
Open Watcom C++

Class Library Reference

First Edition

Notice of Copyright

Copyright  2002-2006 the Open Watcom Contributors. Portions Copyright  1984-2002
Sybase, Inc. and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of anyone.

For more information please visit http://www.openwatcom.org/

Printed in U.S.A.

ii

Preface
Open Watcom C++ is an implementation of the C++ programming language. In addition to
the C++ draft standard, the compiler supports numerous extensions for the PC environment.

This manual describes the Open Watcom C++ Class Libraries for DOS, Windows 3.x,
Windows NT, Windows 95, 16-bit OS/2 1.x, 32-bit OS/2, and QNX. It includes a String
Class, a Complex Class, Container Classes, and an I/O Stream hierarchy of classes. The
Container classes include a set of intrusive, value and pointer list classes with their associated
iterators.

This book was produced with the Open Watcom GML electronic publishing system, a
software tool developed by WATCOM. In this system, writers use an ASCII text editor to
create source files containing text annotated with tags. These tags label the structural
elements of the document, such as chapters, sections, paragraphs, and lists. The Open
Watcom GML software, which runs on a variety of operating systems, interprets the tags to
format the text into a form such as you see here. Writers can produce output for a variety of
printers, including laser printers, using separately specified layout directives for such things as
font selection, column width and height, number of columns, etc. The result is type-set
quality copy containing integrated text and graphics.

July, 1997.

Trademarks Used in this Manual

IBM is a registered trademark and OS/2 is a trademark of International Business Machines
Corp.

Microsoft is a registered trademark of Microsoft Corp. Windows, Windows NT and Windows
95 are trademarks of Microsoft Corp.

QNX is a registered trademark of QNX Software Systems Ltd.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

iii

iv

Table of Contents

Open Watcom C++ Class Library Reference .. 1

1 Header Files .. 3

2 Common Types ... 9

3 Predefined Objects .. 11
3.1 cin ... 11
3.2 cout ... 11
3.3 cerr ... 12
3.4 clog ... 12

4 istream Input ... 13
4.1 Formatted Input: Extractors ... 13
4.2 Unformatted Input .. 13

5 ostream Output .. 15
5.1 Formatted Output: Inserters ... 15
5.2 Unformatted Output ... 15

6 Library Functions and Types .. 17

7 Complex Class .. 19
Complex Class Description .. 20

Complex abs() .. 23
Complex acos() ... 24
Complex acosh() ... 25
Complex arg() ... 26
Complex asin() ... 27
Complex asinh() ... 28
Complex atan() ... 29
Complex atanh() ... 30
Complex() ... 31
Complex() ... 32
Complex() ... 33
~Complex() .. 34
Complex conj() ... 35
Complex cos() .. 36
Complex cosh() .. 37
Complex exp() .. 38
imag() ... 39
Complex imag() .. 40

v

Table of Contents

Complex log() ... 41
Complex log10() ... 42
Complex norm() ... 43
Complex operator !=() .. 44
Complex operator *() ... 45
operator *=() ... 46
operator +() ... 47
Complex operator +() ... 48
operator +=() .. 49
operator -() .. 50
Complex operator -() .. 51
operator -=() ... 52
Complex operator /() .. 53
operator /=() .. 54
Complex operator <<() ... 55
operator =() ... 56
Complex operator ==() ... 57
Complex operator >>() ... 58
Complex polar() ... 59
Complex pow() ... 60
real() ... 61
Complex real() .. 62
Complex sin() ... 63
Complex sinh() ... 64
Complex sqrt() .. 65
Complex tan() ... 66
Complex tanh() ... 67

8 Container Exception Classes .. 69
WCExcept Class Description ... 70

WCExcept() .. 71
~WCExcept() .. 72
exceptions() .. 73
wc_state .. 74

WCIterExcept Class Description ... 76
WCIterExcept() .. 77
~WCIterExcept() .. 78
exceptions() .. 79
wciter_state ... 80

9 Container Allocators and Deallocators ... 81

vi

Table of Contents

10 Hash Containers .. 87
WCPtrHashDict<Key,Value> Class Description .. 88

WCPtrHashDict() ... 90
WCPtrHashDict() ... 91
WCPtrHashDict() ... 92
~WCPtrHashDict() ... 93
bitHash() ... 94
buckets() ... 95
clear() ... 96
clearAndDestroy() .. 97
contains() .. 98
entries() ... 99
find() ... 100
findKeyAndValue() .. 101
forAll() ... 102
insert() .. 103
isEmpty() .. 104
operator []() .. 105
operator []() .. 106
operator =() ... 107
operator ==() .. 108
remove() ... 109
resize() .. 110

WCPtrHashTable<Type>, WCPtrHashSet<Type> Class Description 111
WCPtrHashSet() ... 113
WCPtrHashSet() ... 114
WCPtrHashSet() ... 115
~WCPtrHashSet() ... 116
WCPtrHashTable() ... 117
WCPtrHashTable() ... 118
WCPtrHashTable() ... 119
~WCPtrHashTable() ... 120
bitHash() ... 121
buckets() ... 122
clear() ... 123
clearAndDestroy() .. 124
contains() .. 125
entries() ... 126
find() ... 127
forAll() ... 128
insert() .. 129
isEmpty() .. 130

vii

Table of Contents

occurencesOf() ... 131
operator =() ... 132
operator ==() .. 133
remove() ... 134
removeAll() .. 135
resize() .. 136

WCValHashDict<Key,Value> Class Description ... 137
WCValHashDict() .. 139
WCValHashDict() .. 140
WCValHashDict() .. 141
~WCValHashDict() .. 142
bitHash() ... 143
buckets() ... 144
clear() ... 145
contains() .. 146
entries() ... 147
find() ... 148
findKeyAndValue() .. 149
forAll() ... 150
insert() .. 151
isEmpty() .. 152
operator []() .. 153
operator []() .. 154
operator =() ... 155
operator ==() .. 156
remove() ... 157
resize() .. 158

WCValHashTable<Type>, WCValHashSet<Type> Class Description 159
WCValHashSet() .. 161
WCValHashSet() .. 162
WCValHashSet() .. 163
~WCValHashSet() .. 164
WCValHashTable() .. 165
WCValHashTable() .. 166
WCValHashTable() .. 167
~WCValHashTable() .. 168
bitHash() ... 169
buckets() ... 170
clear() ... 171
contains() .. 172
entries() ... 173
find() ... 174

viii

Table of Contents

forAll() ... 175
insert() .. 176
isEmpty() .. 177
occurencesOf() ... 178
operator =() ... 179
operator ==() .. 180
remove() ... 181
removeAll() .. 182
resize() .. 183

11 Hash Iterators .. 185
WCPtrHashDictIter<Key,Value> Class Description ... 186

WCPtrHashDictIter() ... 187
WCPtrHashDictIter() ... 188
~WCPtrHashDictIter() ... 189
container() .. 190
key() ... 191
operator ()() .. 192
operator ++() .. 193
reset() .. 194
reset() .. 195
value() ... 196

WCValHashDictIter<Key,Value> Class Description .. 197
WCValHashDictIter() .. 198
WCValHashDictIter() .. 199
~WCValHashDictIter() .. 200
container() .. 201
key() ... 202
operator ()() .. 203
operator ++() .. 204
reset() .. 205
reset() .. 206
value() ... 207

WCPtrHashSetIter<Type>, WCPtrHashTableIter<Type> Class Description 208
WCPtrHashSetIter() ... 209
WCPtrHashSetIter() ... 210
~WCPtrHashSetIter() ... 211
WCPtrHashTableIter() ... 212
WCPtrHashTableIter() ... 213
~WCPtrHashTableIter() ... 214
container() .. 215
current() .. 216

ix

Table of Contents

operator ()() .. 217
operator ++() .. 218
reset() .. 219
reset() .. 220

WCValHashSetIter<Type>, WCValHashTableIter<Type> Class Description 221
WCValHashSetIter() .. 222
WCValHashSetIter() .. 223
~WCValHashSetIter() .. 224
WCValHashTableIter() .. 225
WCValHashTableIter() .. 226
~WCValHashTableIter() .. 227
container() .. 228
current() .. 229
operator ()() .. 230
operator ++() .. 231
reset() .. 232
reset() .. 233

12 List Containers .. 235
WCDLink Class Description .. 237

WCDLink() .. 238
~WCDLink() .. 239

WCIsvSList<Type>, WCIsvDList<Type> Class Description 240
WCIsvSList() .. 243
WCIsvSList() .. 244
~WCIsvSList() ... 245
WCIsvDList() ... 246
WCIsvDList() ... 247
~WCIsvDList() ... 248
append() .. 249
clear() ... 250
clearAndDestroy() .. 251
contains() .. 252
entries() ... 253
find() ... 254
findLast() .. 255
forAll() ... 256
get() .. 257
index() .. 258
index() .. 259
insert() .. 260
isEmpty() .. 261

x

Table of Contents

operator =() ... 262
operator ==() .. 263

WCPtrSList<Type>, WCPtrDList<Type> Class Description 264
WCPtrSList() .. 266
WCPtrSList() .. 267
WCPtrSList() .. 268
~WCPtrSList() .. 269
WCPtrDList() ... 270
WCPtrDList() ... 271
WCPtrDList() ... 272
~WCPtrDList() ... 273
append() .. 274
clear() ... 275
clearAndDestroy() .. 276
contains() .. 277
entries() ... 278
find() ... 279
findLast() .. 280
forAll() ... 281
get() .. 282
index() .. 283
insert() .. 284
isEmpty() .. 285
operator =() ... 286
operator ==() .. 287

WCSLink Class Description .. 288
WCSLink() ... 289
~WCSLink() ... 290

WCValSList<Type>, WCValDList<Type> Class Description 291
WCValSList() ... 294
WCValSList() ... 295
WCValSList() ... 296
~WCValSList() .. 297
WCValDList() .. 298
WCValDList() .. 299
WCValDList() .. 300
~WCValDList() .. 301
append() .. 302
clear() ... 303
clearAndDestroy() .. 304
contains() .. 305
entries() ... 306

xi

Table of Contents

find() ... 307
findLast() .. 308
forAll() ... 309
get() .. 310
index() .. 311
insert() .. 312
isEmpty() .. 313
operator =() ... 314
operator ==() .. 315

13 List Iterators .. 317
WCIsvConstSListIter<Type>, WCIsvConstDListIter<Type> Class Description 318

WCIsvConstSListIter() ... 320
WCIsvConstSListIter() ... 321
~WCIsvConstSListIter() .. 322
WCIsvConstDListIter() .. 323
WCIsvConstDListIter() .. 324
~WCIsvConstDListIter() .. 325
container() .. 326
current() .. 327
operator ()() .. 328
operator ++() .. 329
operator +=() .. 330
operator --() .. 331
operator -=() ... 332
reset() .. 333
reset() .. 334

WCIsvSListIter<Type>, WCIsvDListIter<Type> Class Description 335
WCIsvSListIter() .. 337
WCIsvSListIter() .. 338
~WCIsvSListIter() .. 339
WCIsvDListIter() ... 340
WCIsvDListIter() ... 341
~WCIsvDListIter() ... 342
append() .. 343
container() .. 344
current() .. 345
insert() .. 346
operator ()() .. 347
operator ++() .. 348
operator +=() .. 349
operator --() .. 350

xii

Table of Contents

operator -=() ... 351
reset() .. 352
reset() .. 353

WCPtrConstSListIter<Type>, WCPtrConstDListIter<Type> Class Description 354
WCPtrConstSListIter() ... 356
WCPtrConstSListIter() ... 357
~WCPtrConstSListIter() ... 358
WCPtrConstDListIter() .. 359
WCPtrConstDListIter() .. 360
~WCPtrConstDListIter() .. 361
container() .. 362
current() .. 363
operator ()() .. 364
operator ++() .. 365
operator +=() .. 366
operator --() .. 367
operator -=() ... 368
reset() .. 369
reset() .. 370

WCPtrSListIter<Type>, WCPtrDListIter<Type> Class Description 371
WCPtrSListIter() .. 373
WCPtrSListIter() .. 374
~WCPtrSListIter() .. 375
WCPtrDListIter() ... 376
WCPtrDListIter() ... 377
~WCPtrDListIter() ... 378
append() .. 379
container() .. 380
current() .. 381
insert() .. 382
operator ()() .. 383
operator ++() .. 384
operator +=() .. 385
operator --() .. 386
operator -=() ... 387
reset() .. 388
reset() .. 389

WCValConstSListIter<Type>, WCValConstDListIter<Type> Class Description 390
WCValConstSListIter() .. 392
WCValConstSListIter() .. 393
~WCValConstSListIter() .. 394
WCValConstDListIter() ... 395

xiii

Table of Contents

WCValConstDListIter() ... 396
~WCValConstDListIter() ... 397
container() .. 398
current() .. 399
operator ()() .. 400
operator ++() .. 401
operator +=() .. 402
operator --() .. 403
operator -=() ... 404
reset() .. 405
reset() .. 406

WCValSListIter<Type>, WCValDListIter<Type> Class Description 407
WCValSListIter() ... 410
WCValSListIter() ... 411
~WCValSListIter() ... 412
WCValDListIter() .. 413
WCValDListIter() .. 414
~WCValDListIter() .. 415
append() .. 416
container() .. 417
current() .. 418
insert() .. 419
operator ()() .. 420
operator ++() .. 421
operator +=() .. 422
operator --() .. 423
operator -=() ... 424
reset() .. 425
reset() .. 426

14 Queue Container ... 427
WCQueue<Type,FType> Class Description ... 428

WCQueue() .. 430
WCQueue() .. 431
~WCQueue() .. 432
clear() ... 433
entries() ... 434
first() ... 435
get() .. 436
insert() .. 437
isEmpty() .. 438
last() .. 439

xiv

Table of Contents

15 Skip List Containers .. 441
WCPtrSkipListDict<Key,Value> Class Description ... 442

WCPtrSkipListDict() .. 444
WCPtrSkipListDict() .. 445
WCPtrSkipListDict() .. 446
~WCPtrSkipListDict() .. 447
clear() ... 448
clearAndDestroy() .. 449
contains() .. 450
entries() ... 451
find() ... 452
findKeyAndValue() .. 453
forAll() ... 454
insert() .. 455
isEmpty() .. 456
operator []() .. 457
operator []() .. 458
operator =() ... 459
operator ==() .. 460
remove() ... 461

WCPtrSkipList<Type>, WCPtrSkipListSet<Type> Class Description 462
WCPtrSkipListSet() ... 464
WCPtrSkipListSet() ... 465
WCPtrSkipListSet() ... 466
~WCPtrSkipListSet() ... 467
WCPtrSkipList() ... 468
WCPtrSkipList() ... 469
WCPtrSkipList() ... 470
~WCPtrSkipList() .. 471
clear() ... 472
clearAndDestroy() .. 473
contains() .. 474
entries() ... 475
find() ... 476
forAll() ... 477
insert() .. 478
isEmpty() .. 479
occurrencesOf() .. 480
operator =() ... 481
operator ==() .. 482
remove() ... 483
removeAll() .. 484

xv

Table of Contents

WCValSkipListDict<Key,Value> Class Description .. 485
WCValSkipListDict() ... 487
WCValSkipListDict() ... 488
WCValSkipListDict() ... 489
~WCValSkipListDict() .. 490
clear() ... 491
contains() .. 492
entries() ... 493
find() ... 494
findKeyAndValue() .. 495
forAll() ... 496
insert() .. 497
isEmpty() .. 498
operator []() .. 499
operator []() .. 500
operator =() ... 501
operator ==() .. 502
remove() ... 503

WCValSkipList<Type>, WCValSkipListSet<Type> Class Description 504
WCValSkipListSet() .. 506
WCValSkipListSet() .. 507
WCValSkipListSet() .. 508
~WCValSkipListSet() .. 509
WCValSkipList() .. 510
WCValSkipList() .. 511
WCValSkipList() .. 512
~WCValSkipList() ... 513
clear() ... 514
contains() .. 515
entries() ... 516
find() ... 517
forAll() ... 518
insert() .. 519
isEmpty() .. 520
occurrencesOf() .. 521
operator =() ... 522
operator ==() .. 523
remove() ... 524
removeAll() .. 525

16 Stack Container ... 527
WCStack<Type,FType> Class Description ... 528

xvi

Table of Contents

WCStack() .. 530
WCStack() .. 531
~WCStack() .. 532
clear() ... 533
entries() ... 534
isEmpty() .. 535
pop() ... 536
push() .. 537
top() .. 538

17 Vector Containers ... 539
WCPtrSortedVector<Type>, WCPtrOrderedVector<Type> Class Description 540

WCPtrOrderedVector() .. 543
WCPtrOrderedVector() .. 544
~WCPtrOrderedVector() .. 545
WCPtrSortedVector() ... 546
WCPtrSortedVector() ... 547
~WCPtrSortedVector() ... 548
append() .. 549
clear() ... 550
clearAndDestroy() .. 551
contains() .. 552
entries() ... 553
find() ... 554
first() ... 555
index() .. 556
insert() .. 557
insertAt() .. 558
isEmpty() .. 559
last() .. 560
occurrencesOf() .. 561
operator []() .. 562
operator =() ... 563
operator ==() .. 564
prepend() .. 565
remove() ... 566
removeAll() .. 567
removeAt() ... 568
removeFirst() .. 569
removeLast() .. 570
resize() .. 571

WCPtrVector<Type> Class Description .. 572

xvii

Table of Contents

WCPtrVector() ... 573
WCPtrVector() ... 574
WCPtrVector() ... 575
~WCPtrVector() ... 576
clear() ... 577
clearAndDestroy() .. 578
length() ... 579
operator []() .. 580
operator =() ... 581
operator ==() .. 582
resize() .. 583

WCValSortedVector<Type>, WCValOrderedVector<Type> Class Description 584
WCValOrderedVector() ... 587
WCValOrderedVector() ... 588
~WCValOrderedVector() ... 589
WCValSortedVector() .. 590
WCValSortedVector() .. 591
~WCValSortedVector() .. 592
append() .. 593
clear() ... 594
contains() .. 595
entries() ... 596
find() ... 597
first() ... 598
index() .. 599
insert() .. 600
insertAt() .. 601
isEmpty() .. 602
last() .. 603
occurrencesOf() .. 604
operator []() .. 605
operator =() ... 606
operator ==() .. 607
prepend() .. 608
remove() ... 609
removeAll() .. 610
removeAt() ... 611
removeFirst() .. 612
removeLast() .. 613
resize() .. 614

WCValVector<Type> Class Description ... 615
WCValVector() .. 617

xviii

Table of Contents

WCValVector() .. 618
WCValVector() .. 619
~WCValVector() .. 620
clear() ... 621
length() ... 622
operator []() .. 623
operator =() ... 624
operator ==() .. 625
resize() .. 626

18 Input/Output Classes ... 627
filebuf Class Description .. 628

attach() .. 630
close() ... 631
fd() .. 632
filebuf() ... 633
filebuf() ... 634
filebuf() ... 635
~filebuf() .. 636
is_open() ... 637
open() ... 638
openprot .. 639
overflow() ... 640
pbackfail() .. 641
seekoff() ... 642
setbuf() ... 643
sync() .. 644
underflow() ... 645

fstream Class Description .. 646
fstream() ... 647
fstream() ... 648
fstream() ... 649
fstream() ... 650
~fstream() ... 651
open() ... 652

fstreambase Class Description ... 653
attach() .. 654
close() ... 655
fstreambase() .. 656
fstreambase() .. 657
fstreambase() .. 658
fstreambase() .. 659

xix

Table of Contents

~fstreambase() .. 660
is_open() ... 661
fd() .. 662
open() ... 663
rdbuf() ... 664
setbuf() ... 665

ifstream Class Description ... 666
ifstream() .. 667
ifstream() .. 668
ifstream() .. 669
ifstream() .. 670
~ifstream() .. 671
open() ... 672

ios Class Description .. 673
bad() ... 675
bitalloc() ... 676
clear() ... 677
eof() .. 678
exceptions() .. 679
fail() .. 680
fill() ... 681
flags() ... 682
fmtflags ... 683
good() ... 687
init() .. 688
ios() ... 689
ios() ... 690
~ios() .. 691
iostate .. 692
iword() .. 693
openmode ... 694
operator !() .. 696
operator void *() ... 697
precision() ... 698
pword() ... 699
rdbuf() ... 700
rdstate() ... 701
seekdir .. 702
setf() ... 703
setstate() .. 704
sync_with_stdio() ... 705
tie() ... 706

xx

Table of Contents

unsetf() ... 707
width() .. 708
xalloc() ... 709

iostream Class Description ... 710
iostream() .. 711
iostream() .. 712
iostream() .. 713
~iostream() ... 714
operator =() ... 715
operator =() ... 716

istream Class Description ... 717
eatwhite() .. 719
gcount() .. 720
get() .. 721
get() .. 722
get() .. 723
get() .. 724
getline() .. 725
ignore() ... 726
ipfx() ... 727
isfx() ... 728
istream() .. 729
istream() .. 730
istream() .. 731
~istream() ... 732
operator =() ... 733
operator =() ... 734
operator >>() .. 735
operator >>() .. 736
operator >>() .. 737
operator >>() .. 738
operator >>() .. 739
operator >>() .. 740
peek() .. 741
putback() ... 742
read() .. 743
seekg() .. 744
seekg() .. 745
sync() .. 746
tellg() .. 747

istrstream Class Description ... 748
istrstream() .. 749

xxi

Table of Contents

istrstream() .. 750
~istrstream() ... 751
Manipulators ... 752
manipulator dec() ... 753
manipulator endl() .. 754
manipulator ends() .. 755
manipulator flush() ... 756
manipulator hex() ... 757
manipulator oct() .. 758
manipulator resetiosflags() ... 759
manipulator setbase() ... 760
manipulator setfill() .. 761
manipulator setiosflags() .. 762
manipulator setprecision() .. 763
manipulator setw() .. 764
manipulator setwidth() ... 765
manipulator ws() ... 766

ofstream Class Description .. 767
ofstream() ... 768
ofstream() ... 769
ofstream() ... 770
ofstream() ... 771
~ofstream() ... 772
open() ... 773

ostream Class Description .. 774
flush() ... 776
operator <<() .. 777
operator <<() .. 778
operator <<() .. 779
operator <<() .. 781
operator <<() .. 782
operator <<() .. 783
operator <<() .. 784
operator =() ... 785
operator =() ... 786
opfx() .. 787
osfx() .. 788
ostream() ... 789
ostream() ... 790
ostream() ... 791
~ostream() .. 792
put() .. 793

xxii

Table of Contents

seekp() .. 794
seekp() .. 795
tellp() .. 796
write() ... 797

ostrstream Class Description .. 798
ostrstream() ... 799
ostrstream() ... 800
~ostrstream() .. 801
pcount() .. 802
str() ... 803

stdiobuf Class Description ... 804
overflow() ... 805
stdiobuf() .. 806
stdiobuf() .. 807
~stdiobuf() .. 808
sync() .. 809
underflow() ... 810

streambuf Class Description .. 811
allocate() ... 815
base() .. 816
blen() .. 817
dbp() ... 818
do_sgetn() ... 819
do_sputn() ... 820
doallocate() ... 821
eback() .. 822
ebuf() .. 823
egptr() ... 824
epptr() ... 825
gbump() .. 826
gptr() ... 827
in_avail() .. 828
out_waiting() .. 829
overflow() ... 830
pbackfail() .. 831
pbase() .. 832
pbump() .. 833
pptr() ... 834
sbumpc() ... 835
seekoff() ... 836
seekpos() ... 837
setb() ... 838

xxiii

Table of Contents

setbuf() ... 839
setg() ... 840
setp() ... 841
sgetc() ... 842
sgetchar() .. 843
sgetn() ... 844
snextc() ... 845
speekc() .. 846
sputbackc() ... 847
sputc() ... 848
sputn() ... 849
stossc() .. 850
streambuf() ... 851
streambuf() ... 852
~streambuf() ... 853
sync() .. 854
unbuffered() .. 855
underflow() ... 856

strstream Class Description .. 857
str() ... 858
strstream() ... 859
strstream() ... 860
~strstream() .. 861

strstreambase Class Description ... 862
rdbuf() ... 863
strstreambase() .. 864
strstreambase() .. 865
~strstreambase() ... 866

strstreambuf Class Description .. 867
alloc_size_increment() ... 869
doallocate() ... 870
freeze() ... 871
overflow() ... 872
seekoff() ... 873
setbuf() ... 874
str() ... 875
strstreambuf() ... 876
strstreambuf() ... 877
strstreambuf() ... 878
strstreambuf() ... 879
~strstreambuf() ... 881
sync() .. 882

xxiv

Table of Contents

underflow() ... 883

19 String Class ... 885
String Class Description ... 886

alloc_mult_size() .. 888
get_at() ... 889
index() .. 890
length() ... 891
lower() .. 892
match() .. 893
operator !() .. 894
String operator !=() ... 895
operator ()() .. 896
operator ()() .. 897
String operator +() .. 898
operator +=() .. 899
String operator <() .. 900
String operator <<() .. 901
String operator <=() .. 902
operator =() ... 903
String operator ==() .. 904
String operator >() .. 905
String operator >=() .. 906
String operator >>() .. 907
operator []() .. 908
operator char() .. 909
operator char const *() .. 910
put_at() ... 911
String() ... 912
String() ... 913
String() ... 914
String() ... 915
String() ... 916
~String() ... 917
upper() .. 918
String valid() .. 919
valid() ... 920

xxv

xxvi

Open Watcom C++ Class Library
Reference

Open Watcom C++ Class Library Reference

2

1 Header Files

The following header files are supplied with the Open Watcom C++ library. When a class or
function from the library is used in a source file the related header file should be included in
that source file. The header files can be included multiple times and in any order with no ill
effect.

The facilities of the C standard library can be used in C++ programs by including the
appropriate "cname" header. In that case all of the C standard library functions are in
namespace std. For example, to use function std::printf one should include the
header cstdio. Note that the cname headers declare in the global namespace any non-standard
names they contain as extensions. It is also possible to include in a C++ program the same
headers used by C programs. In that case, the standard functions are in both the global
namespace as well as in namespace std.

Some of C++ standard library headers described below come in a form with a .h extension and
in a form without an extension. The extensionless headers declare their library classes and
functions in namespace std. The headers with a .h extension declare their library classes
and functions in both the global namespace and in namespace std. Such headers are
provided as a convenience and for compatibility with legacy code. Programs that intend to
conform to Standard C++ should use the extensionless headers to access the facilities of the
C++ standard library.

Certain headers defined by Standard C++ have names that are longer than the 8.3 limit
imposed by the FAT16 filesystem. Such headers are provided with names that are truncated
to eight characters so they can be used with the DOS host. However, one can still refer to
them in #include directives using their full names as defined by the standard. If the Open
Watcom C++ compiler is unable to open a header with the long name, it will truncate the
name and try again.

The Open Watcom C++ library contains some components that were developed before C++
was standardized. These legacy components continue to be supported and are described in
this documentation.

The header files are all located in the \WATCOM\H directory.

algorithm (algorith) This header file defines the standard algorithm templates.

Header Files 3

Open Watcom C++ Class Library Reference

complex This header file defines the std::complex class template and related
function templates. This template can be instantiated for the three different
floating point types. It can be used to represent complex numbers and to
perform complex arithmetic.

complex.h This header file defines the legacy Complex class. This class is used to
represent complex numbers and to perform complex arithmetic. The class
defined in this header is not the Standard C++ std::complex class template.

exception/exception.h (exceptio/exceptio.h) This header file defines components to be used
with the exception handling mechanism. It defines the base class of the standard
exception hierarchy.

functional (function) This header file defines the standard functional templates. This
includes the functors and binders described by Standard C++.

fstream/fstream.h This header file defines the filebuf, fstreambase, ifstream,
ofstream, and fstream classes. These classes are used to perform C++ file
input and output operations. The various class members are declared and inline
member functions for the classes are defined.

generic.h This header file is part of the macro support required to implement generic
containers prior to the introduction of templates in the C++ language. It is
retained for backwards compatibility.

iomanip/iomanip.h This header file defines the parameterized manipulators.

ios/ios.h This header file defines the class ios that is used as a base of the other iostream
classes.

iosfwd/iosfwd.h This header file provides forward declarations of the iostream classes. It
should be used in cases where the full class definitions are not needed but where
one still wants to declare pointers or references to iostream related objects.
Typically this occurs in a header for another class that wants to provide
overloaded inserter or extractor operators. By including iosfwd instead of
iostream (for example), compilation speed can be improved because less
material must be processed by the compiler.

Note that including iosfwd is the only appropriate way to forward declare the
iostream classes. Manually writing forward declarations is not recommended.

iostream/iostream.h This header file (indirectly) defines the ios, istream, ostream, and
iostream classes. These classes form the basis of the C++ formatted input
and output support. The various class members are declared and inline member

4 Header Files

Header Files

functions for the classes are defined. The cin, cout, cerr, and clog
predefined objects are declared along with the non-parameterized manipulators.

istream/istream.h This header file defines class istream and class iostream. It also
defines their associated parameterless manipulators.

iterator This header file defines several templates to facilitate the handling of iterators.
In particular, it defines thestd::iteratortraits template as well as
several other supporting iterator related templates.

limits This header file defines thestd::umericlimits template and provides
specializations of that template for each of the built-in types.

Note that this header is not directly related to the header limits.h from the C
standard library (or to the C++ form of that header, climits).

list This header file defines the std::list class template. It provides a way to
make a sequence of objects with efficient insert and erase operations.

map This header file defines the std::map and std::multimap class templates.
They provide ways to associate keys to values.

memory This header file defines the default allocator template, std::allocator, as
well as several function templates for manipulating raw (uninitialized) memory
regions. In addition this header defines thestd::autoptr template.

Note that the header memory.h is part of the Open Watcom C library and is
unrelated to memory.

new/new.h This header file provides declarations to be used with the intrinsic
operator new and operator delete memory management functions.

numeric This header file defines several standard algorithm templates pertaining to
numerical computation.

ostream/ostream.h This header file defines class ostream. It also defines its associated
parameterless manipulators.

set This header file defines the std::set and std::multiset class templates.
They provide ways to make ordered collections of objects with efficient insert,
erase, and find operations.

Header Files 5

Open Watcom C++ Class Library Reference

stdiobuf.h This header file defines the stdiobuf class which provides the support for the
C++ input and output operations to standard input, standard output, and standard
error streams.

streambuf/streambuf.h (streambu/streambu.h) This header file defines the streambuf
class which provides the support for buffering of input and output operations.
This header file is automatically included by the iostream.h header file.

string This header file defines thestd::basicstring class template. It also
contains the type definitions for std::string and std::wstring. In
addition, this header contains specializations of thestd::chartraits
template for both characters and wide characters.

string.hpp This header file defines the legacy String class. The String class is used to
manipulate character strings. Note that the hpp extension is used to avoid
colliding with the Standard C string.h header file. The class defined in this
header is not the Standard C++ std::string class.

strstream.h (strstrea.h) This header files defines the strstreambuf, strstreambase,
istrstream, ostrstream, and strstream classes. These classes are
used to perform C++ in-memory formatting. The various class members are
declared and inline member functions for the classes are defined.

vector This header contains the std::vector class template.

wcdefs.h This header file contains definitions used by the Open Watcom legacy container
libraries. If a container class needs any of these definitions, the file is
automatically included.

Note that all headers having names that start with "wc" are related to the legacy
container libraries.

wclbase.h This header file defines the base classes which are used by the list containers.

wclcom.h This header file defines the classes which are common to the list containers.

wclibase.h This header file defines the base classes which are used by the list iterators.

wclist.h This header file defines the list container classes. The available list container
classes are single and double linked versions of intrusive, value and pointer lists.

wclistit.h This header file defines the iterator classes that correspond to the list
containers.

