation (which is an integral quantity). The compiler
will not automatically convert to an integer because of rounding and truncation issues with
floating-point values.

530 function accessed with ’.*’ or ’->*’ can only be called

The result of the ".*" and "->*" operators can only be called because it is often specific to
the instance used for the left hand operand.

531 left operand must be a pointer, pointer to class member, or arithmetic

The left operand must be a pointer, pointer to class member, or arithmetic.

532 right operand must be a pointer, pointer to class member, or arithmetic

The right operand must be a pointer, pointer to class member, or arithmetic.

446 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

533 neither pointer to class member can be converted to the other

The two member pointers being compared are from two unrelated classes. They cannot be
compared since their members can never be related.

534 left operand is not a valid pointer to class member

The specified operator requires a pointer to member as the left operand.

Example:
struct S;
void fn(int S::* mp, int *p)
{

if(p == mp)
p[0] = 1;

}

535 right operand is not a valid pointer to class member

The specified operator requires a pointer to member as the right operand.

Example:
struct S;
void fn(int S::* mp, int *p)
{

if(mp == p)
p[0] = 1;

}

536 cannot use ’.*’ nor ’->*’ with pointer to class member with zero value

The compiler has detected a NULL pointer use with a member pointer dereference.

537 operand is not a valid pointer to class member

The operand cannot be converted to a valid pointer to class member.

Example:
struct S;
int S::* fn()
{

int a;
return a;

}

538 destructor can be invoked only with ’.’ or ’->’

This is a restriction in the C++ language. An explicit invocation of a destructor is not
recommended for objects that have their destructor called automatically.

Diagnostic Messages 447

Appendices

539 class of destructor must be class of object being destructed

Destructors can only be called for the exact static type of the object being destroyed.

540 destructor is not properly qualified

An explicit destructor invocation can only be qualified with its own class.

541 pointers to class members reference different object types

Conversion of member pointers can only occur if the object types are identical. This is
necessary to ensure type safety.

542 operand must be pointer to class or struct

The left hand operand of a ’->*’ operator must be a pointer to a class. This is a restriction
in the C++ language.

543 expression must have void type

If one operand of the ’:’ operator has void type, then the other operand must also have void
type.

544 expression types do not match for ’:’ operator

The compiler could not bring both operands to a common type. This is necessary because
the result of the conditional operator must be a unique type.

545 cannot create an undefined type with ’operator new’

A new expression cannot allocate an undefined type because it must know how large an
allocation is required and it must also know whether there are any constructors to execute.

546 delete of a pointer to an undefined type

A delete expression cannot safely deallocate an undefined type because it must know
whether there are any destructors to execute. In spite of this, the ISO/ANSI C++ Working
Paper requires that an implementation support this usage.

Example:
struct U;

void foo(U *p, U *q) {
delete p;
delete [] q;

}

448 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

547 cannot access ’%S’ through a private base class

The indicated symbol cannot be accessed because it requires access to a private base class.

548 cannot access ’%S’ through a protected base class

The indicated symbol cannot be accessed because it requires access to a protected base
class.

549 ’sizeof’ operand contains compiler generated information

The type used in the ’sizeof’ operand contains compiler generated information. Clearing a
struct with a call to memset() would invalidate all of this information.

550 cannot convert ’:’ operands to a common reference type

The two reference types cannot be converted to a common reference type. This can happen
when the types are not related through base class inheritance.

551 conversion ambiguity: [reference to object] to [type of opposite ’:’ operand]

One of the reference types is an ambiguous base class of the other. This prevents the
compiler from converting the operand to a unique common type.

552 conversion of reference to ’:’ object involves a private base class

The conversion of the reference operands requires a conversion through a private base
class.

553 conversion of reference to ’:’ object involves a protected base class

The conversion of the reference operands requires a conversion through a protected base
class.

554 expression must have type arithmetic, pointer, or pointer to class member

This message means that the type cannot be converted to any of these types, also. All of
the mentioned types can be compared against zero (’0’) to produce a true or false value.

555 expression for ’while’ is always false

The compiler has detected that the expression will always be false. If this is not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

Diagnostic Messages 449

Appendices

556 testing expression for ’for’ is always false

The compiler has detected that the expression will always be false. If this is not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

557 message number ’%d’ is invalid

The message number used in the #pragma does not match the message number for any
warning message. This message can also indicate that a number or ’*’ (meaning all
warnings) was not found when it was expected.

558 warning level must be an integer in range 0 to 9

The new warning level that can be used for the warning can be in the range 0 to 9. The
level 0 means that the warning will be treated as an error (compilation will not succeed).
Levels 1 up to 9 are used to classify warnings. The -w option sets an upper limit on the
level for warnings. By setting the level above the command line limit, you effectively
ignore all cases where the warning shows up.

559 function ’%S’ cannot be defined because it is generated by the compiler

The indicated function cannot be defined because it is generated by the compiler. The
compiler will automatically generate default constructors, copy constructors, assignment
operators, and destructors according to the rules of the C++ language. This message
indicates that you did not declare the function in the class definition.

560 neither environment variable nor file found for ’@’ name

The indirection operator for the command line will first check for an environment variable
of the name and use the contents for the command line. If an environment variable is not
found, a check for a file with the same name will occur.

561 more than 5 indirections during command line processing

The Open Watcom C++ compiler only allows a fixed number nested indirections using files
or environment variables, to prevent runaway chains of indirections.

562 cannot take address of non-static member function

The only way to create a value that described the non-static member function is to use a
member pointer.

563 cannot generate default ’%S’ because class contains either a constant or a reference
member

An assignment operator cannot be generated because the class contains members that
cannot be assigned into.

450 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

564 cannot convert pointer to non-constant or volatile objects to pointer to const void

A pointer to non-constant or volatile objects cannot be converted to ’const void*’.

565 cannot convert pointer to non-constant or non-volatile objects to pointer to const volatile
void

A pointer to non-constant or non-volatile objects cannot be converted to ’const volatile
void*’.

566 cannot initialize pointer to non-volatile with a pointer to volatile

A pointer to a non-volatile type cannot be initialized with a pointer to a volatile type
because this would allow volatile data to be modified without volatile semantics via the
non-volatile pointer to it.

567 cannot pass a pointer or reference to a volatile object

A pointer or reference to a volatile object cannot be passed in this context.

568 cannot return a pointer or reference to a volatile object

A pointer or reference to a volatile object cannot be returned.

569 left expression is not a pointer to a volatile object

One cannot assign a pointer to a volatile type to a pointer to a non-volatile type. This
would allow a volatile object to be modified via the non-volatile pointer. Use a cast if this
is absolutely necessary.

570 virtual function override for ’%S’ is ambiguous

This message indicates that there are at least two overrides for the function in the base
class. The compiler cannot arbitrarily choose one so it is up to the programmer to make
sure there is an unambiguous choice. Two of the overriding functions are listed as
informational messages.

571 initialization priority must be number 0-255, ’library’, or ’program’

An incorrect module initialization priority has been provided. Check the User’s Guide for
the correct format of the priority directive.

572 previous case label defined %L

This informational message indicates where a preceding case label is defined.

Diagnostic Messages 451

Appendices

573 previous default label defined %L

This informational message indicates where a preceding default label is defined.

574 label defined %L

This informational message indicates where a label is defined.

575 label referenced %L

This informational message indicates where a label is referenced.

576 object thrown has type: %T

This informational message indicates the type of the object being thrown.

577 object thrown has an ambiguous base class %T

It is illegal to throw an object with a base class to which a conversion would be ambiguous.

Example:
struct ambiguous{ };
struct base1 : public ambiguous { };
struct base2 : public ambiguous { };
struct derived : public base1, public base2 { };

foo(derived &object)
{

throw object;
}

The throw will cause an error to be displayed because an object of type "derived" cannot be
converted to an object of type "ambiguous".

578 form is ’#pragma inline_depth level’ where ’level’ is 0 to 255

This pragma sets the number of times inline expansion will occur for an inline function
which contains calls to inline functions. The level must be a number from zero to 255.
When the level is zero, no inline expansion occurs.

579 pointer or reference truncated by cast

The cast expression causes a conversion of a pointer value to another pointer value of
smaller size. This can be caused by __near or __far qualifiers (i.e., casting a far pointer to
a near pointer). Function pointers can also have a different size than data pointers in
certain memory models. Because this message indicates that some information is being
lost, check the code carefully.

452 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

580 cannot find a constructor for given initializer argument list

The initializer list provided for the new expression does not uniquely identify a single
constructor.

581 variable ’%N’ can only be based on a string in this context

All of the based modifiers can only be applied to pointer types. The only based modifier
that can be applied to non-pointer types is the ’__based(__segname("WATCOM"))’ style.

582 memory model modifiers are not allowed for class members

Class members describe the arrangement and interpretation of memory and, as such,
assume the memory model of the address used to access the member.

583 redefinition of the typedef name ’%S’ ignored

The compiler has detected that a slightly different type has been assigned to a typedef
name. The type is functionally equivalent but typedef redefinitions should be precisely
identical.

584 constructor for variable ’%S’ cannot be bypassed

The variable may not be constructed when code is executing at the position the message
indicated. The C++ language places these restrictions to prevent the use of unconstructed
variables.

585 syntax error; missing start of function body after constructor initializer

Member initializers can only be used in a constructor’s definition.

Example:
struct S {

int a;
S(int x = 1) : a(x)
{
}

};

586 conversion ambiguity: [expression] to [type of default argument]

A conversion to an ambiguous base class was detected in the default argument expression.

587 conversion of expression for default argument is impossible

A conversion to a unrelated class was detected in the default argument expression.

Diagnostic Messages 453

Appendices

588 syntax error before template name ’%s’

The identifier in the error message has been declared as a template name at this point in the
code. This may be the cause of the syntax error.

589 private base class accessed to convert default argument

A conversion to a private base class was detected in the default argument expression.

590 protected base class accessed to convert default argument

A conversion to a protected base class was detected in the default argument expression.

591 operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot
be assigned into because a brand new value is always created. Assigning a new value to a
temporary is a meaningless operation.

592 left operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot
be assigned into because a brand new value is always created. Assigning a new value to a
temporary is a meaningless operation.

593 right operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot
be assigned into because a brand new value is always created. Assigning a new value to a
temporary is a meaningless operation.

594 construct resolved as a declaration/type

The C++ language contains language ambiguities that force compilers to rely on extra
information in order to understand certain language constructs. The extra information
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. See the ARM p.93 for more details. This warning is intended to inform the
programmer that an ambiguous construct has been resolved in a certain direction. In this
case, the construct has been determined to be part of a type. The final resolution varies
between compilers so it is wise to change the source code so that the construct is not
ambiguous. This is especially important in cases where the resolution is more than three
tokens away from the start of the ambiguity.

595 construct resolved as an expression

The C++ language contains language ambiguities that force compilers to rely on extra
information in order to understand certain language constructs. The extra information
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. See the ARM p.93 for more details. This warning is intended to inform the
programmer that an ambiguous construct has been resolved in a certain direction. In this
case, the construct has been determined to be part of an expression (a function-like cast).
The final resolution varies between compilers so it is wise to change the source code so that

454 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

the construct is not ambiguous. This is especially important in cases where the resolution is
more than three tokens away from the start of the ambiguity.

596 construct cannot be resolved

The C++ language contains language ambiguities that force compilers to rely on extra
information in order to understand certain language constructs. The extra information
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. See the ARM p.93 for more details. This warning is intended to inform the
programmer that an ambiguous construct could not be resolved by the compiler. Please
report this to the Open Watcom developement team so that the problem can be analysed.
See http://www.openwatcom.org/.

597 encountered another ambiguous construct during disambiguation

The C++ language contains language ambiguities that force compilers to rely on extra
information in order to understand certain language constructs. The extra information
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. See the ARM p.93 for more details. This warning is intended to inform the
programmer that another ambiguous construct was found inside an ambiguous construct.
The compiler will correctly disambiguate the construct. The programmer is advised to
change code that exhibits this warning because this is definitely uncharted territory in the
C++ language.

598 ellipsis (...) argument contains compiler generated information

A class with virtual functions or virtual bases is being passed to a function that will not
know the type of the argument. Since this information can be encoded in a variety of ways,
the code may not be portable to another environment.

Example:
struct S
{ virtual int foo();
};

static S sv;

extern int bar(S, ...);

static int test = bar(sv, 14, 64);

The call to "bar" causes a warning, since the structure S contains information associated
with the virtual function for that class.

599 cannot convert argument for ellipsis (...) argument

This argument cannot be used as an ellipsis (...) argument to a function.

Diagnostic Messages 455

Appendices

600 conversion ambiguity: [argument] to [ellipsis (...) argument]

A conversion ambiguity was detected while converting an argument to an ellipsis (...)
argument.

601 converted function type has different #pragma from original function type

Since a #pragma can affect calling conventions, one must be very careful performing casts
involving different calling conventions.

602 class value used as return value or argument in converted function type

The compiler has detected a cast between "C" and "C++" linkage function types. The
calling conventions are different because of the different language rules for copying
structures.

603 class value used as return value or argument in original function type

The compiler has detected a cast between "C" and "C++" linkage function types. The
calling conventions are different because of the different language rules for copying
structures.

604 must look ahead to determine whether construct is a declaration/type or an expression

The C++ language contains language ambiguities that force compilers to rely on extra
information in order to understand certain language constructs. The extra information
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. See the ARM p.93 for more details. This warning is intended to inform the
programmer that an ambiguous construct has been used. The final resolution varies
between compilers so it is wise to change the source code so that the construct is not
ambiguous.

605 assembler: ’%s’

An error has been detected by the #pragma inline assembler.

606 default argument expression cannot reference ’this’

The order of evaluation for function arguments is unspecified in the C++ language
document. Thus, a default argument must be able to be evaluated before the ’this’
argument (or any other argument) is evaluated.

607 #pragma aux must reference a "C" linkage function ’%S’

The method of assigning pragma information via the #pragma syntax is provided for
compatibility with Open Watcom C. Because C only allows one function per name, this
was adequate for the C language. Since C++ allows functions to be overloaded, a new
method of referencing pragmas has been introduced.

456 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#pragma aux this_in_SI parm caller [si] [ax];

struct S {
void __pragma("this_in_SI") foo(int);
void __pragma("this_in_SI") foo(char);

};

608 assignment is ambiguous for operands used

An ambiguity was detected while attempting to convert the right operand to the type of the
left operand.

Example:
struct S1 {

int a;
};

struct S2 : S1 {
int b;

};

struct S3 : S2, S1 {
int c;

};

S1* fn(S3 *p)
{

return p;
}

In the example, class S1 occurs ambiguously for an object or pointer to an object of type
S3. A pointer to an S3 object cannot be converted to a pointer to an S1 object.

609 pragma name ’%s’ is not defined

Pragmas are defined with the #pragma aux syntax. See the User’s Guide for the details of
defining a pragma name. If the pragma has been defined then check the spelling between
the definition and the reference of the pragma name.

610 ’%S’ could not be generated by the compiler

An error occurred while the compiler tried to generate the specified function. The error
prevented the compiler from generating the function properly so the compilation cannot
continue.

611 ’catch’ does not immediately follow a ’try’ or ’catch’

The catch handler syntax must be used in conjunction with a try block.

Diagnostic Messages 457

Appendices

Example:
void f()
{

try {
// code that may throw an exception
} catch(int x) {
// handle ’int’ exceptions
} catch(...) {
// handle all other exceptions
}

}

612 preceding catch specified ’...’

Since an ellipsis "..." catch handler will handle any type of exception, no further catch
handlers can exist afterwards because they will never execute. Reorder the catch handlers
so that the "..." catch handler is the last handler.

613 argument to extern "C" function contains compiler generated information

A class with virtual functions or virtual bases is being passed to a function that will not
know the type of the argument. Since this information can be encoded in a variety of ways,
the code may not be portable to another environment.

Example:
struct S
{ virtual int foo();
};

static S sv;

extern "C" int bar(S);

static int test = bar(sv);

The call to "bar" causes a warning, since the structure S contains information associated
with the virtual function for that class.

614 previous try block defined %L

This informational message indicates where a preceding try block is defined.

615 previous catch block defined %L

This informational message indicates where a preceding catch block is defined.

616 catch handler can never be invoked

Because the handlers for a try block are tried in order of appearance, the type specified in a
preceding catch can ensure that the current handler will never be invoked. This occurs
when a base class (or reference) precedes a derived class (or reference); when a pointer to a
base class (or reference to the pointer) precedes a pointer to a derived class (or reference to
the pointer); or, when "void*" or "void*&" precedes a pointer or a reference to the pointer.

458 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct BASE {};
struct DERIVED : public BASE {};

foo()
{

try {
// code for try
} catch(BASE b) { // [1]
// code
} catch(DERIVED) { // warning: [1]
// code
} catch(BASE* pb) { // [2]
// code
} catch(DERIVED* pd) {// warning: [2]
// code
} catch(void* pv) { // [3]
// code
} catch(int* pi) { // warning: [3]
// code
} catch(BASE& br) { // warning: [1]
// code
} catch(float*& pfr) {// warning: [3]
// code
}

}

Each erroneous catch specification indicates the preceding catch block which caused the
error.

617 cannot overload extern "C" functions (the other function is ’%S’)

The C++ language only allows you to overload functions that are strictly C++ functions.
The compiler will automatically generate the correct code to distinguish each particular
function based on its argument types. The extern "C" linkage mechanism only allows you
to define one "C" function of a particular name because the C language does not support
function overloading.

618 function will be overload ambiguous with ’%S’ using default arguments

The declaration declares a function that is indistinguishable from another function of the
same name with default arguments.

Example:
void fn(int, int = 1);
void fn(int);

Calling the function ’fn’ with one argument is ambiguous because it could match either the
first ’fn’ with a default argument applied or the second ’fn’ without any default arguments.

Diagnostic Messages 459

Appendices

619 linkage specification is different than previous declaration ’%S’

The linkage specification affects the binding of names throughout a program. It is
important to maintain consistency because subtle problems could arise when the incorrect
function is called. Usually this error prevents an unresolved symbol error during linking
because the name of a declaration is affected by its linkage specification.

Example:
extern "C" void fn(void);
void fn(void)
{
}

620 not enough segment registers available to generate ’%s’

Through a combination of options, the number of available segment registers is too small.
This can occur when too many segment registers are pegged. This can be fixed by
changing the command line options to only peg the segment registers that must absolutely
be pegged.

621 pure virtual destructors must have a definition

This is an anomaly for pure virtual functions. A destructor is the only special function that
is inherited and allowed to be virtual. A derived class must be able to call the base class
destructor so a pure virtual destructor must be defined in a C++ program.

622 jump into try block

Jumps cannot enter try blocks.

Example:
foo(int a)
{

if(a) goto tr_lab;

try {
tr_lab:

throw 1234;
} catch(int) {
if(a) goto tr_lab;
}

if(a) goto tr_lab;
}

All the preceding goto’s are illegal. The error is detected at the label for forward jumps and
at the goto’s for backward jumps.

460 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

623 jump into catch handler

Jumps cannot enter catch handlers.

Example:
foo(int a)
{

if(a)goto ca_lab;

try {
if(a)goto ca_lab;
} catch(int) {

ca_lab:
}

if(a)goto ca_lab;
}

All the preceding goto’s are illegal. The error is detected at the label for forward jumps and
at the goto’s for backward jumps.

624 catch block does not immediately follow try block

At least one catch handler must immediately follow the "}" of a try block.

Example:
extern void goop();
void foo()
{

try {
goop();
} // a catch block should follow!

}

In the example, there were no catch blocks after the try block.

625 exceptions must be enabled to use feature (use ’xs’ option)

Exceptions are enabled by specifying the ’xs’ option when the compiler is invoked. The
error message indicates that a feature such as try, catch, throw, or function exception
specification has been used without enabling exceptions.

626 I/O error reading ’%s’: %s"

When attempting to read data from a source or header file, the indicated system error
occurred. Likely there is a hardware problem, or the file system has become corrupt.

627 text following pre-processor directive

A #else or #endif directive was found which had tokens following it rather than an end of
line. Some UNIX style preprocessors allowed this, but it is not legal under standard C or
C++. Make the tokens into a comment.

Diagnostic Messages 461

Appendices

628 expression is not meaningful

This message indicates that the indicated expression is not meaningful. An expression is
meaningful when a function is invoked, when an assignment or initialization is performed,
or when the expression is casted to void.

Example:
void foo(int i, int j)
{

i + j; // not meaningful
}

629 expression has no side effect

The indicated expression does not cause a side effect. A side effect is caused by invoking a
function, by an assignment or an initialization, or by reading a volatile variable.

Example:
int k;
void foo(int i, int j)
{

i + j, // no side effect (note comma)
k = 3;

}

630 source conversion type is ’%T’

This informational message indicates the type of the source operand, for the preceding
conversion diagnostic.

631 target conversion type is ’%T’

This informational message indicates the target type of the conversion, for the preceding
conversion diagnostic.

632 redeclaration of ’%S’ has different attributes

A function cannot be made virtual or pure virtual in a subsequent declaration. All
properties of a function should be described in the first declaration of a function. This is
especially important for member functions because the properties of a class are affected by
its member functions.

Example:
struct S {

void fun();
};

virtual void S::fun()
{
}

462 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

633 template class instantiation for ’%T’ was %L

This informational message indicates that the error or warning was detected during the
instantiation of a class template. The final type of the template class is shown as well as the
location in the source where the instantiation was initiated.

634 template function instantiation for ’%S’ was %L

This informational message indicates that the error or warning was detected during the
instantiation of a function template. The final type of the template function is shown as
well as the location in the source where the instantiation was initiated.

635 template class member instantiation was %L

This informational message indicates that the error or warning was detected during the
instantiation of a member of a class template. The location in the source where the
instantiation was initiated is shown.

636 function template binding for ’%S’ was %L

This informational message indicates that the error or warning was detected during the
binding process of a function template. The binding process occurs at the point where
arguments are analysed in order to infer what types should be used in a function template
instantiation. The function template in question is shown along with the location in the
source code that initiated the binding process.

637 function template binding of ’%S’ was %L

This informational message indicates that the error or warning was detected during the
binding process of a function template. The binding process occurs at the point where a
function prototype is analysed in order to see if the prototype matches any function
template of the same name. The function template in question is shown along with the
location in the source code that initiated the binding process.

638 ’%s’ defined %L

This informational message indicates where the class in question was defined. The
message is displayed following an error or warning diagnostic for the class in question.

Example:
class S;
int foo(S*p)
{

return p->x;
}

The variable p is a pointer to an undefined class and so will cause an error to be generated.
Following the error, the informational message indicates the line at which the class S was
declared.

Diagnostic Messages 463

Appendices

639 form is ’#pragma template_depth level’ where ’level’ is a non-zero number

This pragma sets the number of times templates will be instantiated for nested
instantiations. The depth check prevents infinite compile times for incorrect programs.

640 possible non-terminating template instantiation (use "#pragma template_depth %d" to
increase depth)

This message indicates that a large number of expansions were required to complete a
template class or template function instantiation. This may indicate that there is an
erroneous use of a template. If the program will complete given more depth, try using the
suggested #pragma in the error message to increase the depth. The number provided is
double the previous value.

641 cannot inherit a partially defined base class ’%T’

This message indicates that the base class was in the midst of being defined when it was
inherited. The storage requirements for a class type must be known when inheritance is
involved because the layout of the final class depends on knowing the complete contents of
all base classes.

Example:
struct Partial {

struct Nested : Partial {
int n;
};

};

642 ambiguous function: %F defined %L

This informational message shows the functions that were detected to be ambiguous.

Example:
int amb(char); // will be ambiguous
int amb(unsigned char); // will be ambiguous
int amb(char, char);
int k = amb(14);

The constant value 14 has an int type and so the attempt to invoke the function amb is
ambiguous. The first two functions are ambiguous (and will be displayed); the third is not
considered (nor displayed) since it is declared to have a different number of arguments.

643 cannot convert argument %d defined %L

This informational message indicates the first argument which could not be converted to
the corresponding type for the declared function. It is displayed when there is exactly one
function declared with the indicated name.

464 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

644 ’this’ cannot be converted

This informational message indicates the this pointer for the function which could not be
converted to the type of the this pointer for the declared function. It is displayed when
there is exactly one function declared with the indicated name.

645 rejected function: %F defined %L

This informational message shows the overloaded functions which were rejected from
consideration during function-overload resolution. These functions are displayed when
there is more than one function with the indicated name.

646 ’%T’ operator can be used

Following a diagnosis of operator ambiguity, this information message indicates that the
operator can be applied with operands of the type indicated in the message.

Example:
struct S {

S(int);
operator int();
S operator+(int);

};
S s(15);
int k = s + 123; // "+" is ambiguous

In the example, the "+" operation is ambiguous because it can implemented as by the
addition of two integers (with S::operator int applied to the second operand) or by a
call to S::operator+. This informational message indicates that the first is possible.

647 cannot #undef ’%s’

The predefined macros __cplusplus, __DATE__, __FILE__, __LINE__,
__STDC__, __TIME__, __FUNCTION__ and__func__ cannot be undefined using
the #undef directive.

Example:
#undef __cplusplus
#undef __DATE__
#undef __FILE__
#undef __LINE__
#undef __STDC__
#undef __TIME__
#undef __FUNCTION__
#undef __func__

All of the preceding directives are not permitted.

Diagnostic Messages 465

Appendices

648 cannot #define ’%s’

The predefined macros __cplusplus, __DATE__, __FILE__, __LINE__,
__STDC__, and__TIME__ cannot be defined using the #define directive.

Example:
#define __cplusplus 1
#define __DATE__ 2
#define __FILE__ 3
#define __LINE__ 4
#define __STDC__ 5
#define __TIME__ 6

All of the preceding directives are not permitted.

649 template function ’%F’ defined %L

This informational message indicates where the function template in question was defined.
The message is displayed following an error or warning diagnostic for the function
template in question.

Example:
template <class T>

void foo(T, T *)
{
}

void bar()
{

foo(1); // could not instantiate
}

The function template for foo cannot be instantiated for a single argument causing an error
to be generated. Following the error, the informational message indicates the line at which
foo was declared.

650 ambiguous function template: %F defined %L

This informational message shows the function templates that were detected to be
ambiguous for the arguments at the call point.

651 cannot instantiate %S

This message indicates that the function template could not be instantiated for the
arguments supplied. It is displayed when there is exactly one function template declared
with the indicated name.

466 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

652 rejected function template: %F defined %L

This informational message shows the overloaded function template which was rejected
from consideration during function-overload resolution. These functions are displayed
when there is more than one function or function template with the indicated name.

653 operand cannot be a function

The indicated operation cannot be applied to a function.

Example:
int Fun();
int j = ++Fun; // illegal

In the example, the attempt to increment a function is illegal.

654 left operand cannot be a function

The indicated operation cannot be applied to the left operand which is a function.

Example:
extern int Fun();
void foo()
{

Fun = 0; // illegal
}

In the example, the attempt to assign zero to a function is illegal.

655 right operand cannot be a function

The indicated operation cannot be applied to the right operand which is a function.

Example:
extern int Fun();
void foo()
{

void* p = 3[Fun]; // illegal
}

In the example, the attempt to subscript a function is illegal.

656 define this function inside its class definition (may improve code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an empty
function body. An empty function body can usually provide optimization opportunities so
the compiler is indicating that by defining the function inside its class definition, the
compiler may be able to perform some important optimizations.

Diagnostic Messages 467

Appendices

Example:
struct S {

~S();
};

S::~S() {
}

657 define this function inside its class definition (could have improved code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an empty
function body. An empty function body can usually provide optimization opportunities so
the compiler is indicating that by defining the function inside its class definition, the
compiler may be able to perform some important optimizations. This particular warning
indicates that the compiler has already found an opportunity in previous code but it found
out too late that the constructor or destructor had an empty function body.

Example:
struct S {

~S();
};
struct T : S {

~T() {}
};

S::~S() {
}

658 cannot convert address of overloaded function ’%S’

This information message indicates that an address of an overloaded function cannot be
converted to the indicated type.

Example:
int ovload(char);
int ovload(float);
int routine(int (*)(int);
int k = routine(ovload);

The first argument for the function routine cannot be converted, resulting in the
informational message.

659 expression cannot have void type

The indicated expression cannot have a void type.

Example:
main(int argc, char* argv)
{

if((void)argc) {
return 5;
} else {
return 9;
}

}

468 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Conditional expressions, such as the one illustrated in the if statement cannot have a void
type.

660 cannot reference a bit field

The smallest addressable unit is a byte. You cannot reference a bit field.

Example:
struct S
{ int bits :6;

int bitfield :10;
};
S var;
int& ref = var.bitfield; // illegal

661 cannot assign to object having an undefined class

An assignment cannot be be made to an object whose class has not been defined.

Example:
class X; // declared, but not defined
extern X& foo(); // returns reference (ok)
extern X obj;
void goop()
{

obj = foo(); // error
}

662 cannot create member pointer to constructor

A member pointer value cannot reference a constructor.

Example:
class C {

C();
};
int foo()
{

return 0 == &C::C;
}

663 cannot create member pointer to destructor

A member pointer value cannot reference a destructor.

Example:
class C {

~C();
};
int foo()
{

return 0 == &C::~C;
}

Diagnostic Messages 469

Appendices

664 attempt to initialize a non-constant reference with a temporary object

A temporary value cannot be converted to a non-constant reference type.

Example:
struct C {

C(C&);
C(int);

};

C & c1 = 1;
C c2 = 2;

The initializations of c1 and c2 are erroneous, since temporaries are being bound to
non-const references. In the case of c1, an implicit constructor call is required to convert
the integer to the correct object type. This results in a temporary object being created to
initialize the reference. Subsequent code can modify this temporary’s state. The
initialization of c2, is erroneous for a similar reason. In this case, the temporary is being
bound to the non-const reference argument of the copy constructor.

665 temporary object used to initialize a non-constant reference

Ordinarily, a temporary value cannot be bound to a non-constant reference. There is
enough legacy code present that the Open Watcom C++ compiler issues a warning in cases
that should be errors. This may change in the future so it is advisable to correct the code as
soon as possible.

666 assuming unary ’operator &’ not overloaded for type ’%T’

An explicit address operator can be applied to a reference to an undefined class. The Open
Watcom C++ compiler will assume that the address is required but it does not know
whether this was the programmer’s intention because the class definition has not been seen.

Example:
struct S;

S * fn(S &y) {
// assuming no operator ’&’ defined
return &y;

}

667 ’va_start’ macro will not work without an argument before ’...’

The warning indicates that it is impossible to access the arguments passed to the function
without declaring an argument before the "..." argument. The "..." style of argument list
(without any other arguments) is only useful as a prototype or if the function is designed to
ignore all of its arguments.

470 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn(...)
{
}

668 ’va_start’ macro will not work with a reference argument before ’...’

The warning indicates that taking the address of the argument before the "..." argument,
which ’va_start’ does in order to access the variable list of arguments, will not give the
expected result. The arguments will have to be rearranged so that an acceptable argument
is declared before the "..." argument or a dummy int argument can be inserted after the
reference argument with the corresponding adjustments made to the callers of the function.

Example:
#include <stdarg.h>

void fn(int &r, ...)
{

va_list args;

// address of ’r’ is address of
// object ’r’ references so
// ’va_start’ will not work properly
va_start(args, r);
va_end(args);

}

669 ’va_start’ macro will not work with a class argument before ’...’

This warning is specific to C++ compilers that quietly convert class arguments to class
reference arguments. The warning indicates that taking the address of the argument before
the "..." argument, which ’va_start’ does in order to access the variable list of arguments,
will not give the expected result. The arguments will have to be rearranged so that an
acceptable argument is declared before the "..." argument or a dummy int argument can be
inserted after the class argument with the corresponding adjustments made to the callers of
the function.