6 Header Files

Header Files

wcqueue.h This header file defines the queue class. Entries in a queue class are accessed
first in, first out.

wcstack.h This header file defines the stack class. Entries in a stack class are accessed
last in, first out.

Header Files 7

Open Watcom C++ Class Library Reference

8 Header Files

2 Common Types

The set of classes that make up the C++ class library use several common typedefs and
macros. They are declared in <iostream.h> and <fstream.h>.

typedef long streampos;
typedef long streamoff;
typedef int filedesc;#defineNOTEOF0
#define EOF -1

The streampos type represents an absolute position within the file. For Open Watcom
C++, the file position can be represented by an integral type. For some file systems, or at a
lower level within the file system, the stream position might be represented by an aggregate
(structure) containing information such as cylinder, track, sector and offset.

The streamoff type represents a relative position within the file. The offset can always be
represented as a signed integer quantity since it is a number of characters before or after an
absolute position within the file.

The filedesc type represents the type of a C library file handle. It is used in places where
the I/O stream library takes a C library file handle as an argument.

The
NOTEOF

 macro is defined for cases where a function needs to return something other
than EOF to indicate success.

The EOF macro is defined to be identical to the value provided by the <stdio.h> header
file.

Common Types 9

Open Watcom C++ Class Library Reference

10 Common Types

3 Predefined Objects

Most programs interact in some manner with the keyboard and screen. The C programming
language provides three values, stdin, stdout and stderr, that are used for
communicating with these "standard" devices, which are opened before the user program
starts execution at main(). These three values are FILE pointers and can be used in
virtually any file operation supported by the C library.

In a similar manner, C++ provides seven objects for communicating with the same "standard"
devices. C++ provides the three C FILE pointers stdin, stdout and stderr, but they
cannot be used with the extractors and inserters provided as part of the C++ library. C++
provides four new objects, called cin, cout, cerr and clog, which correspond to stdin,
stdout, stderr and buffered stderr.

3.1 cin

cin is an istream object which is connected to "standard input" (usually the keyboard)
prior to program execution. Values extracted using the istream operator >> class
extractor operators are read from standard input and interpreted according to the type of the
object being extracted.

Extractions from standard input via cin skip whitespace characters by default because the
ios::skipws bit is on. The default behavior can be changed with the ios::setf public
member function or with the setiosflags manipulator.

3.2 cout

cout is an ostream object which is connected to "standard output" (usually the screen)
prior to program execution. Values inserted using the ostream operator << class
inserter operators are converted to characters and written to standard output according to the
type of the object being inserted.

Insertions to standard output via cout are buffered by default because the ios::unitbuf
bit is not on. The default behavior can be changed with the ios::setf public member
function or with the setiosflags manipulator.

cout 11

Open Watcom C++ Class Library Reference

3.3 cerr

cerr is an ostream object which is connected to "standard error" (the screen) prior to
program execution. Values inserted using the ostream operator << class inserter
operators are converted to characters and written to standard error according to the type of the
object being inserted.

Insertions to standard error via cerr are not buffered by default because the
ios::unitbuf bit is on. The default behavior can be changed with the ios::setf
public member function or with the setiosflags manipulator.

3.4 clog

clog is an ostream object which is connected to "standard error" (the screen) prior to
program execution. Values inserted using the ostream operator << class inserter
operators are converted to characters and written to standard error according to the type of the
object being inserted.

Insertions to standard error via clog are buffered by default because the ios::unitbuf
bit is not on. The default behavior can be changed with the ios::setf public member
function or with the setiosflags manipulator.

12 clog

4 istream Input

This chapter describes formatted and unformatted input.

4.1 Formatted Input: Extractors

The operator >> function is used to read formatted values from a stream. It is called an
extractor. Characters are read and interpreted according to the type of object being extracted.

All operator >> functions perform the same basic sequence of operations. First, the input
prefix function ipfx is called with a parameter of zero, causing leading whitespace
characters to be discarded if ios::skipws is set in ios::fmtflags. If the input prefix
function fails and returns zero, the operator >> function also fails and returns
immediately. If the input prefix function succeeds, characters are read from the stream and
interpreted in terms of the type of object being extracted and ios::fmtflags. Finally, the
input suffix function isfx is called.

The operator >> functions return a reference to the specified stream so that multiple
extractions can be done in one statement.

Errors are indicated via ios::iostate. ios::failbit is set if the characters read from
the stream could not be interpreted for the required type. ios::badbit is set if the
extraction of characters from the stream failed in such a way as to make subsequent
extractions impossible. ios::eofbit is set if the stream was located at the end when the
extraction was attempted.

4.2 Unformatted Input

The unformatted input functions are used to read characters from the stream without
interpretation.

Like the extractors, the unformatted input functions follow a pattern. First, they call ipfx,
the input prefix function, with a parameter of one, causing no leading whitespace characters to
be discarded. If the input prefix function fails and returns zero, the unformatted input
function also fails and returns immediately. If the input prefix function succeeds, characters

Unformatted Input 13

Open Watcom C++ Class Library Reference

are read from the stream without interpretation. Finally, isfx, the input suffix function, is
called.

Errors are indicated via the iostate bits. ios::failbit is set if the extraction of characters
from the stream failed. ios::eofbit is set if the stream was located at the end of input
when the operation was attempted.

14 Unformatted Input

5 ostream Output

This chapter describes formatted and unformatted output.

5.1 Formatted Output: Inserters

The operator << function is used to write formatted values to a stream. It is called an
inserter. Values are formatted and written according to the type of object being inserted and
ios::fmtflags.

All operator << functions perform the same basic sequence of operations. First, the
output prefix function opfx is called. If it fails and returns zero, the operator <<
function also fails and returns immediately. If the output prefix function succeeds, the object
is formatted according to its type and ios::fmtflags. The formatted sequence of
characters is then written to the specified stream. Finally, the output suffix function osfx is
called.

The operator << functions return a reference to the specified stream so that multiple
insertions can be done in one statement.

For details on the interpretation of ios::fmtflags, see the ios::fmtflags section of
the Library Functions and Types Chapter.

Errors are indicated via ios::iostate. ios::failbit is set if the operator <<
function fails while writing the characters to the stream.

5.2 Unformatted Output

The unformatted output functions are used to write characters to the stream without
conversion.

Like the inserters, the unformatted output functions follow a pattern. First, they call the
output prefix function opfx and fail if it fails. Then the characters are written without
conversion. Finally, the output suffix function osfx is called.

Unformatted Output 15

Open Watcom C++ Class Library Reference

Errors are indicated via ios::iostate. ios::failbit is set if the function fails while
writing the characters to the stream.

16 Unformatted Output

6 Library Functions and Types

Each of the classes and functions in the Class Library is described in this chapter. Each
description consists of a number of subsections:

Declared: This optional subsection specifies which header file contains the declaration for a class. It is
only found in sections describing class declarations.

Derived From:
This optional subsection shows the inheritance for a class. It is only found in sections
describing class declarations.

Derived By: This optional subsection shows which classes inherit from this class. It is only found in
sections describing class declarations.

Synopsis: This subsection gives the name of the header file that contains the declaration of the function.
This header file must be included in order to reference the function.

For class member functions, the protection associated with the function is indicated via the
presence of one of the private, protected, or public keywords.

The full function prototype is specified. Virtual class member functions are indicated via the
presence of the virtual keyword in the function prototype.

Semantics: This subsection is a description of the function.

Derived Implementation Protocol:
This optional subsection is present for virtual member functions. It describes how derived
implementations of the virtual member function should behave.

Default Implementation:
This optional subsection is present for virtual member functions. It describes how the default
implementation provided with the base class definition behaves.

Results: This optional subsection describes the function’s return value, if any, and the impact of a
member function on its object’s state.

See Also: This optional subsection provides a list of related functions or classes.

Functions and Types 17

Open Watcom C++ Class Library Reference

18 Functions and Types

7 Complex Class

This class is used for the storage and manipulation of complex numbers, which are often
represented by real and imaginary components (Cartesian coordinates), or by magnitude and
angle (polar coordinates). Each object stores exactly one complex number. An object may be
used in expressions in the same manner as floating-point values.

The class documented here is the Open Watcom legacy complex class. It is not the
std::complex class template specified by Standard C++.

Complex Class 19

Complex

Declared: complex.h

The Complex class is used for the storage and manipulation of complex numbers, which are
often represented by real and imaginary components (Cartesian coordinates), or by
magnitude and angle (polar coordinates). Each Complex object stores exactly one complex
number. A Complex object may be used in expressions in the same manner as
floating-point values.

Public Member Functions

The following constructors and destructors are declared:

Complex();
Complex(Complex const &);
Complex(double, double = 0.0);
~Complex();

The following arithmetic member functions are declared:

Complex &operator =(Complex const &);
Complex &operator =(double);
Complex &operator +=(Complex const &);
Complex &operator +=(double);
Complex &operator -=(Complex const &);
Complex &operator -=(double);
Complex &operator *=(Complex const &);
Complex &operator *=(double);
Complex &operator /=(Complex const &);
Complex &operator /=(double);
Complex operator +() const;
Complex operator -() const;
double imag() const;
double real() const;

Friend Functions

The following I/O Stream inserter and extractor friend functions are declared:

friend istream &operator >>(istream &, Complex &);
friend ostream &operator <<(ostream &, Complex const &);

Related Operators

The following operators are declared:

Complex operator +(Complex const &, Complex const &);

20 Complex Class

Complex

Complex operator +(Complex const &, double);
Complex operator +(double , Complex const &);
Complex operator -(Complex const &, Complex const &);
Complex operator -(Complex const &, double);
Complex operator -(double , Complex const &);
Complex operator *(Complex const &, Complex const &);
Complex operator *(Complex const &, double);
Complex operator *(double , Complex const &);
Complex operator /(Complex const &, Complex const &);
Complex operator /(Complex const &, double);
Complex operator /(double , Complex const &);
int operator ==(Complex const &, Complex const &);
int operator ==(Complex const &, double);
int operator ==(double , Complex const &);
int operator !=(Complex const &, Complex const &);
int operator !=(Complex const &, double);
int operator !=(double , Complex const &);

Related Functions

The following related functions are declared:

double abs (Complex const &);
Complex acos (Complex const &);
Complex acosh(Complex const &);
double arg (Complex const &);
Complex asin (Complex const &);
Complex asinh(Complex const &);
Complex atan (Complex const &);
Complex atanh(Complex const &);
Complex conj (Complex const &);
Complex cos (Complex const &);
Complex cosh (Complex const &);
Complex exp (Complex const &);
double imag (Complex const &);
Complex log (Complex const &);
Complex log10(Complex const &);
double norm (Complex const &);
Complex polar(double , double = 0);
Complex pow (Complex const &, Complex const &);
Complex pow (Complex const &, double);
Complex pow (double , Complex const &);
Complex pow (Complex const &, int);
double real (Complex const &);
Complex sin (Complex const &);
Complex sinh (Complex const &);
Complex sqrt (Complex const &);

Complex Class 21

Complex

Complex tan (Complex const &);
Complex tanh (Complex const &);

22 Complex Class

Complex abs()

Synopsis: #include <complex.h>
double abs(Complex const &num);

Semantics: The abs function computes the magnitude of num, which is equivalent to the length
(magnitude) of the vector when the num is represented in polar coordinates.

Results: The abs function returns the magnitude of num.

See Also: arg, norm, polar

Complex Class 23

Complex acos()

Synopsis: #include <complex.h>
Complex acos(Complex const &num);

Semantics: The acos function computes the arccosine of num.

Results: The acos function returns the arccosine of num.

See Also: asin, atan, cos

24 Complex Class

Complex acosh()

Synopsis: #include <complex.h>
Complex acosh(Complex const &num);

Semantics: The acosh function computes the inverse hyperbolic cosine of num.

Results: The acosh function returns the inverse hyperbolic cosine of num.

See Also: asinh, atanh, cosh

Complex Class 25

Complex arg()

Synopsis: #include <complex.h>
double arg(Complex const &num);

Semantics: The arg function computes the angle of the vector when the num is represented in polar
coordinates. The angle has the same sign as the real component of the num. It is positive in
the 1st and 2nd quadrants, and negative in the 3rd and 4th quadrants.

Results: The arg function returns the angle of the vector when the num is represented in polar
coordinates.

See Also: abs, norm, polar

26 Complex Class

Complex asin()

Synopsis: #include <complex.h>
Complex asin(Complex const &num);

Semantics: The asin function computes the arcsine of num.

Results: The asin function returns the arcsine of num.

See Also: acos, atan, sin

Complex Class 27

Complex asinh()

Synopsis: #include <complex.h>
Complex asinh(Complex const &num);

Semantics: The asinh function computes the inverse hyperbolic sine of num.

Results: The asinh function returns the inverse hyperbolic sine of num.

See Also: acosh, atanh, sinh

28 Complex Class

Complex atan()

Synopsis: #include <complex.h>
Complex atan(Complex const &num);

Semantics: The atan function computes the arctangent of num.

Results: The atan function returns the arctangent of num.

See Also: acos, asin, tan

Complex Class 29

Complex atanh()

Synopsis: #include <complex.h>
Complex atanh(Complex const &num);

Semantics: The atanh function computes the inverse hyperbolic tangent of num.

Results: The atanh function returns the inverse hyperbolic tangent of num.

See Also: acosh, asinh, tanh

30 Complex Class

Complex::Complex()

Synopsis: #include <complex.h>
public:
Complex::Complex();

Semantics: This form of the public Complex constructor creates a default Complex object with value
zero for both the real and imaginary components.

Results: This form of the public Complex constructor produces a default Complex object.

See Also: ~Complex, real, imag

Complex Class 31

Complex::Complex()

Synopsis: #include <complex.h>
public:
Complex::Complex(Complex const &num);

Semantics: This form of the public Complex constructor creates a Complex object with the same
value as num.

Results: This form of the public Complex constructor produces a Complex object.

See Also: ~Complex, real, imag

32 Complex Class

Complex::Complex()

Synopsis: #include <complex.h>
public:
Complex::Complex(double real, double imag = 0.0);

Semantics: This form of the public Complex constructor creates a Complex object with the real
component set to real and the imaginary component set to imag. If no imaginary component
is specified, imag takes the default value of zero.

Results: This form of the public Complex constructor produces a Complex object.

See Also: ~Complex, real, imag

Complex Class 33

Complex::~Complex()

Synopsis: #include <complex.h>
public:
Complex::~Complex();

Semantics: The public ~Complex destructor destroys the Complex object. The call to the public
~Complex destructor is inserted implicitly by the compiler at the point where the Complex
object goes out of scope.

Results: The Complex object is destroyed.

See Also: Complex

34 Complex Class

Complex conj()

Synopsis: #include <complex.h>
Complex conj(Complex const &num);

Semantics: The conj function computes the conjugate of num. The conjugate consists of the
unchanged real component, and the negative of the imaginary component.

Results: The conj function returns the conjugate of num.

Complex Class 35

Complex cos()

Synopsis: #include <complex.h>
Complex cos(Complex const &num);

Semantics: The cos function computes the cosine of num.

Results: The cos function returns the cosine of num.

See Also: acos, sin, tan

36 Complex Class

Complex cosh()

Synopsis: #include <complex.h>
Complex cosh(Complex const &num);

Semantics: The cosh function computes the hyperbolic cosine of num.

Results: The cosh function returns the hyperbolic cosine of num.

See Also: acosh, sinh, tanh

Complex Class 37

Complex exp()

Synopsis: #include <complex.h>
Complex exp(Complex const &num);

Semantics: The exp function computes the value of e raised to the power num.

Results: The exp function returns the value of e raised to the power num.

See Also: log, log10, pow, sqrt

38 Complex Class

Complex::imag()

Synopsis: #include <complex.h>
public:
double Complex::imag();

Semantics: The imag public member function extracts the imaginary component of the Complex
object.

Results: The imag public member function returns the imaginary component of the Complex
object.

See Also: imag, real
Complex::real

Complex Class 39

Complex imag()

Synopsis: #include <complex.h>
double imag(Complex const &num);

Semantics: The imag function extracts the imaginary component of num.

Results: The imag function returns the imaginary component of num.

See Also: real
Complex::imag, real

40 Complex Class

Complex log()

Synopsis: #include <complex.h>
Complex log(Complex const &num);

Semantics: The log function computes the natural, or base e, logarithm of num.

Results: The log function returns the natural, or base e, logarithm of num.

See Also: exp, log10, pow, sqrt

Complex Class 41

Complex log10()

Synopsis: #include <complex.h>
Complex log10(Complex const &num);

Semantics: The log10 function computes the base 10 logarithm of num.

Results: The log10 function returns the base 10 logarithm of num.

See Also: exp, log, pow, sqrt

42 Complex Class

Complex norm()

Synopsis: #include <complex.h>
double norm(Complex const &num);

Semantics: The norm function computes the square of the magnitude of num, which is equivalent to the
square of the length (magnitude) of the vector when num is represented in polar coordinates.

Results: The norm function returns the square of the magnitude of num.

See Also: arg, polar

Complex Class 43

Complex operator !=()

Synopsis: #include <complex.h>
int operator !=(Complex const &num1, Complex const &num2);
int operator !=(Complex const &num1, double num2);
int operator !=(double num1, Complex const &num2);

Semantics: The operator != function compares num1 and num2 for inequality. At least one of the
parameters must be a Complex object for this function to be called.

Two Complex objects are not equal if either of their corresponding real or imaginary
components are not equal.

If the operator != function is used with a Complex object and an object of any other
built-in numeric type, the non- Complex object is converted to a double and the second or
third form of the operator != function is used.

Results: The operator != function returns a non-zero value if num1 is not equal to num2,
otherwise zero is returned.

See Also: operator ==

44 Complex Class

Complex operator *()

Synopsis: #include <complex.h>
Complex operator *(Complex const &num1,
Complex const &num2);
Complex operator *(Complex const &num1,
double num2);
Complex operator *(double num1,
Complex const &num2);

Semantics: The operator * function is used to multiply num1 by num2 yielding a Complex object.

The first operator * function multiplies two Complex objects.

The second operator * function multiplies a Complex object and a floating-point value.
In effect, the real and imaginary components of the Complex object are multiplied by the
floating-point value.

The third operator * function multiplies a floating-point value and a Complex object.
In effect, the real and imaginary components of the Complex object are multiplied by the
floating-point value.

If the operator * function is used with a Complex object and an object of any other
built-in numeric type, the non- Complex object is converted to a double and the second or
third form of the operator * function is used.

Results: The operator * function returns a Complex object that is the product of num1 and
num2.

See Also: operator +, operator -, operator /
Complex::operator *=

Complex Class 45

Complex::operator *=()

Synopsis: #include <complex.h>
public:
Complex &Complex::operator *=(Complex const &num);
Complex &Complex::operator *=(double num);

Semantics: The operator *= public member function is used to multiply the num argument into the
Complex object.

The first form of the operator *= public member function multiplies the Complex
object by the Complex parameter.

The second form of the operator *= public member function multiplies the real and
imaginary components of the Complex object by num.

A call to the operator *= public member function where num is any of the other built-in
numeric types, causes num to be promoted to double and the second form of the
operator *= public member function to be used.

Results: The operator *= public member function returns a reference to the target of the
assignment.

See Also: operator *
Complex::operator +=, operator -=, operator /=, operator =

46 Complex Class

Complex::operator +()

Synopsis: #include <complex.h>
public:
Complex Complex::operator +();

Semantics: The unary operator + public member function is provided for completeness. It performs
no operation on the Complex object.

Results: The unary operator + public member function returns a Complex object with the same
value as the original Complex object.

See Also: operator +
Complex::operator +=, operator -

Complex Class 47

Complex operator +()

Synopsis: #include <complex.h>
Complex operator +(Complex const &num1,
Complex const &num2);
Complex operator +(Complex const &num1,
double num2);
Complex operator +(double num1,
Complex const &num2);

Semantics: The operator + function is used to add num1 to num2 yielding a Complex object.

The first operator + function adds two Complex objects.

The second operator + function adds a Complex object and a floating-point value. In
effect, the floating-point value is added to the real component of the Complex object.

The third operator + function adds a floating-point value and a Complex object. In
effect, the floating-point value is added to the real component of the Complex object.

If the operator + function is used with a Complex object and an object of any other
built-in numeric type, the non- Complex object is converted to a double and the second or
third form of the operator + function is used.

Results: The operator + function returns a Complex object that is the sum of num1 and num2.

See Also: operator *, operator -, operator /
Complex::operator +, operator +=

48 Complex Class

Complex::operator +=()

Synopsis: #include <complex.h>
public:
Complex &Complex::operator +=(Complex const &num);
Complex &Complex::operator +=(double num);

Semantics: The operator += public member function is used to add num to the value of the
Complex object. The second form of the operator += public member function adds
num to the real component of the Complex object.

A call to the operator += public member function where num is any of the other built-in
numeric types, causes num to be promoted to double and the second form of the
operator += public member function to be used.

Results: The operator += public member function returns a reference to the target of the
assignment.

See Also: operator +
Complex::operator *=, operator +, operator /=, operator -=,
operator =

Complex Class 49

Complex::operator -()

Synopsis: #include <complex.h>
public:
Complex Complex::operator -();

Semantics: The unary operator - public member function yields a Complex object with the real
and imaginary components having the same magnitude as those of the original object, but
with opposite sign.

Results: The unary operator - public member function returns a Complex object with the same
magnitude as the original Complex object and with opposite sign.

See Also: operator -
Complex::operator +, operator -=

50 Complex Class

Complex operator -()

Synopsis: #include <complex.h>
Complex operator -(Complex const &num1,
Complex const &num2);
Complex operator -(Complex const &num1,
double num2);
Complex operator -(double num1,
Complex const &num2);

Semantics: The operator - function is used to subtract num2 from num1 yielding a Complex
object.

The first operator - function computes the difference between two Complex objects.

The second operator - function computes the difference between a Complex object and
a floating-point value. In effect, the floating-point value is subtracted from the real
component of the Complex object.

The third operator - function computes the difference between a floating-point value
and a Complex object. In effect, the real component of the result is num1 minus the real
component of num2 :CONT, and the imaginary component of the result is the negative of the
imaginary component of num2.

If the operator - function is used with a Complex object and an object of any other
built-in numeric type, the non- Complex object is converted to a double and the second or
third form of the operator - function is used.

Results: The operator - function returns a Complex object that is the difference between num1
and num2.

See Also: operator *, operator +, operator /
Complex::operator -, operator -=

Complex Class 51

Complex::operator -=()

Synopsis: #include <complex.h>
public:
Complex &Complex::operator -=(Complex const &num);
Complex &Complex::operator -=(double num);

Semantics: The operator -= public member function is used to subtract num from the value of the
Complex object. The second form of the operator -= public member function
subtracts num from the real component of the *obj..

A call to the operator -= public member function where num is any of the other built-in
numeric types, causes num to be promoted to double and the second form of the
operator -= public member function to be used.

Results: The operator -= public member function returns a reference to the target of the
assignment.

See Also: operator -
Complex::operator *=, operator +=, operator -, operator /=,
operator =

52 Complex Class

Complex operator /()

Synopsis: #include <complex.h>
Complex operator /(Complex const &num1,
Complex const &num2);
Complex operator /(Complex const &num1,
double num2);
Complex operator /(double num1,
Complex const &num2);

Semantics: The operator / function is used to divide num1 by num2 yielding a Complex object.

The first operator / function divides two Complex objects.

The second operator / function divides a Complex object by a floating-point value. In
effect, the real and imaginary components of the complex number are divided by the
floating-point value.

The third operator / function divides a floating-point value by a Complex object.
Conceptually, the floating-point value is converted to a Complex object and then the
division is done.

If the operator / function is used with a Complex object and an object of any other
built-in numeric type, the non- Complex object is converted to a double and the second or
third form of the operator / function is used.

Results: The operator / function returns a Complex object that is the quotient of num1 divided
by num2.

See Also: operator *, operator +, operator -
Complex::operator /=

Complex Class 53

Complex::operator /=()

Synopsis: #include <complex.h>
public:
Complex &Complex::operator /=(Complex const &num);
Complex &Complex::operator /=(double num);

Semantics: The operator /= public member function is used to divide the Complex object by num.
The second form of the operator /= public member function divides the real and
imaginary components of the Complex object by num.

A call to the operator /= public member function where num is any of the other built-in
numeric types, causes num to be promoted to double and the second form of the
operator /= public member function to be used.

Results: The operator /= public member function returns a reference to the target of the
assignment.

See Also: operator /
Complex::operator *=, operator +=, operator -=, operator =

54 Complex Class

Complex operator <<()

Synopsis: #include <complex.h>
friend ostream &operator <<(ostream &strm, Complex &num);

Semantics: The operator << function is used to write Complex objects to an I/O stream. The
Complex object is always written in the form:

(real,imag)

The real and imaginary components are written using the normal rules for formatting
floating-point numbers. Any formatting options specified prior to inserting the num apply to
both the real and imaginary components. If the real and imaginary components are to be
inserted using different formats, the real and imag member functions should be used to
insert each component separately.

Results: The operator << function returns a reference to the strm object.

See Also: istream

Complex Class 55

Complex::operator =()

Synopsis: #include <complex.h>
public:
Complex &Complex::operator =(Complex const &num);
Complex &Complex::operator =(double num);

Semantics: The operator = public member function is used to set the value of the Complex object
to num. The first assignment operator copies the value of num into the Complex object.

The second assignment operator sets the real component of the Complex object to num and
the imaginary component to zero.

A call to the operator = public member function where num is any of the other built-in
numeric types, causes num to be promoted to double and the second form of the
operator = public member function to be used.

Results: The operator = public member function returns a reference to the target of the
assignment.

See Also: Complex::operator *=, operator +=, operator -=, operator /=

56 Complex Class

Complex operator ==()

Synopsis: #include <complex.h>
int operator ==(Complex const &num1, Complex const &num2);
int operator ==(Complex const &num1, double num2);
int operator ==(double num1, Complex const &num2);

Semantics: The operator == function compares num1 and num2 for equality. At least one of the
arguments must be a Complex object for this function to be called.

Two Complex objects are equal if their corresponding real and imaginary components are
equal.

If the operator == function is used with a Complex object and an object of any other
built-in numeric type, the non- Complex object is converted to a double and the second or
third form of the operator == function is used.

Results: The operator == function returns a non-zero value if num1 is equal to num2, otherwise
zero is returned.

See Also: operator !=

Complex Class 57

Complex operator >>()

Synopsis: #include <complex.h>
friend istream &operator >>(istream &strm, Complex &num);

Semantics: The operator >> function is used to read a Complex object from an I/O stream. A valid
complex value is of one of the following forms:

(real,imag)
real,imag
(real)

If the imaginary portion is omitted, zero is assumed.

While reading a Complex object, whitespace is ignored before and between the various
components of the number if the ios::skipws bit is set in ios::fmtflags.

Results: The operator >> function returns a reference to strm. num contains the value read from
strm on success, otherwise it is unchanged.

See Also: istream

58 Complex Class

Complex polar()

Synopsis: #include <complex.h>
Complex polar(double mag, double angle = 0.0);

Semantics: The polar function converts mag and angle (polar coordinates) into a complex number.
The angle is optional and defaults to zero if it is unspecified.

Results: The polar function returns a Complex object that is mag and angle interpreted as polar
coordinates.

See Also: abs, arg, norm

Complex Class 59

Complex pow()

Synopsis: #include <complex.h>
Complex pow(Complex const &num, Complex const &exp);
Complex pow(Complex const &num, double exp);
Complex pow(double num, Complex const &exp);
Complex pow(Complex const &num, int exp);

Semantics: The pow function computes num raised to the power exp. The various forms are provided to
minimize the amount of floating-point calculation performed.

Results: The pow function returns a Complex object that is num raised to the power a Complex
object that is exp.

See Also: exp, log, log10, sqrt

60 Complex Class

Complex::real()

Synopsis: #include <complex.h>
public:
double Complex::real();

Semantics: The real public member function extracts the real component of the Complex object.

Results: The real public member function returns the real component of the Complex object.

See Also: imag, real
Complex::imag

Complex Class 61

Complex real()

Synopsis: #include <complex.h>
double real(Complex const &num);

Semantics: The real function extracts the real component of num.

Results: The real function returns the real component of num.

See Also: imag
Complex::imag, real

62 Complex Class

Complex sin()

Synopsis: #include <complex.h>
Complex sin(Complex const &num);

Semantics: The sin function computes the sine of num.

Results: The sin function returns the sine of num.

See Also: asin, cos, tan

Complex Class 63

Complex sinh()

Synopsis: #include <complex.h>
Complex sinh(Complex const &num);

Semantics: The sinh function computes the hyperbolic sine of num.

Results: The sinh function returns the hyperbolic sine of num.

See Also: asinh, cosh, tanh

64 Complex Class

Complex sqrt()

Synopsis: #include <complex.h>
Complex sqrt(Complex const &num);

Semantics: The sqrt function computes the square root of num.

Results: The sqrt function returns the square root of num.

See Also: exp, log, log10, pow

Complex Class 65

Complex tan()

Synopsis: #include <complex.h>
Complex tan(Complex const &num);

Semantics: The tan function computes the tangent of num.

Results: The tan function returns the tangent of num.

See Also: atan, cos, sin

66 Complex Class

Complex tanh()

Synopsis: #include <complex.h>
Complex tanh(Complex const &num);

Semantics: The tanh function computes the hyperbolic tangent of num.

Results: The tanh function returns the hyperbolic tangent of num.

See Also: atanh, cosh, sinh

Complex Class 67

Complex tanh()

68 Complex Class

8 Container Exception Classes

This chapter describes exception handling for the container classes.

Container Exception Classes 69

WCExcept

Declared: wcexcept.h

The WCExcept class provides the exception handling for the container classes. If you have
compiled your code with exception handling enabled, the C++ exception processing can be
used to catch errors. Your source file must be compiled with the exception handling compile
switch for C++ exception processing to occur. The container classes will attempt to set the
container object into a reasonable state if there is an error and exception handling is not
enabled, or if the trap for the specific error has not been enabled by your program.

By default, no exception traps are enabled and no exceptions will be thrown. Exception traps
are enabled by setting the exception state with the exceptions member function.

The wcexcept.h header file is included by the header files for each of the container
classes. There is normally no need to explicitly include the wcexcept.h header file, but
no errors will result if it is included. This class is inherited as a base class for each of the
containers. You do not need to derive from it directly.

The WCListExcept class (formally used by the list container classes) has been replaced by
the WCExcept class. A typedef of the WCListExcept class to the WCExcept class and
thewcliststate type to thewcstate type provide backward compatability with
previous versions of the list containers.

Public Enumerations

The following enumeration typedefs are declared in the public interface:typedefintwcstate;
Public Member Functions

The following public member functions are declared:

WCExcept();
virtual ~WCExcept();wcstateexceptions()const;wcstateexceptions(wcstate);

70 Container Exception Classes

WCExcept::WCExcept()

Synopsis: #include <wcexcept.h>
public:
WCExcept();

Semantics: This form of the public WCExcept constructor creates an WCExcept object.

The public WCExcept constructor is used implicitly by the compiler when it generates a
constructor for a derived class. It is automatically used by the list container classes, and
should not be required in any user derived classes.

Results: The public WCExcept constructor produces an initialized WCExcept object with no
exception traps enabled.

See Also: ~WCExcept

Container Exception Classes 71

WCExcept::~WCExcept()

Synopsis: #include <wcexcept.h>
public:
virtual ~WCExcept();

Semantics: The public ~WCExcept destructor does not do anything explicit. The call to the public
~WCExcept destructor is inserted implicitly by the compiler at the point where the object
derived from WCExcept goes out of scope.

Results: The object derived from WCExcept is destroyed.