Example:
#include <stdarg.h>

struct S {
S();

};

void fn(S c, ...)
{

va_list args;

// Open Watcom C++ passes a pointer to
// the temporary created for passing
// ’c’ rather than pushing ’c’ on the
// stack so ’va_start’ will not work
// properly
va_start(args, c);
va_end(args);

}

Diagnostic Messages 471

Appendices

670 function modifier conflicts with previous declaration ’%S’

The symbol declaration conflicts with a previous declaration with regard to function
modifiers. Either the previous declaration did not have a function modifier or it had a
different one.

Example:
#pragma aux never_returns aborts;

void fn(int, int);
void __pragma("never_returns") fn(int, int);

671 function modifier cannot be used on a variable

The symbol declaration has a function modifier being applied to a variable or non-function.
The cause of this may be a declaration with a missing function argument list.

Example:
int (* __pascal ok)();
int (* __pascal not_ok);

672 ’%T’ contains the following pure virtual functions

This informational message indicates that the class contains pure virtual function
declarations. The class is definitely abstract as a result and cannot be used to declare
variables. The pure virtual functions declared in the class are displayed immediately
following this message.

Example:
struct A {

void virtual fn(int) = 0;
};

A x;

673 ’%T’ has no implementation for the following pure virtual functions

This informational message indicates that the class is derived from an abstract class but the
class did not override enough virtual function declarations. The pure virtual functions
declared in the class are displayed immediately following this message.

Example:
struct A {

void virtual fn(int) = 0;
};
struct D : A {
};

D x;

472 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

674 pure virtual function ’%F’ defined %L

This informational message indicates that the pure virtual function has not been overridden.
This means that the class is abstract.

Example:
struct A {

void virtual fn(int) = 0;
};
struct D : A {
};

D x;

675 restriction: standard calling convention required for ’%S’

The indicated function may be called by the C++ run-time system using the standard
calling convention. The calling convention specified for the function is incompatible with
the standard convention. This message may result when __pascal is specified for a
default constructor, a copy constructor, or a destructor. It may also result when parm
reverse is specified in a #pragma for the function.

676 number of arguments in function call is incorrect

The number of arguments in the function call does not match the number declared for the
function type.

Example:
extern int (*pfn)(int, int);
int k = pfn(1, 2, 3);

In the example, the function pointer was declared to have two arguments. Three arguments
were used in the call.

677 function has type ’%T’

This informational message indicates the type of the function being called.

678 invalid octal constant

The constant started with a ’0’ digit which makes it look like an octal constant but the
constant contained the digits ’8’ and ’9’. The problem could be an incorrect octal constant
or a missing ’.’ for a floating constant.

Example:
int i = 0123456789; // invalid octal constant
double d = 0123456789; // missing ’.’?

Diagnostic Messages 473

Appendices

679 class template definition started %L

This informational message indicates where the class template definition started so that any
problems with missing braces can be fixed quickly and easily.

Example:
template <class T>

struct S {
void f1() {
// error missing ’}’
};

template <class T>
struct X {
void f2() {
}
};

680 constructor initializer started %L

This informational message indicates where the constructor initializer started so that any
problems with missing parenthesis can be fixed quickly and easily.

Example:
struct S {

S(int x) : a(x), b(x // missing parenthesis
{
}

};

681 zero size array must be the last data member

The language extension that allows a zero size array to be declared in a class definition
requires that the array be the last data member in the class.

Example:
struct S {

char a[];
int b;

};

682 cannot inherit a class that contains a zero size array

The language extension that allows a zero size array to be declared in a class definition
disallows the use of the class as a base class. This prevents the programmer from
corrupting storage in derived classes through the use of the zero size array.

Example:
struct B {

int b;
char a[];

};
struct D : B {

int d;
};

474 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

683 zero size array ’%S’ cannot be used in a class with base classes

The language extension that allows a zero size array to be declared in a class definition
requires that the class not have any base classes. This is required because the C++ compiler
must be free to organize base classes in any manner for optimization purposes.

Example:
struct B {

int b;
};
struct D : B {

int d;
char a[];

};

684 cannot catch abstract class object

C++ does not allow abstract classes to be instantiated and so an abstract class object cannot
be specified in a catch clause. It is permissible to catch a reference to an abstract class.

Example:
class Abstract {
public:

virtual int foo() = 0;
};

class Derived : Abstract {
public:

int foo();
};

int xyz;

void func(void) {
try {
throw Derived();
} catch(Abstract abstract) { // object
xyz = 1;
}

}

The catch clause in the preceding example would be diagnosed as improper, since an
abstract class is specified. The example could be coded as follows.

Example:

Diagnostic Messages 475

Appendices

class Abstract {
public:

virtual int foo() = 0;
};

class Derived : Abstract {
public:

int foo();
};

int xyz;

void func(void) {
try {
throw Derived();
} catch(Abstract & abstract) { // reference
xyz = 1;
}

}

685 non-static member function ’%S’ cannot be specified

The indicated non-static member function cannot be used in this context. For example,
such a function cannot be used as the second or third operand of the conditional operator.

Example:
struct S {

int foo();
int bar();
int fun();

};

int S::fun(int i) {
return (i ? foo : bar)();

}

Neither foo nor bar can be specified as shown in the example. The example can be
properly coded as follows:

Example:
struct S {

int foo();
int bar();
int fun();

};

int S::fun(int i) {
return i ? foo() : bar();

}

476 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

686 attempt to convert pointer or reference from a base to a derived class

A pointer or reference to a base class cannot be converted to a pointer or reference,
respectively, of a derived class, unless there is an explicit cast. The return statements in
the following example will be diagnosed.

Example:
struct Base {};
struct Derived : Base {};

Base b;

Derived* ReturnPtr() { return &b; }
Derived& ReturnRef() { return b; }

The following program would be acceptable:

Example:
struct Base {};
struct Derived : Base {};

Base b;

Derived* ReturnPtr() { return (Derived*)&b; }
Derived& ReturnRef() { return (Derived&)b; }

687 expression for ’while’ is always true

The compiler has detected that the expression will always be true. Consequently, the loop
will execute infinitely unless there is a break statement within the loop or a throw
statement is executed while executing within the loop. If such an infinite loop is required,
it can be coded as for(;) without causing warnings.

688 testing expression for ’for’ is always true

The compiler has detected that the expression will always be true. Consequently, the loop
will execute infinitely unless there is a break statement within the loop or a throw
statement is executed while executing within the loop. If such an infinite loop is required,
it can be coded as for(;) without causing warnings.

689 conditional expression is always true (non-zero)

The indicated expression is a non-zero constant and so will always be true.

690 conditional expression is always false (zero)

The indicated expression is a zero constant and so will always be false.

Diagnostic Messages 477

Appendices

691 expecting a member of ’%T’ to be defined in this context

A class template member definition must define a member of the associated class template.
The complexity of the C++ declaration syntax can make this error hard to identify visually.

Example:
template <class T>

struct S {
typedef int X;
static X fn(int);
static X qq;
};

template <class T>
S<T>::X fn(int) {// should be ’S<T>::fn’

return fn(2);
}

template <class T>
S<T>::X qq = 1; // should be ’S<T>::q’

S<int> x;

692 cannot throw an abstract class

An abstract class cannot be thrown since copies of that object may have to be made (which
is impossible);

Example:
struct abstract_class {

abstract_class(int);
virtual int foo() = 0;

};

void goop()
{

throw abstract_class(17);
}

The throw expression is illegal since it specifies an abstract class.

693 cannot create pre-compiled header file ’%s’

The compiler has detected a problem while trying to open the pre-compiled header file for
write access.

694 error occurred while writing pre-compiled header file

The compiler has detected a problem while trying to write some data to the pre-compiled
header file.

478 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

695 error occurred while reading pre-compiled header file

The compiler has detected a problem while trying to read some data from the pre-compiled
header file.

696 pre-compiled header file being recreated

The existing pre-compiled header file may either be corrupted or is a version that the
compiler cannot use due to updates to the compiler. A new version of the pre-compiled
header file will be created.

697 pre-compiled header file being recreated (different compile options)

The compiler has detected that the command line options have changed enough so the
contents of the pre-compiled header file cannot be used. A new version of the
pre-compiled header file will be created.

698 pre-compiled header file being recreated (different #include file)

The compiler has detected that the first #include file name is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

699 pre-compiled header file being recreated (different current directory)

The compiler has detected that the working directory is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

700 pre-compiled header file being recreated (different INCLUDE path)

The compiler has detected that the INCLUDE path is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

701 pre-compiled header file being recreated (’%s’ has been modified)

The compiler has detected that an include file has changed so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

702 pre-compiled header file being recreated (macro ’%s’ is different)

The compiler has detected that a macro definition is different so the contents of the
pre-compiled header file cannot be used. The macro was referenced during processing of
the header file that created the pre-compiled header file so the contents of the pre-compiled
header may be affected. A new version of the pre-compiled header file will be created.

Diagnostic Messages 479

Appendices

703 pre-compiled header file being recreated (macro ’%s’ is not defined)

The compiler has detected that a macro has not been defined so the contents of the
pre-compiled header file cannot be used. The macro was referenced during processing of
the header file that created the pre-compiled header file so the contents of the pre-compiled
header may be affected. A new version of the pre-compiled header file will be created.

704 command line specifies smart windows callbacks and DS not equal to SS

An illegal combination of switches has been detected. The windows smart callbacks option
cannot be combined with either of the build DLL or DS not equal to SS options.

705 class ’%N’ cannot be used with #pragma dump_object_model

The indicated name has not yet been declared or has been declared but not yet been defined
as a class. Consequently, the object model cannot be dumped.

706 repeated modifier is ’%s’

This informational message indicates what modifier was repeated in the declaration.

Example:
typedef int __far FARINT;
FARINT __far *p; // repeated __far modifier

707 semicolon (’;’) may be missing after class/enum definition

This informational message indicates that a missing semicolon (’;’) may be the cause of the
error.

Example:
struct S {

int x,y;
S(int, int);

} // missing semicolon ’;’

S::S(int x, int y) : x(x), y(y) {
}

708 cannot return a type of unknown size

A value of an unknown type cannot be returned.

Example:
class S;
S foo();

int goo()
{

foo();
}

In the example, foo cannot be invoked because the class which it returns has not been
defined.

480 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

709 cannot initialize array member ’%S’

An array class member cannot be specified as a constructor initializer.

Example:
class S {
public:

int arr[3];
S();

};
S::S() : arr(1, 2, 3) {}

In the example, arr cannot be specified as a constructor initializer. Instead, the array may
be initialized within the body of the constructor.

Example:
class S {
public:

int arr[3];
S();

};
S::S()
{

arr[0] = 1;
arr[1] = 2;
arr[2] = 3;

}

710 file ’%s’ will #include itself forever

The compiler has detected that the file in the message has been #include from within itself
without protecting against infinite inclusion. This can happen if #ifndef and #define header
file protection has not been used properly.

Example:
#include __FILE__

711 ’mutable’ may only be used for non-static class members

A declaration in file scope or block scope cannot have a storage class of mutable.

Example:
mutable int a;

712 ’mutable’ member cannot also be const

A mutable member can be modified even if its class object is const. Due to the semantics
of mutable, the programmer must decide whether a member will be const or mutable
because it cannot be both at the same time.

Diagnostic Messages 481

Appendices

Example:
struct S {

mutable const int * p; // OK
mutable int * const q; // error

};

713 left operand cannot be of type bool

The left hand side of an assignment operator cannot be of type bool except for simple
assignment. This is a restriction required in the C++ language.

Example:
bool q;

void fn()
{

q += 1;
}

714 operand cannot be of type bool

The operand of both postfix and prefix "--" operators cannot be of type bool. This is a
restriction required in the C++ language.

Example:
bool q;

void fn()
{

--q; // error
q--; // error

}

715 member ’%N’ has not been declared in ’%T’

The compiler has found a member which has not been previously declared. The symbol
may be spelled differently than the declaration, or the declaration may simply not be
present.

Example:
struct X { int m; };

void fn(X *p)
{

p->x = 1;
}

716 integral value may be truncated

This message indicates that the compiler knows that all values will not be preserved after
the assignment or initialization. If this is acceptable, cast the value to the appropriate type
in the assignment or initialization.

482 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
char inc(char c)
{

return c + 1;
}

717 left operand type is ’%T’

This informational message indicates the type of the left hand side of the expression.

718 right operand type is ’%T’

This informational message indicates the type of the right hand side of the expression.

719 operand type is ’%T’

This informational message indicates the type of the operand.

720 expression type is ’%T’

This informational message indicates the type of the expression.

721 virtual function ’%S’ cannot have its return type changed

This restriction is due to the relatively new feature in the C++ language that allows return
values to be changed when a virtual function has been overridden. It is not possible to
support both features because in order to support changing the return value of a function,
the compiler must construct a "wrapper" function that will call the virtual function first and
then change the return value and return. It is not possible to do this with "..." style
functions because the number of parameters is not known.

Example:
struct B {
};
struct D : virtual B {
};

struct X {
virtual B *fn(int, ...);

};
struct Y : X {

virtual D *fn(int, ...);
};

722 __declspec(’%N’) is not supported

The identifier used in the __declspec declaration modifier is not supported by Open
Watcom C++.

Diagnostic Messages 483

Appendices

723 attempt to construct a far object when data model is near

Constructors cannot be applied to objects which are stored in far memory when the default
memory model for data is near.

Example:
struct Obj
{ char *p;

Obj();
};

Obj far obj;

The last line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for data is near.

724 -zo is an obsolete switch (has no effect)

The -zo option was required in an earlier version of the compiler but is no longer used.

725 "%s"

This is a user message generated with the #pragma message preprocessing directive.

Example:
#pragma message("my very own warning");

726 no reference to formal parameter ’%S’

There are no references to the declared formal parameter. The simplest way to remove this
warning in C++ is to remove the name from the argument declaration.

Example:
int fn1(int a, int b, int c)
{

// ’b’ not referenced
return a + c;

}
int fn2(int a, int /* b */, int c)
{

return a + c;
}

727 cannot dereference a pointer to void

A pointer to void is used as a generic pointer but it cannot be dereferenced.

484 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn(void *p)
{

return *p;
}

728 class modifiers for ’%T’ conflict with class modifiers for ’%T’

A conflict between class modifiers for classes related through inheritance has been
detected. A conflict will occur if two base classes have class modifiers that are different.
The conflict can be resolved by ensuring that all classes related through inheritance have
the same class modifiers. The default resolution is to have no class modifier for the derived
base.

Example:
struct __cdecl B1 {

void fn(int);
};
struct __stdcall B2 {

void fn(int);
};
struct D : B1, B2 {
};

729 invalid hexadecimal constant

The constant started with a ’0x’ prefix which makes it look like a hexadecimal constant but
the constant was not followed by any hexadecimal digits.

Example:
unsigned i = 0x; // invalid hex constant

730 return type of ’operator ->’ will not allow ’->’ to be applied

This restriction is a result of the transformation that the compiler performs when the
operator -> is overloaded. The transformation involves transforming the expression to
invoke the operator with "->" applied to the result of operator ->. This warning indicates
that the operator -> can never be used as an overloaded operator. The only way the
operator can be used is to explicitly call it by name.

Example:
struct S {

int a;
void *operator ->();

};

void *fn(S &q)
{

return q.operator ->();
}

Diagnostic Messages 485

Appendices

731 class should have a name since it needs a constructor or a destructor

The class definition does not have a class name but it includes members that have
constructors or destructors. Since the class has C++ semantics, it should be have a name in
case the constructor or destructor needs to be referenced.

Example:
struct P {

int x,y;
P();

};

typedef struct {
P c;
int v;

} T;

732 class should have a name since it inherits a class

The class definition does not have a class name but it inherits a class. Since the class has
C++ semantics, it should be have a name in case the constructor or destructor needs to be
referenced.

Example:
struct P {

int x,y;
P();

};

typedef struct : P {
int v;

} T;

733 cannot open pre-compiled header file ’%s’

The compiler has detected a problem while trying to open the pre-compiled header file for
read/write access.

734 invalid second argument to va_start

The second argument to the va_start macro should be the name of the argument just before
the "..." in the argument list.

735 ’//’ style comment continues on next line

The compiler has detected a line continuation during the processing of a C++ style
comment ("//"). The warning can be removed by switching to a C style comment ("/**/").
If you require the comment to be terminated at the end of the line, make sure that the
backslash character is not the last character in the line.

486 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#define XX 23 // comment start \
comment \
end

int x = XX; // comment start ...\
comment end

736 cannot open file ’%s’ for write access

The compiler has detected a problem while trying to open the indicated file for write
access.

737 implicit conversion of pointers to integral types of same size

The compiler allows, when extensions are enabled, implicit conversions between pointers
to integral types when the size of the integral types are the same. Thus, conversions from
unsigned char to either char or signed char would be allowed. This is an extension as the
ISO/ANSI Draft Working Paper permits implicit conversions only when the types pointed
at are identical.

According to the ISO/ANSI Draft Working Paper, a string literal is an array of char.
Consequently, it is illegal to initialize or assign the pointer resulting from that literal to a
pointer of either unsigned char or signed char, since these pointers point at objects of a
different type. When extensions are enabled, this condition is diagnosed as a warning;
otherwise, it is an error.

738 option requires a number

The specified option is not recognized by the compiler since there was no number after it
(i.e., "-w=1"). Numbers must be non-negative decimal numbers.

739 option -fc specified more than once

The -fc option can be specified at most once on a command line.

740 option -fc specified in batch file of commands

The -fc option cannot be specified on a line in the batch file of command lines specified by
the -fc option on the command line used to invoke the compiler.

741 file specified by -fc is empty or cannot be read

The file specified using the -fc option is either empty or an input/output error was
diagnosed for the file.

Diagnostic Messages 487

Appendices

742 cannot open file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does not exist. An
input/output error is also possible.

743 input/output error reading the file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does not exist. An
input/output error is also possible.

744 ’%N’ does not have a return type specified (int assumed)

In C++, operator functions should have an explicit return type specified. In future revisions
of the ISO/ANSI C++ standard, the use of default int type specifiers may be prohibited so
removing any dependencies on default int early will prevent problems in the future.

Example:
struct S {

operator = (S const &);
operator += (S const &);

};

745 cannot initialize reference to non-constant with a constant object

A reference to a non-constant object cannot be initialized with a reference to a constant
type because this would allow constant data to be modified via the non-constant pointer to
it.

Example:
extern const int *pic;
extern int & ref = pic;

746 processing %s

This informational message indicates where an error or warning was detected while
processing the switches specified on the command line, in environment variables, in
command files (using the ’@’ notation), or in the batch command file (specified using the
-fc option).

747 class ’%T’ has not been defined

This informational message indicates a class which was not defined. This is noted
following an error or warning message because it often helps to a user to determine the
cause of that diagnostic.

748 cannot catch undefined class object

C++ does not allow abstract classes to be copied and so an undefined class object cannot be
specified in a catch clause. It is permissible to catch a reference to an undefined class.

488 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

749 class ’%T’ cannot be used since its definition has errors

The analysis of the expression could not continue due to previous errors diagnosed in the
class definition.

750 function prototype in block scope missing ’extern’

This warning can be triggered when the intent is to define a variable with a constructor.
Due to the complexities of parsing C++, statements that appear to be variable definitions
may actually parse as a function prototype. A work-around for this problem is contained in
the example. If a prototype is desired, add the extern storage class to remove this warning.

Example:
struct C {
};
struct S {

S(C);
};
void foo()
{

S a(C()); // function prototype!
S b((C()));// variable definition

int bar(int);// warning
extern int sam(int); // no warning

}

751 function prototype is ’%T’

This informational message indicates what the type of the function prototype is for the
message in question.

752 class ’%T’ contains a zero size array

This warning is triggered when a class with a zero sized array is used in an array or as a
class member. This is a questionable practice since a zero sized array at the end of a class
often indicates a class that is dynamically sized when it is constructed.

Example:
struct C {

C *next;
char name[];

};

struct X {
C q;

};

C a[10];

Diagnostic Messages 489

Appendices

753 invalid ’new’ modifier

The Open Watcom C++ compiler does not support new expression modifiers but allows
them to match the ambient memory model for compatibility. Invalid memory model
modifiers are also rejected by the compiler.

Example:
int *fn(unsigned x)
{

return new __interrupt int[x];
}

754 ’__declspec(thread)’ data ’%S’ must be link-time initialized

This error message indicates that the data item in question either requires a constructor,
destructor, or run-time initialization. This cannot be supported for thread-specific data at
this time.

Example:
#include <stdlib.h>

struct C {
C();

};
struct D {

~D();
};

C __declspec(thread) c;
D __declspec(thread) d;
int __declspec(thread) e = rand();

755 code may not work properly if this module is split across a code segment

The "zm" option allows the compiler to generate functions into separate segments that have
different names so that more than 64k of code can be generated in one object file.
Unfortunately, if an explicit near function is coded in a large code model, the possibility
exists that the linker can place the near function in a separate code segment than a function
that calls it. This would cause a linker error followed by an execution error if the
executable is executed. The "zmf" option can be used if you require explicit near functions
in your code.

Example:

490 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

// These functions may not end up in the
// same code segment if the -zm option
// is used. If this is the case, the near
// call will not work since near functions
// must be in the same code segment to
// execute properly.
static int near near_fn(int x)
{

return x + 1;
}

int far_fn(int y)
{

return near_fn(y * 2);
}

756 #pragma extref: symbol ’%N’ not declared

This error message indicates that the symbol referenced by #pragma extref has not been
declared in the context where the pragma was encountered.

757 #pragma extref: overloaded function ’%S’ cannot be used

An external reference can be emitted only for external functions which are not overloaded.

758 #pragma extref: ’%N’ is not a function or data

This error message indicates that the symbol referenced by #pragma extref cannot have an
external reference emitted for it because the referenced symbol is neither a function nor a
data item. An external reference can be emitted only for external functions which are not
overloaded and for external data items.

759 #pragma extref: ’%S’ is not external

This error message indicates that the symbol referenced by #pragma extref cannot have an
external reference emitted for it because the symbol is not external. An external reference
can be emitted only for external functions which are not overloaded and for external data
items.

760 pre-compiled header file being recreated (debugging info may change)

The compiler has detected that the module being compiled was used to create debugging
information for use by other modules. In order to maintain correctness, the pre-compiled
header file must be recreated along with the object file.

761 octal escape sequence out of range; truncated

This message indicates that the octal escape sequence produces an integer that cannot fit
into the required character type.

Diagnostic Messages 491

Appendices

Example:
char *p = "\406";

762 binary operator ’%s’ missing right operand

There is no expression to the right of the indicated binary operator.

763 binary operator ’%s’ missing left operand

There is no expression to the left of the indicated binary operator.

764 expression contains extra operand(s)

The expression contains operand(s) without an operator

765 expression contains consecutive operand(s)

More than one operand found in a row.

766 unmatched right parenthesis ’)’

The expression contains a right parenthesis ")" without a matching left parenthesis.

767 unmatched left parenthesis ’(’

The expression contains a left parenthesis "(" without a matching right parenthesis.

768 no expression between parentheses ’()’

There is a matching set of parenthesis "()" which do not contain an expression.

769 expecting ’:’ operator in conditional expression

A conditional expression exists without the ’:’ operator.

770 expecting ’?’ operator in conditional expression

A conditional expression exists without the ’?’ operator.

771 expecting first operand in conditional expression

A conditional expression exists without the first operand.

772 expecting second operand in conditional expression

A conditional expression exists without the second operand.

492 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

773 expecting third operand in conditional expression

A conditional expression exists without the third operand.

774 expecting operand after unary operator ’%s’

A unary operator without being followed by an operand.

775 ’%s’ unexpected in constant expression

’%s’ not allowed in constant expression

776 assembler: ’%s’

A warning has been issued by the #pragma inline assembler.

777 expecting ’id’ after ’::’ but found ’%s’

The ’::’ operator has an invalid token following it.

Example:
#define fn(x) ((x)+1)

struct S {
int inc(int y) {
return ::fn(y);
}

};

778 only constructors can be declared explicit

Currently, only constructors can be declared with the explicit keyword.

Example:
int explicit fn(int x) {

return x + 1;
}

779 const_cast type must be pointer, member pointer, or reference

The type specified in a const_cast operator must be a pointer, a pointer to a member of a
class, or a reference.

Example:
extern int const *p;
long lp = const_cast<long>(p);

Diagnostic Messages 493

Appendices

780 const_cast expression must be pointer to same kind of object

Ignoring const and volatile qualification, the expression must be a pointer to the same type
of object as that specified in the const_cast operator.

Example:
extern int const * ip;
long* lp = const_cast<long*>(ip);

781 const_cast expression must be lvalue of the same kind of object

Ignoring const and volatile qualification, the expression must be an lvalue or reference to
the same type of object as that specified in the const_cast operator.

Example:
extern int const i;
long& lr = const_cast<long&>(i);

782 expression must be pointer to member from same class in const_cast

The expression must be a pointer to member from the same class as that specified in the
const_cast operator.

Example:
struct B {

int ib;
};
struct D : public B {
};
extern int const B::* imb;
int D::* imd const_cast<int D::*>(imb);

783 expression must be member pointer to same type as specified in const_cast

Ignoring const and volatile qualification, the expression must be a pointer to member of the
same type as that specified in the const_cast operator.

Example:
struct B {

int ib;
long lb;

};
int D::* imd const_cast<int D::*>(&B::lb);

784 reinterpret_cast expression must be pointer or integral object

When a pointer type is specified in the reinterpret_cast operator, the expression must be a
pointer or an integer.

494 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
extern float fval;
long* lp = const_cast<long*>(fval);

The expression has float type and so is illegal.

785 reinterpret_cast expression cannot be casted to reference type

When a reference type is specified in the reinterpret_cast operator, the expression must be
an lvalue (or have reference type). Additionally, constness cannot be casted away.

Example:
extern long f;
extern const long f2;
long& lr1 = const_cast<long&>(f + 2);
long& lr2 = const_cast<long&>(f2);

Both initializations are illegal. The first cast expression is not an lvalue. The second cast
expression attempts to cast away constness.

786 reinterpret_cast expression cannot be casted to pointer to member

When a pointer to member type is specified in the reinterpret_cast operator, the expression
must be a pointer to member. Additionally, constness cannot be casted away.

Example:
extern long f;
struct S {

const long f2;
S();

};
long S::* mp1 = const_cast<long S:: *>(f);
long S::* mp2 = const_cast<long S:: *>(&S::f2);

Both initializations are illegal. The first cast expression does not involve a member pointer.
The second cast expression attempts to cast away constness.

787 only integral arithmetic types can be used with reinterpret_cast

Pointers can only be casted to sufficiently large integral types.

Example:
void* p;
float f = reinterpret_cast<float>(p);

The cast is illegal because float type is specified.

Diagnostic Messages 495

Appendices

788 only integral arithmetic types can be used with reinterpret_cast

Only integral arithmetic types can be casted to pointer types.

Example:
float flt;
void* p = reinterpret_cast<void*>(flt);

The cast is illegal because flt has float type which is not integral.

789 cannot cast away constness

A cast or implicit conversion is illegal because a conversion to the target type would
remove constness from a pointer, reference, or pointer to member.

Example:
struct S {

int s;
};
extern S const * ps;
extern int const S::* mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove constness.

790 size of integral type in cast less than size of pointer

An object of the indicated integral type is too small to contain the value of the indicated
pointer.

Example:
int x;
char p = reinterpret_cast<char>(&x);
char q = (char)(&x);

Both casts are illegal since a char is smaller than a pointer.

791 type cannot be used in reinterpret_cast

The type specified with reinterpret_cast must be an integral type, a pointer type, a pointer to
a member of a class, or a reference type.

Example:
void* p;
float f = reinterpret_cast<float>(p);
void* q = (reinterpret_cast<void>(p), p);

The casts specify illegal types.

496 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

792 only pointers can be casted to integral types with reinterpret_cast

The expression must be a pointer type.

Example:
void* p;
float f = reinterpret_cast<float>(p);
void* q = (reinterpret_cast<void>(p), p);

The casts specify illegal types.

793 only integers and pointers can be casted to pointer types with reinterpret_cast

The expression must be a pointer or integral type.

Example:
void* x;
void* p = reinterpret_cast<void*>(16);
void* q = (reinterpret_cast<void*>(x), p);

The casts specify illegal types.

794 static_cast cannot convert the expression

The indicated expression cannot be converted to the type specified with the static_cast
operator. Perhaps reinterpret_cast or dynamic_cast should be used instead;

795 static_cast cannot be used with the type specified

A static cast cannot be used with a function type or array type.

Example:
typedef int fun(int);
extern int poo(long);
int i = (static_cast<fun)(poo))(22);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

796 static_cast cannot be used with the reference type specified

The expression could not be converted to the specified type using static_cast.

Example:
long lng;
int& ref = static_cast<int&>(lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

Diagnostic Messages 497

Appendices

797 static_cast cannot be used with the pointer type specified

The expression could not be converted to the specified type using static_cast.

Example:
long lng;
int* ref = static_cast<int*>(lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

798 static_cast cannot be used with the member pointer type specified

The expression could not be converted to the specified type using static_cast.

Example:
struct S {

long lng;
};
int S::* mp = static_cast<int S::*>(&S::lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

799 static_cast type is ambiguous

More than one constructor and/or used-defined conversion function can be used to convert
the expression to the indicated type.

800 cannot cast from ambiguous base class

When more than one base class of a given type exists, with respect to a derived class, it is
impossible to cast from the base class to the derived class.

Example:
struct Base { int b1; };
struct DerA public Base { int da; };
struct DerB public Base { int db; };
struct Derived public DerA, public DerB { int d; }
Derived* foo(Base* p)
{

return static_cast<Derived*>(p);
}

The cast fails since Base is an ambiguous base class for Derived.

801 cannot cast to ambiguous base class

When more than one base class of a given type exists, with respect to a derived class, it is
impossible to cast from the derived class to the base class.

498 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct Base { int b1; };
struct DerA public Base { int da; };
struct DerB public Base { int db; };
struct Derived public DerA, public DerB { int d; }
Base* foo(Derived* p)
{

return (Base*)p;
}

The cast fails since Base is an ambiguous base class for Derived.

802 can only static_cast integers to enumeration type

When an enumeration type is specified with static_cast, the expression must be an integer.

Example:
enum sex { male, female };
sex father = static_cast<sex>(1.0);

The cast is illegal because the expression is not an integer.

803 dynamic_cast cannot be used with the type specified

A dynamic cast can only specify a reference to a class or a pointer to a class or void. When
a class is referenced, it must have virtual functions defined within that class or a base class
of that class.

804 dynamic_cast cannot convert the expression

The indicated expression cannot be converted to the type specified with the dynamic_cast
operator. Only a pointer or reference to a class object can be converted. When a class
object is referenced, it must have virtual functions defined within that class or a base class
of that class.

805 dynamic_cast requires class ’%T’ to have virtual functions

The indicated class must have virtual functions defined within that class or a base class of
that class.

806 base class for type in dynamic_cast is ambiguous (will fail)

The type in the dynamic_cast is a pointer or reference to an ambiguous base class.

Example:
struct A { virtual void f(){}; };
struct D1 : A { };
struct D2 : A { };
struct D : D1, D2 { };

A *foo(D *p) {
// will always return NULL
return(dynamic_cast< A* >(p));

}

Diagnostic Messages 499

Appendices

807 base class for type in dynamic_cast is private (may fail)

The type in the dynamic_cast is a pointer or reference to a private base class.