See Also: WCExcept

72 Container Exception Classes

WCExcept::exceptions()

Synopsis: #include <wcexcept.h>
public:wcstateexceptions()const;wcstateexceptions(wcstatesetflags);

Semantics: The exceptions public member function queries and/or sets the bits that control which
exceptions are enabled for the list class. Each bit corresponds to an exception, and is set if
the exception is enabled. The first form of the exceptions public member function
returns the current settings of the exception bits. The second form of the function sets the
exception bits to those specified by set_flags.

Results: The current exception bits are returned. If a new set of bits are being set, the returned value
is the old set of exception bits.

Container Exception Classes 73

WCExcept::wc_state

Synopsis: #include <wcexcept.h>
public:
enum wcstate {allfine=0x0000,//�noerrorschecknone=allfine,//�thrownoexceptionsnotempty=0x0001,//�containernotemptyindexrange=0x0002,//�indexisoutofrangeemptycontainer=0x0004,//�emptycontainererroroutofmemory=0x0008,//�allocationfailedresizerequired=0x0010,//�requestneedsresizenotunique=0x0020,//�addingduplicatezerobuckets=0x0040,//�resizinghashtozero
// value to use to check for all errorscheckall=(notempty|indexrange|emptycontainer|outofmemory|resizerequired|notunique|zerobuckets)
};typedefintwcstate;

Semantics: The type WCExcept::wcstate is a set of bits representing the current state of the
container object. TheWCExcept::wcstate member typedef represents the same set of
bits, but uses an int to represent the values, thereby avoiding problems made possible by
the compiler’s ability to use smaller types for enumerations. All uses of these bits should use
theWCExcept::wcstate member typedef.

The bit values defined by theWCExcept::wcstate member typedef can be read and set
by the exceptions member function, which is also used to control exception handling.

TheWCExcept::notempty bit setting traps the destruction of a container when the
container has at one or more entries. If this error is not trapped, memory may not be properly
released back to the system.

TheWCExcept::indexrange state setting traps an attempt to access a container item
by an index value that is either not positive or is larger than the index of the last item in the
container.

TheWCExcept::emptycontainer bit setting traps an attempt to perform and invalid
operation on a container with no entries.

TheWCExcept::outofmemory bit setting traps any container class allocation
failures. If this exception is not enabled, the operation in which the allocation failed will
return a FALSE (zero) value. Container class copy constructors and assignment operators
can also throw this exception, and if not enabled incomplete copies may result.

74 Container Exception Classes

WCExcept::wc_state

TheWCExcept::resizerequired bit setting traps any vector operations which
cannot be performed unless the vector is resized to a larger size. If this exception is not
enabled, the vector class will attempt an appropriate resize when necessary for an operation.

TheWCExcept::notunique bit setting traps an attempt to add a duplicate value to a
set container, or a duplicate key to a dictionary container. The duplicate value is not added
to the container object regardless of the exception trap state.

TheWCExcept::zerobuckets bit setting traps an attempt to resize of hash container
to have zero buckets. No resize is performed whether or not the exception is enabled.

Container Exception Classes 75

WCIterExcept

Declared: wcexcept.h

The WCIterExcept class provides the exception handling for the container iterators. If
you have compiled your code with exception handling enabled, the C++ exception
processing can be used to catch errors. Your source file must be compiled with the exception
handling compile switch for C++ exception processing to occur. The iterators will attempt to
set the class into a reasonable state if there is an error and exception handling is not enabled,
or if the trap for the specific error has not been enabled by your program.

By default, no exception traps are enabled and no exceptions will be thrown. Exception traps
are enabled by setting the exception state with the exceptions member function.

The wcexcept.h header file is included by the header files for each of the iterator classes.
There is normally no need to explicitly include the wcexcept.h header file, but no errors
will result if it is included. This class is inherited as part of the base construction for each of
the iterators. You do not need to derive from it directly.

Public Enumerations

The following enumeration typedefs are declared in the public interface:typedefintwciterstate;
Public Member Functions

The following public member functions are declared:

WCIterExcept();
virtual ~WCIterExcept();wciterstateexceptions()const;wciterstateexceptions(wciterstate);

76 Container Exception Classes

WCIterExcept::WCIterExcept()

Synopsis: #include <wcexcept.h>
public:
WCIterExcept();

Semantics: This form of the public WCIterExcept constructor creates an WCIterExcept object.

The public WCIterExcept constructor is used implicitly by the compiler when it generates
a constructor for a derived class.

Results: The public WCIterExcept constructor produces an initialized WCIterExcept object
with no exception traps enabled.

See Also: ~WCIterExcept

Container Exception Classes 77

WCIterExcept::~WCIterExcept()

Synopsis: #include <wcexcept.h>
public:
virtual ~WCIterExcept();

Semantics: The public ~WCIterExcept destructor does not do anything explicit. The call to the
public ~WCIterExcept destructor is inserted implicitly by the compiler at the point where
the object derived from WCIterExcept goes out of scope.

Results: The object derived from WCIterExcept is destroyed.

See Also: WCIterExcept

78 Container Exception Classes

WCIterExcept::exceptions()

Synopsis: #include <wcexcept.h>
public:wciterstateexceptions()const;wciterstateexceptions(wciterstatesetflags);

Semantics: The exceptions public member function queries and/or sets the bits that control which
exceptions are enabled for the iterator class. Each bit corresponds to an exception, and is set
if the exception is enabled. The first form of the exceptions public member function
returns the current settings of the exception bits. The second form of the function sets the
exception bits to those specified by set_flags.

Results: The current exception bits are returned. If a new set of bits are being set, the returned value
is the old set of exception bits.

Container Exception Classes 79

WCIterExcept::wciter_state

Synopsis: #include <wcexcept.h>
public:
enum wciterstate {allfine=0x0000,//�noerrorschecknone=allfine,//�disableallexceptionsundefiter=0x0001,//�positionisundefinedundefitem=0x0002,//�iteratoritemisundefinediterrange=0x0004,//�advancevalueisbad
// value to use to check for all errorscheckall=(undefiter|undefitem|iterrange)
};typedefintwciterstate;

Semantics: The type WCIterExcept::wciterstate is a set of bits representing the current state of
the iterator. TheWCIterExcept::wciterstate member typedef represents the same
set of bits, but uses an int to represent the values, thereby avoiding problems made possible
by the compiler’s ability to use smaller types for enumerations. All uses of these bits should
use theWCIterExcept::wciterstate member typedef.

The bit values defined by theWCIterExcept::wciterstate member typedef can be
read and set by the member function exceptions, which is used to control exception
handling.

TheWCIterExcept::undefiter bit setting traps the use of the iterator when the
position within the container object is undefined. Trying to operate on an iterator with no
associated container object, increment an iterator which is after the last element, or
decrement an iterator positioned before the first element is an undefined operation.

TheWCIterExcept::undefitem bit setting traps an attempt to obtain the current
element of the iterator when the iterator has no associated container object, or is positioned
either before or after the container elements. Theundefitem exception can be thrown
only by the key and value dictionary iterator member functions, and the current
member function for non-dictionary iterators.

TheWCIterExcept::iterrange bit setting traps an attempt to use a iteration count
value that would place the iterator more than one element past the end or before the
beginning of the container elements. The

iterrange exception can be thrown only by
the operator += and operator -= operators.

80 Container Exception Classes

9 Container Allocators and Deallocators

Example

#include <iostream.h>
#include <wclist.h>
#include <wclistit.h>
#include <wcskip.h>
#include <wcskipit.h>
#include <stdlib.h>

#pragma warning 549 9

const int ElemsPerBlock = 50;

//
// Simple block allocation class. Allocate blocks for ElemsPerBlock
// elements, and use part of the block for each of the next ElemsPerBlock
// allocations, incrementing the number allocated elements. Repeat getting
// more blocks as needed.
//
// Store the blocks in an intrusive single linked list.
//
// On a element deallocation, assume we allocated the memory and just
// decrement the count of allocated elements. When the count gets to zero,
// free all allocated blocks
//
// This implementation assumes sizeof(char) == 1
//

class BlockAlloc {
private:

// the size of elements (in bytes)unsignedelemsize;
// number of elements allocatedunsignednumallocated;
// free space of this number of elements available in first blockunsignednumfreeinblock;
// list of blocks used to store elements (block are chunks of memory,
// pointed by (char *) pointers.WCPtrSList<char>blocklist;
// pointer to the first block in the listchar*currblock;

public:
inline BlockAlloc(unsigned size)

Container Allocators and Deallocators 81

WCIterExcept::wciter_state:elemsize(size),numallocated(0),numfreeinblock(0){};
inline BlockAlloc() {blocklist.clearAndDestroy();
};

// get memory for an element using block allocationvoid*allocator(sizetelemsize);
// free memory for an element using block allocation and deallocationvoiddeallocator(void*oldptr,sizetelemsize);

};void*BlockAlloc::allocator(sizetsize){
// need a new block to perform allocationif(numfreeinblock==0){

// allocate memory for ElemsPerBlock elementscurrblock=newchar[size*ElemsPerBlock];if(currblock==0){
// allocation failed
return(0);

}
// add new block to beginning of listif(!blocklist.insert(currblock)){

// allocation of list element faileddelete(currblock);
return(0);

}numfreeinblock=ElemsPerBlock;
}

// curr block points to a block of memory with some free memorynumallocated++;numfreeinblock��;
// return pointer to a free part of the block, starting at the end
// of the blockreturn(currblock+numfreeinblock*size);

}voidBlockAlloc::deallocator(void*,sizet){
// just decrement the count
// don’t free anything until all elements are deallocatednumallocated��;if(numallocated==0){

// all the elements allocated BlockAlloc object have now been
// deallocated, free all the blocksblocklist.clearAndDestroy();numfreeinblock=0;

}
}

const unsigned NumTestElems = 200;

82 Container Allocators and Deallocators

Container Allocators and Deallocators

// array with random elementsstaticunsignedtestelems[NumTestElems];staticvoidfilltestelems(){
for(int i = 0; i < NumTestElems; i++) {testelems[i]=rand();
}

}voidtestisvlist();voidtestvallist();voidtestvalskiplist();
void main() {filltestelems();testisvlist();testvallist();testvalskiplist();
}

// An intrusive list class

class isvInt : public WCSLink {
public:staticBlockAllocmemorymanage;

int data;

isvInt(int datum) : data(datum) {};void*operatornew(sizetsize){return(memorymanage.allocator(size));
};voidoperatordelete(void*old,sizetsize){memorymanage.deallocator(old,size);
};

};

// define static member dataBlockAllocisvInt::memorymanage(sizeof(isvInt));voidtestisvlist(){
WCIsvSList<isvInt> list;

for(int i = 0; i < NumTestElems; i++) {list.insert(newisvInt(testelems[i]));
}

WCIsvSListIter<isvInt> iter(list);
while(++iter) {

cout << iter.current()->data << " ";
}

Container Allocators and Deallocators 83

WCIterExcept::wciter_state

cout << "\n\n\n";
list.clearAndDestroy();

}

// WCValSList<int> memory allocator/dealloctor supportstaticBlockAllocvallistmanager(WCValSListItemSize(int));staticvoid*vallistalloc(sizetsize){return(vallistmanager.allocator(size));
}staticvoidvallistdealloc(void*old,sizetsize){vallistmanager.deallocator(old,size);
}

// test WCValSList<int>voidtestvallist(){WCValSList<int>list(&vallistalloc,&vallistdealloc);
for(int i = 0; i < NumTestElems; i++) {list.insert(testelems[i]);
}

WCValSListIter<int> iter(list);
while(++iter) {

cout << iter.current() << " ";
}
cout << "\n\n\n";
list.clear();

}

// skip list allocator dealloctors: just use allocator and dealloctor
// functions on skip list elements with one and two pointers
// (this will handle 94% of the elements)constintoneptrsize=WCValSkipListItemSize(int,1);constinttwoptrsize=WCValSkipListItemSize(int,2);staticBlockAlloconeptrmanager(oneptrsize);staticBlockAlloctwoptrmanager(twoptrsize);staticvoid*valskiplistalloc(sizetsize){

switch(size) {caseoneptrsize:return(oneptrmanager.allocator(size));casetwoptrsize:return(twoptrmanager.allocator(size));
default:

return(new char[size]);
}

}staticvoidvalskiplistdealloc(void*old,sizetsize){
switch(size) {caseoneptrsize:oneptrmanager.deallocator(old,size);

break;

84 Container Allocators and Deallocators

Container Allocators and Deallocatorscasetwoptrsize:twoptrmanager.deallocator(old,size);
break;

default:
delete old;
break;

}
}

// test WCValSkipList<int>voidtestvalskiplist(){WCValSkipList<int>skiplist(WCSKIPLISTPROBQUARTER,WCDEFAULTSKIPLISTMAXPTRS,&valskiplistalloc,&valskiplistdealloc);
for(int i = 0; i < NumTestElems; i++) {skiplist.insert(testelems[i]);
}

WCValSkipListIter<int> iter(skiplist);
while(++iter) {

cout << iter.current() << " ";
}
cout << "\n\n\n";
skiplist.clear();

}

Container Allocators and Deallocators 85

WCIterExcept::wciter_state

86 Container Allocators and Deallocators

10 Hash Containers

This chapter describes hash containers.

Hash Containers 87

WCPtrHashDict<Key,Value>

Declared: wchash.h

The WCPtrHashDict<Key,Value> class is a templated class used to store objects in a
dictionary. Dictionaries store values with an associated key, which may be of any type. One
example of a dictionary used in everyday life is the phone book. The phone numbers are the
data values, and the customer name is the key. An example of a specialized dictionary is a
vector, where the key value is the integer index.

As an element is looked up or inserted into the dictionary, the associated key is hashed.
Hashing converts the key into a numeric index value which is used to locate the value. The
storage area referenced by the hash value is usually called a bucket. If more than one key
results in the same hash, the values associated with the keys are placed in a list stored in the
bucket. The equality operator of the key’s type is used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template
parameter defining the type of the indices pointed to by the pointers stored in the dictionary.
The text Value is used to indicate the template parameter defining the type of the data
pointed to by the pointers stored in the dictionary.

The constructor for the WCPtrHashDict<Key,Value> class requires a hashing function,
which given a reference to Key, returns an unsigned value. The returned value modulo
the number of buckets determines the bucket into which the key-value pair will be located.
The return values of the hash function can be spread over the entire range of unsigned
numbers. The hash function return value must be the same for values which are equivalent
by the equivalence operator for Key.

Note that pointers to the key values are stored in the dictionary. Destructors are not called on
the keys pointed to. The key values pointed to in the dictionary should not be changed such
that the equivalence to the old value is modified.

The WCExcept class is a base class of the WCPtrHashDict<Key,Value> class and
provides the exceptions member function. This member function controls the exceptions
which can be thrown by the WCPtrHashDict<Key,Value> object. No exceptions are
enabled unless they are set by the exceptions member function.

Requirements of Key

The WCPtrHashDict<Key,Value> class requires Key to have:

A well defined equivalence operator with constant parameters
(int operator ==(const Key &) const).

Public Member Functions

88 Hash Containers

WCPtrHashDict<Key,Value>

The following member functions are declared in the public interface:WCPtrHashDict(unsigned(*hashfn)(constKey&),unsigned=WCDEFAULTHASHSIZE);WCPtrHashDict(unsigned(*hashfn)(constKey&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizetsize),void(*userdealloc)(void*old,sizetsize));
WCPtrHashDict(const WCPtrHashDict &);
virtual ~WCPtrHashDict();staticunsignedbitHash(constvoid*,sizet);
unsigned buckets() const;
void clear();
void clearAndDestroy();
int contains(const Key *) const;
unsigned entries() const;
Value * find(const Key *) const;
Value * findKeyAndValue(const Key *, Key * &) const;voidforAll(void(*userfn)(Key*,Value*,void*),void
*);
int insert(Key *, Value *);
int isEmpty() const;
Value * remove(const Key *);
void resize(unsigned);

Public Member Operators

The following member operators are declared in the public interface:

Value * & operator [](const Key &);
const Value * & operator [](const Key &) const;
WCPtrHashDict & operator =(const WCPtrHashDict &);
int operator ==(const WCPtrHashDict &) const;

Hash Containers 89

WCPtrHashDict<Key,Value>::WCPtrHashDict()

Synopsis: #include <wchash.h>
public:WCPtrHashDict(unsigned(*hashfn)(constKey&),unsigned=WCDEFAULTHASHSIZE);

Semantics: The public WCPtrHashDict<Key,Value> constructor creates an
WCPtrHashDict<Key,Value> object with no entries and with the number of buckets in
the second optional parameter, which defaults to the constantWCDEFAULTHASHSIZE
(currently defined as 101). The number of buckets specified must be greater than zero, and
will be forced to at least one. If the hash dictionary object can be created, but an allocation
failure occurs when creating the buckets, the table will be created with zero buckets. If theoutofmemory exception is enabled, then attempting to insert into a hash table with zero
buckets with throw anoutofmemory error.

The hash function
hashfn is used to determine which bucket each key-value pair will be

assigned. If no hash function exists, the static member function bitHash is available to
help create one.

Results: The public WCPtrHashDict<Key,Value> constructor creates an initialized
WCPtrHashDict<Key,Value> object with the specified number of buckets and hash
function.

See Also: ~WCPtrHashDict, bitHash,WCExcept::outofmemory

90 Hash Containers

WCPtrHashDict<Key,Value>::WCPtrHashDict()

Synopsis: #include <wchash.h>
public:WCPtrHashDict(unsigned(*hashfn)(constKey&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash dictionary. The semantics of this constructor are the same as the
constructor without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a hash dictionary. To
determine the size of the objects that the memory management functions will be required to
allocate and free, the following macro may be used:
WCPtrHashDictItemSize(Key, Value)

Results: The public WCPtrHashDict<Key,Value> constructor creates an initialized
WCPtrHashDict<Key,Value> object with the specified number of buckets and hash
function.

See Also: ~WCPtrHashDict, bitHash,WCExcept::outofmemory

Hash Containers 91

WCPtrHashDict<Key,Value>::WCPtrHashDict()

Synopsis: #include <wchash.h>
public:
WCPtrHashDict(const WCPtrHashDict &);

Semantics: The public WCPtrHashDict<Key,Value> constructor is the copy constructor for the
WCPtrHashDict<Key,Value> class. The new dictionary is created with the same
number of buckets, hash function, all values or pointers stored in the dictionary, and the
exception trap states. If the hash dictionary object can be created, but an allocation failure
occurs when creating the buckets, the table will be created with zero buckets. If there is not
enough memory to copy all of the values in the dictionary, then only some will be copied,
and the number of entries will correctly reflect the number copied. If all of the elements
cannot be copied, then theoutofmemory exception is thrown if it is enabled.

Results: The public WCPtrHashDict<Key,Value> constructor creates an
WCPtrHashDict<Key,Value> object which is a copy of the passed dictionary.

See Also: ~WCPtrHashDict, operator =,WCExcept::outofmemory

92 Hash Containers

WCPtrHashDict<Key,Value>::~WCPtrHashDict()

Synopsis: #include <wchash.h>
public:
virtual ~WCPtrHashDict();

Semantics: The public ~WCPtrHashDict<Key,Value> destructor is the destructor for the
WCPtrHashDict<Key,Value> class. If the number of dictionary elements is not zero
and thenotempty exception is enabled, the exception is thrown. Otherwise, the
dictionary elements are cleared using the clear member function. The objects which the
dictionary elements point to are not deleted unless the clearAndDestroy member
function is explicitly called before the destructor is called. The call to the public
~WCPtrHashDict<Key,Value> destructor is inserted implicitly by the compiler at the
point where the WCPtrHashDict<Key,Value> object goes out of scope.

Results: The public ~WCPtrHashDict<Key,Value> destructor destroys an
WCPtrHashDict<Key,Value> object.

See Also: clear, clearAndDestroy,WCExcept::notempty

Hash Containers 93

WCPtrHashDict<Key,Value>::bitHash()

Synopsis: #include <wchash.h>
public:staticunsignedbitHash(void*,sizet);

Semantics: The bitHash public member function can be used to implement a hashing function for any
type. A hashing value is generated from the value stored for the number of specified bytes
pointed to by the first parameter.

Results: The bitHash public member function returns an unsigned value which can be used as the
basis of a user defined hash function.

See Also: WCPtrHashDict

94 Hash Containers

WCPtrHashDict<Key,Value>::buckets()

Synopsis: #include <wchash.h>
public:
unsigned buckets const;

Semantics: The buckets public member function is used to find the number of buckets contained in
the WCPtrHashDict<Key,Value> object.

Results: The buckets public member function returns the number of buckets in the dictionary.

See Also: resize

Hash Containers 95

WCPtrHashDict<Key,Value>::clear()

Synopsis: #include <wchash.h>
public:
void clear();

Semantics: The clear public member function is used to clear the dictionary so that it has no entries.
The number of buckets remain unaffected. Objects pointed to by the dictionary elements are
not deleted. The dictionary object is not destroyed and re-created by this function, so the
object destructor is not invoked.

Results: The clear public member function clears the dictionary to have no elements.

See Also: ~WCPtrHashDict, clearAndDestroy, operator =

96 Hash Containers

WCPtrHashDict<Key,Value>::clearAndDestroy()

Synopsis: #include <wchash.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the dictionary and delete
the objects pointed to by the dictionary elements. The dictionary object is not destroyed and
re-created by this function, so the dictionary object destructor is not invoked.

Results: The clearAndDestroy public member function clears the dictionary by deleting the
objects pointed to by the dictionary elements.

See Also: clear

Hash Containers 97

WCPtrHashDict<Key,Value>::contains()

Synopsis: #include <wchash.h>
public:
int contains(const Key *) const;

Semantics: The contains public member function returns non-zero if an element with the specified
key is stored in the dictionary, or zero if there is no equivalent element. Note that
equivalence is based on the equivalence operator of the Key type.

Results: The contains public member function returns a non-zero value if the Key is found in the
dictionary.

See Also: find, findKeyAndValue

98 Hash Containers

WCPtrHashDict<Key,Value>::entries()

Synopsis: #include <wchash.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements
stored in the dictionary.

Results: The entries public member function returns the number of elements in the dictionary.

See Also: buckets, isEmpty

Hash Containers 99

WCPtrHashDict<Key,Value>::find()

Synopsis: #include <wchash.h>
public:
Value * find(const Key *) const;

Semantics: The find public member function is used to find an element with an equivalent key in the
dictionary. If an equivalent element is found, a pointer to the element Value is returned.
Zero is returned if the element is not found. Note that equivalence is based on the
equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

100 Hash Containers

WCPtrHashDict<Key,Value>::findKeyAndValue()

Synopsis: #include <wchash.h>
public:
Value * findKeyAndValue(const Key *,
Key &, Value &) const;

Semantics: The findKeyAndValue public member function is used to find an element in the
dictionary with an key equivalent to the first parameter. If an equivalent element is found, a
pointer to the element Value is returned. The reference to a Key passed as the second
parameter is assigned the found element’s key. Zero is returned if the element is not found.
Note that equivalence is based on the equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

Hash Containers 101

WCPtrHashDict<Key,Value>::forAll()

Synopsis: #include <wchash.h>
public:
void forAll(void(*userfn)(Key*,Value*,void*),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for
every key-value pair in the dictionary. The user function has the prototypevoiduserfunc(Key*key,Value*value,void*data);
As the elements are visited, the user function is invoked with the Key and Value
components of the element passed as the first two parameters. The second parameter of the
forAll function is passed as the third parameter to the user function. This value can be
used to pass any appropriate data from the main code to the user function.

Results: The elements in the dictionary are all visited, with the user function being invoked for each
one.

See Also: find, findKeyAndValue

102 Hash Containers

WCPtrHashDict<Key,Value>::insert()

Synopsis: #include <wchash.h>
public:
int insert(Key *, Value *);

Semantics: The insert public member function inserts a key and value into the dictionary, using the
hash function on the key to determine to which bucket it should be stored. If allocation of
the node to store the key-value pair fails, then theoutofmemory exception is thrown if
it is enabled. If the exception is not enabled, the insert will not be completed.

At some point, the number of buckets initially selected may be too small for the number of
elements inserted. The resize of the dictionary can be controlled by the insertion mechanism
by using WCPtrHashDict as a base class, and providing an insert member function to do a
resize when appropriate. This insert could then call WCPtrHashDict::insert to insert
the element. Note that copy constructors and assignment operators are not inherited in your
class, but you can provide the following inline definitions (assuming that the class inherited
from WCPtrHashDict is named MyHashDict):

inline MyHashDict(const MyHashDict &orig) : WCPtrHashDict(orig) {};
inline MyHashDict &operator=(const MyHashDict &orig) {

return(WCPtrHashDict::operator=(orig));
}

Results: The insert public member function inserts a key and value into the dictionary. If the
insert is successful, a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =,WCExcept::outofmemory

Hash Containers 103

WCPtrHashDict<Key,Value>::isEmpty()

Synopsis: #include <wchash.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the dictionary is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero
if the dictionary is empty.

See Also: buckets, entries

104 Hash Containers

WCPtrHashDict<Key,Value>::operator []()

Synopsis: #include <wchash.h>
public:
Value * & operator[](const Key &);

Semantics: operator [] is the dictionary index operator. A reference to the object stored in the
dictionary with the given Key is returned. If no equivalent element is found, then a new
key-value pair is created with the specified Key value, and initialized with the default
constructor. The returned reference can then be assigned to, so that insertions can be made
with the operator. If an allocation error occurs while inserting a new key-value pair, then theoutofmemory exception is thrown if it is enabled. If the exception is not enabled, then
a reference to address zero will be returned. This will result in a run-time error on systems
which trap address zero references.

Results: The operator [] public member function returns a reference to the element at the given
key value. If the key does not exist, a reference to a created element is returned. The result
of the operator may be assigned to.

See Also:WCExcept::outofmemory

Hash Containers 105

WCPtrHashDict<Key,Value>::operator []()

Synopsis: #include <wchash.h>
public:
Value * const & operator[](const Key *) const;

Semantics: operator [] is the dictionary index operator. A constant reference to the object stored in
the dictionary with the given Key is returned. If no equivalent element is found, then theindexrange exception is thrown if it is enabled. If the exception is not enabled, then a
reference to address zero will be returned. This will result in a run-time error on systems
which trap address zero references.

Results: The operator [] public member function returns a constant reference to the element at
the given key value. The result of the operator may not be assigned to.

See Also:WCExcept::indexrange

106 Hash Containers

WCPtrHashDict<Key,Value>::operator =()

Synopsis: #include <wchash.h>
public:
WCPtrHashDict & operator =(const WCPtrHashDict &);

Semantics: The operator = public member function is the assignment operator for the
WCPtrHashDict<Key,Value> class. The left hand side dictionary is first cleared using
the clear member function, and then the right hand side dictionary is copied. The hash
function, exception trap states, and all of the dictionary elements are copied. If an allocation
failure occurs when creating the buckets, the table will be created with zero buckets, and theoutofmemory exception is thrown if it is enabled. If there is not enough memory to
copy all of the values or pointers in the dictionary, then only some will be copied, and theoutofmemory exception is thrown if it is enabled. The number of entries will correctly
reflect the number copied.

Results: The operator = public member function assigns the left hand side dictionary to be a copy
of the right hand side.

See Also: clear,WCExcept::outofmemory

Hash Containers 107

WCPtrHashDict<Key,Value>::operator ==()

Synopsis: #include <wchash.h>
public:
int operator ==(const WCPtrHashDict &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCPtrHashDict<Key,Value> class. Two dictionary objects are equivalent if they are
the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side dictionary are
the same object. A FALSE (zero) value is returned otherwise.

108 Hash Containers

WCPtrHashDict<Key,Value>::remove()

Synopsis: #include <wchash.h>
public:
Value * remove(const Key *);

Semantics: The remove public member function is used to remove the specified element from the
dictionary. If an equivalent element is found, the pointer value is returned. Zero is returned
if the element is not found. Note that equivalence is based on the equivalence operator of the
Key type.

Results: The element is removed from the dictionary if it found.

Hash Containers 109

WCPtrHashDict<Key,Value>::resize()

Synopsis: #include <wchash.h>
public:
void resize(unsigned);

Semantics: The resize public member function is used to change the number of buckets contained in
the dictionary. If the new number is larger than the previous dictionary size, then the hash
function will be used on all of the stored elements to determine which bucket they should be
stored into. Entries are not destroyed or created in the process of being moved. If there is
not enough memory to resize the dictionary, theoutofmemory exception is thrown if it
is enabled, and the dictionary will contain the number of buckets it contained before the
resize. If the new number is zero, then thezerobuckets exception is thrown if it is
enabled, and no resize will be performed. The dictionary is guaranteed to contain the same
number of entries after the resize.

Results: The dictionary is resized to the new number of buckets.

See Also:WCExcept::outofmemory,WCExcept::zerobuckets

110 Hash Containers

WCPtrHashTable<Type>, WCPtrHashSet<Type>

Declared: wchash.h

WCPtrHashTable<Type> and WCPtrHashSet<Type> classes are templated classes
used to store objects in a hash. A hash saves objects in such a way as to make it efficient to
locate and retrieve an element. As an element is looked up or inserted into the hash, the
value of the element is hashed. Hashing results in a numeric index which is used to locate
the value. The storage area referenced by the hash value is usually called a bucket. If more
than one element results in the same hash, the value associated with the hash is placed in a
list stored in the bucket. A hash table allows more than one copy of an element that is
equivalent, while the hash set allows only one copy. The equality operator of the element’s
type is used to locate the value.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type of the data pointed to by the pointers stored in the hash.

The constructor for the WCPtrHashTable<Type> and WCPtrHashSet<Type> classes
requires a hashing function, which given a reference to Type, returns an unsigned value.
The returned value modulo the number of buckets determines the bucket into which the
element will be located. The return values of the hash function can be spread over the entire
range of unsigned numbers. The hash function return value must be the same for values
which are equivalent by the equivalence operator for Type.

Note that pointers to the elements are stored in the hash. Destructors are not called on the
elements pointed to. The data values pointed to in the hash should not be changed such that
the equivalence to the old value is modified.

The WCExcept class is a base class of the WCPtrHashTable<Type> and
WCPtrHashSet<Type> classes and provides the exceptions member function. This
member function controls the exceptions which can be thrown by the
WCPtrHashTable<Type> and WCPtrHashSet<Type> objects. No exceptions are
enabled unless they are set by the exceptions member function.

Requirements of Type

The WCPtrHashTable<Type> and WCPtrHashSet<Type> classes requires Type to
have:

A well defined equivalence operator with constant parameters
(int operator ==(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:

Hash Containers 111

WCPtrHashTable<Type>, WCPtrHashSet<Type>WCPtrHashSet(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE);WCPtrHashSet(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizetsize),void(*userdealloc)(void*old,sizetsize));
WCPtrHashSet(const WCPtrHashSet &);
virtual ~WCPtrHashSet();WCPtrHashTable(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE);WCPtrHashTable(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizetsize),void(*userdealloc)(void*old,sizetsize));
WCPtrHashTable(const WCPtrHashTable &);
virtual ~WCPtrHashTable();staticunsignedbitHash(constvoid*,sizet);
unsigned buckets() const;
void clear();
void clearAndDestroy();
int contains(const Type *) const;
unsigned entries() const;
Type * find(const Type *) const;voidforAll(void(*userfn)(Type*,void*),void*);
int insert(Type *);
int isEmpty() const;
Type * remove(const Type *);
void resize(unsigned);

The following public member functions are available for the WCPtrHashTable class only:

unsigned occurrencesOf(const Type *) const;
unsigned removeAll(const Type *);

Public Member Operators

The following member operators are declared in the public interface:

WCPtrHashSet & operator =(const WCPtrHashSet &);
int operator ==(const WCPtrHashSet &) const;
WCPtrHashTable & operator =(const WCPtrHashTable &);
int operator ==(const WCPtrHashTable &) const;

112 Hash Containers

WCPtrHashSet<Type>::WCPtrHashSet()

Synopsis: #include <wchash.h>
public:WCPtrHashSet(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE);

Semantics: The WCPtrHashSet<Type> constructor creates a WCPtrHashSet object with no entries
and with the number of buckets in the second optional parameter, which defaults to the
constantWCDEFAULTHASHSIZE (currently defined as 101). The number of buckets
specified must be greater than zero, and will be forced to at least one. If the hash object can
be created, but an allocation failure occurs when creating the buckets, the table will be
created with zero buckets. If theoutofmemory exception is enabled, then attempting to
insert into a hash table with zero buckets with throw anoutofmemory error.