Example:
struct V { virtual void f(){}; };
struct A : private virtual V { };
struct D : public virtual V, A { };

V *foo(A *p) {
// returns NULL if ’p’ points to an ’A’
// returns non-NULL if ’p’ points to a ’D’
return(dynamic_cast< V* >(p));

}

808 base class for type in dynamic_cast is protected (may fail)

The type in the dynamic_cast is a pointer or reference to a protected base class.

Example:
struct V { virtual void f(){}; };
struct A : protected virtual V { };
struct D : public virtual V, A { };

V *foo(A *p) {
// returns NULL if ’p’ points to an ’A’
// returns non-NULL if ’p’ points to a ’D’
return(dynamic_cast< V* >(p));

}

809 type cannot be used with an explicit cast

The indicated type cannot be specified as the type of an explicit cast. For example, it is
illegal to cast to an array or function type.

810 cannot cast to an array type

It is not permitted to cast to an array type.

Example:
typedef int array_type[5];
int array[5];
int* p = (array_type)array;

811 cannot cast to a function type

It is not permitted to cast to a function type.

500 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
typedef int fun_type(void);
void* p = (fun_type)0;

812 implementation restriction: cannot generate RTTI info for ’%T’ (%d classes)

The information for one class must fit into one segment. If the segment size is restricted to
64k, the compiler may not be able to emit the correct information properly if it requires
more than 64k of memory to represent the class hierarchy.

813 more than one default constructor for ’%T’

The compiler found more than one default constructor signature in the class definition.
There must be only one constructor declared that accepts no arguments.

Example:
struct C {

C();
C(int = 0);

};
C cv;

814 user-defined conversion is ambiguous

The compiler found more than one user-defined conversion which could be performed.
The indicated functions that could be used are shown.

Example:
struct T {

T(S const&);
};
struct S {

operator T const& ();
};
extern S sv;
T const & tref = sv;

Either the constructor or the conversion function could be used; consequently, the
conversion is ambiguous.

815 range of possible values for type ’%T’ is %u to %u

This informational message indicates the range of values possible for the indicated
unsigned type.

Example:
unsigned char uc;
if(uc >= 0);

Being unsigned, the char is always >= 0, so a warning will be issued. Following the
warning, this informational message indicates the possible range of values for the unsigned
type involved.

Diagnostic Messages 501

Appendices

816 range of possible values for type ’%T’ is %d to %d

This informational message indicates the range of values possible for the indicated signed
type.

Example:
signed char c;
if(c <= 127);

Because the value of signed char is always <= 127, a warning will be issued. Following the
warning, this informational message indicates the possible range of values for the signed
type involved.

817 constant expression in comparison has value %d

This informational message indicates the value of the constant expression involved in a
comparison which caused a warning to be issued.

Example:
unsigned char uc;
if(uc >= 0);

Being unsigned, the char is always >= 0, so a warning will be issued. Following the
warning, this informational message indicates the constant value (0 in this case) involved in
the comparison.

818 constant expression in comparison has value %u

This informational message indicates the value of the constant expression involved in a
comparison which caused a warning to be issued.

Example:
signed char c;
if(c <= 127);

Because the value of char is always <= 127, a warning will be issued. Following the
warning, this informational message indicates the constant value (127 in this case) involved
in the comparison.

819 conversion of const reference to non-const reference

A reference to a constant object is being converted to a reference to a non-constant object.
This can only be accomplished by using an explicit or const_cast cast.

Example:
extern int const & const_ref;
int & non_const_ref = const_ref;

502 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

820 conversion of volatile reference to non-volatile reference

A reference to a volatile object is being converted to a reference to a non-volatile object.
This can only be accomplished by using an explicit or const_cast cast.

Example:
extern int volatile & volatile_ref;
int & non_volatile_ref = volatile_ref;

821 conversion of const volatile reference to plain reference

A reference to a constant and volatile object is being converted to a reference to a
non-volatile and non-constant object. This can only be accomplished by using an explicit
or const_cast cast.

Example:
extern int const volatile & const_volatile_ref;
int & non_const_volatile_ref = const_volatile_ref;

822 current declaration has type ’%T’

This informational message indicates the type of the current declaration that caused the
message to be issued.

Example:
extern int __near foo(int);
extern int __far foo(int);

823 only a non-volatile const reference can be bound to temporary

The expression being bound to a reference will need to be converted to a temporary of the
type referenced. This means that the reference will be bound to that temporary and so the
reference must be a non-volatile const reference.

Example:
extern int * pi;
void * & r1 = pi; // error
void * const & r2 = pi; // ok
void * volatile & r3 = pi; // error
void * const volatile & r4 = pi;// error

824 conversion of pointer to member across a virtual base

In November 1995, the Draft Working Paper was amended to disallow pointer to member
conversions when the source class is a virtual base of the target class. This situation is
treated as a warning (unless -za is specified to require strict conformance), as a temporary
measure. In the future, an error will be diagnosed for this situation.

Diagnostic Messages 503

Appendices

Example:
struct B {

int b;
};

struct D : virtual B {
int d;

};
int B::* mp_b = &B::b;
int D::* mp_d = mp_b; // conversion across a
virtual base

825 declaration cannot be in the same scope as namespace ’%S’

A namespace name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the namespace.

Example:
namespace x {

int q;
};
int x;

826 ’%S’ cannot be in the same scope as a namespace

A namespace name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the namespace.

Example:
int x;
namespace x {

int q;
};

827 File: %s

This informative message is written when the -ew switch is specified on a command line.
It indicates the name of the file in which an error or warning was detected. The message
precedes a group of one or more messages written for the file in question. Within each
group, references within the file have the format (line[,column]).

828 %s

This informative message is written when the -ew switch is specified on a command line.
It indicates the location of an error when the error was detected either before or after the
source file was read during the compilation process.

504 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

829 %s: %s

This informative message is written when the -ew switch is specified on a command line.
It indicates the location of an error when the error was detected while processing the
switches specified in a command file or by the contents of an environment variable. The
switch that was being processed is displayed following the name of the file or the
environment variable.

830 %s: %S

This informative message is written when the -ew switch is specified on a command line.
It indicates the location of an error when the error was detected while generating a function,
such as a constructor, destructor, or assignment operator or while generating the machine
instructions for a function which has been analysed. The name of the function is given
following text indicating the context from which the message originated.

831 possible override is ’%S’

The indicated function is ambiguous since that name was defined in more than one base
class and one or more of these functions is virtual. Consequently, it cannot be decided
which is the virtual function to be used in a class derived from these base classes.

832 function being overridden is ’%S’

This informational message indicates a function which cannot be overridden by a virtual
function which has ellipsis parameters.

833 name does not reference a namespace

A namespace alias definition must reference a namespace definition.

Example:
typedef int T;
namespace a = T;

834 namespace alias cannot be changed

A namespace alias definition cannot change which namespace it is referencing.

Example:
namespace ns1 { int x; }
namespace ns2 { int x; }
namespace a = ns1;
namespace a = ns2;

835 cannot throw undefined class object

C++ does not allow undefined classes to be copied and so an undefined class object cannot
be specified in a throw expression.

Diagnostic Messages 505

Appendices

836 symbol has different type than previous symbol in same declaration

This warning indicates that two symbols in the same declaration have different types. This
may be intended but it is often due to a misunderstanding of the C++ declaration syntax.

Example:
// change to:
// char *p;
// char q;
// or:
// char *p, *q;
char* p, q;

837 companion definition is ’%S’

This informational message indicates the other symbol that shares a common base type in
the same declaration.

838 syntax error; default argument cannot be processed

The default argument contains unbalanced braces or parenthesis. The default argument
cannot be processed in this form.

839 default argument started %L

This informational message indicates where the default argument started so that any
problems with missing braces or parenthesis can be fixed quickly and easily.

Example:
struct S {

int f(int t= (4+(3-7), // missing parenthesis
);

};

840 ’%N’ cannot be declared in a namespace

A namespace cannot contain declarations or definitions of operator new or operator delete
since they will never be called implicitly in a new or delete expression.

Example:
namespace N {

void *operator new(unsigned);
void operator delete(void *);

};

841 namespace cannot be defined in a non-namespace scope

A namespace can only be defined in either the global namespace scope (file scope) or a
namespace scope.

506 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

namespace N {
int x;
};

}

842 namespace ’::’ qualifier cannot be used in this context

Qualified identifiers in a class context are allowed for declaring friend functions. A
namespace qualified name can only be declared in a namespace scope that encloses the
qualified name’s namespace.

Example:
namespace M {

namespace N {
void f();
void g();
namespace O {

void N::f() {
// error

}
}
}
void N::g() {

// OK
}

}

843 cannot cast away volatility

A cast or implicit conversion is illegal because a conversion to the target type would
remove volatility from a pointer, reference, or pointer to member.

Example:
struct S {

int s;
};
extern S volatile * ps;
extern int volatile S::* mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove volatility.

844 cannot cast away constness and volatility

A cast or implicit conversion is illegal because a conversion to the target type would
remove constness and volatility from a pointer, reference, or pointer to member.

Diagnostic Messages 507

Appendices

Example:
struct S {

int s;
};
extern S const volatile * ps;
extern int const volatile S::* mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove constness and
volatility.

845 cannot cast away unaligned

A cast or implicit conversion is illegal because a conversion to the target type would add
alignment to a pointer, reference, or pointer to member.

Example:
struct S {

int s;
};
extern S _unaligned * ps;
extern int _unaligned S::* mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to add alignment.

846 subscript expression must be integral

Both of the operands of the indicated index expression are pointers. There may be a
missing indirection or function call.

Example:
int f();
int *p;
int g() {

return p[f];
}

847 extension: non-standard user-defined conversion

An extended conversion was allowed. The latest draft of the C++ working paper does not
allow a user-defined conversion to be used in this context. As an extension, the WATCOM
compiler supports the conversion since substantial legacy code would not compile without
the extension.

508 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

848 useless using directive ignored

This warning indicates that for most purposes, the using namespace directive can be
removed.

Example:
namespace A {

using namespace A; // useless
};

849 base class virtual function has not been overridden

This warning indicates that a virtual function name has been overridden but in an
incomplete manner, namely, a virtual function signature has been omitted in the overriding
class.

Example:
struct B {

virtual void f() const;
};
struct D : B {

virtual void f();
};

850 virtual function is ’%S’

This message indicates which virtual function has not been overridden.

851 macro ’%s’ defined %L

This informational message indicates where the macro in question was defined. The
message is displayed following an error or warning diagnostic for the macro in question.

Example:
#define mac(a,b,c) a+b+c

int i = mac(6,7,8,9,10);

The expansion of macro mac is erroneous because it contains too many arguments. The
informational message will indicate where the macro was defined.

852 expanding macro ’%s’ defined %L

These informational messages indicate the macros that are currently being expanded, along
with the location at which they were defined. The message(s) are displayed following a
diagnostic which is issued during macro expansion.

Diagnostic Messages 509

Appendices

853 conversion to common class type is impossible

The conversion to a common class is impossible. One or more of the left and right
operands are class types. The informational messages indicate these types.

Example:
class A { A(); };
class B { B(); };
extern A a;
extern B b;
int i = (a == b);

The last statement is erroneous since a conversion to a common class type is impossible.

854 conversion to common class type is ambiguous

The conversion to a common class is ambiguous. One or more of the left and right
operands are class types. The informational messages indicate these types.

Example:
class A { A(); };
class B : public A { B(); };
class C : public A { C(); };
class D : public B, public C { D(); };
extern A a;
extern D d;
int i = (a == d);

The last statement is erroneous since a conversion to a common class type is ambiguous.

855 conversion to common class type requires private access

The conversion to a common class violates the access permission which was private. One
or more of the left and right operands are class types. The informational messages indicate
these types.

Example:
class A { A(); };
class B : private A { B(); };
extern A a;
extern B b;
int i = (a == b);

The last statement is erroneous since a conversion to a common class type violates the
(private) access permission.

856 conversion to common class type requires protected access

The conversion to a common class violates the access permission which was protected.
One or more of the left and right operands are class types. The informational messages
indicate these types.

510 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class A { A(); };
class B : protected A { B(); };
extern A a;
extern B b;
int i = (a == b);

The last statement is erroneous since a conversion to a common class type violates the
(protected) access permission.

857 namespace lookup is ambiguous

A lookup for a name resulted in two or more non-function names being found. This is not
allowed according to the C++ working paper.

Example:
namespace M {

int i;
}
namespace N {

int i;
using namespace M;

}
void f() {

using namespace N;
i = 7; // error

}

858 ambiguous namespace symbol is ’%S’

This informational message shows a symbol that conflicted with another symbol during a
lookup.

859 attempt to static_cast from a private base class

An attempt was made to static_cast a pointer or reference to a private base class to a
derived class.

Example:
struct PrivateBase {
};

struct Derived : private PrivateBase {
};

extern PrivateBase* pb;
extern PrivateBase& rb;
Derived* pd = static_cast<Derived*>(pb);
Derived& rd = static_cast<Derived&>(rb);

The last two statements are erroneous since they would involve a static_cast from a private
base class.

Diagnostic Messages 511

Appendices

860 attempt to static_cast from a protected base class

An attempt was made to static_cast a pointer or reference to a protected base class to a
derived class.

Example:
struct ProtectedBase {
};

struct Derived : protected ProtectedBase {
};

extern ProtectedBase* pb;
extern ProtectedBase& rb;
Derived* pd = static_cast<Derived*>(pb);
Derived& rd = static_cast<Derived&>(rb);

The last two statements are erroneous since they would involve a static_cast from a
protected base class.

861 qualified symbol cannot be defined in this scope

This message indicates that the scope of the symbol is not nested in the current scope. This
is a restriction in the C++ language.

Example:
namespace A {

struct S {
void ok();
void bad();
};
void ok();
void bad();

};
void A::S::ok() {
}
void A::ok() {
}
namespace B {

void A::S::bad() {
// error!
}
void A::bad() {
// error!
}

};

862 using declaration references non-member

This message indicates that the entity referenced by the using declaration is not a class
member even though the using declaration is in class scope.

512 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
namespace B {

int x;
};
struct D {

using B::x;
};

863 using declaration references class member

This message indicates that the entity referenced by the using declaration is a class member
even though the using declaration is not in class scope.

Example:
struct B {

int m;
};
using B::m;

864 invalid suffix for a constant

An invalid suffix was coded for a constant.

Example:
__int64 a[] = {

0i7, // error
0i8,
0i15, // error
0i16,
0i31, // error
0i32,
0i63, // error
0i64,

};

865 class in using declaration (’%T’) must be a base class

A using declaration declared in a class scope can only reference entities in a base class.

Example:
struct B {

int f;
};
struct C {

int g;
};
struct D : private C {

B::f;
};

Diagnostic Messages 513

Appendices

866 name in using declaration is already in scope

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
namespace B {

int f;
using B::f;

};

867 conflict with a previous using-decl ’%S’

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
namespace B {

int f;
using B::f;

};

868 conflict with current using-decl ’%S’

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
namespace B {

int f;
using B::f;

};

869 use of ’%N’ requires build target to be multi-threaded

The compiler has detected a use of a run-time function that will create a new thread but the
current build target indicates only single-threaded C++ source code is expected.
Depending on the user’s environment, enabling multi-threaded applications can involve
using the "-bm" option or selecting multi-threaded applications through a dialogue.

870 implementation restriction: cannot use 64-bit value in switch statement

The use of 64-bit values in switch statements has not been implemented.

871 implementation restriction: cannot use 64-bit value in case statement

The use of 64-bit values in case statements has not been implemented.

514 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

872 implementation restriction: cannot use __int64 as bit-field base type

The use of __int64 for the base type of a bit-field has not been implemented.

873 based function object cannot be placed in non-code segment "%s".

Use __segname with the default code segment "_CODE", or a code segment with the
appropriate suffix (indicated by informational message).

Example:
int __based(__segname("foo")) f() {return 1;}

Example:
int __based(__segname("_CODE")) f() {return 1;}

874 Use a segment name ending in "%s", or the default code segment "_CODE".

This informational message explains how to use __segname to name a code segment.

875 RTTI must be enabled to use feature (use ’xr’ option)

RTTI must be enabled by specifying the ’xr’ option when the compiler is invoked. The
error message indicates that a feature such as dynamic_cast, or typeid has been used
without enabling RTTI.

876 ’typeid’ class type must be defined

The compile-time type of the expression or type must be completely defined if it is a class
type.

Example:
struct S;
void foo(S *p) {

typeid(*p);
typeid(S);

}

877 cast involves unrelated member pointers

This warning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using a reinterpret_cast. These casts were
illegal, but became legal when the new-style casts were added to the draft working paper.

Example:
struct C1 {

int foo();
};
struct D1 {

int poo();
};

typedef int (C1::* C1mp)();

C1mp fmp = (C1mp)&D1::poo;

Diagnostic Messages 515

Appendices

The cast on the last line of the example would be diagnosed.

878 unexpected type modifier found

A __declspec modifier was found that could not be applied to an object or could not be
used in this context.

Example:
__declspec(thread) struct S {
};

879 invalid bit-field name ’%N’

A bit-field can only have a simple identifier as its name. A qualified name is also not
allowed for a bit-field.

Example:
struct S {

int operator + : 1;
};

880 %u padding byte(s) added

This warning indicates that some extra bytes have been added to a class in order to align
member data to its natural alignment.

Example:
#pragma pack(push,8)
struct S {

char c;
double d;

};
#pragma pack(pop);

881 cannot be called with a ’%T *’

This message indicates that the virtual function cannot be called with a pointer or reference
to the current class.

882 cast involves an undefined member pointer

This warning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using a reinterpret_cast. In this case, the host
class of at least one member pointer was not a fully defined class and, as such, it is
unknown whether the host classes are related through derivation. These casts were illegal,
but became legal when the new-style casts were added to the draft working paper.

516 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct C1 {

int foo();
};
struct D1;

typedef int (C1::* C1mp)();
typedef int (D1::* D1mp)();

C1mp fn(D1mp x) {
return (C1mp) x;

}
// D1 may derive from C1

The cast on the last line of the example would be diagnosed.

883 cast changes both member pointer object and class type

This warning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using a reinterpret_cast. In this case, the host
classes of the member pointers are related through derivation and the object type is also
being changed. The cast can be broken up into two casts, one that changes the host class
without changing the object type, and another that changes the object type without
changing the host class.

Example:
struct C1 {

int fn1();
};
struct D1 : C1 {

int fn2();
};

typedef int (C1::* C1mp)();
typedef void (D1::* D1mp)();

C1mp fn(D1mp x) {
return (C1mp) x;

}

The cast on the last line of the example would be diagnosed.

884 virtual function ’%S’ has a different calling convention

This error indicates that the calling conventions specified in the virtual function prototypes
are different. This means that virtual function calls will not function properly since the
caller and callee may not agree on how parameters should be passed. Correct the problem
by deciding on one calling convention and change the erroneous declaration.

Diagnostic Messages 517

Appendices

Example:
struct B {

virtual void __cdecl foo(int, int);
};
struct D : B {

void foo(int, int);
};

885 #endif matches #if in different source file

This warning may indicate a #endif nesting problem since the traditional usage of #if
directives is confined to the same source file. This warning may often come before an error
and it is hoped will provide information to solve a preprocessing directive problem.

886 preprocessing directive found %L

This informational message indicates the location of a preprocessing directive associated
with the error or warning message.

887 unary ’-’ of unsigned operand produces unsigned result

When a unary minus (’-’) operator is applied to an unsigned operand, the result has an
unsigned type rather than a signed type. This warning often occurs because of the
misconception that ’-’ is part of a numeric token rather than as a unary operator. The
work-around for the warning is to cast the unary minus operand to the appropriate signed
type.

Example:
extern void u(int);
extern void u(unsigned);
void fn(unsigned x) {

u(-x);
u(-2147483648);

}

888 trigraph expansion produced ’%c’

Trigraph expansion occurs at a very low-level so it can affect string literals that contain
question marks. This warning can be disabled via the command line or #pragma warning
directive.

Example:
// string expands to "(?]?~????"!
char *e = "(???)???-????";
// possible work-arounds
char *f = "(" "???" ")" "???" "-" "????";
char *g = "(\?\?\?)\?\?\?-\?\?\?\?";

518 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

889 hexadecimal escape sequence out of range; truncated

This message indicates that the hexadecimal escape sequence produces an integer that
cannot fit into the required character type.

Example:
char *p = "\x0aCache Timings\x0a";

890 undefined macro ’%s’ evaluates to 0

The ISO C/C++ standard requires that undefined macros evaluate to zero during
preprocessor expression evaluation. This default behaviour can often mask incorrectly
spelled macro references. The warning is useful when used in critical environments where
all macros will be defined.

Example:
#if _PRODUCTI0N // should be _PRODUCTION
#endif

891 char constant has value %u (more than 8 bits)

The ISO C/C++ standard requires that multi-char character constants be accepted with an
implementation defined value. This default behaviour can often mask incorrectly specified
character constants.

Example:
int x = ’\0x1a’; // warning
int y = ’\x1a’;

892 promotion of unadorned char type to int

This message is enabled by the hidden -jw option. The warning may be used to locate all
places where an unadorned char type (i.e., a type that is specified as char and neither
signed char nor unsigned char). This may cause portability problems since compilers
have freedom to specify whether the unadorned char type is to be signed or unsigned. The
promotion to int will have different values, depending on the choice being made.

893 switch statement has no case labels

The switch statement referenced in the warning did not have any case labels. Without case
labels, a switch statement will always jump to the default case code.

Example:
void fn(int x)
{

switch(x) {
default:
++x;
}

}

Diagnostic Messages 519

Appendices

894 unexpected character (%u) in source file

The compiler has encountered a character in the source file that is not in the allowable set
of input characters. The decimal representation of the character byte is output for
diagnostic purposes.

Example:
// invalid char ’\0’

895 ignoring whitespace after line splice

The compiler is ignoring some whitespace characters that occur after the line splice. This
warning is useful when the source code must be compiled with other compilers that do not
allow this extension.

Example:
#define XXXX int \
x;

XXXX

896 empty member declaration

The compiler is warning about an extra semicolon found in a class definition. The extra
semicolon is valid C++ but some C++ compilers do not accept this as valid syntax.

Example:
struct S { ; };

897 ’%S’ makes use of a non-portable feature (zero-sized array)

The compiler is warning about the use of a non-portable feature in a declaration or
definition. This warning is available for environments where diagnosing the use of
non-portable features is useful in improving the portability of the code.

Example:
struct D {

int d;
char a[];

};

898 in-class initialization is only allowed for const static integral members

Example:
struct A {

static int i = 0;
};

520 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

899 cannot convert expression to target type

The implicit cast is trying to convert an expression to a completely unrelated type. There is
no way the compiler can provide any meaning for the intended cast.

Example:
struct T {
};

void fn()
{

bool b = T;
}

900 unknown template specialization of ’%S’

Example:
template<class T>
struct A { };

template<class T>
void A<T *>::f() {
}

901 wrong number of template arguments for ’%S’

Example:
template<class T>
struct A { };

template<class T, class U>
struct A<T, U> { };
}

902 cannot explicitly specialize member of ’%S’

Example:
template<class T>
struct A { };

template<>
struct A<int> {

void f();
};

template<>
void A<int>::f() {
}

Diagnostic Messages 521

Appendices

903 specialization arguments for ’%S’ match primary template

Example:
template<class T>
struct A { };

template<class T>
struct A<T> { };

904 partial template specialization for ’%S’ ambiguous

Example:
template<class T, class U>
struct A { };

template<class T, class U>
struct A<T *, U> { };

template<class T, class U>
struct A<T, U *> { };

A<int *, int *> a;

905 static assertion failed ’%s’

Example:
static_assert(false, "false");

906 Exported templates are not supported by Open Watcom C++

Example:
export template< class T >
struct A {
};

907 redeclaration of member function ’%S’ not allowed

Example:
struct A {

void f();
void f();

};

908 candidate defined %L

909 Invalid register name ’%s’ in #pragma

The register name is invalid/unknown.

522 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

910 Archaic syntax: class/struct missing in explicit template instantiation

Archaic syntax has been used. The standard requires a class or struct keyword to be used.

Example:
template< class T >
class MyTemplate { };

template MyTemplate< int >;

Example:
template class MyTemplate< int >;

Diagnostic Messages 523

Appendices

524 Diagnostic Messages

Open Watcom C/C++ Run-Time Messages

D. Open Watcom C/C++ Run-Time Messages

The following is a list of error messages produced by the Open Watcom C/C++ run-time library. These
messages can only appear during the execution of an application built with one of the C run-time libraries.

D.1 Run-Time Error Messages
Assertion failed: %s, file %s, line %d

This message is displayed whenever an assertion that you have made in your program is not
true.

Stack Overflow!

Your program is trying to use more stack space than is available. If you believe that your
program is correct, you can increase the size of the stack by using the "option stack=nnnn"
when you link the program. The stack size can also be specified with the "k" option if you
are using WCL or WCL386.

Floating-point support not loaded

You have called one of the printf functions with a format of "%e", "%f", or "%g", but have
not passed a floating-point value. The compiler generates a reference to the variable
"_fltused_" whenever you pass a floating-point value to a function. During the linking
phase, the extra floating-point formatting routines will also be brought into your application
when "_fltused_" is referenced. Otherwise, you only get the non floating-point formatting
routines.

*** NULL assignment detected

This message is displayed if any of the first 32 bytes of your program’s data segment has
been modified. The check is performed just before your program exits to the operating
system. All this message means is that sometime during the execution of your program,
this memory was modified.

To find the problem, you must link your application with debugging information and use
Open Watcom Debugger to monitor its execution. First, run the application with Open
Watcom Debugger until it completes. Examine the first 16 bytes of the data segment
("examine __nullarea") and press the space bar to see the next 16 bytes. Any values that
are not equal to ’01’ have been modified. Reload the application, set watch points on the
modified locations, and start execution. Open Watcom Debugger will stop when the
specified location(s) change in value.

Run-Time Error Messages 525

Appendices

D.2 errno Values and Their Meanings
The following errors can be generated by the C run-time library. These error codes correspond to the error
types defined in errno.h.

ENOENT No such file or directory

The specified file or directory cannot be found.

E2BIG Argument list too big

The argument list passed to the spawn..., exec... or system functions requires
more than 128 bytes, or the environment information exceeds 32K.

ENOEXEC Exec format error

The executable file has an invalid format.

EBADF Bad file number

The file handle is not a valid file handle value or it does not correspond to an open file.

ENOMEM Not enough memory

There was not enough memory available to perform the specified request.

EACCES Permission denied

You do not have the required (or correct) permissions to access a file.

EEXIST File exists

An attempt was made to create a file with the O_EXCL (exclusive) flag when the file
already exists.

EXDEV Cross-device link

An attempt was made to rename a file to a different device.

EINVAL Invalid argument

An invalid value was specified for one of the arguments to a function.

ENFILE File table overflow

All the FILE structures are in use, so no more files can be opened.

EMFILE Too many open files

There are no more file handles available, so no more files can be opened. The maximum
number of file handles available is controlled by the "FILES=" option in the
"CONFIG.SYS" file.

526 errno Values and Their Meanings

Open Watcom C/C++ Run-Time Messages

ENOSPC No space left on device

No more space is left for writing on the device, which usually means that the disk is full.

EDOM Argument too large

An argument to a math function is not in the domain of the function.

ERANGE Result too large

The result of a math function could not be represented (too small, or too large).

EDEADLK Resource deadlock would occur

A resource deadlock would occur with regards to locked files.

D.3 Math Run-Time Error Messages
The following errors can be generated by the math functions in the C run-time library. These error codes
correspond to the exception types defined in math.h and returned by the matherr function when a math
error occurs.

DOMAIN Domain error

An argument to the function is outside the domain of the function.

OVERFLOW Overflow range error

The function result is too large.

PLOSS Partial loss of significance

A partial loss of significance occurred.

SING Argument singularity

An argument to the function has a bad value (e.g., log(0.0)).

TLOSS Total loss of significance

A total loss of significance occurred. An argument to a function
was too large to produce a meaningful result.

UNDERFLOW Underflow range error

The result is too small to be represented.

Math Run-Time Error Messages 527

Index

.continue 260

.cref 260# .data 260

.data? 260

.dosseg 260

.endw 260#define 466, 481

.err 260#elif 338-339

.errb 260#else 338-339, 461

.errdef 260#endif 305, 338-339, 349, 461, 518

.errdif 260#error 143, 211, 350

.errdifi 260#if 305, 338-339, 349, 518

.erre 260#ifdef 349

.erridn 260#ifndef 349, 481

.erridni 260#include 71, 340, 345-347, 422, 479, 481

.errnb 260#line 26

.errndef 260#pragma 81, 85, 473, 484

.errnz 260#pragma extref 491

.exit 260#pragma warning 305, 518

.fardata 260#undef 351, 465

.fardata? 260

.lfcond 260

.list 260

.listall 260-

.listif 260

.listmacro 260

.listmacroall 260

.model 260-zo 484

.nocref 260

.nolist 260

.radix 260

.repeat 260.

.sall 260

.seq 260

.sfcond 260
.186 260 .stack 260
.286 260 .startup 260
.286c 260 .tfcond 260
.286p 260 .until 260
.287 260 .while 260
.386 260 .xcref 260
.386p 260 .xlist 260
.387 260
.486 260
.486p 260
.586 260 3
.586p 260
.686 260
.686p 260

__386__ 75.8086 260
.8087 260
.alpha 260
.break 260
.code 260
.const 260

529

Index

alloc_text 49
alloc_text pragma 139, 2078 _alloca() 61
argument list (pragma) 160, 230
arguments

removing from the stack 165, 2348087CW.C 108
arguments on the stack 163, 23280x87 emulator 105
_asm 93, 259
__asm 259
assembly language

automatic variables 258<
directives 260
in-line 251
labels 257
opcodes 260<os>_INCLUDE environment variable 17, 71
variables 257

auto 316, 320, 329, 347, 356, 361, 367-368, 397,
404

AUTODEPEND 150, 218\
AUTOEXEC.BAT 65
auxiliary pragma 151, 219

\H directory 72

B
A

base operator 89
_based macro 30

AbnormalTermination 272-273, 278 based pointers 87
abort() 267 segment constant 88
aborts (pragma) 169, 238 segment object 89
access violation 280 self 90
addressing arguments 127, 193, 196 void 89
alias name (pragma) 152, 220 _based 80
alias names __based 80, 87-88, 346

cdecl 154, 222 benchmarking 68
__cdecl 154, 222 _bheapseg 89
fastcall 154, 222 big code model 113, 181
__fastcall 154, 222 big data model 113, 181
fortran 154, 222 BINNT directory 294
__fortran 154, 222 BINP directory 294
pascal 154, 222 BINW directory 294
__pascal 154, 222 BIOS call 164, 233
stdcall 154, 222 bool 482
__stdcall 154, 222 break 267, 270-272, 310, 337, 477
syscall 222 BSS class 46
__syscall 222 _BSS segment 46
system 222
__system 222
watcall 154, 222
__watcall 154, 222

alias pragma 138, 206
aliasing 54

530

Index

CMAIN086.C 108
CMAIN386.C 109C CODE class 46, 116, 123, 184, 189
code generation 95

memory requirements 96, 296
code modelsC directory 64

big 113, 181C libraries
small 113, 181compact 102, 106

code segment 38flat 106-107, 183
code_seg pragma 139, 207huge 102, 106
command line format 63large 102, 106
command line optionsmedium 102, 106

compiler 64small 102, 106-107, 183
environment variable 64C/C++ libraries
options file 64flat 102

command namesmall 102
compiler 5, 63callback functions 160

comment pragma 140, 208calling convention
compact memory model 114, 182MetaWare High C 221, 243
compact modelMicrosoft C 153, 174

libraries 102, 106calling conventions 119, 185
__COMPACT__ 52calling functions
compile time 96, 297far 157, 227
compilernear 157, 227

features 63calling information (pragma) 157, 227
compilingcase 304, 310, 319, 337, 349, 373, 451

command line format 63catch 58, 346, 376, 458, 461, 475, 488
using DLL compilers 64cdecl 81, 154, 222

compiling options 5, 9, 15cdecl alias name 154, 222
CONFIG.SYS 65__cdecl alias name 154, 222
console application 15-16cdecl macro 30
const 311, 316, 360-361, 396-397, 423, 426,_cdecl macro 30