The hash function
hashfn is used to determine which bucket each value will be assigned

to. If no hash function exists, the static member function bitHash is available to help
create one.

Results: The WCPtrHashSet<Type> constructor creates an initialized WCPtrHashSet object
with the specified number of buckets and hash function.

See Also: ~WCPtrHashSet, bitHash,WCExcept::outofmemory

Hash Containers 113

WCPtrHashSet<Type>::WCPtrHashSet()

Synopsis: #include <wchash.h>
public:WCPtrHashSet(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a hash. To determine the
size of the objects that the memory management functions will be required to allocate and
free, the following macro may be used:
WCPtrHashSetItemSize(Type)

Results: The WCPtrHashSet<Type> constructor creates an initialized WCPtrHashSet object
with the specified number of buckets and hash function.

See Also: ~WCPtrHashSet, bitHash,WCExcept::outofmemory

114 Hash Containers

WCPtrHashSet<Type>::WCPtrHashSet()

Synopsis: #include <wchash.h>
public:
WCPtrHashSet(const WCPtrHashSet &);

Semantics: The WCPtrHashSet<Type> is the copy constructor for the WCPtrHashSet class. The
new hash is created with the same number of buckets, hash function, all values or pointers
stored in the hash, and the exception trap states. If the hash object can be created, but an
allocation failure occurs when creating the buckets, the hash will be created with zero
buckets. If there is not enough memory to copy all of the values, then only some will be
copied, and the number of entries will correctly reflect the number copied. If all of the
elements cannot be copied, then theoutofmemory exception is thrown if it is enabled.

Results: The WCPtrHashSet<Type> constructor creates a WCPtrHashSet object which is a
copy of the passed hash.

See Also: ~WCPtrHashSet, operator =,WCExcept::outofmemory

Hash Containers 115

WCPtrHashSet<Type>::~WCPtrHashSet()

Synopsis: #include <wchash.h>
public:
virtual ~WCPtrHashSet();

Semantics: The WCPtrHashSet<Type> destructor is the destructor for the WCPtrHashSet class.
If the number of elements is not zero and thenotempty exception is enabled, the
exception is thrown. Otherwise, the hash elements are cleared using the clear member
function. The objects which the hash elements point to are not deleted unless the
clearAndDestroy member function is explicitly called before the destructor is called.
The call to the WCPtrHashSet<Type> destructor is inserted implicitly by the compiler at
the point where the WCPtrHashSet object goes out of scope.

Results: The call to the WCPtrHashSet<Type> destructor destroys a WCPtrHashSet object.

See Also: clear, clearAndDestroy,WCExcept::notempty

116 Hash Containers

WCPtrHashTable<Type>::WCPtrHashTable()

Synopsis: #include <wchash.h>
public:WCPtrHashTable(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE);

Semantics: The WCPtrHashTable<Type> constructor creates a WCPtrHashTable object with no
entries and with the number of buckets in the second optional parameter, which defaults to
the constantWCDEFAULTHASHSIZE (currently defined as 101). The number of
buckets specified must be greater than zero, and will be forced to at least one. If the hash
object can be created, but an allocation failure occurs when creating the buckets, the table
will be created with zero buckets. If theoutofmemory exception is enabled, then
attempting to insert into a hash table with zero buckets with throw anoutofmemory
error.

The hash function
hashfn is used to determine which bucket each value will be assigned

to. If no hash function exists, the static member function bitHash is available to help
create one.

Results: The WCPtrHashTable<Type> constructor creates an initialized WCPtrHashTable
object with the specified number of buckets and hash function.

See Also: ~WCPtrHashTable, bitHash,WCExcept::outofmemory

Hash Containers 117

WCPtrHashTable<Type>::WCPtrHashTable()

Synopsis: #include <wchash.h>
public:WCPtrHashTable(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a hash. To determine the
size of the objects that the memory management functions will be required to allocate and
free, the following macro may be used:
WCPtrHashTableItemSize(Type)

Results: The WCPtrHashTable<Type> constructor creates an initialized WCPtrHashTable
object with the specified number of buckets and hash function.

See Also: ~WCPtrHashTable, bitHash,WCExcept::outofmemory

118 Hash Containers

WCPtrHashTable<Type>::WCPtrHashTable()

Synopsis: #include <wchash.h>
public:
WCPtrHashTable(const WCPtrHashTable &);

Semantics: The WCPtrHashTable<Type> is the copy constructor for the WCPtrHashTable class.
The new hash is created with the same number of buckets, hash function, all values or
pointers stored in the hash, and the exception trap states. If the hash object can be created,
but an allocation failure occurs when creating the buckets, the hash will be created with zero
buckets. If there is not enough memory to copy all of the values, then only some will be
copied, and the number of entries will correctly reflect the number copied. If all of the
elements cannot be copied, then theoutofmemory exception is thrown if it is enabled.

Results: The WCPtrHashTable<Type> constructor creates a WCPtrHashTable object which is
a copy of the passed hash.

See Also: ~WCPtrHashTable, operator =,WCExcept::outofmemory

Hash Containers 119

WCPtrHashTable<Type>::~WCPtrHashTable()

Synopsis: #include <wchash.h>
public:
virtual ~WCPtrHashTable();

Semantics: The WCPtrHashTable<Type> destructor is the destructor for the WCPtrHashTable
class. If the number of elements is not zero and thenotempty exception is enabled, the
exception is thrown. Otherwise, the hash elements are cleared using the clear member
function. The objects which the hash elements point to are not deleted unless the
clearAndDestroy member function is explicitly called before the destructor is called.
The call to the WCPtrHashTable<Type> destructor is inserted implicitly by the compiler
at the point where the WCPtrHashTable object goes out of scope.

Results: The call to the WCPtrHashTable<Type> destructor destroys a WCPtrHashTable
object.

See Also: clear, clearAndDestroy,WCExcept::notempty

120 Hash Containers

WCPtrHashTable<Type>::bitHash(), WCPtrHashSet<Type>::bitHash()

Synopsis: #include <wchash.h>
public:staticunsignedbitHash(void*,sizet);

Semantics: The bitHash public member function can be used to implement a hashing function for any
type. A hashing value is generated from the value stored for the number of specified bytes
pointed to by the first parameter.

Results: The bitHash public member function returns an unsigned value which can be used as the
basis of a user defined hash function.

See Also: WCPtrHashSet, WCPtrHashTable

Hash Containers 121

WCPtrHashTable<Type>::buckets(), WCPtrHashSet<Type>::buckets()

Synopsis: #include <wchash.h>
public:
unsigned buckets() const;

Semantics: The buckets public member function is used to find the number of buckets contained in
the hash object.

Results: The buckets public member function returns the number of buckets in the hash.

See Also: resize

122 Hash Containers

WCPtrHashTable<Type>::clear(), WCPtrHashSet<Type>::clear()

Synopsis: #include <wchash.h>
public:
void clear();

Semantics: The clear public member function is used to clear the hash so that it has no entries. The
number of buckets remain unaffected. Objects pointed to by the hash elements are not
deleted. The hash object is not destroyed and re-created by this function, so the object
destructor is not invoked.

Results: The clear public member function clears the hash to have no elements.

See Also: ~WCPtrHashSet, ~WCPtrHashTable, clearAndDestroy, operator =

Hash Containers 123

WCPtrHashTable<Type>,WCPtrHashSet<Type>::clearAndDestroy()

Synopsis: #include <wchash.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the hash and delete the
objects pointed to by the hash elements. The hash object is not destroyed and re-created by
this function, so the hash object destructor is not invoked.

Results: The clearAndDestroy public member function clears the hash by deleting the objects
pointed to by the hash elements.

See Also: clear

124 Hash Containers

WCPtrHashTable<Type>::contains(), WCPtrHashSet<Type>::contains()

Synopsis: #include <wchash.h>
public:
int contains(const Type *) const;

Semantics: The contains public member function returns non-zero if the element is stored in the
hash, or zero if there is no equivalent element. Note that equivalence is based on the
equivalence operator of the element type.

Results: The contains public member function returns a non-zero value if the element is found in
the hash.

See Also: find

Hash Containers 125

WCPtrHashTable<Type>::entries(), WCPtrHashSet<Type>::entries()

Synopsis: #include <wchash.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements
stored in the hash.

Results: The entries public member function returns the number of elements in the hash.

See Also: buckets, isEmpty

126 Hash Containers

WCPtrHashTable<Type>::find(), WCPtrHashSet<Type>::find()

Synopsis: #include <wchash.h>
public:
Type * find(const Type *) const;

Semantics: The find public member function is used to find an element with an equivalent key in the
hash. If an equivalent element is found, a pointer to the element is returned. Zero is returned
if the element is not found. Note that equivalence is based on the equivalence operator of the
element type.

Results: The element equivalent to the passed key is located in the hash.

Hash Containers 127

WCPtrHashTable<Type>::forAll(), WCPtrHashSet<Type>::forAll()

Synopsis: #include <wchash.h>
public:
void forAll(void(*userfn)(Type*,void*),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for
every value in the hash. The user function has the prototypevoiduserfunc(Type*value,void*data);
As the elements are visited, the user function is invoked with the element passed as the first.
The second parameter of the forAll function is passed as the second parameter to the user
function. This value can be used to pass any appropriate data from the main code to the user
function.

Results: The elements in the hash are all visited, with the user function being invoked for each one.

See Also: find

128 Hash Containers

WCPtrHashTable<Type>::insert(), WCPtrHashSet<Type>::insert()

Synopsis: #include <wchash.h>
public:
int insert(Type *);

Semantics: The insert public member function inserts a value into the hash, using the hash function to
determine to which bucket it should be stored. If allocation of the node to store the value
fails, then theoutofmemory exception is thrown if it is enabled. If the exception is not
enabled, the insert will not be completed.

With a WCPtrHashSet, there must be only one equivalent element in the set. If an
element equivalent to the inserted element is already in the hash set, the hash set will remain
unchanged, and thenotunique exception is thrown if it is enabled. If the exception is
not enabled, the insert will not be completed.

At some point, the number of buckets initially selected may be too small for the number of
elements inserted. The resize of the hash can be controlled by the insertion mechanism by
using WCPtrHashSet (or WCPtrHashTable) as a base class, and providing an insert
member function to do a resize when appropriate. This insert could then call
WCPtrHashSet::insert (or WCPtrHashTable::insert) to insert the element.
Note that copy constructors and assignment operators are not inherited in your class, but you
can provide the following inline definitions (assuming that the class inherited from
WCPtrHashTable is named MyHashTable):

inline MyHashTable(const MyHashTable &orig)
: WCPtrHashTable(orig) {};

inline MyHashTable &operator=(const MyHashTable &orig) {
return(WCPtrHashTable::operator=(orig));

}

Results: The insert public member function inserts a value into the hash. If the insert is
successful, a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =,WCExcept::outofmemory

Hash Containers 129

WCPtrHashTable<Type>::isEmpty(), WCPtrHashSet<Type>::isEmpty()

Synopsis: #include <wchash.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the hash is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero
if the hash is empty.

See Also: buckets, entries

130 Hash Containers

WCPtrHashTable<Type>::occurencesOf()

Synopsis: #include <wchash.h>
public:
unsigned occurrencesOf(const Type *) const;

Semantics: The occurencesOf public member function is used to return the current number of
elements stored in the hash which are equivalent to the passed value. Note that equivalence
is based on the equivalence operator of the element type.

Results: The occurencesOf public member function returns the number of elements in the hash.

See Also: buckets, entries, find, isEmpty

Hash Containers 131

WCPtrHashTable<Type>::operator =(), WCPtrHashSet<Type>::operator =()

Synopsis: #include <wchash.h>
public:
WCPtrHashSet & operator =(const WCPtrHashSet &);
WCPtrHashTable & operator =(const WCPtrHashTable &);

Semantics: The operator = public member function is the assignment operator for the
WCPtrHashTable<Type> and WCPtrHashSet<Type> classes. The left hand side
hash is first cleared using the clear member function, and then the right hand side hash is
copied. The hash function, exception trap states, and all of the hash elements are copied. If
an allocation failure occurs when creating the buckets, the table will be created with zero
buckets, and theoutofmemory exception is thrown if it is enabled. If there is not
enough memory to copy all of the values or pointers in the hash, then only some will be
copied, and theoutofmemory exception is thrown if it is enabled. The number of
entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side hash to be a copy of
the right hand side.

See Also: clear,WCExcept::outofmemory

132 Hash Containers

WCPtrHashTable<Type>::operator ==(), WCPtrHashSet<Type>::operator ==()

Synopsis: #include <wchash.h>
public:
int operator ==(const WCPtrHashSet &) const;
int operator ==(const WCPtrHashTable &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCPtrHashTable<Type> and WCPtrHashSet<Type> classes. Two hash objects are
equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side hash are the
same object. A FALSE (zero) value is returned otherwise.

Hash Containers 133

WCPtrHashTable<Type>::remove(), WCPtrHashSet<Type>::remove()

Synopsis: #include <wchash.h>
public:
Type * remove(const Type *);

Semantics: The remove public member function is used to remove the specified element from the hash.
If an equivalent element is found, the pointer value is returned. Zero is returned if the
element is not found. If the hash is a table and there is more than one element equivalent to
the specified element, then the first equivalent element added to the table is removed. Note
that equivalence is based on the equivalence operator of the element type.

Results: The element is removed from the hash if it found.

134 Hash Containers

WCPtrHashTable<Type>::removeAll()

Synopsis: #include <wchash.h>
public:
unsigned removeAll(const Type *);

Semantics: The removeAll public member function is used to remove all elements equivalent to the
specified element from the hash. Zero is returned if no equivalent elements are found. Note
that equivalence is based on the equivalence operator of the element type.

Results: All equivalent elements are removed from the hash.

Hash Containers 135

WCPtrHashTable<Type>::resize(), WCPtrHashSet<Type>::resize()

Synopsis: #include <wchash.h>
public:
void resize(unsigned);

Semantics: The resize public member function is used to change the number of buckets contained in
the hash. If the new number is larger than the previous hash size, then the hash function will
be used on all of the stored elements to determine which bucket they should be stored into.
Entries are not destroyed or created in the process of being moved. If there is not enough
memory to resize the hash, theoutofmemory exception is thrown if it is enabled, and
the hash will contain the number of buckets it contained before the resize. If the new number
is zero, then thezerobuckets exception is thrown if it is enabled, and no resize will be
performed. The hash is guaranteed to contain the same number of entries after the resize.

Results: The hash is resized to the new number of buckets.

See Also:WCExcept::outofmemory,WCExcept::zerobuckets

136 Hash Containers

WCValHashDict<Key,Value>

Declared: wchash.h

The WCValHashDict<Key,Value> class is a templated class used to store objects in a
dictionary. Dictionaries store values with an associated key, which may be of any type. One
example of a dictionary used in everyday life is the phone book. The phone numbers are the
data values, and the customer name is the key. An example of a specialized dictionary is a
vector, where the key value is the integer index.

As an element is looked up or inserted into the dictionary, the associated key is hashed.
Hashing converts the key into a numeric index value which is used to locate the value. The
storage area referenced by the hash value is usually called a bucket. If more than one key
results in the same hash, the values associated with the keys are placed in a list stored in the
bucket. The equality operator of the key’s type is used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template
parameter defining the type of the indices used to store data in the dictionary. The text
Value is used to indicate the template parameter defining the type of the data stored in the
dictionary.

The constructor for the WCValHashDict<Key,Value> class requires a hashing function,
which given a reference to Key, returns an unsigned value. The returned value modulo
the number of buckets determines the bucket into which the key-value pair will be located.
The return values of the hash function can be spread over the entire range of unsigned
numbers. The hash function return value must be the same for values which are equivalent
by the equivalence operator for Key.

Values are copied into the dictionary, which could be undesirable if the stored objects are
complicated and copying is expensive. Value dictionaries should not be used to store objects
of a base class if any derived types of different sizes would be stored in the dictionary, or if
the destructor for a derived class must be called.

The WCExcept class is a base class of the WCValHashDict<Key,Value> class and
provides the exceptions member function. This member function controls the exceptions
which can be thrown by the WCValHashDict<Key,Value> object. No exceptions are
enabled unless they are set by the exceptions member function.

Requirements of Key and Value

The WCValHashDict<Key,Value> class requires Key to have:

A default constructor (Key::Key()).

A well defined copy constructor (Key::Key(const Key &)).

Hash Containers 137

WCValHashDict<Key,Value>

A well defined assignment operator (Key & operator =(const Key &)).

A well defined equivalence operator with constant parameters
(int operator ==(const Key &) const).

The WCValHashDict<Key,Value> class requires Value to have:

A default constructor (Value::Value()).

A well defined copy constructor (Value::Value(const Value &)).

A well defined assignment operator (Value & operator =(const Value &)).

Public Member Functions

The following member functions are declared in the public interface:WCValHashDict(unsigned(*hashfn)(constKey&),unsigned=WCDEFAULTHASHSIZE);WCValHashDict(unsigned(*hashfn)(constKey&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizetsize),void(*userdealloc)(void*old,sizetsize));
WCValHashDict(const WCValHashDict &);
virtual ~WCValHashDict();staticunsignedbitHash(constvoid*,sizet);
unsigned buckets() const;
void clear();
int contains(const Key &) const;
unsigned entries() const;
int find(const Key &, Value &) const;
int findKeyAndValue(const Key &, Key &, Value &) const;voidforAll(void(*userfn)(Key,Value,void*),void*);
int insert(const Key &, const Value &);
int isEmpty() const;
int remove(const Key &);
void resize(unsigned);

Public Member Operators

The following member operators are declared in the public interface:

Value & operator [](const Key &);
const Value & operator [](const Key &) const;
WCValHashDict & operator =(const WCValHashDict &);
int operator ==(const WCValHashDict &) const;

138 Hash Containers

WCValHashDict<Key,Value>::WCValHashDict()

Synopsis: #include <wchash.h>
public:WCValHashDict(unsigned(*hashfn)(constKey&),unsigned=WCDEFAULTHASHSIZE);

Semantics: The public WCValHashDict<Key,Value> constructor creates an
WCValHashDict<Key,Value> object with no entries and with the number of buckets in
the second optional parameter, which defaults to the constantWCDEFAULTHASHSIZE
(currently defined as 101). The number of buckets specified must be greater than zero, and
will be forced to at least one. If the hash dictionary object can be created, but an allocation
failure occurs when creating the buckets, the table will be created with zero buckets. If theoutofmemory exception is enabled, then attempting to insert into a hash table with zero
buckets with throw anoutofmemory error.

The hash function
hashfn is used to determine which bucket each key-value pair will be

assigned. If no hash function exists, the static member function bitHash is available to
help create one.

Results: The public WCValHashDict<Key,Value> constructor creates an initialized
WCValHashDict<Key,Value> object with the specified number of buckets and hash
function.

See Also: ~WCValHashDict, bitHash,WCExcept::outofmemory

Hash Containers 139

WCValHashDict<Key,Value>::WCValHashDict()

Synopsis: #include <wchash.h>
public:WCValHashDict(unsigned(*hashfn)(constKey&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash dictionary. The semantics of this constructor are the same as the
constructor without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a hash dictionary. To
determine the size of the objects that the memory management functions will be required to
allocate and free, the following macro may be used:
WCValHashDictItemSize(Key, Value)

Results: The public WCValHashDict<Key,Value> constructor creates an initialized
WCValHashDict<Key,Value> object with the specified number of buckets and hash
function.

See Also: ~WCValHashDict, bitHash,WCExcept::outofmemory

140 Hash Containers

WCValHashDict<Key,Value>::WCValHashDict()

Synopsis: #include <wchash.h>
public:
WCValHashDict(const WCValHashDict &);

Semantics: The public WCValHashDict<Key,Value> constructor is the copy constructor for the
WCValHashDict<Key,Value> class. The new dictionary is created with the same
number of buckets, hash function, all values or pointers stored in the dictionary, and the
exception trap states. If the hash dictionary object can be created, but an allocation failure
occurs when creating the buckets, the table will be created with zero buckets. If there is not
enough memory to copy all of the values in the dictionary, then only some will be copied,
and the number of entries will correctly reflect the number copied. If all of the elements
cannot be copied, then theoutofmemory exception is thrown if it is enabled.

Results: The public WCValHashDict<Key,Value> constructor creates an
WCValHashDict<Key,Value> object which is a copy of the passed dictionary.

See Also: ~WCValHashDict, operator =,WCExcept::outofmemory

Hash Containers 141

WCValHashDict<Key,Value>::~WCValHashDict()

Synopsis: #include <wchash.h>
public:
virtual ~WCValHashDict();

Semantics: The public ~WCValHashDict<Key,Value> destructor is the destructor for the
WCValHashDict<Key,Value> class. If the number of dictionary elements is not zero
and thenotempty exception is enabled, the exception is thrown. Otherwise, the
dictionary elements are cleared using the clear member function. The call to the public
~WCValHashDict<Key,Value> destructor is inserted implicitly by the compiler at the
point where the WCValHashDict<Key,Value> object goes out of scope.

Results: The public ~WCValHashDict<Key,Value> destructor destroys an
WCValHashDict<Key,Value> object.

See Also: clear,WCExcept::notempty

142 Hash Containers

WCValHashDict<Key,Value>::bitHash()

Synopsis: #include <wchash.h>
public:staticunsignedbitHash(void*,sizet);

Semantics: The bitHash public member function can be used to implement a hashing function for any
type. A hashing value is generated from the value stored for the number of specified bytes
pointed to by the first parameter. For example:unsignedmyhashfn(constint&key){

return(WCValHashDict<int,String>::bitHash(&key, sizeof(int));
}WCValHashDict<int,String>dataobject(&myhashfn);

Results: The bitHash public member function returns an unsigned value which can be used as the
basis of a user defined hash function.

See Also: WCValHashDict

Hash Containers 143

WCValHashDict<Key,Value>::buckets()

Synopsis: #include <wchash.h>
public:
unsigned buckets const;

Semantics: The buckets public member function is used to find the number of buckets contained in
the WCValHashDict<Key,Value> object.

Results: The buckets public member function returns the number of buckets in the dictionary.

See Also: resize

144 Hash Containers

WCValHashDict<Key,Value>::clear()

Synopsis: #include <wchash.h>
public:
void clear();

Semantics: The clear public member function is used to clear the dictionary so that it has no entries.
The number of buckets remain unaffected. Elements stored in the dictionary are destroyed
using the destructors of Key and of Value. The dictionary object is not destroyed and
re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the dictionary to have no elements.

See Also: ~WCValHashDict, operator =

Hash Containers 145

WCValHashDict<Key,Value>::contains()

Synopsis: #include <wchash.h>
public:
int contains(const Key &) const;

Semantics: The contains public member function returns non-zero if an element with the specified
key is stored in the dictionary, or zero if there is no equivalent element. Note that
equivalence is based on the equivalence operator of the Key type.

Results: The contains public member function returns a non-zero value if the Key is found in the
dictionary.

See Also: find, findKeyAndValue

146 Hash Containers

WCValHashDict<Key,Value>::entries()

Synopsis: #include <wchash.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements
stored in the dictionary.

Results: The entries public member function returns the number of elements in the dictionary.

See Also: buckets, isEmpty

Hash Containers 147

WCValHashDict<Key,Value>::find()

Synopsis: #include <wchash.h>
public:
int find(const Key &, Value &) const;

Semantics: The find public member function is used to find an element with an equivalent key in the
dictionary. If an equivalent element is found, a non-zero value is returned. The reference to
a Value passed as the second argument is assigned the found element’s Value. Zero is
returned if the element is not found. Note that equivalence is based on the equivalence
operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

148 Hash Containers

WCValHashDict<Key,Value>::findKeyAndValue()

Synopsis: #include <wchash.h>
public:
int findKeyAndValue(const Key &, Key &, Value &) const;

Semantics: The findKeyAndValue public member function is used to find an element in the
dictionary with an key equivalent to the first parameter. If an equivalent element is found, a
non-zero value is returned. The reference to a Key passed as the second parameter is
assigned the found element’s key. The reference to a Value passed as the third argument is
assigned the found element’s Value. Zero is returned if the element is not found. Note
that equivalence is based on the equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

Hash Containers 149

WCValHashDict<Key,Value>::forAll()

Synopsis: #include <wchash.h>
public:
void forAll(void(*userfn)(Key,Value,void*),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for
every key-value pair in the dictionary. The user function has the prototypevoiduserfunc(Keykey,Valuevalue,void*data);
As the elements are visited, the user function is invoked with the Key and Value
components of the element passed as the first two parameters. The second parameter of the
forAll function is passed as the third parameter to the user function. This value can be
used to pass any appropriate data from the main code to the user function.

Results: The elements in the dictionary are all visited, with the user function being invoked for each
one.

See Also: find, findKeyAndValue

150 Hash Containers

WCValHashDict<Key,Value>::insert()

Synopsis: #include <wchash.h>
public:
int insert(const Key &, const Value &);

Semantics: The insert public member function inserts a key and value into the dictionary, using the
hash function on the key to determine to which bucket it should be stored. If allocation of
the node to store the key-value pair fails, then theoutofmemory exception is thrown if
it is enabled. If the exception is not enabled, the insert will not be completed.

At some point, the number of buckets initially selected may be too small for the number of
elements inserted. The resize of the dictionary can be controlled by the insertion mechanism
by using WCValHashDict as a base class, and providing an insert member function to do a
resize when appropriate. This insert could then call WCValHashDict::insert to insert
the element. Note that copy constructors and assignment operators are not inherited in your
class, but you can provide the following inline definitions (assuming that the class inherited
from WCValHashDict is named MyHashDict):

inline MyHashDict(const MyHashDict &orig) : WCValHashDict(orig) {};
inline MyHashDict &operator=(const MyHashDict &orig) {

return(WCValHashDict::operator=(orig));
}

Results: The insert public member function inserts a key and value into the dictionary. If the
insert is successful, a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =,WCExcept::outofmemory

Hash Containers 151

WCValHashDict<Key,Value>::isEmpty()

Synopsis: #include <wchash.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the dictionary is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero
if the dictionary is empty.

See Also: buckets, entries

152 Hash Containers

WCValHashDict<Key,Value>::operator []()

Synopsis: #include <wchash.h>
public:
Value & operator[](const Key &);

Semantics: operator [] is the dictionary index operator. A reference to the object stored in the
dictionary with the given Key is returned. If no equivalent element is found, then a new
key-value pair is created with the specified Key value, and initialized with the default
constructor. The returned reference can then be assigned to, so that insertions can be made
with the operator.WCValHashDict<int,String>dataobject(&myhashfn);dataobject[5]="Hello";
If an allocation error occurs while inserting a new key-value pair, then theoutofmemory exception is thrown if it is enabled. If the exception is not enabled, then
a reference to address zero will be returned. This will result in a run-time error on systems
which trap address zero references.

Results: The operator [] public member function returns a reference to the element at the given
key value. If the key does not exist, a reference to a created element is returned. The result
of the operator may be assigned to.

See Also:WCExcept::outofmemory

Hash Containers 153

WCValHashDict<Key,Value>::operator []()

Synopsis: #include <wchash.h>
public:
const Value & operator[](const Key &) const;

Semantics: operator [] is the dictionary index operator. A constant reference to the object stored in
the dictionary with the given Key is returned. If no equivalent element is found, then theindexrange exception is thrown if it is enabled. If the exception is not enabled, then a
reference to address zero will be returned. This will result in a run-time error on systems
which trap address zero references.

Results: The operator [] public member function returns a constant reference to the element at
the given key value. The result of the operator may not be assigned to.

See Also:WCExcept::indexrange

154 Hash Containers

WCValHashDict<Key,Value>::operator =()

Synopsis: #include <wchash.h>
public:
WCValHashDict & operator =(const WCValHashDict &);

Semantics: The operator = public member function is the assignment operator for the
WCValHashDict<Key,Value> class. The left hand side dictionary is first cleared using
the clear member function, and then the right hand side dictionary is copied. The hash
function, exception trap states, and all of the dictionary elements are copied. If an allocation
failure occurs when creating the buckets, the table will be created with zero buckets, and theoutofmemory exception is thrown if it is enabled. If there is not enough memory to
copy all of the values or pointers in the dictionary, then only some will be copied, and theoutofmemory exception is thrown if it is enabled. The number of entries will correctly
reflect the number copied.

Results: The operator = public member function assigns the left hand side dictionary to be a copy
of the right hand side.

See Also: clear,WCExcept::outofmemory

Hash Containers 155

WCValHashDict<Key,Value>::operator ==()

Synopsis: #include <wchash.h>
public:
int operator ==(const WCValHashDict &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCValHashDict<Key,Value> class. Two dictionary objects are equivalent if they are
the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side dictionary are
the same object. A FALSE (zero) value is returned otherwise.

156 Hash Containers

WCValHashDict<Key,Value>::remove()

Synopsis: #include <wchash.h>
public:
int remove(const Key &);

Semantics: The remove public member function is used to remove the specified element from the
dictionary. If an equivalent element is found, a non-zero value is returned. Zero is returned
if the element is not found. Note that equivalence is based on the equivalence operator of the
Key type.

Results: The element is removed from the dictionary if it found.

Hash Containers 157

WCValHashDict<Key,Value>::resize()

Synopsis: #include <wchash.h>
public:
void resize(unsigned);

Semantics: The resize public member function is used to change the number of buckets contained in
the dictionary. If the new number is larger than the previous dictionary size, then the hash
function will be used on all of the stored elements to determine which bucket they should be
stored into. Entries are not destroyed or created in the process of being moved. If there is
not enough memory to resize the dictionary, theoutofmemory exception is thrown if it
is enabled, and the dictionary will contain the number of buckets it contained before the
resize. If the new number is zero, then thezerobuckets exception is thrown if it is
enabled, and no resize will be performed. The dictionary is guaranteed to contain the same
number of entries after the resize.

Results: The dictionary is resized to the new number of buckets.

See Also:WCExcept::outofmemory,WCExcept::zerobuckets

158 Hash Containers

WCValHashTable<Type>, WCValHashSet<Type>

Declared: wchash.h

WCValHashTable<Type> and WCValHashSet<Type> classes are templated classes
used to store objects in a hash. A hash saves objects in such a way as to make it efficient to
locate and retrieve an element. As an element is looked up or inserted into the hash, the
value of the element is hashed. Hashing results in a numeric index which is used to locate
the value. The storage area referenced by the hash value is usually called a bucket. If more
than one element results in the same hash, the value associated with the hash is placed in a
list stored in the bucket. A hash table allows more than one copy of an element that is
equivalent, while the hash set allows only one copy. The equality operator of the element’s
type is used to locate the value.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type of the data to be stored in the hash.

The constructor for the WCValHashTable<Type> and WCValHashSet<Type> classes
requires a hashing function, which given a reference to Type, returns an unsigned value.
The returned value modulo the number of buckets determines the bucket into which the
element will be located. The return values of the hash function can be spread over the entire
range of unsigned numbers. The hash function return value must be the same for values
which are equivalent by the equivalence operator for Type.

Values are copied into the hash, which could be undesirable if the stored objects are
complicated and copying is expensive. Value hashes should not be used to store objects of a
base class if any derived types of different sizes would be stored in the hash, or if the
destructor for a derived class must be called.