428-429, 481, 494_Cdecl 81
CONST segment 46__cdecl 81-82, 154, 221-222
CONST2 segment 46char 38, 84-85, 314, 316, 344, 487, 496, 519
const_cast 493-494size of 124, 190
CONTEXT 280char type 119, 185
continue 267, 271-272, 310, 338__CHAR_SIGNED__ 38, 76
conventionscheck_stack option 136, 204

80x87 132-133, 201-202class 342, 354-355, 370, 383, 413, 457, 464, 523
non-80x87 123, 189BSS 46

__cplusplus 77CODE 46, 116, 123, 184, 189
CPLX3R.LIB 104DATA 46
CPLX3S.LIB 104FAR_DATA 116, 123, 184, 189
CPLX73R.LIB 104class information 142, 210
CPLX73S.LIB 104CLIB3R.LIB 103-104
CPLX7C.LIB 104CLIB3S.LIB 103-104
CPLX7H.LIB 104CLIBC.LIB 103
CPLX7L.LIB 104CLIBDLL.LIB 103
CPLX7M.LIB 104CLIBH.LIB 103
CPLX7S.LIB 104CLIBL.LIB 103
CPLXC.LIB 104CLIBM.LIB 103
CPLXH.LIB 104CLIBMTL.LIB 103
CPLXL.LIB 104CLIBS.LIB 103

531

Index

CPLXM.LIB 104 DLL 16, 46, 54, 83
CPLXS.LIB 104 exporting functions 82
__CPPRTTI 77 DLL compilers 64
__CPPUNWIND 77 _DLL 16
CSTRT086.ASM 108 dllexport 82, 93
CSTRT386.ASM 109 dllimport 82
CSTRTO16.ASM 108 __DLLstart_ 16
CSTRTW16.ASM 108 do 310, 318, 337-338, 349
CSTRTW32.ASM 109 DOS
CSTRTX32.ASM 109 initialization 108
CVPACK 24 DOS Extender

286 108
Tenberry Software 108

DOS subdirectory 101
DOS-dependent functions 286D
DOS/16M 108

initialization 108
DOS/4GW example 254

DATA class 46 DOS16M.ASM 108
data models _DOS 17, 75-76

big 113, 181 __DOS__ 17, 75-76
huge 114 DOSCALLS.LIB 292
small 113, 181 DOSPMC.LIB 103

data representation 119, 185 DOSPMH.LIB 103
_DATA segment 46 DOSPML.LIB 103
data types 119, 185 DOSPMM.LIB 103
data_seg pragma 141, 209 DOSPMS.LIB 103
Debugging Information Compactor 24 double 316, 319
debugging information format 24 size of 124, 190
__declspec(dllexport) 93 double type 121, 187
__declspec(dllimport) 93 DPMI example 254
__declspec 82, 91, 483, 516 DS segment register 82-83
default 310-311, 319, 338-339, 349, 452 dump_object_model pragma 142, 210
default filename extension 64 dynamic link library 16, 46, 54, 83
default libraries exporting functions 82

using pragmas 137, 205 dynamic_cast 499-500, 515
delete 334, 347, 366, 418, 439, 448, 506
DGROUP group 46
diagnostic messages

language 298 E
diagnostics

errno 526
error 70
matherr 527 ELIMINATE linker option 48-49
Open Watcom C/C++ 69 emu387.lib 105
run-time 526-527 emu87.lib 105, 107
warning 70 emulator

directives 80x87 105
assembly language 260 floating-point 105

directories enable_message pragma 142, 210
C 64 English diagnostic messages 298
OCC 64 enum 312, 321, 324, 368, 382, 385

disable_message pragma 141, 209 enum pragma 142, 210
disabling error file 34 enumerated types

532

Index

size of 125, 191 MATH.H 527
enumeration error file 34

information 142, 210 .err 69
values 142, 210 disabling 34

environment string error messages 301
65 error pragma 143, 211
= substitute 65 _except 274

environment variable exception handling 14, 58
command line options 64 EXCEPTION_ACCESS_VIOLATION 278

environment variables 64 EXCEPTION_BREAKPOINT 278
<os>_INCLUDE 17, 71 EXCEPTION_CONTINUE_EXECUTION
FORCE 291 275-277
INCLUDE 72-73, 291, 346 EXCEPTION_CONTINUE_SEARCH 275, 278
LIB 291 EXCEPTION_EXECUTE_HANDLER 274-275,
LIBDOS 292 277-278
LIBOS2 292 EXCEPTION_FLT_DENORMAL_OPERAND
LIBPHAR 292-293 279
LIBWIN 292 EXCEPTION_FLT_DIVIDE_BY_ZERO 279
NO87 106-107, 293 EXCEPTION_FLT_INEXACT_RESULT 279
OS2_INCLUDE 72 EXCEPTION_FLT_INVALID_OPERATION
PATH 60, 72, 291, 293-294 279
TMP 294 EXCEPTION_FLT_OVERFLOW 279
use 291 EXCEPTION_FLT_STACK_CHECK 279
WATCOM 106, 291-293, 295 EXCEPTION_FLT_UNDERFLOW 279
WCC 65, 295 EXCEPTION_INT_OVERFLOW 279
WCC386 65, 295 EXCEPTION_NONCONTINUABLE_EXCEPTI
WCGMEMORY 96, 296-297 ON 279
WCL 296 EXCEPTION_POINTERS 280
WCL386 296 EXCEPTION_PRIV_INSTRUCTION 279
WD 297 EXCEPTION_RECORD 280
WDW 297-298 EXCEPTION_SINGLE_STEP 279
WINDOWS_INCLUDE 17 execution
WLANG 298 fastest 58
WPP 65, 298 exit() 267
WPP386 65, 298-299 _exit() 267

__EPI 23 EXITWMSG.H 108
errno 526 explicit 493

E2BIG 526 export (pragma) 159-160, 229
EACCES 526 _export functions 18-21
EBADF 526 _export macro 30
EDEADLK 527 _export 82
EDOM 527 __export 82, 93, 430
EEXIST 526 exporting symbols in dynamic link libraries 159,
EINVAL 526 229
EMFILE 526 extension
ENFILE 526 default 64
ENOENT 526 extern 91, 307, 313, 317, 321, 341, 356, 367, 369,
ENOEXEC 526 405, 489
ENOMEM 526 external references 143, 211
ENOSPC 526 extref pragma 143, 211
ERANGE 527
EXDEV 526

error codes
ERRNO.H 526

533

Index

_fortran 81
__fortran 81-82, 94, 154, 222F __FPI__ 44, 76
frame (pragma) 160, 229
friend 360, 385, 397, 436, 507
function pragma 144, 212far 40-41, 46-47, 67, 80, 114-115, 182, 335, 430,
function prototypes433, 452

effect on arguments 125, 191far (pragma) 157, 227
functionsfar call 113, 181

DOS-dependent 286far macro 30
in ROM 285_far macro 30
OS/2-dependent 286far pointer
returning values 129, 198size of 124, 190
Windows NT-dependent 286far16 221

_far16 macro 30
_Far16 84
__far16 84-85, 346 G_far 80
__far 80, 82, 335, 452
FAR_DATA class 116, 123, 184, 189
fastcall 154, 222 GetExceptionCode 278
fastcall alias name 154, 222 GetExceptionInformation 280
__fastcall alias name 154, 222 goto 267, 272, 304, 312, 314, 341, 343
_fastcall macro 30 GRAPH.LIB 103
__fastcall 154, 222 __GRO
fastest 16-bit code 68 stack growing 19
fastest 32-bit code 68 group
fastest code 58 DGROUP 46
FDIV bug 45 guard page 19
filename extension 64
_finally 267, 324
flat memory model 182
flat model H

libraries 102, 106-107, 183
__FLAT__ 52
float 157, 316, 319, 397, 409, 495-496

size of 124, 190 header file
float type 120, 186 including 71
floating-point searching 71

consistency of options 43-44 High C calling convention 243
fltused 105 huge 80, 114, 182, 326
__init_387_emulator 105 huge data model 114
__init_87_emulator 105 huge macro 30
option 44 _huge macro 30

floating-point emulator 105 huge memory model 114
floating-point in ROM 288 huge model
fltused 105 libraries 102, 106
for 270, 310, 320, 329, 337-338, 375 _huge 80
FORCE environment variable 291 __huge 80
fortran 81, 154, 222, 303 __HUGE__ 53
fortran alias name 154, 222
__fortran alias name 154, 222
fortran macro 30
_fortran macro 30

534

Index

intrinsic pragma 147, 215
invoking Open Watcom C/C++ 63I ISO/ANSI compatibility 28

__I86__ 75 Jif 329, 469
in-line 80x87 floating-point instructions 158
in-line assembly

in pragmas 157, 227 Japanese diagnostic messages 298
in-line assembly language 251

automatic variables 258
directives 260
labels 257 K
opcodes 260
variables 257

in-line assembly language instructions
using mnemonics 158, 228 keywords

in-line functions 158, 227 __based 80
in-line functions (pragma) 164, 233 __cdecl 81
include __declspec 82, 91

directive 71 __export 82
header file 71 __far16 84
source file 71 __far 80

INCLUDE environment variable 72-73, 291, 346 __fortran 81
include file __huge 80

searching 71 __int64 77, 86
include_alias pragma 145, 213 __interrupt 82
__init_387_emulator 105 __loadds 83
__init_87_emulator 105 __near 80
INITFINI.H 108 _Packed 81
initialization __pascal 81

DOS 108 __pragma 86
DOS/16M 108 __restrict 81
OS/2 108 __saveregs 83
Windows 108 _Seg16 85

initialize pragma 145, 213 __segment 80
inline 359 __segname 80
_inline macro 30 __self 81
inline_depth pragma 146, 214 __stdcall 83
__INLINE_FUNCTIONS__ 56, 76 __syscall 83
inline_recursion pragma 147, 215
int 70, 84-85, 306, 309, 314, 316, 344, 360, 393,

409, 411, 413, 439, 464, 471, 519
size of 124, 190 L

int type 120, 186
__int64 86-87, 515
_INTEGRAL_MAX_BITS 77

L 377interrupt 82
language 298interrupt macro 30
large memory model 114, 182_interrupt macro 30
large modelinterrupt routine 82

libraries 102, 106_interrupt 82
__LARGE__ 53__interrupt 82

535

Index

_leave 271, 273, 324 M_I86MM 52
LIB environment variable 291 M_I86SM 52
LIB286 105 _M_I86SM 52
LIB386 105 _M_IX86 75
LIBDOS environment variable 292 macros
LIBENTRY.ASM 108 __386__ 75
LIBOS2 environment variable 292 _based 30
LIBPHAR environment variable 292-293 cdecl 30
libraries 101 _cdecl 30

80x87 math 106 __CHAR_SIGNED__ 38, 76
alternate math 107 __COMPACT__ 52, 76
class 104 __cplusplus 77
directory structure 101 __CPPRTTI 77
math 105 __CPPUNWIND 77

library path 295 _DLL 16
LIBWIN environment variable 292 _DOS 75
line directive 26 __DOS__ 75
__LINUX__ 17, 75-76 _export 30
loadds (pragma) 159, 228 far 30
_loadds macro 30 _far16 30
_loadds 83 _far 30
__loadds 83 _fastcall 30
loading DS before calling a function 159, 228 __FLAT__ 52, 76
loading DS in prologue sequence of a function fortran 30

159, 229 _fortran 30
__LOCAL_SIZE 259 __FPI__ 44, 76
long 316 huge 30
long double _huge 30

size of 124, 190 __HUGE__ 53, 76
long float __I86__ 75

size of 124, 190 _inline 30
long int __INLINE_FUNCTIONS__ 56, 76

size of 124, 190 _INTEGRAL_MAX_BITS 77
long int type 120, 186 interrupt 30
longjmp() 267 _interrupt 30

__LARGE__ 52, 76
__LINUX__ 75
_loadds 30
M_386CM 76M
_M_386CM 76
M_386FM 52, 76
_M_386FM 52, 76

M_386FM 52 M_386LM 76
_M_386FM 52 _M_386LM 76
M_386SM 52 M_386MM 76
_M_386SM 52 _M_386MM 76
M_I386 75 M_386SM 76
_M_I386 75 _M_386SM 76
M_I86 75 M_I386 75
_M_I86 75 _M_I386 75
M_I86CM 52 M_I86 75
_M_I86CM 52 _M_I86 75
M_I86HM 53 M_I86CM 52, 76
M_I86LM 53 _M_I86CM 76

536

Index

M_I86HM 53, 76 __SW_OC 55
_M_I86HM 76 __SW_OD 55
M_I86LM 52, 76 __SW_OF 18
_M_I86LM 76 __SW_OI 56
M_I86MM 52, 76 __SW_OL 56-57
_M_I86MM 76 __SW_OM 57
M_I86SM 52, 76 __SW_ON 57
_M_I86SM 76 __SW_OO 57
_M_IX86 75 __SW_OP 57
__MEDIUM__ 52, 76 __SW_OR 57
MSDOS 75 __SW_OS 57
_MT 16 __SW_OT 57
near 30 __SW_OU 58
_near 30 __SW_OZ 58
__NETWARE_386__ 75 __SW_R 61
__NETWARE__ 75 __SW_S 24
NO_EXT_KEYS 28, 76 __SW_SG 19
__NT__ 75 __SW_ST 20
__OS2__ 75 __SW_ZC 38
pascal 30 __SW_ZK 60
_pascal 30 __SW_ZM 49
_PUSHPOP_SUPPORTED 77 _syscall 30
__QNX__ 75 __UNIX__ 75
_saveregs 30 __WATCOM_CPLUSPLUS__ 77
_segment 30 __WATCOMC__ 77
_self 30 _WINDOWS 75
__SMALL__ 52, 76 __WINDOWS_386__ 20, 75
SOMDLINK 30 __WINDOWS__ 20-21, 75
SOMLINK 30 __X86__ 75
_stdcall 30 MAINO16.C 108
_STDCALL_SUPPORTED 77 math coprocessor 106-107
__SW_3R 52 option 44
__SW_6 50, 52 math functions 285
__SW_BD 16 MATH387R.LIB 106
__SW_BM 16 MATH387S.LIB 106
__SW_BR 16 MATH3R.LIB 107
__SW_BW 17 MATH3S.LIB 107
__SW_EE 23 MATH87C.LIB 106
__SW_EI 38 MATH87H.LIB 106
__SW_EM 38 MATH87L.LIB 106
__SW_EN 24 MATH87M.LIB 106
__SW_EP 24 MATH87S.LIB 106
__SW_EZ 33 MATHC.LIB 107
__SW_FP2 44 matherr 527
__SW_FP3 45 DOMAIN 527
__SW_FP5 45 OVERFLOW 527
__SW_FP6 45 PLOSS 527
__SW_FPC 43 SING 527
__SW_FPD 45 TLOSS 527
__SW_FPI87 44 UNDERFLOW 527
__SW_FPI 44 MATHH.LIB 107
__SW_J 38 MATHL.LIB 107
__SW_ND 47 MATHM.LIB 107
__SW_OA 55 MATHS.LIB 107

537

Index

MDEF.INC 108 size of 124, 190
medium memory model 114, 182 _near 80
medium model __near 80, 82, 335, 452

libraries 102, 106 NETWARE subdirectory 101
__MEDIUM__ 52 __NETWARE_386__ 17, 75-76
memory __NETWARE__ 75-76

first megabyte 254 new 361, 372, 377, 391, 423, 446, 448, 453, 506
memory layout 116, 122, 183, 188 no8087 (pragma) 165, 235
memory model 66 NO87 environment variable 106-107, 293
memory models NO_EXT_KEYS 28, 76