The WCExcept class is a base class of the WCValHashTable<Type> and
WCValHashSet<Type> classes and provides the exceptions member function. This
member function controls the exceptions which can be thrown by the
WCValHashTable<Type> and WCValHashSet<Type> objects. No exceptions are
enabled unless they are set by the exceptions member function.

Requirements of Type

The WCValHashTable<Type> and WCValHashSet<Type> classes requires Type to
have:

A default constructor (Type::Type()).

A well defined copy constructor (Type::Type(const Type &)).

A well defined assignment operator (Type & operator =(const Type &)).

Hash Containers 159

WCValHashTable<Type>, WCValHashSet<Type>

A well defined equivalence operator with constant parameters
(int operator ==(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:WCValHashSet(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE);WCValHashSet(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizetsize),void(*userdealloc)(void*old,sizetsize));
WCValHashSet(const WCValHashSet &);
virtual ~WCValHashSet();WCValHashTable(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE);WCValHashTable(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizetsize),void(*userdealloc)(void*old,sizetsize));
WCValHashTable(const WCValHashTable &);
virtual ~WCValHashTable();staticunsignedbitHash(constvoid*,sizet);
unsigned buckets() const;
void clear();
int contains(const Type &) const;
unsigned entries() const;
int find(const Type &, Type &) const;voidforAll(void(*userfn)(Type,void*),void*);
int insert(const Type &);
int isEmpty() const;
int remove(const Type &);
void resize(unsigned);

The following public member functions are available for the WCValHashTable class only:

unsigned occurrencesOf(const Type &) const;
unsigned removeAll(const Type &);

Public Member Operators

The following member operators are declared in the public interface:

WCValHashSet & operator =(const WCValHashSet &);
int operator ==(const WCValHashSet &) const;
WCValHashTable & operator =(const WCValHashTable &);
int operator ==(const WCValHashTable &) const;

160 Hash Containers

WCValHashSet<Type>::WCValHashSet()

Synopsis: #include <wchash.h>
public:WCValHashSet(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE);

Semantics: The WCValHashSet<Type> constructor creates a WCValHashSet object with no entries
and with the number of buckets in the second optional parameter, which defaults to the
constantWCDEFAULTHASHSIZE (currently defined as 101). The number of buckets
specified must be greater than zero, and will be forced to at least one. If the hash object can
be created, but an allocation failure occurs when creating the buckets, the table will be
created with zero buckets. If theoutofmemory exception is enabled, then attempting to
insert into a hash table with zero buckets with throw anoutofmemory error.

The hash function
hashfn is used to determine which bucket each value will be assigned

to. If no hash function exists, the static member function bitHash is available to help
create one.

Results: The WCValHashSet<Type> constructor creates an initialized WCValHashSet object
with the specified number of buckets and hash function.

See Also: ~WCValHashSet, bitHash,WCExcept::outofmemory

Hash Containers 161

WCValHashSet<Type>::WCValHashSet()

Synopsis: #include <wchash.h>
public:WCValHashSet(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a hash. To determine the
size of the objects that the memory management functions will be required to allocate and
free, the following macro may be used:
WCValHashSetItemSize(Type)

Results: The WCValHashSet<Type> constructor creates an initialized WCValHashSet object
with the specified number of buckets and hash function.

See Also: ~WCValHashSet, bitHash,WCExcept::outofmemory

162 Hash Containers

WCValHashSet<Type>::WCValHashSet()

Synopsis: #include <wchash.h>
public:
WCValHashSet(const WCValHashSet &);

Semantics: The WCValHashSet<Type> is the copy constructor for the WCValHashSet class. The
new hash is created with the same number of buckets, hash function, all values or pointers
stored in the hash, and the exception trap states. If the hash object can be created, but an
allocation failure occurs when creating the buckets, the hash will be created with zero
buckets. If there is not enough memory to copy all of the values, then only some will be
copied, and the number of entries will correctly reflect the number copied. If all of the
elements cannot be copied, then theoutofmemory exception is thrown if it is enabled.

Results: The WCValHashSet<Type> constructor creates a WCValHashSet object which is a
copy of the passed hash.

See Also: ~WCValHashSet, operator =,WCExcept::outofmemory

Hash Containers 163

WCValHashSet<Type>::~WCValHashSet()

Synopsis: #include <wchash.h>
public:
virtual ~WCValHashSet();

Semantics: The WCValHashSet<Type> destructor is the destructor for the WCValHashSet class.
If the number of elements is not zero and thenotempty exception is enabled, the
exception is thrown. Otherwise, the hash elements are cleared using the clear member
function. The call to the WCValHashSet<Type> destructor is inserted implicitly by the
compiler at the point where the WCValHashSet object goes out of scope.

Results: The call to the WCValHashSet<Type> destructor destroys a WCValHashSet object.

See Also: clear,WCExcept::notempty

164 Hash Containers

WCValHashTable<Type>::WCValHashTable()

Synopsis: #include <wchash.h>
public:WCValHashTable(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE);

Semantics: The WCValHashTable<Type> constructor creates a WCValHashTable object with no
entries and with the number of buckets in the second optional parameter, which defaults to
the constantWCDEFAULTHASHSIZE (currently defined as 101). The number of
buckets specified must be greater than zero, and will be forced to at least one. If the hash
object can be created, but an allocation failure occurs when creating the buckets, the table
will be created with zero buckets. If theoutofmemory exception is enabled, then
attempting to insert into a hash table with zero buckets with throw anoutofmemory
error.

The hash function
hashfn is used to determine which bucket each value will be assigned

to. If no hash function exists, the static member function bitHash is available to help
create one.

Results: The WCValHashTable<Type> constructor creates an initialized WCValHashTable
object with the specified number of buckets and hash function.

See Also: ~WCValHashTable, bitHash,WCExcept::outofmemory

Hash Containers 165

WCValHashTable<Type>::WCValHashTable()

Synopsis: #include <wchash.h>
public:WCValHashTable(unsigned(*hashfn)(constType&),unsigned=WCDEFAULTHASHSIZE,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a hash. To determine the
size of the objects that the memory management functions will be required to allocate and
free, the following macro may be used:
WCValHashTableItemSize(Type)

Results: The WCValHashTable<Type> constructor creates an initialized WCValHashTable
object with the specified number of buckets and hash function.

See Also: ~WCValHashTable, bitHash,WCExcept::outofmemory

166 Hash Containers

WCValHashTable<Type>::WCValHashTable()

Synopsis: #include <wchash.h>
public:
WCValHashTable(const WCValHashTable &);

Semantics: The WCValHashTable<Type> is the copy constructor for the WCValHashTable class.
The new hash is created with the same number of buckets, hash function, all values or
pointers stored in the hash, and the exception trap states. If the hash object can be created,
but an allocation failure occurs when creating the buckets, the hash will be created with zero
buckets. If there is not enough memory to copy all of the values, then only some will be
copied, and the number of entries will correctly reflect the number copied. If all of the
elements cannot be copied, then theoutofmemory exception is thrown if it is enabled.

Results: The WCValHashTable<Type> constructor creates a WCValHashTable object which is
a copy of the passed hash.

See Also: ~WCValHashTable, operator =,WCExcept::outofmemory

Hash Containers 167

WCValHashTable<Type>::~WCValHashTable()

Synopsis: #include <wchash.h>
public:
virtual ~WCValHashTable();

Semantics: The WCValHashTable<Type> destructor is the destructor for the WCValHashTable
class. If the number of elements is not zero and thenotempty exception is enabled, the
exception is thrown. Otherwise, the hash elements are cleared using the clear member
function. The call to the WCValHashTable<Type> destructor is inserted implicitly by
the compiler at the point where the WCValHashTable object goes out of scope.

Results: The call to the WCValHashTable<Type> destructor destroys a WCValHashTable
object.

See Also: clear,WCExcept::notempty

168 Hash Containers

WCValHashTable<Type>::bitHash(), WCValHashSet<Type>::bitHash()

Synopsis: #include <wchash.h>
public:staticunsignedbitHash(void*,sizet);

Semantics: The bitHash public member function can be used to implement a hashing function for any
type. A hashing value is generated from the value stored for the number of specified bytes
pointed to by the first parameter. For example:unsignedmyhashfn(constint&elem){

return(WCValHashSet<int,String>::bitHash(&elem, sizeof(int));
}WCValHashSet<int>dataobject(&myhashfn);

Results: The bitHash public member function returns an unsigned value which can be used as the
basis of a user defined hash function.

See Also: WCValHashSet, WCValHashTable

Hash Containers 169

WCValHashTable<Type>::buckets(), WCValHashSet<Type>::buckets()

Synopsis: #include <wchash.h>
public:
unsigned buckets() const;

Semantics: The buckets public member function is used to find the number of buckets contained in
the hash object.

Results: The buckets public member function returns the number of buckets in the hash.

See Also: resize

170 Hash Containers

WCValHashTable<Type>::clear(), WCValHashSet<Type>::clear()

Synopsis: #include <wchash.h>
public:
void clear();

Semantics: The clear public member function is used to clear the hash so that it has no entries. The
number of buckets remain unaffected. Elements stored in the hash are destroyed using the
destructors of Type. The hash object is not destroyed and re-created by this function, so
the object destructor is not invoked.

Results: The clear public member function clears the hash to have no elements.

See Also: ~WCValHashSet, ~WCValHashTable, operator =

Hash Containers 171

WCValHashTable<Type>::contains(), WCValHashSet<Type>::contains()

Synopsis: #include <wchash.h>
public:
int contains(const Type &) const;

Semantics: The contains public member function returns non-zero if the element is stored in the
hash, or zero if there is no equivalent element. Note that equivalence is based on the
equivalence operator of the element type.

Results: The contains public member function returns a non-zero value if the element is found in
the hash.

See Also: find

172 Hash Containers

WCValHashTable<Type>::entries(), WCValHashSet<Type>::entries()

Synopsis: #include <wchash.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements
stored in the hash.

Results: The entries public member function returns the number of elements in the hash.

See Also: buckets, isEmpty

Hash Containers 173

WCValHashTable<Type>::find(), WCValHashSet<Type>::find()

Synopsis: #include <wchash.h>
public:
int find(const Type &, Type &) const;

Semantics: The find public member function is used to find an element with an equivalent key in the
hash. If an equivalent element is found, a non-zero value is returned. The reference to the
element passed as the second argument is assigned the found element’s value. Zero is
returned if the element is not found. Note that equivalence is based on the equivalence
operator of the element type.

Results: The element equivalent to the passed key is located in the hash.

174 Hash Containers

WCValHashTable<Type>::forAll(), WCValHashSet<Type>::forAll()

Synopsis: #include <wchash.h>
public:
void forAll(void(*userfn)(Type,void*),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for
every value in the hash. The user function has the prototypevoiduserfunc(Type&value,void*data);
As the elements are visited, the user function is invoked with the element passed as the first.
The second parameter of the forAll function is passed as the second parameter to the user
function. This value can be used to pass any appropriate data from the main code to the user
function.

Results: The elements in the hash are all visited, with the user function being invoked for each one.

See Also: find

Hash Containers 175

WCValHashTable<Type>::insert(), WCValHashSet<Type>::insert()

Synopsis: #include <wchash.h>
public:
int insert(const Type &);

Semantics: The insert public member function inserts a value into the hash, using the hash function to
determine to which bucket it should be stored. If allocation of the node to store the value
fails, then theoutofmemory exception is thrown if it is enabled. If the exception is not
enabled, the insert will not be completed.

With a WCValHashSet, there must be only one equivalent element in the set. If an
element equivalent to the inserted element is already in the hash set, the hash set will remain
unchanged, and thenotunique exception is thrown if it is enabled. If the exception is
not enabled, the insert will not be completed.

At some point, the number of buckets initially selected may be too small for the number of
elements inserted. The resize of the hash can be controlled by the insertion mechanism by
using WCValHashSet (or WCValHashTable) as a base class, and providing an insert
member function to do a resize when appropriate. This insert could then call
WCValHashSet::insert (or WCValHashTable::insert) to insert the element.
Note that copy constructors and assignment operators are not inherited in your class, but you
can provide the following inline definitions (assuming that the class inherited from
WCValHashTable is named MyHashTable):

inline MyHashTable(const MyHashTable &orig)
: WCValHashTable(orig) {};

inline MyHashTable &operator=(const MyHashTable &orig) {
return(WCValHashTable::operator=(orig));

}

Results: The insert public member function inserts a value into the hash. If the insert is
successful, a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =,WCExcept::outofmemory

176 Hash Containers

WCValHashTable<Type>::isEmpty(), WCValHashSet<Type>::isEmpty()

Synopsis: #include <wchash.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the hash is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero
if the hash is empty.

See Also: buckets, entries

Hash Containers 177

WCValHashTable<Type>::occurencesOf()

Synopsis: #include <wchash.h>
public:
unsigned occurrencesOf(const Type &) const;

Semantics: The occurencesOf public member function is used to return the current number of
elements stored in the hash which are equivalent to the passed value. Note that equivalence
is based on the equivalence operator of the element type.

Results: The occurencesOf public member function returns the number of elements in the hash.

See Also: buckets, entries, find, isEmpty

178 Hash Containers

WCValHashTable<Type>::operator =(), WCValHashSet<Type>::operator =()

Synopsis: #include <wchash.h>
public:
WCValHashSet & operator =(const WCValHashSet &);
WCValHashTable & operator =(const WCValHashTable &);

Semantics: The operator = public member function is the assignment operator for the
WCValHashTable<Type> and WCValHashSet<Type> classes. The left hand side
hash is first cleared using the clear member function, and then the right hand side hash is
copied. The hash function, exception trap states, and all of the hash elements are copied. If
an allocation failure occurs when creating the buckets, the table will be created with zero
buckets, and theoutofmemory exception is thrown if it is enabled. If there is not
enough memory to copy all of the values or pointers in the hash, then only some will be
copied, and theoutofmemory exception is thrown if it is enabled. The number of
entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side hash to be a copy of
the right hand side.

See Also: clear,WCExcept::outofmemory

Hash Containers 179

WCValHashTable<Type>::operator ==(), WCValHashSet<Type>::operator ==()

Synopsis: #include <wchash.h>
public:
int operator ==(const WCValHashSet &) const;
int operator ==(const WCValHashTable &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCValHashTable<Type> and WCValHashSet<Type> classes. Two hash objects are
equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side hash are the
same object. A FALSE (zero) value is returned otherwise.

180 Hash Containers

WCValHashTable<Type>::remove(), WCValHashSet<Type>::remove()

Synopsis: #include <wchash.h>
public:
int remove(const Type &);

Semantics: The remove public member function is used to remove the specified element from the hash.
If an equivalent element is found, a non-zero value is returned. Zero is returned if the
element is not found. If the hash is a table and there is more than one element equivalent to
the specified element, then the first equivalent element added to the table is removed. Note
that equivalence is based on the equivalence operator of the element type.

Results: The element is removed from the hash if it found.

Hash Containers 181

WCValHashTable<Type>::removeAll()

Synopsis: #include <wchash.h>
public:
unsigned removeAll(const Type &);

Semantics: The removeAll public member function is used to remove all elements equivalent to the
specified element from the hash. Zero is returned if no equivalent elements are found. Note
that equivalence is based on the equivalence operator of the element type.

Results: All equivalent elements are removed from the hash.

182 Hash Containers

WCValHashTable<Type>::resize(), WCValHashSet<Type>::resize()

Synopsis: #include <wchash.h>
public:
void resize(unsigned);

Semantics: The resize public member function is used to change the number of buckets contained in
the hash. If the new number is larger than the previous hash size, then the hash function will
be used on all of the stored elements to determine which bucket they should be stored into.
Entries are not destroyed or created in the process of being moved. If there is not enough
memory to resize the hash, theoutofmemory exception is thrown if it is enabled, and
the hash will contain the number of buckets it contained before the resize. If the new number
is zero, then thezerobuckets exception is thrown if it is enabled, and no resize will be
performed. The hash is guaranteed to contain the same number of entries after the resize.

Results: The hash is resized to the new number of buckets.

See Also:WCExcept::outofmemory,WCExcept::zerobuckets

Hash Containers 183

WCValHashTable<Type>::resize(), WCValHashSet<Type>::resize()

184 Hash Containers

11 Hash Iterators

Hash iterators are used to step through a hash one or more elements at a time. Iterators which
are newly constructed or reset are positioned before the first element in the hash. The hash
may be traversed one element at a time using the pre-increment or call operator. An
increment operation causing the iterator to be positioned after the end of the hash returns zero.
Further increments will cause theundefiter exception to be thrown, if it is enabled. The
WCIterExcept class provides the common exception handling control interface for all of
the iterators.

Since the iterator classes are all template classes, most of the functionality was derived from
common base classes. In the listing of class member functions, those public member
functions which appear to be in the iterator class but are actually defined in the common base
class are identified as if they were explicitly specified in the iterator class.

Hash Iterators 185

WCPtrHashDictIter<Key,Value>

Declared: wchiter.h

The WCPtrHashDictIter<Key,Value> class is the templated class used to create
iterator objects for WCPtrHashDict<Key,Value> objects. In the description of each
member function, the text Key is used to indicate the template parameter defining the type of
the indices pointed to by the pointers stored in the dictionary. The text Value is used to
indicate the template parameter defining the type of the data pointed to by the pointers stored
in the dictionary. The WCIterExcept class is a base class of the
WCPtrHashDictIter<Key,Value> class and provides the exceptions member
function. This member function controls the exceptions which can be thrown by the
WCPtrHashDictIter<Key,Value> object. No exceptions are enabled unless they are
set by the exceptions member function.

Public Member Functions

The following member functions are declared in the public interface:

WCPtrHashDictIter();
WCPtrHashDictIter(const WCPtrHashDict<Key,Value> &);
~WCPtrHashDictIter();
const WCPtrHashDict<Key,Value> *container() const;
Key *key();
void reset();
void reset(WCPtrHashDict<Key,Value> &);
Value * value();

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();

186 Hash Iterators

WCPtrHashDictIter<Key,Value>::WCPtrHashDictIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashDictIter();

Semantics: The public WCPtrHashDictIter<Key,Value> constructor is the default constructor
for the class and initializes the iterator with no hash to operate on. The reset member
function must be called to provide the iterator with a hash to iterate over.

Results: The public WCPtrHashDictIter<Key,Value> constructor creates an initialized
WCPtrHashDictIter hash iterator object.

See Also: ~WCPtrHashDictIter, reset

Hash Iterators 187

WCPtrHashDictIter<Key,Value>::WCPtrHashDictIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashDictIter(WCPtrHashDict<Key,Value> &);

Semantics: The public WCPtrHashDictIter<Key,Value> constructor is a constructor for the
class. The value passed as a parameter is a WCPtrHashDict hash object. The iterator will
be initialized for that hash object and positioned before the first hash element. To position
the iterator to a valid element within the hash, increment it using one of the operator ++
or operator () operators.

Results: The public WCPtrHashDictIter<Key,Value> constructor creates an initialized
WCPtrHashDictIter hash iterator object positioned before the first element in the hash.

See Also: ~WCPtrHashDictIter, operator (), operator ++, reset

188 Hash Iterators

WCPtrHashDictIter<Key,Value>::~WCPtrHashDictIter()

Synopsis: #include <wchiter.h>
public:
~WCPtrHashDictIter();

Semantics: The public ~WCPtrHashDictIter<Key,Value> destructor is the destructor for the
class. The call to the destructor is inserted implicitly by the compiler at the point where the
WCPtrHashDictIter hash iterator object goes out of scope.

Results: The WCPtrHashDictIter hash iterator object is destroyed.

See Also: WCPtrHashDictIter

Hash Iterators 189

WCPtrHashDictIter<Key,Value>::container()

Synopsis: #include <wchiter.h>
public:
WCPtrHashDict<Key,Value> *container() const;

Semantics: The container public member function returns a pointer to the hash container object. If
the iterator has not been initialized with a hash object, and theundefiter exception is
enabled, the exception is thrown.

Results: A pointer to the hash object associated with the iterator is returned, or NULL(0) if the
iterator has not been initialized with a hash.

See Also: WCPtrHashDictIter, reset,WCIterExcept::undefiter

190 Hash Iterators

WCPtrHashDictIter<Key,Value>::key()

Synopsis: #include <wchiter.h>
public:
Key *key();

Semantics: The key public member function returns a pointer to the Key value of the hash item at the
current iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: A pointer to Key at the current iterator element is returned. If the current element is
undefined, an undefined pointer is returned.

See Also: operator (), operator ++, reset,WCIterExcept::undefitem

Hash Iterators 191

WCPtrHashDictIter<Key,Value>::operator ()()

Synopsis: #include <wchiter.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The hash
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the hash, the iterator is positioned after the end of the
hash.

The operator () public member function has the same semantics as the pre-increment
operator, operator ++.

If the iterator was positioned before the first hash element, the current item will be set to the
first element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, theundefiter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

See Also: operator ++, reset,WCIterExcept::undefiter

192 Hash Iterators

WCPtrHashDictIter<Key,Value>::operator ++()

Synopsis: #include <wchiter.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class.
The hash element which follows the current item is set to be the new current item. If the
previous current item was the last element in the hash, the iterator is positioned after the end
of the hash.

The operator ++ public member function has the same semantics as the call operator,
operator ().

The current item will be set to the first hash element if the iterator was positioned before the
first element in the hash. If the hash is empty, the iterator will be positioned after the end of
the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, theundefiter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

See Also: operator (), reset,WCIterExcept::undefiter

Hash Iterators 193

WCPtrHashDictIter<Key,Value>::reset()

Synopsis: #include <wchiter.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the
iterator before the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

See Also: WCPtrHashDictIter, container

194 Hash Iterators

WCPtrHashDictIter<Key,Value>::reset()

Synopsis: #include <wchiter.h>
public:
void reset(WCPtrHashDict<Key,Value> &);

Semantics: The reset public member function resets the iterator to operate on the specified hash. The
iterator is positioned before the first element in the hash.

Results: The iterator is positioned before the first element of the specified hash.

See Also: WCPtrHashDictIter, container

Hash Iterators 195

WCPtrHashDictIter<Key,Value>::value()

Synopsis: #include <wchiter.h>
public:
Value *value();

Semantics: The value public member function returns a pointer to the Value the current iterator
position.

If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: A pointer to the Value at the current iterator element is returned. If the current element is
undefined, an undefined pointer is returned.

See Also: operator (), operator ++, reset,WCIterExcept::undefitem

196 Hash Iterators

WCValHashDictIter<Key,Value>

Declared: wchiter.h

The WCValHashDictIter<Key,Value> class is the templated class used to create
iterator objects for WCValHashDict<Key,Value> objects. In the description of each
member function, the text Key is used to indicate the template parameter defining the type of
the indices used to store data in the dictionary. The text Value is used to indicate the
template parameter defining the type of the data stored in the dictionary. The
WCIterExcept class is a base class of the WCValHashDictIter<Key,Value> class
and provides the exceptions member function. This member function controls the
exceptions which can be thrown by the WCValHashDictIter<Key,Value> object. No
exceptions are enabled unless they are set by the exceptions member function.

Public Member Functions

The following member functions are declared in the public interface:

WCValHashDictIter();
WCValHashDictIter(const WCValHashDict<Key,Value> &);
~WCValHashDictIter();
const WCValHashDict<Key,Value> *container() const;
Key key();
void reset();
void reset(WCValHashDict<Key,Value> &);
Value value();

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();

Hash Iterators 197

WCValHashDictIter<Key,Value>::WCValHashDictIter()

Synopsis: #include <wchiter.h>
public:
WCValHashDictIter();

Semantics: The public WCValHashDictIter<Key,Value> constructor is the default constructor
for the class and initializes the iterator with no hash to operate on. The reset member
function must be called to provide the iterator with a hash to iterate over.

Results: The public WCValHashDictIter<Key,Value> constructor creates an initialized
WCValHashDictIter hash iterator object.

See Also: ~WCValHashDictIter, reset

198 Hash Iterators

WCValHashDictIter<Key,Value>::WCValHashDictIter()

Synopsis: #include <wchiter.h>
public:
WCValHashDictIter(WCValHashDict<Key,Value> &);

Semantics: The public WCValHashDictIter<Key,Value> constructor is a constructor for the
class. The value passed as a parameter is a WCValHashDict hash object. The iterator will
be initialized for that hash object and positioned before the first hash element. To position
the iterator to a valid element within the hash, increment it using one of the operator ++
or operator () operators.

Results: The public WCValHashDictIter<Key,Value> constructor creates an initialized
WCValHashDictIter hash iterator object positioned before the first element in the hash.

See Also: ~WCValHashDictIter, operator (), operator ++, reset

Hash Iterators 199

WCValHashDictIter<Key,Value>::~WCValHashDictIter()

Synopsis: #include <wchiter.h>
public:
~WCValHashDictIter();

Semantics: The public ~WCValHashDictIter<Key,Value> destructor is the destructor for the
class. The call to the destructor is inserted implicitly by the compiler at the point where the
WCValHashDictIter hash iterator object goes out of scope.

Results: The WCValHashDictIter hash iterator object is destroyed.

See Also: WCValHashDictIter

200 Hash Iterators

WCValHashDictIter<Key,Value>::container()

Synopsis: #include <wchiter.h>
public:
WCValHashDict<Key,Value> *container() const;

Semantics: The container public member function returns a pointer to the hash container object. If
the iterator has not been initialized with a hash object, and theundefiter exception is
enabled, the exception is thrown.

Results: A pointer to the hash object associated with the iterator is returned, or NULL(0) if the
iterator has not been initialized with a hash.

See Also: WCValHashDictIter, reset,WCIterExcept::undefiter

Hash Iterators 201

WCValHashDictIter<Key,Value>::key()

Synopsis: #include <wchiter.h>
public:
Key key();

Semantics: The key public member function returns the value of Key at the current iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: The value of Key at the current iterator element is returned. If the current element is
undefined, a default initialized object is returned.

See Also: operator (), operator ++, reset,WCIterExcept::undefitem

202 Hash Iterators

WCValHashDictIter<Key,Value>::operator ()()

Synopsis: #include <wchiter.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The hash
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the hash, the iterator is positioned after the end of the
hash.

The operator () public member function has the same semantics as the pre-increment
operator, operator ++.

If the iterator was positioned before the first hash element, the current item will be set to the
first element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, theundefiter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

See Also: operator ++, reset,WCIterExcept::undefiter

Hash Iterators 203

WCValHashDictIter<Key,Value>::operator ++()

Synopsis: #include <wchiter.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class.
The hash element which follows the current item is set to be the new current item. If the
previous current item was the last element in the hash, the iterator is positioned after the end
of the hash.

The operator ++ public member function has the same semantics as the call operator,
operator ().

The current item will be set to the first hash element if the iterator was positioned before the
first element in the hash. If the hash is empty, the iterator will be positioned after the end of
the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, theundefiter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

See Also: operator (), reset,WCIterExcept::undefiter

204 Hash Iterators

WCValHashDictIter<Key,Value>::reset()

Synopsis: #include <wchiter.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the
iterator before the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

See Also: WCValHashDictIter, container

Hash Iterators 205

WCValHashDictIter<Key,Value>::reset()

Synopsis: #include <wchiter.h>
public:
void reset(WCValHashDict<Key,Value> &);

Semantics: The reset public member function resets the iterator to operate on the specified hash. The
iterator is positioned before the first element in the hash.

Results: The iterator is positioned before the first element of the specified hash.

See Also: WCValHashDictIter, container

206 Hash Iterators

WCValHashDictIter<Key,Value>::value()

Synopsis: #include <wchiter.h>
public:
Value value();

Semantics: The value public member function returns the value of Value at the current iterator
position.

If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: The value of the Value at the current iterator element is returned. If the current element is
undefined, a default initialized object is returned.

See Also: operator (), operator ++, reset,WCIterExcept::undefitem

Hash Iterators 207

WCPtrHashSetIter<Type>, WCPtrHashTableIter<Type>

Declared: wchiter.h

The WCPtrHashSetIter<Type> and WCPtrHashTableIter<Type> classes are the
templated classes used to create iterator objects for WCPtrHashTable<Type> and
WCPtrHashSet<Type> objects. In the description of each member function, the text
Type is used to indicate the hash element type specified as the template parameter. The
WCIterExcept class is a base class of the WCPtrHashSetIter<Type> and
WCPtrHashTableIter<Type> classes and provides the exceptions member
function. This member function controls the exceptions which can be thrown by the
WCPtrHashSetIter<Type> and WCPtrHashTableIter<Type> objects. No
exceptions are enabled unless they are set by the exceptions member function.

Public Member Functions

The following member functions are declared in the public interface:

WCPtrHashSetIter();
WCPtrHashSetIter(const WCPtrHashSet<Type> &);
~WCPtrHashSetIter();
WCPtrHashTableIter();
WCPtrHashTableIter(const WCPtrHashTable<Type> &);
~WCPtrHashTableIter();
const WCPtrHashTable<Type> *container() const;
const WCPtrHashSet<Type> *container() const;
Type *current() const;
void reset();
void WCPtrHashSetIter<Type>::reset(WCPtrHashSet<Type> &);
void WCPtrHashTableIter<Type>::reset(WCPtrHashTable<Type> &
);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();

208 Hash Iterators

WCPtrHashSetIter<Type>::WCPtrHashSetIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashSetIter();

Semantics: The public WCPtrHashSetIter<Type> constructor is the default constructor for the
class and initializes the iterator with no hash to operate on. The reset member function
must be called to provide the iterator with a hash to iterate over.

Results: The public WCPtrHashSetIter<Type> constructor creates an initialized
WCPtrHashSetIter hash iterator object.

See Also: ~WCPtrHashSetIter, WCPtrHashTableIter, reset

Hash Iterators 209

WCPtrHashSetIter<Type>::WCPtrHashSetIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashSetIter(WCPtrHashSet<Type> &);

Semantics: The public WCPtrHashSetIter<Type> constructor is a constructor for the class. The
value passed as a parameter is a WCPtrHashSet hash object. The iterator will be
initialized for that hash object and positioned before the first hash element. To position the
iterator to a valid element within the hash, increment it using one of the operator ++ or
operator () operators.

Results: The public WCPtrHashSetIter<Type> constructor creates an initialized
WCPtrHashSetIter hash iterator object positioned before the first element in the hash.

See Also: ~WCPtrHashSetIter, operator (), operator ++, reset

210 Hash Iterators

WCPtrHashSetIter<Type>::~WCPtrHashSetIter()

Synopsis: #include <wchiter.h>
public:
~WCPtrHashSetIter();

Semantics: The public ~WCPtrHashSetIter<Type> destructor is the destructor for the class. The
call to the destructor is inserted implicitly by the compiler at the point where the
WCPtrHashSetIter hash iterator object goes out of scope.

Results: The WCPtrHashSetIter hash iterator object is destroyed.

See Also: WCPtrHashSetIter, WCPtrHashTableIter

Hash Iterators 211

WCPtrHashTableIter<Type>::WCPtrHashTableIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashTableIter();

Semantics: The public WCPtrHashTableIter<Type> constructor is the default constructor for the
class and initializes the iterator with no hash to operate on. The reset member function
must be called to provide the iterator with a hash to iterate over.

Results: The public WCPtrHashTableIter<Type> constructor creates an initialized
WCPtrHashTableIter hash iterator object.

See Also: ~WCPtrHashTableIter, WCPtrHashSetIter, reset

212 Hash Iterators

WCPtrHashTableIter<Type>::WCPtrHashTableIter()

Synopsis: #include <wchiter.h>
public:
WCPtrHashTableIter(WCPtrHashTable<Type> &);

Semantics: The public WCPtrHashTableIter<Type> constructor is a constructor for the class.
The value passed as a parameter is a WCPtrHashTable hash object. The iterator will be
initialized for that hash object and positioned before the first hash element. To position the
iterator to a valid element within the hash, increment it using one of the operator ++ or
operator () operators.

Results: The public WCPtrHashTableIter<Type> constructor creates an initialized
WCPtrHashTableIter hash iterator object positioned before the first element in the
hash.

See Also: ~WCPtrHashTableIter, operator (), operator ++, reset

Hash Iterators 213

WCPtrHashTableIter<Type>::~WCPtrHashTableIter()

Synopsis: #include <wchiter.h>
public:
~WCPtrHashTableIter();

Semantics: The WCPtrHashTableIter<Type> destructor is the destructor for the class. The call to
the destructor is inserted implicitly by the compiler at the point where the
WCPtrHashTableIter hash iterator object goes out of scope.

Results: The WCPtrHashTableIter hash iterator object is destroyed.

See Also: WCPtrHashSetIter, WCPtrHashTableIter

214 Hash Iterators

WCPtrHashSetIter<Type>,WCPtrHashTableIter<Type>::container()

Synopsis: #include <wchiter.h>
public:
WCPtrHashTable<Type> *WCPtrHashTableIter<Type>::container()
const;
WCPtrHashSet<Type> *WCPtrHashSetIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the hash container object. If
the iterator has not been initialized with a hash object, and theundefiter exception is
enabled, the exception is thrown.

Results: A pointer to the hash object associated with the iterator is returned, or NULL(0) if the
iterator has not been initialized with a hash.

See Also: WCPtrHashSetIter, WCPtrHashTableIter, reset,WCIterExcept::undefiter

Hash Iterators 215

WCPtrHashSetIter<Type>::current(), WCPtrHashTableIter<Type>::current()

Synopsis: #include <wchiter.h>
public:
Type *current();

Semantics: The current public member function returns a pointer to the hash item at the current
iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: A pointer to the current iterator element is returned. If the current element is undefined,
NULL(0) is returned.

See Also: operator (), operator ++, reset,WCIterExcept::undefitem

216 Hash Iterators

WCPtrHashSetIter<Type>,WCPtrHashTableIter<Type>::operator ()()

Synopsis: #include <wchiter.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The hash
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the hash, the iterator is positioned after the end of the
hash.

The operator () public member function has the same semantics as the pre-increment
operator, operator ++.

If the iterator was positioned before the first hash element, the current item will be set to the
first element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, theundefiter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

See Also: operator ++, reset,WCIterExcept::undefiter

Hash Iterators 217

WCPtrHashSetIter<Type>,WCPtrHashTableIter<Type>::operator ++()

Synopsis: #include <wchiter.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class.
The hash element which follows the current item is set to be the new current item. If the
previous current item was the last element in the hash, the iterator is positioned after the end
of the hash.

The operator ++ public member function has the same semantics as the call operator,
operator ().

The current item will be set to the first hash element if the iterator was positioned before the
first element in the hash. If the hash is empty, the iterator will be positioned after the end of
the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, theundefiter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

See Also: current, operator (), reset,WCIterExcept::undefiter

218 Hash Iterators

WCPtrHashSetIter<Type>::reset(), WCPtrHashTableIter<Type>::reset()

Synopsis: #include <wchiter.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the
iterator before the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

See Also: WCPtrHashSetIter, WCPtrHashTableIter, container

Hash Iterators 219

WCPtrHashSetIter<Type>::reset(), WCPtrHashTableIter<Type>::reset()

Synopsis: #include <wchiter.h>
public:
void WCPtrHashSetIter<Type>::reset(WCPtrHashSet<Type> &);
void WCPtrHashTableIter<Type>::reset(WCPtrHashTable<Type> &
);

Semantics: The reset public member function resets the iterator to operate on the specified hash. The
iterator is positioned before the first element in the hash.

Results: The iterator is positioned before the first element of the specified hash.

See Also: WCPtrHashSetIter, WCPtrHashTableIter, container

220 Hash Iterators

WCValHashSetIter<Type>, WCValHashTableIter<Type>

Declared: wchiter.h

The WCValHashSetIter<Type> and WCValHashTableIter<Type> classes are the
templated classes used to create iterator objects for WCValHashTable<Type> and
WCValHashSet<Type> objects. In the description of each member function, the text
Type is used to indicate the hash element type specified as the template parameter. The
WCIterExcept class is a base class of the WCValHashSetIter<Type> and
WCValHashTableIter<Type> classes and provides the exceptions member
function. This member function controls the exceptions which can be thrown by the
WCValHashSetIter<Type> and WCValHashTableIter<Type> objects. No
exceptions are enabled unless they are set by the exceptions member function.

Public Member Functions

The following member functions are declared in the public interface:

WCValHashSetIter();
WCValHashSetIter(const WCValHashSet<Type> &);
~WCValHashSetIter();
WCValHashTableIter();
WCValHashTableIter(const WCValHashTable<Type> &);
~WCValHashTableIter();
const WCValHashTable<Type> *container() const;
const WCValHashSet<Type> *container() const;
Type current() const;
void reset();
void WCValHashSetIter<Type>::reset(WCValHashSet<Type> &);
void WCValHashTableIter<Type>::reset(WCValHashTable<Type> &
);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();

Hash Iterators 221

WCValHashSetIter<Type>::WCValHashSetIter()

Synopsis: #include <wchiter.h>
public:
WCValHashSetIter();

Semantics: The public WCValHashSetIter<Type> constructor is the default constructor for the
class and initializes the iterator with no hash to operate on. The reset member function
must be called to provide the iterator with a hash to iterate over.

Results: The public WCValHashSetIter<Type> constructor creates an initialized
WCValHashSetIter hash iterator object.

See Also: ~WCValHashSetIter, WCValHashTableIter, reset

222 Hash Iterators

WCValHashSetIter<Type>::WCValHashSetIter()

Synopsis: #include <wchiter.h>
public:
WCValHashSetIter(WCValHashSet<Type> &);

Semantics: The public WCValHashSetIter<Type> constructor is a constructor for the class. The
value passed as a parameter is a WCValHashSet hash object. The iterator will be
initialized for that hash object and positioned before the first hash element. To position the
iterator to a valid element within the hash, increment it using one of the operator ++ or
operator () operators.

Results: The public WCValHashSetIter<Type> constructor creates an initialized
WCValHashSetIter hash iterator object positioned before the first element in the hash.

See Also: ~WCValHashSetIter, operator (), operator ++, reset

Hash Iterators 223

WCValHashSetIter<Type>::~WCValHashSetIter()

Synopsis: #include <wchiter.h>
public:
~WCValHashSetIter();

Semantics: The public ~WCValHashSetIter<Type> destructor is the destructor for the class. The
call to the destructor is inserted implicitly by the compiler at the point where the
WCValHashSetIter hash iterator object goes out of scope.

Results: The WCValHashSetIter hash iterator object is destroyed.

See Also: WCValHashSetIter, WCValHashTableIter

224 Hash Iterators

WCValHashTableIter<Type>::WCValHashTableIter()

Synopsis: #include <wchiter.h>
public:
WCValHashTableIter();

Semantics: The public WCValHashTableIter<Type> constructor is the default constructor for the
class and initializes the iterator with no hash to operate on. The reset member function
must be called to provide the iterator with a hash to iterate over.

Results: The public WCValHashTableIter<Type> constructor creates an initialized
WCValHashTableIter hash iterator object.

See Also: ~WCValHashTableIter, WCValHashSetIter, reset

Hash Iterators 225

WCValHashTableIter<Type>::WCValHashTableIter()

Synopsis: #include <wchiter.h>
public:
WCValHashTableIter(WCValHashTable<Type> &);

Semantics: The public WCValHashTableIter<Type> constructor is a constructor for the class.
The value passed as a parameter is a WCValHashTable hash object. The iterator will be
initialized for that hash object and positioned before the first hash element. To position the
iterator to a valid element within the hash, increment it using one of the operator ++ or
operator () operators.

Results: The public WCValHashTableIter<Type> constructor creates an initialized
WCValHashTableIter hash iterator object positioned before the first element in the
hash.

See Also: ~WCValHashTableIter, operator (), operator ++, reset

226 Hash Iterators

WCValHashTableIter<Type>::~WCValHashTableIter()

Synopsis: #include <wchiter.h>
public:
~WCValHashTableIter();

Semantics: The WCValHashTableIter<Type> destructor is the destructor for the class. The call to
the destructor is inserted implicitly by the compiler at the point where the
WCValHashTableIter hash iterator object goes out of scope.

Results: The WCValHashTableIter hash iterator object is destroyed.

See Also: WCValHashSetIter, WCValHashTableIter

Hash Iterators 227

WCValHashSetIter<Type>,WCValHashTableIter<Type>::container()

Synopsis: #include <wchiter.h>
public:
WCValHashTable<Type> *WCValHashTableIter<Type>::container()
const;
WCValHashSet<Type> *WCValHashSetIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the hash container object. If
the iterator has not been initialized with a hash object, and theundefiter exception is
enabled, the exception is thrown.

Results: A pointer to the hash object associated with the iterator is returned, or NULL(0) if the
iterator has not been initialized with a hash.

See Also: WCValHashSetIter, WCValHashTableIter, reset,WCIterExcept::undefiter

228 Hash Iterators

WCValHashSetIter<Type>::current(), WCValHashTableIter<Type>::current()

Synopsis: #include <wchiter.h>
public:
Type current();

Semantics: The current public member function returns the value of the hash element at the current
iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: The value at the current iterator element is returned. If the current element is undefined, a
default initialized object is returned.

See Also: operator (), operator ++, reset,WCIterExcept::undefitem

Hash Iterators 229

WCValHashSetIter<Type>,WCValHashTableIter<Type>::operator ()()

Synopsis: #include <wchiter.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The hash
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the hash, the iterator is positioned after the end of the
hash.

The operator () public member function has the same semantics as the pre-increment
operator, operator ++.

If the iterator was positioned before the first hash element, the current item will be set to the
first element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, theundefiter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

See Also: operator ++, reset,WCIterExcept::undefiter

230 Hash Iterators

WCValHashSetIter<Type>,WCValHashTableIter<Type>::operator ++()

Synopsis: #include <wchiter.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class.
The hash element which follows the current item is set to be the new current item. If the
previous current item was the last element in the hash, the iterator is positioned after the end
of the hash.

The operator ++ public member function has the same semantics as the call operator,
operator ().

The current item will be set to the first hash element if the iterator was positioned before the
first element in the hash. If the hash is empty, the iterator will be positioned after the end of
the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, theundefiter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

See Also: current, operator (), reset,WCIterExcept::undefiter

Hash Iterators 231

WCValHashSetIter<Type>::reset(), WCValHashTableIter<Type>::reset()

Synopsis: #include <wchiter.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the
iterator before the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

See Also: WCValHashSetIter, WCValHashTableIter, container

232 Hash Iterators

WCValHashSetIter<Type>::reset(), WCValHashTableIter<Type>::reset()

Synopsis: #include <wchiter.h>
public:
void WCValHashSetIter<Type>::reset(WCValHashSet<Type> &);
void WCValHashTableIter<Type>::reset(WCValHashTable<Type> &
);

Semantics: The reset public member function resets the iterator to operate on the specified hash. The
iterator is positioned before the first element in the hash.

Results: The iterator is positioned before the first element of the specified hash.

See Also: WCValHashSetIter, WCValHashTableIter, container

Hash Iterators 233

WCValHashSetIter<Type>::reset(), WCValHashTableIter<Type>::reset()

234 Hash Iterators

12 List Containers

List containers are single or double linked lists. The choice of which type of list to use is
determined by the direction in which the list is traversed and by what is stored in the list. A
list to which items are just added and removed may be most efficiently implemented as a
single linked list. If frequent retrievals of items at given indexes within the list are made,
double linked lists can offer some improved search performance.

There are three sets of list container classes: value, pointer and intrusive.

Value lists are the simplest to use but have the most requirements on the type stored in the
lists. Copies are made of the values stored in the list, which could be undesirable if the stored
objects are complicated and copying is expensive. Value lists should not be used to store
objects of a base class if any derived types of different sizes would be stored in the list, or if
the destructor for the derived class must be called. The WCValSList<Type> container
class implements single linked value lists, and the WCValDList<Type> class double linked
value lists.

Pointer list elements store pointers to objects. No creating, copying or destroying of objects
stored in the list occurs. The only requirement of the type pointed to is that an equivalence
operator is provided so that lookups can be performed. The WCPtrSList<Type> class
implements single linked pointer lists, and the WCPtrDList<Type> class double linked
pointer lists.

Intrusive lists require that the list elements are objects derived from the WCSLink or
WCDLink class, depending on whether a single or double linked list is used. The list classes
require nothing else from the list elements. No creating, destroying or copying of any object
is performed by the intrusive list classes, and must be done by the user of the class. One
advantage of an intrusive list is a list element can be removed from one list and inserted into
another list without creating new list element objects or deleting old objects. The
WCIsvSList<Type> class implements single linked intrusive lists, and the
WCIsvDList<Type> class double linked intrusive lists.

A list may be traversed using the corresponding list iterator class. Iterators allow lists to be
stepped through one or more elements at a time. The iterator classes which correspond to
single linked list containers have some functionality inhibited. If backward traversal is
required, the double linked containers and iterators must be used.

List Containers 235

WCValHashSetIter<Type>::reset(), WCValHashTableIter<Type>::reset()

The classes are presented in alphabetical order. The WCSLink and WCDLink class provide a
common control interface for the list elements for the intrusive classes.

Since the container classes are all template classes, deriving most of the functionality from
common base classes was used. In the listing of class member functions, those public member
functions which appear to be in the container class but are actually defined in the common
base class are identified as if they were explicitly specified in the container class.

236 List Containers

WCDLink

Declared: wclcom.h

Derived from:
WCSLink

The WCDLink class is the building block for all of the double linked list classes. It is
implemented in terms of the WCSLink base class. Since no user data is stored directly with
it, the WCDLink class should only be used as a base class to derive a user defined class.

When creating a double linked intrusive list, the WCDLink class is used to derive the user
defined class that holds the data to be inserted into the list.

The wclcom.h header file is included by the wclist.h header file. There is no need to
explicitly include the wclcom.h header file unless the wclist.h header file is not
included. No errors will result if it is included.

Note that the destructor is non-virtual so that list elements are of minimum size. Objects
created as a class derived from the WCDLink class, but destroyed while typed as a
WCDLink object will not invoke the destructor of the derived class.

Public Member Functions

The following public member functions are declared:

WCDLink();
~WCDLink();

See Also: WCSLink

List Containers 237

WCDLink::WCDLink()

Synopsis: #include <wclist.h>
public:
WCDLink();

Semantics: The public WCDLink constructor creates an WCDLink object. The public WCDLink
constructor is used implicitly by the compiler when it generates a constructor for a derived
class.

Results: The public WCDLink constructor produces an initialized WCDLink object.

See Also: ~WCDLink

238 List Containers

WCDLink::~WCDLink()

Synopsis: #include <wclist.h>
public:
~WCDLink();

Semantics: The public ~WCDLink destructor does not do anything explicit. The call to the public
~WCDLink destructor is inserted implicitly by the compiler at the point where the object
derived from WCDLink goes out of scope.

Results: The object derived from WCDLink is destroyed.

See Also: WCDLink

List Containers 239

WCIsvSList<Type>, WCIsvDList<Type>

Declared: wclist.h

The WCIsvSList<Type> and WCIsvDList<Type> classes are the templated classes
used to create objects which are single or double linked lists. The created list is intrusive,
which means that list elements which are inserted must be created with a library supplied
base class. The class WCSLink provides the base class definition for single linked lists, and
should be inherited by the definition of any list item for single linked lists. It provides the
linkage that is used to traverse the list elements. Similarly, the class WCDLink provides the
base class definition for double lists, and should be inherited by the definition of any list item
for double lists.

In the description of each member function, the text Type is used to indicate the type value
specified as the template parameter. Type is the type of the list elements, derived from
WCSLink or WCDLink.

The WCExcept class is a base class of the WCIsvSList<Type> and
WCIsvDList<Type> classes and provides the exceptions member function. This
member function controls the exceptions which can be thrown by the
WCIsvSList<Type> and WCIsvDList<Type> objects. No exceptions are enabled
unless they are set by the exceptions member function.

Requirements of Type

The WCIsvSList<Type> class requires only that Type is derived from WCSLink. The
WCIsvDList<Type> class requires only that Type is derived from WCDLink.

Private Member Functions

In an intrusive list, copying a list is undefined. Setting the copy constructor and assignment
operator as private is the standard mechanism to ensure a copy cannot be made. The
following member functions are declared private:

void WCIsvSList(const WCIsvSList &);
void WCIsvDList(const WCIsvDList &);
WCIsvSList & WCIsvSList::operator =(const WCIsvSList &);
WCIsvDList & WCIsvDList::operator =(const WCIsvDList &);

Public Member Functions

The following member functions are declared in the public interface:

WCIsvSList();
~WCIsvSList();
WCIsvDList();

240 List Containers

WCIsvSList<Type>, WCIsvDList<Type>

~WCIsvDList();
int append(Type *);
void clear();
void clearAndDestroy();
int contains(const Type *) const;
int entries() const;
Type * find(int = 0) const;
Type * findLast() const;
void forAll(void (*)(Type *, void *), void *);
Type * get(int = 0);
int index(const Type *) const;
int index(int (*)(const Type *, void *), void *) const;
int insert(Type *);
int isEmpty() const;

Public Member Operators

The following member operators are declared in the public interface:

int WCIsvSList::operator ==(const WCIsvSList &) const;
int WCIsvDList::operator ==(const WCIsvDList &) const;

Sample Program Using an Intrusive List

List Containers 241

WCIsvSList<Type>, WCIsvDList<Type>

#include <wclist.h>
#include <iostream.h>classintddata:publicWCDLink{
public:inlineintddata(){};inlineintddata(){};inlineintddata(intdatum):info(datum){};

int info;
};

static void test1(void);voiddataisvprt(intddata*data,void*str){
cout << (char *)str << "[" << data->info << "]\n";

}

void main() {
try {

test1();
} catch(...) {

cout << "we caught an unexpected exception\n";
}
cout.flush();

}

void test1 (void) {WCIsvDList<intddata>list;intddatadata1(1);intddatadata2(2);intddatadata3(3);intddatadata4(4);intddatadata5(5);list.exceptions(WCExcept::checkall);
list.append(&data2);
list.append(&data3);
list.append(&data4);

list.insert(&data1);
list.append(&data5);cout<<"<intrusivedoublelistforintddata>\n";list.forAll(dataisvprt,"");dataisvprt(list.find(3),"<thefourthelement>");dataisvprt(list.get(2),"<thethirdelement>");dataisvprt(list.get(),"<thefirstelement>");
list.clear();
cout.flush();

}

242 List Containers

WCIsvSList<Type>::WCIsvSList()

Synopsis: #include <wclist.h>
public:
WCIsvSList();

Semantics: The WCIsvSList public member function creates an empty WCIsvSList object.

Results: The WCIsvSList public member function produces an initialized WCIsvSList object.

See Also: ~WCIsvSList

List Containers 243

WCIsvSList<Type>::WCIsvSList()

Synopsis: #include <wclist.h>
private:
void WCIsvSList(const WCIsvSList &);

Semantics: The WCIsvSList private member function is the copy constructor for the single linked list
class. Making a copy of the list object would result in a error condition, since intrusive lists
cannot share data items with other lists.

244 List Containers

WCIsvSList<Type>::~WCIsvSList()

Synopsis: #include <wclist.h>
public:
~WCIsvSList();

Semantics: The ~WCIsvSList public member function destroys the WCIsvSList object. If the list
is not empty and thenotempty exception is enabled, the exception is thrown. If thenotempty exception is not enabled and the list is not empty, the list is cleared using the
clear member function. The call to the ~WCIsvSList public member function is
inserted implicitly by the compiler at the point where the WCIsvSList object goes out of
scope.

Results: The WCIsvSList object is destroyed.

See Also: WCIsvSList, clear, clearAndDestroy,WCExcept::notempty

List Containers 245

WCIsvDList<Type>::WCIsvDList()

Synopsis: #include <wclist.h>
public:
WCIsvDList();

Semantics: The WCIsvDList public member function creates an empty WCIsvDList object.

Results: The WCIsvDList public member function produces an initialized WCIsvDList object.

See Also: ~WCIsvDList

246 List Containers

WCIsvDList<Type>::WCIsvDList()

Synopsis: #include <wclist.h>
private:
WCIsvDList(const WCIsvDList &);

Semantics: The WCIsvDList private member function is the copy constructor for the double linked list
class. Making a copy of the list object would result in a error condition, since intrusive lists
cannot share data items with other lists.

List Containers 247

WCIsvDList<Type>::~WCIsvDList()

Synopsis: #include <wclist.h>
public:
~WCIsvDList();

Semantics: The ~WCIsvDList public member function destroys the WCIsvDList object. If the list
is not empty and thenotempty exception is enabled, the exception is thrown. If thenotempty exception is not enabled and the list is not empty, the list is cleared using the
clear member function. The call to the ~WCIsvDList public member function is
inserted implicitly by the compiler at the point where the WCIsvDList object goes out of
scope.

Results: The WCIsvDList object is destroyed.

See Also: WCIsvDList, clear, clearAndDestroy,WCExcept::notempty

248 List Containers

WCIsvSList<Type>::append(), WCIsvDList<Type>::append()

Synopsis: #include <wclist.h>
public:
int append(Type *);

Semantics: The append public member function is used to append the list element object to the end of
the list. The address of (a pointer to) the list element object should be passed, not the value.
Since the linkage information is stored in the list element, it is not possible for the element to
be in more than one list, or in the same list more than once.

The passed list element should be constructed using the appropriate link class as a base.
WCSLink must be used as a list element base class for single linked lists, and WCDLink
must be used as a list element base class for double linked lists.

Results: The list element is appended to the end of the list and a TRUE value (non-zero) is returned.

See Also: insert

List Containers 249

WCIsvSList<Type>::clear(), WCIsvDList<Type>::clear()

Synopsis: #include <wclist.h>
public:
void clear();

Semantics: The clear public member function is used to clear the list object and set it to the state of
the object just after the initial construction. The list object is not destroyed and re-created by
this operator, so the object destructor is not invoked. The list elements are not cleared. Any
list items still in the list are lost unless pointed to by some pointer object in the program
code.

If any of the list elements are not allocated with new (local variable or global list elements),
then the clear public member function must be used. When all list elements are allocated
with new, the clearAndDestory member function should be used.

Results: The clear public member function resets the list object to the state of the object
immediately after the initial construction.

See Also: ~WCIsvSList, ~WCIsvDList, clearAndDestroy, get, operator =

250 List Containers

WCIsvSList<Type>,WCIsvDList<Type>::clearAndDestroy()

Synopsis: #include <wclist.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the list object and set it to
the state of the object just after the initial construction. The list object is not destroyed and
re-created by this operator, so the object destructor is not invoked. The link elements are
deleted before the list is re-initialized.

If any elements in the list were not allocated by the new operator, the clearAndDestroy
public member function must not be called. The clearAndDestroy public member
function destroys each list element with the destructor for Type even if the list element was
created as an object derived from Type, unless Type has a pure virtual destructor.

Results: The clearAndDestroy public member function resets the list object to the initial state of
the object immediately after the initial construction and deletes the list elements.

See Also: clear, get

List Containers 251

WCIsvSList<Type>::contains(), WCIsvDList<Type>::contains()

Synopsis: #include <wclist.h>
public:
int contains(const Type *) const;

Semantics: The contains public member function is used to determine if a list element object is
already contained in the list. The address of (a pointer to) the list element object should be
passed, not the value. Each list element is compared to the passed element object to
determine if it has the same address. Note that the comparison is of the addresses of the
elements, not the contained values.

Results: Zero(0) is returned if the passed list element object is not found in the list. A non-zero result
is returned if the element is found in the list.

See Also: find, index

252 List Containers

WCIsvSList<Type>::entries(), WCIsvDList<Type>::entries()

Synopsis: #include <wclist.h>
public:
int entries() const;

Semantics: The entries public member function is used to determine the number of list elements
contained in the list object.

Results: The number of entries stored in the list is returned, zero(0) is returned if there are no list
elements.

See Also: isEmpty

List Containers 253

WCIsvSList<Type>::find(), WCIsvDList<Type>::find()

Synopsis: #include <wclist.h>
public:
Type * find(int = 0) const;

Semantics: The find public member function returns a pointer to a list element in the list object. The
list element is not removed from the list, so care must be taken not to delete the element
returned to you. The optional parameter specifies which element to locate, and defaults to
the first element. Since the first element of the list is the zero’th element, the last element
will be the number of list entries minus one.

If the list is empty and theemptycontainer exception is enabled, the exception is
thrown. If the
indexrange exception is enabled, the exception is thrown if the index

value is negative or is greater than the number of list entries minus one.

Results: A pointer to the selected list element or the closest list element is returned. If the index value
is negative, the closest list element is the first element. The last element is the closest
element if the index value is greater than the number of list entries minus one. A value of
NULL(0) is returned if there are no elements in the list.

See Also: findLast, get, index, isEmpty,WCExcept::emptycontainer,WCExcept::indexrange

254 List Containers

WCIsvSList<Type>::findLast(), WCIsvDList<Type>::findLast()

Synopsis: #include <wclist.h>
public:
Type * findLast() const;

Semantics: The findLast public member function returns a pointer to the last list element in the list
object. The list element is not removed from the list, so care must be taken not to delete the
element returned to you.

If the list is empty, one of two exceptions can be thrown. If theemptycontainer
exception is enabled, it is thrown. The

indexrange exception is thrown if it is enabled
and theemptycontainer exception is not enabled.

Results: A pointer to the last list element is returned. A value of NULL(0) is returned if there are no
elements in the list.

See Also: find, get, isEmpty,WCExcept::emptycontainer,WCExcept::indexrange

List Containers 255

WCIsvSList<Type>::forAll(), WCIsvDList<Type>::forAll()

Synopsis: #include <wclist.h>
public:
void forAll(void (*fn)(Type *, void *), void *);

Semantics: The forAll public member function is used to cause the function fn to be invoked for each
list element. The fn function should have the prototype

void (*fn)(Type *, void *)

The first parameter of fn shall accept a pointer to the list element currently active. The
second argument passed to fn is the second argument of the forAll function. This allows a
callback function to be defined which can accept data appropriate for the point at which the
forAll function is invoked.

See Also: WCIsvConstSListIter, WCIsvConstDListIter, WCIsvSListIter,
WCIsvDListIter

256 List Containers

WCIsvSList<Type>::get(), WCIsvDList<Type>::get()

Synopsis: #include <wclist.h>
public:
Type * get(int = 0);

Semantics: The get public member function returns a pointer to a list element in the list object. The list
element is also removed from the list. The optional parameter specifies which element to
remove, and defaults to the first element. Since the first element of the list is the zero’th
element, the last element will be the number of list entries minus one.

If the list is empty and theemptycontainer exception is enabled, the exception is
thrown. If the
indexrange exception trap is enabled, the exception is thrown if the

index value is negative or is greater than the number of list entries minus one.

Results: A pointer to the selected list element or the closest list element is removed and returned. If
the index value is negative, the closest list element is the first element. The last element is
the closest element if the index value is greater than the number of list entries minus one. A
value of NULL(0) is returned if there are no elements in the list.

See Also: clear, clearAndDestroy, find, index,WCExcept::emptycontainer,WCExcept::indexrange

List Containers 257

WCIsvSList<Type>::index(), WCIsvDList<Type>::index()

Synopsis: #include <wclist.h>
public:
int index(const Type *) const;

Semantics: The index public member function is used to determine the index of the first list element
equivalent to the passed element. The address of (a pointer to) the list element object should
be passed, not the value. Each list element is compared to the passed element object to
determine if it has the same address. Note that the comparison is of the addresses of the
elements, not the contained values.

Results: The index of the first element equivalent to the passed element is returned. If the passed
element is not in the list, negative one (-1) is returned.

See Also: contains, find, get

258 List Containers

WCIsvSList<Type>::index(), WCIsvDList<Type>::index()

Synopsis: #include <wclist.h>
public:intindex(int(*testfn)(constType*,void*),
void *) const;

Semantics: The index public member function is used to determine the index of the first list element
for which the supplied test_fn function returns true. The test_fn function must have the
prototype:int(*testfn)(constType*,void*);
Each list element is passed in turn to the test_fn function as the first argument. The second
parameter passed is the second argument of the index function. This allows the test_fn
callback function to accept data appropriate for the point at which the index function is
invoked. The supplied test_fn shall return a TRUE (non-zero) value when the index of the
passed element is desired. Otherwise, a FALSE (zero) value shall be returned.

Results: The index of the first list element for which the test_fn function returns non-zero is returned.
If the test_fn function returns zero for all list elements, negative one (-1) is returned.

See Also: contains, find, get

List Containers 259

WCIsvSList<Type>::insert(), WCIsvDList<Type>::insert()

Synopsis: #include <wclist.h>
public:
int insert(Type *);

Semantics: The insert public member function is used to insert the list element object to the
beginning of the list. The address of (a pointer to) the list element object should be passed,
not the value. Since the linkage information is stored in the list element, it is not possible for
the element to be in more than one list, or in the same list more than once.

The passed list element should be constructed using the appropriate link class as a base.
WCSLink must be used as a list element base class for single linked lists, and WCDLink
must be used as a list element base class for double linked lists.

Results: The list element is inserted as the first element of the list and a TRUE value (non-zero) is
returned.

See Also: append

260 List Containers

WCIsvSList<Type>::isEmpty(), WCIsvDList<Type>::isEmpty()

Synopsis: #include <wclist.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a list object has any list
elements contained in it.

Results: A TRUE value (non-zero) is returned if the list object does not have any list elements
contained within it. A FALSE (zero) result is returned if the list contains at least one
element.

See Also: entries

List Containers 261

WCIsvSList<Type>::operator =(), WCIsvDList<Type>::operator =()

Synopsis: #include <wclist.h>
private:
WCIsvSList & WCIsvSList::operator =(const WCIsvSList &);
WCIsvDList & WCIsvDList::operator =(const WCIsvDList &);

Semantics: The operator = private member function is the assignment operator for the class. Since
making a copy of the list object would result in a error condition, it is made inaccessible by
making it a private operator.

262 List Containers

WCIsvSList<Type>::operator ==(), WCIsvDList<Type>::operator ==()

Synopsis: #include <wclist.h>
public:
int WCIsvSList::operator ==(const WCIsvSList &) const;
int WCIsvDList::operator ==(const WCIsvDList &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCIsvSList<Type> and WCIsvDList<Type> classes. Two list objects are equivalent
if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side object and the right hand side
objects are the same object. A FALSE (zero) value is returned otherwise.

List Containers 263

WCPtrSList<Type>, WCPtrDList<Type>

Declared: wclist.h

The WCPtrSList<Type> and WCPtrDList<Type> classes are the templated classes
used to create objects which are single or double linked lists.

In the description of each member function, the text Type is used to indicate the type value
specified as the template parameter. The pointers stored in the list point to values of type
Type.

The WCExcept class is a base class of the WCPtrSList<Type> and
WCPtrDList<Type> classes and provides the exceptions member function. This
member function controls the exceptions which can be thrown by the
WCPtrSList<Type> and WCPtrDList<Type> objects. No exceptions are enabled
unless they are set by the exceptions member function.