16-bit 113 noemu387.lib 105
32-bit 181 noemu87.lib 105
compact 114, 182 NT subdirectory 101
creating tiny applications 115 __NT__ 17, 75-76
flat 182 NULL 88
huge 114 _NULLOFF 88
large 114, 182 _NULLSEG 88
libraries 115, 183 numeric data processor 106-107
medium 114, 182 option 44
mixed 114, 182
small 114, 182
tiny 114

message 484 O
message pragma 148, 216
messages

errno 526
object model 142, 210matherr 527
OCC directory 64run-time 526-527
occ file extension 64MetaWare
offsetof 366, 370, 420High C calling convention 51, 221, 243
once pragma 148, 216Microsoft
opcodesC calling convention 153, 174

assembly language 260mixed memory model 114, 182
operator 381modify exact (pragma) 173-174, 242-243

:> 89modify nomemory (pragma) 169, 172, 239, 241
operator + 383, 391modify reg_set (pragma) 178, 247
operator ++ 393MSDOS 17, 75-76
operator += 390_MT 16
operator -> 393, 485mutable 481
operator delete 391-392, 418, 438, 506
operator delete [] 391-392
operator new 377-378, 380, 391-392, 506
operator new [] 391-392N
operator ~ 390
optimization 148, 216
options 5

naked 82, 93 0 50
namespace 383, 505-507 1 50
near 80, 114, 182, 335, 452 2 50
near (pragma) 157, 227 3 50
near call 113, 181 3r, 3s 50
near macro 30 4 50
_near macro 30 4r, 4s 51
near pointer 5 50

538

Index

5r, 5s 52 ew 27
6 50 ez 33
6r, 6s 52 fc 33
ad 31 fh 33
adbs 31 fhd 33
add 31 fhq 33
adfs 32 fhr 33
adhp 31 fhw 34
adt 32 fhwe 34
bc 15 fi 34
bd 16 floating point 12
bg 16 floating-point in ROM 288
bm 16 fo 25, 34
br 16 fp2 44, 106, 288
bt 16, 71 fp3 44, 106, 288
bw 17 fp5 45, 106, 288
C++ exception handling 14 fp6 45
check_stack 136, 204 fpc 43, 107, 200, 288
code generation 12 fpd 45
compatibility with older versions 15 fpi 43, 106-107, 288
compatibility with Visual C++ 15, 61 fpi87 44, 106, 288
d 25 fpr 61
d+ 25 fr 34
d0 22 ft 35
d1 22 fti 35
d1+ 22 fx 35
d2 22 fzh 35
d2i 23 fzs 35
d2s 23 g 46
d2t 23 hc 24
d3 23 hd 24
d3i 23 hw 24
d3s 23 i 35, 71, 73
db 33 j 38
debugging/profiling 10 k 35
diagnostics 11 mc 52
double-byte characters 14 mf 52
e 27 mh 53
ecc 37 ml 52
ecd 37 mm 52
ecf 37 ms 52
ecp 37 nc 46
ecr 37 nm 47
ecs 37 nt 46-47
ecw 38 oa 54
ee 23 ob 55
ef 27 oc 55
ei 38 od 55
em 38 oe 56
en 23 of 17
ep 24 of+ 18
eq 27 oh 56
er 27 oi 56
et 24 oi+ 56

539

Index

ok 56 zc 38
ol 56 zdf 53
ol+ 57 zdl 53
on 57 zdp 53
oo 57 ze 28
op 57 zev 53
optimizations 14 zf 36
or 57 zff 53
os 57 zfp 53
ot 57 zfw 53
ou 58 zg 36
ox 58 zgf 54
oz 58 zgp 54
p 26 zk 60
pc 26 zk0u 60
pe 26 zku 60
pil 26 zl 36
pl 26 zld 37
preprocessor 10 zlf 37
pw 26 zls 37
q 27 zm 48
r 61, 128, 133, 194, 197, 202 zmf 49
reuse_duplicate_strings 137, 205 zp 38
ri 38 zpw 40
RTTI 38 zq 30
run-time conventions 13 zri 54
s 24 zro 54
segments/modules 13 zs 30
sg 19 zt 40
source/output control 11 zu 54
st 20 zv 41
t 27 zW 20
target specific 9 zWs 21
u 26 zz 61
unreferenced 136, 204 options file
using pragmas 136, 204 command line options 64
v 35 OS/2
vc 61 DOSCALLS.LIB 292
vcap 61 initialization 108
w 28 OS/2-dependent functions 286
wcd 28 OS2 subdirectory 101
wce 28 __OS2__ 17, 75-76
we 28 OS2_INCLUDE environment variable 72
wo 28 overview of contents 3
wx 28
xd 59
xds 59
xdt 59 P
xr 38
xs 59
xss 59

pack pragma 149, 217xst 59
_Packed 81za 28
parm (pragma) 161, 230zat 36

540

Index

parm caller (pragma) 164, 234 disable_message 141, 209
parm nomemory (pragma) 172, 241 dump_object_model 142, 210
parm reg_set (pragma) 175, 244 enable_message 142, 210
parm reverse (pragma) 165, 234 enum 142, 210
parm routine (pragma) 164, 234 error 143, 211
pascal 81, 154, 222 export 159-160, 229
pascal alias name 154, 222 extref 143, 211
__pascal alias name 154, 222 far 157, 227
pascal functions 20-21 frame 160, 229
pascal macro 30 function 144, 212
_pascal macro 30 in-line assembly 157, 227
_Pascal 81 in-line functions 164, 233
__pascal 81-82, 154, 221-222 include_alias 145, 213
passing arguments 123, 189 initialize 145, 213

1 byte 123, 189 inline_depth 146, 214
2 bytes 123-124, 189 inline_recursion 147, 215
4 bytes 190 intrinsic 147, 215
8 bytes 124, 190 loadds 159, 228
far pointers 124, 190 message 148, 216
in 80x87 registers 176, 244 modify exact 173-174, 242-243
in 80x87-based applications 132, 200 modify nomemory 169, 172, 239, 241
in registers 123, 189 modify reg_set 178, 247
of type double 124, 190 near 157, 227

PATH environment variable 60, 72, 291, 293-294 no8087 165, 235
Pentium bug 45 notation used to describe 135, 203
Phar Lap example 254 once 148, 216
PLIB3R.LIB 104 pack 149, 217
PLIB3S.LIB 104 parm 161, 230
PLIBC.LIB 104 parm caller 164, 234
PLIBDLL.LIB 104 parm nomemory 172, 241
PLIBH.LIB 104 parm reg_set 175, 244
PLIBL.LIB 104 parm reverse 165, 234
PLIBM.LIB 104 parm routine 164, 234
PLIBMTL.LIB 104 read_only_file 150, 218
PLIBS.LIB 104 specifying default libraries 137, 205
pragma 135, 203, 446, 452, 464 struct caller 165, 167, 235-236

alloc_text 49 struct float 165, 168, 235, 237
pragma options 136, 204 struct routine 165, 167, 235-236
__pragma("string") 82 template_depth 150, 218
__pragma 82, 86, 94 value 165-168, 235-237
pragmas value [8087] 168, 238

= const 157, 227 value no8087 168, 238
aborts 169, 238 value reg_set 178, 247
alias 138, 206 warning 151, 219
alias name 153, 221 precompiled headers 97
alloc_text 139, 207 compiler options 98
alternate name 156, 225 rules 98
auxiliary 151, 219 uses 97
calling information 157, 227 using 97
code_seg 139, 207 predefined macros
comment 140, 208 see macros 16
data_seg 141, 209 predefined types
describing argument lists 160, 230 size of 124, 190
describing return value 165, 235 predictable code size 96, 296

541

Index

preprocessor 25-27, 73 _saveregs 83
#line directives 26 __saveregs 83
encryption 26 _Seg16 85
source comments 26 segment

primary thread 19 _BSS 46
printf 86 CONST 46
private 370, 387, 401 CONST2 46
__PRO 24 _DATA 46
protected 361-362, 401 _TEXT 46-47, 116, 123, 184, 189
public 370 _segment macro 30
_PUSHPOP_SUPPORTED 77 segment ordering 116, 122, 183, 188

segment references 80-81
_segment 80
__segment 80, 87-90
segname references 80Q
_segname 80
__segname 80, 87, 326, 515
_self macro 30

__QNX__ 17, 75-76 self references 81
_self 81
__self 81, 87, 405
SET 64, 291R INCLUDE environment variable 72-73

NO87 environment variable 107
short 314, 316, 344
short intRaiseException 281

size of 124, 190read_only_file pragma 150, 218
short int type 120, 186real-mode memory 254
side effects of functions 169, 239register 312, 316, 321, 323, 329, 347, 356,
signed 314, 316, 344367-368
signed char 487, 519reinterpret_cast 494-495

size of 124, 190restrict 81
signed int__restrict 81

size of 124, 190return 267-273, 302, 315, 320, 334, 336, 345
signed long intreturn value (pragma) 165, 235

size of 124, 190returning values from functions 129, 198
signed short intreuse_duplicate_strings option 137, 205

size of 124, 190ROM-based functions 285
size ofROMable code 285

char 124, 190startup 287
double 124, 190RTTI 38
enumerated types 125, 191run-time
far pointer 124, 190error messages 301, 333, 525-526
float 124, 190messages 525
int 124, 190run-time initialization 108
long double 124, 190
long float 124, 190
long int 124, 190
near pointer 124, 190S
predefined types 124, 190
short int 124, 190
signed char 124, 190
signed int 124, 190save/restore segment registers 61
signed long int 124, 190_saveregs macro 30

542

Index

signed short int 124, 190 __SW_4 50-51
unsigned char 124, 190 __SW_5 50, 52
unsigned int 124, 190 __SW_6 50, 52
unsigned long int 124, 190 __SW_BD 16
unsigned short int 124, 190 __SW_BM 16

sizeof 93, 321 __SW_BR 16
small code model 113, 181 __SW_BW 17
small data model 113, 181 __SW_EE 23
small memory model 114, 182 __SW_EI 38
small model __SW_EM 38

libraries 102, 106-107, 183 __SW_EN 24
__SMALL__ 52 __SW_EP 24
software quality assurance 96, 297 __SW_EZ 33
SOMDLINK 80, 84 __SW_FP2 44
SOMDLINK macro 30 __SW_FP3 45
SOMLINK 81, 84 __SW_FP5 45
SOMLINK macro 30 __SW_FP6 45
source file __SW_FPC 43

including 71 __SW_FPD 45
searching 71 __SW_FPI87 44

SS segment register 54 __SW_FPI 44
stack frame 160, 229 __SW_FZH 35
stack frame (pragma) 160, 229 __SW_FZS 35
stack growing 19 __SW_J 38
stack overflow 24, 46 __SW_ND 47
stack touching 20 __SW_OA 55
stack-based calling convention 195 __SW_OC 55

80x87 considerations 201 __SW_OD 55
returning values from functions 200 __SW_OF 18

stacking arguments 163, 232 __SW_OI 56
startup code 287 __SW_OL 56-57
static 91, 307, 313, 317, 341-342, 356, 361, 369, __SW_OM 57

377, 401, 404-405, 407, 417 __SW_ON 57
static_cast 497, 499, 511-512 __SW_OO 57
stdcall 154, 222 __SW_OP 57
stdcall alias name 154, 222 __SW_OR 57
__stdcall alias name 154, 222 __SW_OS 57
_stdcall macro 30 __SW_OT 57
__stdcall 82-83, 154, 222 __SW_OU 58
_STDCALL_SUPPORTED 77 __SW_OZ 58
__STK __SW_R 61

stack overflow 46 __SW_S 24
struct 81, 312-314, 319-323, 327, 342, 351, 370, __SW_SG 19

413, 523 __SW_ST 20
struct caller (pragma) 165, 167, 235-236 __SW_ZC 38
struct float (pragma) 165, 168, 235, 237 __SW_ZDF 53
struct routine (pragma) 165, 167, 235-236 __SW_ZDP 53
structured exception handling 267 __SW_ZFF 53
__SW_0 50 __SW_ZFP 53
__SW_1 50 __SW_ZFW 54
__SW_2 50 __SW_ZGF 54
__SW_3 50-51 __SW_ZGP 54
__SW_3R 51-52 __SW_ZK 60
__SW_3S 51-52 __SW_ZM 49

543

Index

__SW_ZRI 54
__SW_ZRO 54 U__SW_ZU 54
switch 304, 310-311, 314, 320, 329, 337-339,

343, 416
symbol attributes 151, 219 union 312-314, 319-323, 327, 342, 351, 354-355,
symbolic references in in-line code sequences 413

158, 228 __UNIX__ 17, 75-76
syscall 222 unreferenced option 136, 204
syscall alias name 222 unsigned 314, 316, 344, 351
__syscall alias name 222 unsigned char 487, 519
_syscall macro 30 size of 124, 190
_syscall 84 unsigned int
__syscall 82-84, 95, 222 size of 124, 190
system 222 unsigned long int
system alias name 222 size of 124, 190
__system alias name 222 unsigned short int
system initialization size of 124, 190

Windows NT 65 USE16 segments 183, 188
system initialization file using 512-514

AUTOEXEC.BAT 65 using namespace 509
CONFIG.SYS 65

_System 84
__system 222

V

T
va_arg 328
value (pragma) 165-168, 235-237
value [8087] (pragma) 168, 238

template_depth pragma 150, 218 value no8087 (pragma) 168, 238
Tenberry Software value reg_set (pragma) 178, 247

DOS/16M 108 variable argument lists 129, 198
_TEXT segment 46-47, 116, 123, 184, 189 virtual 361, 417-418, 462
this 374, 381, 417, 426, 436, 441, 465 void 70, 302, 313, 315, 334, 345, 371-372, 376,
thread 82, 91-92 378-379, 381, 391, 395, 423, 431, 448,
threads 468-469, 484, 499

growing the stack 19 volatile 316, 360-361, 396, 423, 426, 434, 462,
throw 58, 346, 376, 452, 461, 477-478, 505 494
tiny memory model 114
tiny memory model applications 115
TMP environment variable 294
try 58, 458, 460-461 W
_try 267, 274, 324
typedef 356-357, 369, 383, 405
typeid 515
types warning messages 301

char 119, 185 warning pragma 151, 219
double 121, 187 watcall 154, 222
float 120, 186 watcall alias name 154, 222
int 120, 186 __watcall alias name 154, 222
long int 120, 186 __watcall 154, 222
short int 120, 186

544

Index

WATCOM environment variable 106, 291-293,
295 X__WATCOM_CPLUSPLUS__ 77

__WATCOMC__ 77
WCC 295
WCC environment variable 65, 295 __X86__ 75
WCC options

nm 117, 123, 184, 189
nt 117, 123, 184, 189

WCC386 295
WCC386 environment variable 65, 295
WCC386 options

nm 117, 123, 184, 189
nt 117, 123, 184, 189

WCGMEMORY environment variable 96,
296-297

WCL environment variable 296
WCL386 environment variable 296
WD environment variable 297
WDW environment variable 297-298
while 271, 310, 318, 320, 329, 337-338, 349
WILDARGV.C 108
WIN subdirectory 101
WIN386.LIB 103
Windows

initialization 108
Windows NT

system initialization 65
Windows NT-dependent functions 286
Windows SDK

Microsoft 103
WINDOWS.LIB 103
_WINDOWS 17, 75-76
__WINDOWS_386__ 17, 20, 75-76
__WINDOWS__ 20-21, 75-76
WINDOWS_INCLUDE environment variable 17
WLANG environment variable 298
WOS2.H 108
WPP 298
WPP environment variable 65, 298
WPP options

nm 117, 123, 184, 189
nt 117, 123, 184, 189

WPP386 299
WPP386 environment variable 65, 298-299
WPP386 options

nm 117, 123, 184, 189
nt 117, 123, 184, 189

545