Requirements of Type

The WCPtrSList<Type> and WCPtrDList<Type> classes requires Type to have:

(1) an equivalence operator with constant parameters
Type::operator ==(const Type &) const

Public Member Functions

The following member functions are declared in the public interface:

WCPtrSList();WCPtrSList(void*(*)(sizet),void(*)(void*,sizet));
WCPtrSList(const WCPtrSList &);
~WCPtrSList();
WCPtrDList();WCPtrDList(void*(*)(sizet),void(*)(void*,sizet));
WCPtrDList(const WCPtrDList &);
~WCPtrDList();
int append(Type *);
void clear();
void clearAndDestroy();
int contains(const Type *) const;
int entries() const;
Type * find(int = 0) const;
Type * findLast() const;
void forAll(void (*)(Type *, void *), void *) const;
Type * get(int = 0);
int index(const Type *) const;
int insert(Type *);
int isEmpty() const;

264 List Containers

WCPtrSList<Type>, WCPtrDList<Type>

Public Member Operators

The following member operators are declared in the public interface:

WCPtrSList & WCPtrSList::operator =(const WCPtrSList &);
WCPtrDList & WCPtrDList::operator =(const WCPtrDList &);
int WCPtrSList::operator ==(const WCPtrSList &) const;
int WCPtrDList::operator ==(const WCPtrDList &) const;

Sample Program Using a Pointer List

#include <wclist.h>
#include <iostream.h>

static void test1(void);voiddataptrprt(int*data,void*str){
cout << (char *)str << "[" << *data << "]\n";

}

void main() {
try {

test1();
} catch(...) {

cout << "we caught an unexpected exception\n";
}
cout.flush();

}

void test1 (void) {
WCPtrDList<int> list;
int data1(1);
int data2(2);
int data3(3);
int data4(4);
int data5(5);

list.append(&data2);
list.append(&data3);
list.append(&data4);

list.insert(&data1);
list.append(&data5);
cout << "<pointer double list for int>\n";list.forAll(dataptrprt,"");dataptrprt(list.find(3),"<thefourthelement>");dataptrprt(list.get(2),"<thethirdelement>");dataptrprt(list.get(),"<thefirstelement>");
list.clear();
cout.flush();

}

List Containers 265

WCPtrSList<Type>::WCPtrSList()

Synopsis: #include <wclist.h>
public:
WCPtrSList();

Semantics: The WCPtrSList public member function creates an empty WCPtrSList object.

Results: The WCPtrSList public member function produces an initialized WCPtrSList object.

See Also: WCPtrSList, ~WCPtrSList

266 List Containers

WCPtrSList<Type>::WCPtrSList()

Synopsis: #include <wclist.h>
public:WCPtrSList(void*(*allocator)(sizet),void(*deallocator)(void*,sizet));

Semantics: The WCPtrSList public member function creates an empty WCPtrSList<Type> object.
The allocator function is registered to perform all memory allocations of the list elements,
and the deallocator function to perform all freeing of the list elements’ memory. These
functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and operator delete() can provide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCPtrSList<Type> class.

The WCPtrSList<Type> class calls the deallocator function only on memory allocated
by the allocator function. The deallocator shall free the memory pointed to by the first
argument which is of size the second argument. The size passed to the deallocator function
is guaranteed to be the same size passed to the allocator function when the memory was
allocated.

The allocator and deallocator functions may assume that for a list object instance, the
allocator is always called with the same first argument (the size of the memory to be
allocated). The WCValSListItemSize(Type) macro returns the size of the elements
which are allocated by the allocator function.

Results: The WCPtrSList public member function creates an initialized WCPtrSList<Type>
object and registers the allocator and deallocator functions.

See Also: WCPtrSList, ~WCPtrSList

List Containers 267

WCPtrSList<Type>::WCPtrSList()

Synopsis: #include <wclist.h>
public:
void WCPtrSList(const WCPtrSList &);

Semantics: The WCPtrSList public member function is the copy constructor for the single linked list
class. All of the list elements are copied to the new list, as well as the exception trap states,
and any registered allocator and deallocator functions.

If all of the elements cannot be copied and theoutofmemory is enabled in the list being
copied, the exception is thrown. The new list is created in a valid state, even if all of the list
elements could not be copied.

Results: The WCPtrSList public member function produces a copy of the list.

See Also: WCPtrSList, ~WCPtrSList, clear,WCExcept::outofmemory

268 List Containers

WCPtrSList<Type>::~WCPtrSList()

Synopsis: #include <wclist.h>
public:
~WCPtrSList();

Semantics: The ~WCPtrSList public member function destroys the WCPtrSList object. If the list
is not empty and thenotempty exception is enabled, the exception is thrown. If thenotempty exception is not enabled and the list is not empty, the list is cleared using the
clear member function. The call to the ~WCPtrSList public member function is
inserted implicitly by the compiler at the point where the WCPtrSList object goes out of
scope.

Results: The WCPtrSList object is destroyed.

See Also: WCPtrSList, clear, clearAndDestroy,WCExcept::notempty

List Containers 269

WCPtrDList<Type>::WCPtrDList()

Synopsis: #include <wclist.h>
public:
WCPtrDList();

Semantics: The WCPtrDList public member function creates an empty WCPtrDList object.

Results: The WCPtrDList public member function produces an initialized WCPtrDList object.

See Also: WCPtrDList, ~WCPtrDList

270 List Containers

WCPtrDList<Type>::WCPtrDList()

Synopsis: #include <wclist.h>
public:WCPtrDList(void*(*allocator)(sizet),void(*deallocator)(void*,sizet));

Semantics: The WCPtrDList public member function creates an empty WCPtrDList<Type> object.
The allocator function is registered to perform all memory allocations of the list elements,
and the deallocator function to perform all freeing of the list elements’ memory. These
functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and operator delete() can provide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCPtrDList<Type> class.

The WCPtrDList<Type> class calls the deallocator function only on memory allocated
by the allocator function. The deallocator shall free the memory pointed to by the first
argument which is of size the second argument. The size passed to the deallocator function
is guaranteed to be the same size passed to the allocator function when the memory was
allocated.

The allocator and deallocator functions may assume that for a list object instance, the
allocator is always called with the same first argument (the size of the memory to be
allocated). The WCValDListItemSize(Type) macro returns the size of the elements
which are allocated by the allocator function.

Results: The WCPtrDList public member function creates an initialized WCPtrDList<Type>
object and registers the allocator and deallocator functions.

See Also: WCPtrDList, ~WCPtrDList

List Containers 271

WCPtrDList<Type>::WCPtrDList()

Synopsis: #include <wclist.h>
public:
WCPtrDList(const WCPtrDList &);

Semantics: The WCPtrDList public member function is the copy constructor for the double linked list
class. All of the list elements are copied to the new list, as well as the exception trap states,
and any registered allocator and deallocator functions.

If all of the elements cannot be copied and theoutofmemory is enabled in the list being
copied, the exception is thrown. The new list is created in a valid state, even if all of the list
elements could not be copied.

Results: The WCPtrDList public member function produces a copy of the list.

See Also: WCPtrDList, ~WCPtrDList, clear,WCExcept::outofmemory

272 List Containers

WCPtrDList<Type>::~WCPtrDList()

Synopsis: #include <wclist.h>
public:
~WCPtrDList();

Semantics: The ~WCPtrDList public member function destroys the WCPtrDList object. If the list
is not empty and thenotempty exception is enabled, the exception is thrown. If thenotempty exception is not enabled and the list is not empty, the list is cleared using the
clear member function. The call to the ~WCPtrDList public member function is
inserted implicitly by the compiler at the point where the WCPtrDList object goes out of
scope.

Results: The WCPtrDList object is destroyed.

See Also: WCPtrDList, clear, clearAndDestroy,WCExcept::notempty

List Containers 273

WCPtrSList<Type>::append(), WCPtrDList<Type>::append()

Synopsis: #include <wclist.h>
public:
int append(Type *);

Semantics: The append public member function is used to append the data to the end of the list.

If theoutofmemory exception is enabled and the append fails, the exception is thrown.

Results: The data element is appended to the end of the list. A TRUE value (non-zero) is returned if
the append is successful. A FALSE (zero) result is returned if the append fails.

See Also: insert,WCExcept::outofmemory

274 List Containers

WCPtrSList<Type>::clear(), WCPtrDList<Type>::clear()

Synopsis: #include <wclist.h>
public:
void clear();

Semantics: The clear public member function is used to clear the list object and set it to the state of
the object just after the initial construction. The list object is not destroyed and re-created by
this operator, so the object destructor is not invoked.

Results: The clear public member function resets the list object to the state of the object
immediately after the initial construction.

See Also: ~WCPtrSList, ~WCPtrDList, clearAndDestroy, get, operator =

List Containers 275

WCPtrSList<Type>,WCPtrDList<Type>::clearAndDestroy()

Synopsis: #include <wclist.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the list object and set it to
the state of the object just after the initial construction. The list object is not destroyed and
re-created by this operator, so the object destructor is not invoked. Before the list object is
re-initialized, the the values pointed to by the list elements are deleted.

Results: The clearAndDestroy public member function resets the list object to the initial state of
the object immediately after the initial construction and deletes the list elements.

See Also: clear, get

276 List Containers

WCPtrSList<Type>::contains(), WCPtrDList<Type>::contains()

Synopsis: #include <wclist.h>
public:
int contains(const Type *) const;

Semantics: The contains public member function is used to determine if a list element object is
already contained in the list. Each list element is compared to the passed element using
Type’s operator == to determine if the passed element is contained in the list. Note
that the comparison is of the objects pointed to.

Results: Zero(0) is returned if the passed list element object is not found in the list. A non-zero result
is returned if the element is found in the list.

See Also: find, index

List Containers 277

WCPtrSList<Type>::entries(), WCPtrDList<Type>::entries()

Synopsis: #include <wclist.h>
public:
int entries() const;

Semantics: The entries public member function is used to determine the number of list elements
contained in the list object.

Results: The number of entries stored in the list is returned, zero(0) is returned if there are no list
elements.

See Also: isEmpty

278 List Containers

WCPtrSList<Type>::find(), WCPtrDList<Type>::find()

Synopsis: #include <wclist.h>
public:
Type * find(int = 0) const;

Semantics: The find public member function returns the value of a list element in the list object. The
optional parameter specifies which element to locate, and defaults to the first element. Since
the first element of the list is the zero’th element, the last element will be the number of list
entries minus one.

If the list is empty and theemptycontainer exception is enabled, the exception is
thrown. If the
indexrange exception is enabled, the exception is thrown if the index

value is negative or is greater than the number of list entries minus one.

Results: The value of the selected list element or the closest element is returned. If the index value is
negative, the closest list element is the first element. The last element is the closest element
if the index value is greater than the number of list entries minus one. An uninitialized
pointer is returned if there are no elements in the list.

See Also: findLast, get, index, isEmpty,WCExcept::emptycontainer,WCExcept::indexrange

List Containers 279

WCPtrSList<Type>::findLast(), WCPtrDList<Type>::findLast()

Synopsis: #include <wclist.h>
public:
Type * findLast() const;

Semantics: The findLast public member function returns the value of the last list element in the list
object.

If the list is empty, one of two exceptions can be thrown. If theemptycontainer
exception is enabled, it is thrown. The

indexrange exception is thrown if it is enabled
and theemptycontainer exception is not enabled.

Results: The value of the last list element is returned. An uninitialized pointer is returned if there are
no elements in the list.

See Also: find, get, isEmpty,WCExcept::emptycontainer,WCExcept::indexrange

280 List Containers

WCPtrSList<Type>::forAll(), WCPtrDList<Type>::forAll()

Synopsis: #include <wclist.h>
public:
void forAll(void (*)(Type *, void *), void *) const;

Semantics: The forAll public member function is used to cause the function fn to be invoked for each
list element. The fn function should have the prototype

void (*fn)(Type *, void *)

The first parameter of fn shall accept the value of the list element currently active. The
second argument passed to fn is the second argument of the forAll function. This allows a
callback function to be defined which can accept data appropriate for the point at which the
forAll function is invoked.

See Also: WCPtrConstSListIter, WCPtrConstDListIter, WCPtrSListIter,
WCPtrDListIter

List Containers 281

WCPtrSList<Type>::get(), WCPtrDList<Type>::get()

Synopsis: #include <wclist.h>
public:
Type * get(int = 0);

Semantics: The get public member function returns the value of the list element in the list object. The
list element is also removed from the list. The optional parameter specifies which element to
remove, and defaults to the first element. Since the first element of the list is the zero’th
element, the last element will be the number of list entries minus one.

If the list is empty and theemptycontainer exception is enabled, the exception is
thrown. If the
indexrange exception trap is enabled, the exception is thrown if the

index value is negative or is greater than the number of list entries minus one.

Results: The value of the selected list element or the closest element is removed and returned. If the
index value is negative, the closest list element is the first element. The last element is the
closest element if the index value is greater than the number of list entries minus one. An
uninitialized pointer is returned if there are no elements in the list.

See Also: clear, clearAndDestroy, find, index,WCExcept::emptycontainer,WCExcept::indexrange

282 List Containers

WCPtrSList<Type>::index(), WCPtrDList<Type>::index()

Synopsis: #include <wclist.h>
public:
int index(const Type *) const;

Semantics: The index public member function is used to determine the index of the first list element
equivalent to the passed element. Each list element is compared to the passed element using
Type’s operator == until the passed element is found, or all list elements have been
checked. Note that the comparison is of the objects pointed to.

Results: The index of the first element equivalent to the passed element is returned. If the passed
element is not in the list, negative one (-1) is returned.

See Also: contains, find, get

List Containers 283

WCPtrSList<Type>::insert(), WCPtrDList<Type>::insert()

Synopsis: #include <wclist.h>
public:
int insert(Type *);

Semantics: The insert public member function is used to insert the data as the first element of the list.

If theoutofmemory exception is enabled and the insert fails, the exception is thrown.

Results: The data element is inserted into the beginning of the list. A TRUE value (non-zero) is
returned if the insert is successful. A FALSE (zero) result is returned if the insert fails.

See Also: append,WCExcept::outofmemory

284 List Containers

WCPtrSList<Type>::isEmpty(), WCPtrDList<Type>::isEmpty()

Synopsis: #include <wclist.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a list object has any list
elements contained in it.

Results: A TRUE value (non-zero) is returned if the list object does not have any list elements
contained within it. A FALSE (zero) result is returned if the list contains at least one
element.

See Also: entries

List Containers 285

WCPtrSList<Type>::operator =(), WCPtrDList<Type>::operator =()

Synopsis: #include <wclist.h>
public:
WCPtrSList & WCPtrSList::operator =(const WCPtrSList &);
WCPtrDList & WCPtrDList::operator =(const WCPtrDList &);

Semantics: The operator = public member function is the assignment operator for the class. The left
hand side of the assignment is first cleared with the clear member function. All elements
in the right hand side list are then copied, as well as the exception trap states, and any
registered allocator and deallocator functions.

If all of the elements cannot be copied and theoutofmemory is enabled in the right
hand side list, the exception is thrown. The new list is created in a valid state, even if all of
the list elements could not be copied.

Results: The operator = public member function assigns the right hand side to the left hand side
and returns a reference to the left hand side.

See Also: WCPtrSList, WCPtrDList, clear,WCExcept::outofmemory

286 List Containers

WCPtrSList<Type>::operator ==(), WCPtrDList<Type>::operator ==()

Synopsis: #include <wclist.h>
public:
int WCPtrSList::operator ==(const WCPtrSList &) const;
int WCPtrDList::operator ==(const WCPtrDList &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCPtrSList<Type> and WCPtrDList<Type> classes. Two list objects are equivalent
if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side object and the right hand side
objects are the same object. A FALSE (zero) value is returned otherwise.

List Containers 287

WCSLink

Declared: wclcom.h

Derived by: WCDLink

The WCSLink class is the building block for all of the list classes. It provides the link that is
used to traverse the list elements. The double link classes use the WCSLink class to
implement both links. Since no user data is stored directly with it, the WCSLink class
should only be used as a base class to derive a user defined class.

When creating a single linked intrusive list, the WCSLink class is used to derive the user
defined class that holds the data to be inserted into the list.

The wclcom.h header file is included by the wclist.h header file. There is no need to
explicitly include the wclcom.h header file unless the wclist.h header file is not
included. No errors will result if it is included unnecessarily.

Note that the destructor is non-virtual so that list elements are of minimum size. Objects
created as a class derived from the WCSLink class, but destroyed while typed as a
WCSLink object will not invoke the destructor of the derived class.

Public Member Functions

The following public member functions are declared:

WCSLink();
~WCSLink();

See Also: WCDLink

288 List Containers

WCSLink::WCSLink()

Synopsis: #include <wclcom.h>
public:
WCSLink();

Semantics: The public WCSLink constructor creates an WCSLink object. The public WCSLink
constructor is used implicitly by the compiler when it generates a constructor for a derived
class.

Results: The public WCSLink constructor produces an initialized WCSLink object.

See Also: ~WCSLink

List Containers 289

WCSLink::~WCSLink()

Synopsis: #include <wclcom.h>
public:
~WCSLink();

Semantics: The public ~WCSLink destructor does not do anything explicit. The call to the public
~WCSLink destructor is inserted implicitly by the compiler at the point where the object
derived from WCSLink goes out of scope.

Results: The object derived from WCSLink is destroyed.

See Also: WCSLink

290 List Containers

WCValSList<Type>, WCValDList<Type>

Declared: wclist.h

The WCValSList<Type> and WCValDList<Type> classes are the templated classes
used to create objects which are single or double linked lists. Values are copied into the list,
which could be undesirable if the stored objects are complicated and copying is expensive.
Value lists should not be used to store objects of a base class if any derived types of different
sizes would be stored in the list, or if the destructor for a derived class must be called.

In the description of each member function, the text Type is used to indicate the type value
specified as the template parameter. Type is the type of the values stored in the list.

The WCExcept class is a base class of the WCValSList<Type> and
WCValDList<Type> classes and provides the exceptions member function. This
member function controls the exceptions which can be thrown by the
WCValSList<Type> and WCValDList<Type> objects. No exceptions are enabled
unless they are set by the exceptions member function.

Requirements of Type

The WCValSList<Type> and WCValDList<Type> classes requires Type to have:

(1) a default constructor (Type::Type()).

(2) a well defined copy constructor (Type::Type(const Type &)).

(3) an equivalence operator with constant parameters
Type::operator ==(const Type &) const

Public Member Functions

The following member functions are declared in the public interface:

WCValSList();WCValSList(void*(*)(sizet),void(*)(void*,sizet));
WCValSList(const WCValSList &);
~WCValSList();
WCValDList();WCValDList(void*(*)(sizet),void(*)(void*,sizet));
WCValDList(const WCValDList &);
~WCValDList();
int append(const Type &);
void clear();
void clearAndDestroy();
int contains(const Type &) const;
int entries() const;

List Containers 291

WCValSList<Type>, WCValDList<Type>

Type find(int = 0) const;
Type findLast() const;
void forAll(void (*)(Type, void *), void *) const;
Type get(int = 0);
int index(const Type &) const;
int insert(const Type &);
int isEmpty() const;

Public Member Operators

The following member operators are declared in the public interface:

WCValSList & WCValSList::operator =(const WCValSList &);
WCValDList & WCValDList::operator =(const WCValDList &);
int WCValSList::operator ==(const WCValSList &) const;
int WCValDList::operator ==(const WCValDList &) const;

Sample Program Using a Value List

292 List Containers

WCValSList<Type>, WCValDList<Type>

#include <wclist.h>
#include <iostream.h>

static void test1(void);voiddatavalprt(intdata,void*str){
cout << (char *)str << "[" << data << "]\n";

}

void main() {
try {

test1();
} catch(...) {

cout << "we caught an unexpected exception\n";
}
cout.flush();

}

void test1 (void) {
WCValDList<int> list;

list.append(2);
list.append(3);
list.append(4);

list.insert(1);
list.append(5);
cout << "<value double list for int>\n";list.forAll(datavalprt,"");datavalprt(list.find(3),"<thefourthelement>");datavalprt(list.get(2),"<thethirdelement>");datavalprt(list.get(),"<thefirstelement>");
list.clear();
cout.flush();

}

List Containers 293

WCValSList<Type>::WCValSList()

Synopsis: #include <wclist.h>
public:
WCValSList();

Semantics: The WCValSList public member function creates an empty WCValSList object.

Results: The WCValSList public member function produces an initialized WCValSList object.

See Also: WCValSList, ~WCValSList

294 List Containers

WCValSList<Type>::WCValSList()

Synopsis: #include <wclist.h>
public:WCValSList(void*(*allocator)(sizet),void(*deallocator)(void*,sizet));

Semantics: The WCValSList public member function creates an empty WCValSList<Type> object.
The allocator function is registered to perform all memory allocations of the list elements,
and the deallocator function to perform all freeing of the list elements’ memory. These
functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and operator delete() can provide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCValSList<Type> class.

The WCValSList<Type> class calls the deallocator function only on memory allocated
by the allocator function. The deallocator shall free the memory pointed to by the first
argument which is of size the second argument. The size passed to the deallocator function
is guaranteed to be the same size passed to the allocator function when the memory was
allocated.

The allocator and deallocator functions may assume that for a list object instance, the
allocator is always called with the same first argument (the size of the memory to be
allocated). The WCValSListItemSize(Type) macro returns the size of the elements
which are allocated by the allocator function.

Results: The WCValSList public member function creates an initialized WCValSList<Type>
object and registers the allocator and deallocator functions.

See Also: WCValSList, ~WCValSList

List Containers 295

WCValSList<Type>::WCValSList()

Synopsis: #include <wclist.h>
public:
void WCValSList(const WCValSList &);

Semantics: The WCValSList public member function is the copy constructor for the single linked list
class. All of the list elements are copied to the new list, as well as the exception trap states,
and any registered allocator and deallocator functions. Type’s copy constructor is
invoked to copy the values contained by the list elements.

If all of the elements cannot be copied and theoutofmemory is enabled in the list being
copied, the exception is thrown. The new list is created in a valid state, even if all of the list
elements could not be copied.

Results: The WCValSList public member function produces a copy of the list.

See Also: WCValSList, ~WCValSList, clear,WCExcept::outofmemory

296 List Containers

WCValSList<Type>::~WCValSList()

Synopsis: #include <wclist.h>
public:
~WCValSList();

Semantics: The ~WCValSList public member function destroys the WCValSList object. If the list
is not empty and thenotempty exception is enabled, the exception is thrown. If thenotempty exception is not enabled and the list is not empty, the list is cleared using the
clear member function. The call to the ~WCValSList public member function is
inserted implicitly by the compiler at the point where the WCValSList object goes out of
scope.

Results: The WCValSList object is destroyed.

See Also: WCValSList, clear, clearAndDestroy,WCExcept::notempty

List Containers 297

WCValDList<Type>::WCValDList()

Synopsis: #include <wclist.h>
public:
WCValDList();

Semantics: The WCValDList public member function creates an empty WCValDList object.

Results: The WCValDList public member function produces an initialized WCValDList object.

See Also: WCValDList, ~WCValDList

298 List Containers

WCValDList<Type>::WCValDList()

Synopsis: #include <wclist.h>
public:WCValDList(void*(*allocator)(sizet),void(*deallocator)(void*,sizet));

Semantics: The WCValDList public member function creates an empty WCValDList<Type> object.
The allocator function is registered to perform all memory allocations of the list elements,
and the deallocator function to perform all freeing of the list elements’ memory. These
functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and operator delete() can provide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCValDList<Type> class.

The WCValDList<Type> class calls the deallocator function only on memory allocated
by the allocator function. The deallocator shall free the memory pointed to by the first
argument which is of size the second argument. The size passed to the deallocator function
is guaranteed to be the same size passed to the allocator function when the memory was
allocated.

The allocator and deallocator functions may assume that for a list object instance, the
allocator is always called with the same first argument (the size of the memory to be
allocated). The WCValDListItemSize(Type) macro returns the size of the elements
which are allocated by the allocator function.

Results: The WCValDList public member function creates an initialized WCValDList<Type>
object and registers the allocator and deallocator functions.

See Also: WCValDList, ~WCValDList

List Containers 299

WCValDList<Type>::WCValDList()

Synopsis: #include <wclist.h>
public:
WCValDList(const WCValDList &);

Semantics: The WCValDList public member function is the copy constructor for the double linked list
class. All of the list elements are copied to the new list, as well as the exception trap states,
and any registered allocator and deallocator functions. Type’s copy constructor is
invoked to copy the values contained by the list elements.

If all of the elements cannot be copied and theoutofmemory is enabled in the list being
copied, the exception is thrown. The new list is created in a valid state, even if all of the list
elements could not be copied.

Results: The WCValDList public member function produces a copy of the list.

See Also: WCValDList, ~WCValDList, clear,WCExcept::outofmemory

300 List Containers

WCValDList<Type>::~WCValDList()

Synopsis: #include <wclist.h>
public:
~WCValDList();

Semantics: The ~WCValDList public member function destroys the WCValDList object. If the list
is not empty and thenotempty exception is enabled, the exception is thrown. If thenotempty exception is not enabled and the list is not empty, the list is cleared using the
clear member function. The call to the ~WCValDList public member function is
inserted implicitly by the compiler at the point where the WCValDList object goes out of
scope.

Results: The WCValDList object is destroyed.

See Also: WCValDList, clear, clearAndDestroy,WCExcept::notempty

List Containers 301

WCValSList<Type>::append(), WCValDList<Type>::append()

Synopsis: #include <wclist.h>
public:
int append(const Type &);

Semantics: The append public member function is used to append the data to the end of the list. The
data stored in the list is a copy of the data passed as a parameter.

If theoutofmemory exception is enabled and the append fails, the exception is thrown.

Results: The data element is appended to the end of the list. A TRUE value (non-zero) is returned if
the append is successful. A FALSE (zero) result is returned if the append fails.

See Also: insert,WCExcept::outofmemory

302 List Containers

WCValSList<Type>::clear(), WCValDList<Type>::clear()

Synopsis: #include <wclist.h>
public:
void clear();

Semantics: The clear public member function is used to clear the list object and set it to the state of
the object just after the initial construction. The list object is not destroyed and re-created by
this operator, so the object destructor is not invoked.

The clear public member function has the same sematics as the clearAndDestroy
member function.

Results: The clear public member function resets the list object to the state of the object
immediately after the initial construction.

See Also: ~WCValSList, ~WCValDList, clearAndDestroy, get, operator =

List Containers 303

WCValSList<Type>,WCValDList<Type>::clearAndDestroy()

Synopsis: #include <wclist.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the list object and set it to
the state of the object just after the initial construction. The list object is not destroyed and
re-created by this operator, so the object destructor is not invoked.

Before the list object is re-initialized, the delete operator is called for each list element.

Results: The clearAndDestroy public member function resets the list object to the initial state of
the object immediately after the initial construction.

See Also: clear, get

304 List Containers

WCValSList<Type>::contains(), WCValDList<Type>::contains()

Synopsis: #include <wclist.h>
public:
int contains(const Type &) const;

Semantics: The contains public member function is used to determine if a list element object is
already contained in the list. Each list element is compared to the passed element using
Type’s operator == to determine if the passed element is contained in the list.

Results: Zero(0) is returned if the passed list element object is not found in the list. A non-zero result
is returned if the element is found in the list.

See Also: find, index

List Containers 305

WCValSList<Type>::entries(), WCValDList<Type>::entries()

Synopsis: #include <wclist.h>
public:
int entries() const;

Semantics: The entries public member function is used to determine the number of list elements
contained in the list object.

Results: The number of entries stored in the list is returned, zero(0) is returned if there are no list
elements.

See Also: isEmpty

306 List Containers

WCValSList<Type>::find(), WCValDList<Type>::find()

Synopsis: #include <wclist.h>
public:
Type find(int = 0) const;

Semantics: The find public member function returns the value of a list element in the list object. The
optional parameter specifies which element to locate, and defaults to the first element. Since
the first element of the list is the zero’th element, the last element will be the number of list
entries minus one.

If the list is empty and theemptycontainer exception is enabled, the exception is
thrown. If the
indexrange exception is enabled, the exception is thrown if the index

value is negative or is greater than the number of list entries minus one.

Results: The value of the selected list element or the closest element is returned. If the index value is
negative, the closest list element is the first element. The last element is the closest element
if the index value is greater than the number of list entries minus one. A default initialized
value is returned if there are no elements in the list.

See Also: findLast, get, index, isEmpty,WCExcept::emptycontainer,WCExcept::indexrange

List Containers 307

WCValSList<Type>::findLast(), WCValDList<Type>::findLast()

Synopsis: #include <wclist.h>
public:
Type findLast() const;

Semantics: The findLast public member function returns the value of the last list element in the list
object.

If the list is empty, one of two exceptions can be thrown. If theemptycontainer
exception is enabled, it is thrown. The

indexrange exception is thrown if it is enabled
and theemptycontainer exception is not enabled.

Results: The value of the last list element is returned. A default initialized value is returned if there
are no elements in the list.

See Also: find, get, isEmpty,WCExcept::emptycontainer,WCExcept::indexrange

308 List Containers

WCValSList<Type>::forAll(), WCValDList<Type>::forAll()

Synopsis: #include <wclist.h>
public:
void forAll(void (*)(Type, void *), void *) const;

Semantics: The forAll public member function is used to cause the function fn to be invoked for each
list element. The fn function should have the prototype

void (*fn)(Type, void *)

The first parameter of fn shall accept the value of the list element currently active. The
second argument passed to fn is the second argument of the forAll function. This allows a
callback function to be defined which can accept data appropriate for the point at which the
forAll function is invoked.

See Also: WCValConstSListIter, WCValConstDListIter, WCValSListIter,
WCValDListIter

List Containers 309

WCValSList<Type>::get(), WCValDList<Type>::get()

Synopsis: #include <wclist.h>
public:
Type get(int = 0);

Semantics: The get public member function returns the value of the list element in the list object. The
list element is also removed from the list. The optional parameter specifies which element to
remove, and defaults to the first element. Since the first element of the list is the zero’th
element, the last element will be the number of list entries minus one.

If the list is empty and theemptycontainer exception is enabled, the exception is
thrown. If the
indexrange exception trap is enabled, the exception is thrown if the

index value is negative or is greater than the number of list entries minus one.

Results: The value of the selected list element or the closest element is removed and returned. If the
index value is negative, the closest list element is the first element. The last element is the
closest element if the index value is greater than the number of list entries minus one. A
default initialized value is returned if there are no elements in the list.

See Also: clear, clearAndDestroy, find, index,WCExcept::emptycontainer,WCExcept::indexrange

310 List Containers

WCValSList<Type>::index(), WCValDList<Type>::index()

Synopsis: #include <wclist.h>
public:
int index(const Type &) const;

Semantics: The index public member function is used to determine the index of the first list element
equivalent to the passed element. Each list element is compared to the passed element using
Type’s operator == until the passed element is found, or all list elements have been
checked.

Results: The index of the first element equivalent to the passed element is returned. If the passed
element is not in the list, negative one (-1) is returned.

See Also: contains, find, get

List Containers 311

WCValSList<Type>::insert(), WCValDList<Type>::insert()

Synopsis: #include <wclist.h>
public:
int insert(const Type &);

Semantics: The insert public member function is used to insert the data as the first element of the list.
The data stored in the list is a copy of the data passed as a parameter.

If theoutofmemory exception is enabled and the insert fails, the exception is thrown.

Results: The data element is inserted into the beginning of the list. A TRUE value (non-zero) is
returned if the insert is successful. A FALSE (zero) result is returned if the insert fails.

See Also: append,WCExcept::outofmemory

312 List Containers

WCValSList<Type>::isEmpty(), WCValDList<Type>::isEmpty()

Synopsis: #include <wclist.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a list object has any list
elements contained in it.

Results: A TRUE value (non-zero) is returned if the list object does not have any list elements
contained within it. A FALSE (zero) result is returned if the list contains at least one
element.

See Also: entries

List Containers 313

WCValSList<Type>::operator =(), WCValDList<Type>::operator =()

Synopsis: #include <wclist.h>
public:
WCValSList & WCValSList::operator =(const WCValSList &);
WCValDList & WCValDList::operator =(const WCValDList &);

Semantics: The operator = public member function is the assignment operator for the class. The left
hand side of the assignment is first cleared with the clear member function. All elements
in the right hand side list are then copied, as well as the exception trap states, and any
registered allocator and deallocator functions. Type’s copy constructor is invoked to copy
the values contained by the list elements.

If all of the elements cannot be copied and theoutofmemory is enabled in the right
hand side list, the exception is thrown. The new list is created in a valid state, even if all of
the list elements could not be copied.

Results: The operator = public member function assigns the right hand side to the left hand side
and returns a reference to the left hand side.

See Also: WCValSList, WCValDList, clear,WCExcept::outofmemory

314 List Containers

WCValSList<Type>::operator ==(), WCValDList<Type>::operator ==()

Synopsis: #include <wclist.h>
public:
int WCValSList::operator ==(const WCValSList &) const;
int WCValDList::operator ==(const WCValDList &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCValSList<Type> and WCValDList<Type> classes. Two list objects are equivalent
if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side object and the right hand side
objects are the same object. A FALSE (zero) value is returned otherwise.

List Containers 315

WCValSList<Type>::operator ==(), WCValDList<Type>::operator ==()

316 List Containers

13 List Iterators

List iterators operate on single or double linked lists. They are used to step through a list one
or more elements at a time. The choice of which type of iterator to use is determined by the
list you wish to iterate over. For example, to iterate over a non-constant
WCIsvDList<Type> object, use the WCIsvDListIter<Type> class. A constant
WCValSList<Type> object can be iterated using the WCValConstSListIter<Type>
class. The iterators which correspond to the single link list containers have some functionality
inhibited. If backward traversal is required, the double linked containers and corresponding
iterators must be used.

Like all WATCOM iterators, newly constructed and reset iterators are positioned before the
first element in the list. The list may be traversed one element at a time using the
pre-increment or call operator. An increment operation causing the iterator to be positioned
after the end of the list returns zero. Further increments will cause theundefiter
exception to be thrown, if it is enabled. This behaviour allows lists to be traversed simply
using a while loop, and is demonstrated in the examples for the iterator classes.

The classes are presented in alphabetical order. The WCIterExcept class provides the
common exception handling control interface for all of the iterators.

Since the iterator classes are all template classes, deriving most of the functionality from
common base classes was used. In the listing of class member functions, those public member
functions which appear to be in the iterator class but are actually defined in the common base
class are identified as if they were explicitly specified in the iterator class.

List Iterators 317

WCIsvConstSListIter<Type>, WCIsvConstDListIter<Type>

Declared: wclistit.h

The WCIsvConstSListIter<Type> and WCIsvConstDListIter<Type> classes
are the templated classes used to create iterator objects for constant single and double linked
list objects. These classes may be used to iterate over non-constant lists, but the
WCIsvDListIter<Type> and WCIsvSListIter<Type> classes provide additional
functionality for only non-constant lists.

In the description of each member function, the text Type is used to indicate the list element
type specified as the template parameter.

The WCIterExcept class is a base class of the WCIsvConstSListIter<Type> and
WCIsvConstDListIter<Type> classes and provides the exceptions member
function. This member function controls the exceptions which can be thrown by the
WCIsvConstSListIter<Type> and WCIsvConstDListIter<Type> objects. No
exceptions are enabled unless they are set by the exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate for the
constant list iterator classes. Setting those functions as private members in the derived class
is the standard mechanism to prevent them from being invoked.

int append(Type *);
int insert(Type *);

Public Member Functions

The following member functions are declared in the public interface:

WCIsvConstSListIter();
WCIsvConstSListIter(const WCIsvSList<Type> &);
~WCIsvConstSListIter();
WCIsvConstDListIter();
WCIsvConstDListIter(const WCIsvDList<Type> &);
~WCIsvConstDListIter();
const WCIsvSList<Type> *WCIsvConstSListIter<Type>::container()
const;
const WCIsvDList<Type> *WCIsvConstDListIter<Type>::container()
const;
Type * current() const;
void reset();
void WCIsvConstSListIter<Type>::reset(const WCIsvSList<Type>
&);

318 List Iterators

WCIsvConstSListIter<Type>, WCIsvConstDListIter<Type>

void WCIsvConstDListIter<Type>::reset(const WCIsvDList<Type>
&);

Public Member Operators

The following member operators are declared in the public interface:

Type * operator ()();
Type * operator ++();
Type * operator +=(int);

In the iterators for double linked lists only:

Type * operator --();
Type * operator -=(int);

See Also: WCIsvSList::forAll, WCIsvDList::forAll

List Iterators 319

WCIsvConstSListIter<Type>::WCIsvConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvConstSListIter();

Semantics: The WCIsvConstSListIter public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The reset member function
must be called to provide the iterator with a list to iterate over.

Results: The WCIsvConstSListIter public member function creates an initialized
WCIsvConstSListIter object.

See Also: WCIsvConstSListIter, ~WCIsvConstSListIter, reset

320 List Iterators

WCIsvConstSListIter<Type>::WCIsvConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvConstSListIter(const WCIsvSList<Type> &);

Semantics: The WCIsvConstSListIter public member function is a constructor for the class. The
value passed as a parameter is a WCIsvSList list object. The iterator will be initialized for
that list object and positioned before the first list element. To position the iterator to a valid
element within the list, increment it using any of the operator ++, operator (), or
operator += operators.

Results: The WCIsvConstSListIter public member function creates an initialized
WCIsvConstSListIter object positioned before the first element in the list.

See Also: ~WCIsvConstSListIter, operator (), operator ++, operator +=, reset

List Iterators 321

WCIsvConstSListIter<Type>::~WCIsvConstSListIter()

Synopsis: #include <wclistit.h>
public:
~WCIsvConstSListIter();

Semantics: The ~WCIsvConstSListIter public member function is the destructor for the class.
The call to the ~WCIsvConstSListIter public member function is inserted implicitly
by the compiler at the point where the WCIsvConstSListIter object goes out of scope.

Results: The WCIsvConstSListIter object is destroyed.

See Also: WCIsvConstSListIter

322 List Iterators

WCIsvConstDListIter<Type>::WCIsvConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvConstDListIter();

Semantics: The WCIsvConstDListIter public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The reset member function
must be called to provide the iterator with a list to iterate over.

Results: The WCIsvConstDListIter public member function creates an initialized
WCIsvConstDListIter object.

See Also: WCIsvConstDListIter, ~WCIsvConstDListIter, reset

List Iterators 323

WCIsvConstDListIter<Type>::WCIsvConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvConstDListIter(const WCIsvDList<Type> &);

Semantics: The WCIsvConstDListIter public member function is a constructor for the class. The
value passed as a parameter is the WCIsvDList list object. The iterator will be initialized
for that list object and positioned before the first list element. To position the iterator to a
valid element within the list, increment it using any of the operator ++, operator
(), or operator += operators.

Results: The WCIsvConstDListIter public member function creates an initialized
WCIsvConstDListIter object positioned before the first list element.

See Also: WCIsvConstDListIter, ~WCIsvConstDListIter, operator (),
operator ++, operator +=, reset

324 List Iterators

WCIsvConstDListIter<Type>::~WCIsvConstDListIter()

Synopsis: #include <wclistit.h>
public:
~WCIsvConstDListIter();

Semantics: The ~WCIsvConstDListIter public member function is the destructor for the class.
The call to the ~WCIsvConstDListIter public member function is inserted implicitly
by the compiler at the point where the WCIsvConstDListIter object goes out of scope.

Results: The WCIsvConstDListIter object is destroyed.

See Also: WCIsvConstDListIter

List Iterators 325

WCIsvConstSListIter<Type>,WCIsvConstDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
const WCIsvSList<Type> *WCIsvConstSListIter<Type>::container()
const;
const WCIsvDList<Type> *WCIsvConstDListIter<Type>::container()
const;

Semantics: The container public member function returns a pointer to the list container object. If the
iterator has not been initialized with a list object, and theundefiter exception is
enabled, the exception is thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator
has not been initialized with a list.

See Also: WCIsvConstSListIter, WCIsvConstDListIter, reset,WCIterExcept::undefiter

326 List Iterators

WCIsvConstSListIter<Type>::current(), WCIsvConstDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type * current();

Semantics: The current public member function returns a pointer to the list item at the current iterator
position.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: A pointer to the current list element is returned. If the current element is undefined,
NULL(0) is returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=,
reset,WCIterExcept::undefitem

List Iterators 327

WCIsvConstSListIter<Type>,WCIsvConstDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
Type * operator ()();

Semantics: The operator () public member function is the call operator for the class. The list
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment
operator, operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator () public member function returns a pointer to the new current item.
NULL(0) is returned when the iterator is incremented past the end of the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

328 List Iterators

WCIsvConstSListIter<Type>,WCIsvConstDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
Type * operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class.
The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
the list.

The operator ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator ++ public member function returns a pointer to the new current item.
NULL(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

List Iterators 329

WCIsvConstSListIter<Type>,WCIsvConstDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
Type * operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causes the
iterrange exception to be thrown, if enabled.

Results: The operator += public member function returns a pointer to the new current item.
NULL(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

330 List Iterators

WCIsvConstDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
Type * operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class.
The list element previous to the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If the list is empty, the iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with a list or the iterator position previous to the decrement
was before the first element the list, theundefiter exception is thrown, if enabled.

Results: The operator -- public member function returns a pointer to the new current item.
NULL(0) is returned when the iterator is decremented past the first element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,WCIterExcept::undefiter

List Iterators 331

WCIsvConstDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
Type * operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causes the
iterrange exception to be thrown, if enabled.

Results: The operator -= public member function returns a pointer to the new current item.
NULL(0) is returned when the iterator is decremented past the first element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

332 List Iterators

WCIsvConstSListIter<Type>::reset(), WCIsvConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCIsvConstSListIter, WCIsvConstDListIter, container

List Iterators 333

WCIsvConstSListIter<Type>::reset(), WCIsvConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCIsvConstSListIter<Type>::reset(const WCIsvSList<Type>
&);
void WCIsvConstDListIter<Type>::reset(const WCIsvDList<Type>
&);

Semantics: The reset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCIsvConstSListIter, WCIsvConstDListIter, container

334 List Iterators

WCIsvSListIter<Type>, WCIsvDListIter<Type>

Declared: wclistit.h

The WCIsvSListIter<Type> and WCIsvDListIter<Type> classes are the
templated classes used to create iterator objects for single and double linked list objects.
These classes can be used only for non-constant lists. The
WCIsvDConstListIter<Type> and WCIsvSConstListIter<Type> classes are
provided to iterate over constant lists.

In the description of each member function, the text Type is used to indicate the list element
type specified as the template parameter.

The WCIterExcept class is a base class of the WCIsvSListIter<Type> and
WCIsvDListIter<Type> classes and provides the exceptions member function.
This member function controls the exceptions which can be thrown by the
WCIsvSListIter<Type> and WCIsvDListIter<Type> objects. No exceptions are
enabled unless they are set by the exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate in the single
linked list iterator classes. Setting those functions as private members in the derived class is
the standard mechanism to prevent them from being invoked. The following member
functions are declared in the single linked list iterator private interface:

Type * operator --();
Type * operator -=(int);
int insert(Type *);

Public Member Functions

The following member functions are declared in the public interface:

WCIsvSListIter();
WCIsvSListIter(WCIsvSList<Type> &);
~WCIsvSListIter();
WCIsvDListIter();
WCIsvDListIter(WCIsvDList<Type> &);
~WCIsvDListIter();
int append(Type *);
WCIsvSList<Type> *WCIsvSListIter<Type>::container() const;
WCIsvDList<Type> *WCIsvDListIter<Type>::container() const;
Type * current() const;
void reset();
void WCIsvSListIter<Type>::reset(WCIsvSList<Type> &);
void WCIsvDListIter<Type>::reset(WCIsvDList<Type> &);

List Iterators 335

WCIsvSListIter<Type>, WCIsvDListIter<Type>

In the iterators for double linked lists only:

int insert(Type *);

Public Member Operators

The following member operators are declared in the public interface:

Type * operator ()();
Type * operator ++();
Type * operator +=(int);

In the iterators for double linked lists only:

Type * operator --();
Type * operator -=(int);

See Also: WCIsvSList::forAll, WCIsvDList::forAll

336 List Iterators

WCIsvSListIter<Type>::WCIsvSListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvSListIter();

Semantics: The WCIsvSListIter public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The reset member function must be called
to provide the iterator with a list to iterate over.

Results: The WCIsvSListIter public member function creates an initialized WCIsvSListIter
object.

See Also: WCIsvSListIter, ~WCIsvSListIter, reset

List Iterators 337

WCIsvSListIter<Type>::WCIsvSListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvSListIter(WCIsvSList<Type> &);

Semantics: The WCIsvSListIter public member function is a constructor for the class. The value
passed as a parameter is a WCIsvSList list object. The iterator will be initialized for that
list object and positioned before the first list element. To position the iterator to a valid
element within the list, increment it using any of the operator ++, operator (), or
operator += operators.

Results: The WCIsvSListIter public member function creates an initialized WCIsvSListIter
object positioned before the first element in the list.

See Also: ~WCIsvSListIter, operator (), operator ++, operator +=, reset

338 List Iterators

WCIsvSListIter<Type>::~WCIsvSListIter()

Synopsis: #include <wclistit.h>
public:
~WCIsvSListIter();

Semantics: The ~WCIsvSListIter public member function is the destructor for the class. The call to
the ~WCIsvSListIter public member function is inserted implicitly by the compiler at
the point where the WCIsvSListIter object goes out of scope.

Results: The WCIsvSListIter object is destroyed.

See Also: WCIsvSListIter

List Iterators 339

WCIsvDListIter<Type>::WCIsvDListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvDListIter();

Semantics: The WCIsvDListIter public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The reset member function must be called
to provide the iterator with a list to iterate over.

Results: The WCIsvDListIter public member function creates an initialized WCIsvDListIter
object.

See Also: WCIsvDListIter, ~WCIsvDListIter, reset

340 List Iterators

WCIsvDListIter<Type>::WCIsvDListIter()

Synopsis: #include <wclistit.h>
public:
WCIsvDListIter(WCIsvDList<Type> &);

Semantics: The WCIsvDListIter public member function is a constructor for the class. The value
passed as a parameter is the WCIsvDList list object. The iterator will be initialized for that
list object and positioned before the first list element. To position the iterator to a valid
element within the list, increment it using any of the operator ++, operator (), or
operator += operators.

Results: The WCIsvDListIter public member function creates an initialized WCIsvDListIter
object positioned before the first list element.

See Also: WCIsvDListIter, ~WCIsvDListIter, operator (), operator ++,
operator +=, reset

List Iterators 341

WCIsvDListIter<Type>::~WCIsvDListIter()

Synopsis: #include <wclistit.h>
public:
~WCIsvDListIter();

Semantics: The ~WCIsvDListIter public member function is the destructor for the class. The call to
the ~WCIsvDListIter public member function is inserted implicitly by the compiler at
the point where the WCIsvDListIter object goes out of scope.

Results: The WCIsvDListIter object is destroyed.

See Also: WCIsvDListIter

342 List Iterators

WCIsvSListIter<Type>::append(), WCIsvDListIter<Type>::append()

Synopsis: #include <wclistit.h>
public:
int append(Type *);

Semantics: The append public member function inserts a new element into the list container object.
The new element is inserted after the current iterator item.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not appended. If theundefiter exception is enabled, it is thrown.

Results: The new element is inserted after the current iterator item. A TRUE value (non-zero) is
returned if the append is successful. A FALSE (zero) result is returned if the append fails.

See Also: insert,WCExcept::outofmemory,WCIterExcept::undefiter

List Iterators 343

WCIsvSListIter<Type>,WCIsvDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
WCIsvSList<Type> *WCIsvSListIter<Type>::container() const;
WCIsvDList<Type> *WCIsvDListIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the list container object. If the
iterator has not been initialized with a list object, and theundefiter exception is
enabled, the exception is thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator
has not been initialized with a list.

See Also: WCIsvSListIter, WCIsvDListIter, reset,WCIterExcept::undefiter

344 List Iterators

WCIsvSListIter<Type>::current(), WCIsvDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type * current();

Semantics: The current public member function returns a pointer to the list item at the current iterator
position.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: A pointer to the current list element is returned. If the current element is undefined,
NULL(0) is returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=,
reset,WCIterExcept::undefitem

List Iterators 345

WCIsvDListIter<Type>::insert()

Synopsis: #include <wclistit.h>
public:
int insert(Type *);

Semantics: The insert public member function inserts a new element into the list container object.
The new element is inserted before the current iterator item. This process uses the previous
link in the double linked list, so the insert public member function is not allowed with
single linked lists.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not inserted. If theundefiter exception is enabled, the exception is thrown.

Results: The new element is inserted before the current iterator item. A TRUE value (non-zero) is
returned if the insert is successful. A FALSE (zero) result is returned if the insert fails.

See Also: append,WCExcept::outofmemory,WCIterExcept::undefiter

346 List Iterators

WCIsvSListIter<Type>,WCIsvDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
Type * operator ()();

Semantics: The operator () public member function is the call operator for the class. The list
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment
operator, operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator () public member function returns a pointer to the new current item.
NULL(0) is returned when the iterator is incremented past the end of the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

List Iterators 347

WCIsvSListIter<Type>,WCIsvDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
Type * operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class.
The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
the list.

The operator ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator ++ public member function returns a pointer to the new current item.
NULL(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

348 List Iterators

WCIsvSListIter<Type>,WCIsvDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
Type * operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causes the
iterrange exception to be thrown, if enabled.

Results: The operator += public member function returns a pointer to the new current item.
NULL(0) is returned when the iterator is incremented past the end of the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

List Iterators 349

WCIsvDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
Type * operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class.
The list element previous to the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If the list is empty, the iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with a list or the iterator position previous to the decrement
was before the first element the list, theundefiter exception is thrown, if enabled.

Results: The operator -- public member function returns a pointer to the new current item.
NULL(0) is returned when the iterator is decremented past the first element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,WCIterExcept::undefiter

350 List Iterators

WCIsvDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
Type * operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causes the
iterrange exception to be thrown, if enabled.

Results: The operator -= public member function returns a pointer to the new current item.
NULL(0) is returned when the iterator is decremented past the first element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

List Iterators 351

WCIsvSListIter<Type>::reset(), WCIsvDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCIsvSListIter, WCIsvDListIter, container

352 List Iterators

WCIsvSListIter<Type>::reset(), WCIsvDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCIsvSListIter<Type>::reset(WCIsvSList<Type> &);
void WCIsvDListIter<Type>::reset(WCIsvDList<Type> &);

Semantics: The reset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCIsvSListIter, WCIsvDListIter, container

List Iterators 353

WCPtrConstSListIter<Type>, WCPtrConstDListIter<Type>

Declared: wclistit.h

The WCPtrConstSListIter<Type> and WCPtrConstDListIter<Type> classes
are the templated classes used to create iterator objects for constant single and double linked
list objects. These classes may be used to iterate over non-constant lists, but the
WCPtrDListIter<Type> and WCPtrSListIter<Type> classes provide additional
functionality for only non-constant lists.

In the description of each member function, the text Type is used to indicate the list element
type specified as the template parameter.

The WCIterExcept class is a base class of the WCPtrConstSListIter<Type> and
WCPtrConstDListIter<Type> classes and provides the exceptions member
function. This member function controls the exceptions which can be thrown by the
WCPtrConstSListIter<Type> and WCPtrConstDListIter<Type> objects. No
exceptions are enabled unless they are set by the exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate for the
constant list iterator classes. Setting those functions as private members in the derived class
is the standard mechanism to prevent them from being invoked.

int append(Type *);
int insert(Type *);

Public Member Functions

The following member functions are declared in the public interface:

WCPtrConstSListIter();
WCPtrConstSListIter(const WCPtrSList<Type> &);
~WCPtrConstSListIter();
WCPtrConstDListIter();
WCPtrConstDListIter(const WCPtrDList<Type> &);
~WCPtrConstDListIter();
const WCPtrSList<Type> *WCPtrConstSListIter<Type>::container()
const;
const WCPtrDList<Type> *WCPtrConstDListIter<Type>::container()
const;
Type * current() const;
void reset();
void WCPtrConstSListIter<Type>::reset(const WCPtrSList<Type>
&);

354 List Iterators

WCPtrConstSListIter<Type>, WCPtrConstDListIter<Type>

void WCPtrConstDListIter<Type>::reset(const WCPtrDList<Type>
&);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();
int operator +=(int);

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

See Also: WCPtrSList::forAll, WCPtrDList::forAll

List Iterators 355

WCPtrConstSListIter<Type>::WCPtrConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrConstSListIter();

Semantics: The WCPtrConstSListIter public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The reset member function
must be called to provide the iterator with a list to iterate over.

Results: The WCPtrConstSListIter public member function creates an initialized
WCPtrConstSListIter object.

See Also: WCPtrConstSListIter, ~WCPtrConstSListIter, reset

356 List Iterators

WCPtrConstSListIter<Type>::WCPtrConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrConstSListIter(const WCPtrSList<Type> &);

Semantics: The WCPtrConstSListIter public member function is a constructor for the class. The
value passed as a parameter is a WCPtrSList list object. The iterator will be initialized for
that list object and positioned before the first list element. To position the iterator to a valid
element within the list, increment it using any of the operator ++, operator (), or
operator += operators.

Results: The WCPtrConstSListIter public member function creates an initialized
WCPtrConstSListIter object positioned before the first element in the list.

See Also: ~WCPtrConstSListIter, operator (), operator ++, operator +=, reset

List Iterators 357

WCPtrConstSListIter<Type>::~WCPtrConstSListIter()

Synopsis: #include <wclistit.h>
public:
~WCPtrConstSListIter();

Semantics: The ~WCPtrConstSListIter public member function is the destructor for the class.
The call to the ~WCPtrConstSListIter public member function is inserted implicitly
by the compiler at the point where the WCPtrConstSListIter object goes out of scope.

Results: The WCPtrConstSListIter object is destroyed.

See Also: WCPtrConstSListIter

358 List Iterators

WCPtrConstDListIter<Type>::WCPtrConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrConstDListIter();

Semantics: The WCPtrConstDListIter public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The reset member function
must be called to provide the iterator with a list to iterate over.

Results: The WCPtrConstDListIter public member function creates an initialized
WCPtrConstDListIter object.

See Also: WCPtrConstDListIter, ~WCPtrConstDListIter, reset

List Iterators 359

WCPtrConstDListIter<Type>::WCPtrConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrConstDListIter(const WCPtrDList<Type> &);

Semantics: The WCPtrConstDListIter public member function is a constructor for the class. The
value passed as a parameter is the WCPtrDList list object. The iterator will be initialized
for that list object and positioned before the first list element. To position the iterator to a
valid element within the list, increment it using any of the operator ++, operator
(), or operator += operators.

Results: The WCPtrConstDListIter public member function creates an initialized
WCPtrConstDListIter object positioned before the first list element.

See Also: WCPtrConstDListIter, ~WCPtrConstDListIter, operator (),
operator ++, operator +=, reset

360 List Iterators

WCPtrConstDListIter<Type>::~WCPtrConstDListIter()

Synopsis: #include <wclistit.h>
public:
~WCPtrConstDListIter();

Semantics: The ~WCPtrConstDListIter public member function is the destructor for the class.
The call to the ~WCPtrConstDListIter public member function is inserted implicitly
by the compiler at the point where the WCPtrConstDListIter object goes out of scope.

Results: The WCPtrConstDListIter object is destroyed.

See Also: WCPtrConstDListIter

List Iterators 361

WCPtrConstSListIter<Type>,WCPtrConstDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
const WCPtrSList<Type> *WCPtrConstSListIter<Type>::container()
const;
const WCPtrDList<Type> *WCPtrConstDListIter<Type>::container()
const;

Semantics: The container public member function returns a pointer to the list container object. If the
iterator has not been initialized with a list object, and theundefiter exception is
enabled, the exception is thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator
has not been initialized with a list.

See Also: WCPtrConstSListIter, WCPtrConstDListIter, reset,WCIterExcept::undefiter

362 List Iterators

WCPtrConstSListIter<Type>::current(), WCPtrConstDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type * current();

Semantics: The current public member function returns a pointer to the list item at the current iterator
position.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: A pointer to the current list element is returned. If the current element is undefined, an
uninitialized pointer is returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=,
reset,WCIterExcept::undefitem

List Iterators 363

WCPtrConstSListIter<Type>,WCPtrConstDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The list
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment
operator, operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

364 List Iterators

WCPtrConstSListIter<Type>,WCPtrConstDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class.
The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
the list.

The operator ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

List Iterators 365

WCPtrConstSListIter<Type>,WCPtrConstDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
int operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causes the
iterrange exception to be thrown, if enabled.

Results: The operator += public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

366 List Iterators

WCPtrConstDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
int operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class.
The list element previous to the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If the list is empty, the iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with a list or the iterator position previous to the decrement
was before the first element the list, theundefiter exception is thrown, if enabled.

Results: The operator -- public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is decremented past the first
element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,WCIterExcept::undefiter

List Iterators 367

WCPtrConstDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
int operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causes the
iterrange exception to be thrown, if enabled.

Results: The operator -= public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is decremented past the first
element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

368 List Iterators

WCPtrConstSListIter<Type>::reset(), WCPtrConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCPtrConstSListIter, WCPtrConstDListIter, container

List Iterators 369

WCPtrConstSListIter<Type>::reset(), WCPtrConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCPtrConstSListIter<Type>::reset(const WCPtrSList<Type>
&);
void WCPtrConstDListIter<Type>::reset(const WCPtrDList<Type>
&);

Semantics: The reset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCPtrConstSListIter, WCPtrConstDListIter, container

370 List Iterators

WCPtrSListIter<Type>, WCPtrDListIter<Type>

Declared: wclistit.h

The WCPtrSListIter<Type> and WCPtrDListIter<Type> classes are the
templated classes used to create iterator objects for single and double linked list objects.
These classes can be used only for non-constant lists. The
WCPtrDConstListIter<Type> and WCPtrSConstListIter<Type> classes are
provided to iterate over constant lists.

In the description of each member function, the text Type is used to indicate the list element
type specified as the template parameter.

The WCIterExcept class is a base class of the WCPtrSListIter<Type> and
WCPtrDListIter<Type> classes and provides the exceptions member function.
This member function controls the exceptions which can be thrown by the
WCPtrSListIter<Type> and WCPtrDListIter<Type> objects. No exceptions are
enabled unless they are set by the exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate in the single
linked list iterator classes. Setting those functions as private members in the derived class is
the standard mechanism to prevent them from being invoked. The following member
functions are declared in the single linked list iterator private interface:

int operator --();
int operator -=(int);
int insert(Type *);

Public Member Functions

The following member functions are declared in the public interface:

WCPtrSListIter();
WCPtrSListIter(WCPtrSList<Type> &);
~WCPtrSListIter();
WCPtrDListIter();
WCPtrDListIter(WCPtrDList<Type> &);
~WCPtrDListIter();
int append(Type *);
WCPtrSList<Type> *WCPtrSListIter<Type>::container() const;
WCPtrDList<Type> *WCPtrDListIter<Type>::container() const;
Type * current() const;
void reset();
void WCPtrSListIter<Type>::reset(WCPtrSList<Type> &);
void WCPtrDListIter<Type>::reset(WCPtrDList<Type> &);

List Iterators 371

WCPtrSListIter<Type>, WCPtrDListIter<Type>

In the iterators for double linked lists only:

int insert(Type *);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();
int operator +=(int);

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

See Also: WCPtrSList::forAll, WCPtrDList::forAll

372 List Iterators

WCPtrSListIter<Type>::WCPtrSListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrSListIter();

Semantics: The WCPtrSListIter public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The reset member function must be called
to provide the iterator with a list to iterate over.

Results: The WCPtrSListIter public member function creates an initialized WCPtrSListIter
object.

See Also: WCPtrSListIter, ~WCPtrSListIter, reset

List Iterators 373

WCPtrSListIter<Type>::WCPtrSListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrSListIter(WCPtrSList<Type> &);

Semantics: The WCPtrSListIter public member function is a constructor for the class. The value
passed as a parameter is a WCPtrSList list object. The iterator will be initialized for that
list object and positioned before the first list element. To position the iterator to a valid
element within the list, increment it using any of the operator ++, operator (), or
operator += operators.

Results: The WCPtrSListIter public member function creates an initialized WCPtrSListIter
object positioned before the first element in the list.

See Also: ~WCPtrSListIter, operator (), operator ++, operator +=, reset

374 List Iterators

WCPtrSListIter<Type>::~WCPtrSListIter()

Synopsis: #include <wclistit.h>
public:
~WCPtrSListIter();

Semantics: The ~WCPtrSListIter public member function is the destructor for the class. The call to
the ~WCPtrSListIter public member function is inserted implicitly by the compiler at
the point where the WCPtrSListIter object goes out of scope.

Results: The WCPtrSListIter object is destroyed.

See Also: WCPtrSListIter

List Iterators 375

WCPtrDListIter<Type>::WCPtrDListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrDListIter();

Semantics: The WCPtrDListIter public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The reset member function must be called
to provide the iterator with a list to iterate over.

Results: The WCPtrDListIter public member function creates an initialized WCPtrDListIter
object.

See Also: WCPtrDListIter, ~WCPtrDListIter, reset

376 List Iterators

WCPtrDListIter<Type>::WCPtrDListIter()

Synopsis: #include <wclistit.h>
public:
WCPtrDListIter(WCPtrDList<Type> &);

Semantics: The WCPtrDListIter public member function is a constructor for the class. The value
passed as a parameter is the WCPtrDList list object. The iterator will be initialized for that
list object and positioned before the first list element. To position the iterator to a valid
element within the list, increment it using any of the operator ++, operator (), or
operator += operators.

Results: The WCPtrDListIter public member function creates an initialized WCPtrDListIter
object positioned before the first list element.

See Also: WCPtrDListIter, ~WCPtrDListIter, operator (), operator ++,
operator +=, reset

List Iterators 377

WCPtrDListIter<Type>::~WCPtrDListIter()

Synopsis: #include <wclistit.h>
public:
~WCPtrDListIter();

Semantics: The ~WCPtrDListIter public member function is the destructor for the class. The call to
the ~WCPtrDListIter public member function is inserted implicitly by the compiler at
the point where the WCPtrDListIter object goes out of scope.

Results: The WCPtrDListIter object is destroyed.

See Also: WCPtrDListIter

378 List Iterators

WCPtrSListIter<Type>::append(), WCPtrDListIter<Type>::append()

Synopsis: #include <wclistit.h>
public:
int append(Type *);

Semantics: The append public member function inserts a new element into the list container object.
The new element is inserted after the current iterator item.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not appended. If theundefiter exception is enabled, it is thrown.

If the append fails, theoutofmemory exception is thrown, if enabled in the list being
iterated over. The list remains unchanged.

Results: The new element is inserted after the current iterator item. A TRUE value (non-zero) is
returned if the append is successful. A FALSE (zero) result is returned if the append fails.

See Also: insert,WCExcept::outofmemory,WCIterExcept::undefiter

List Iterators 379

WCPtrSListIter<Type>,WCPtrDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
WCPtrSList<Type> *WCPtrSListIter<Type>::container() const;
WCPtrDList<Type> *WCPtrDListIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the list container object. If the
iterator has not been initialized with a list object, and theundefiter exception is
enabled, the exception is thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator
has not been initialized with a list.

See Also: WCPtrSListIter, WCPtrDListIter, reset,WCIterExcept::undefiter

380 List Iterators

WCPtrSListIter<Type>::current(), WCPtrDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type * current();

Semantics: The current public member function returns a pointer to the list item at the current iterator
position.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: A pointer to the current list element is returned. If the current element is undefined, an
uninitialized pointer is returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=,
reset,WCIterExcept::undefitem

List Iterators 381

WCPtrDListIter<Type>::insert()

Synopsis: #include <wclistit.h>
public:
int insert(Type *);

Semantics: The insert public member function inserts a new element into the list container object.
The new element is inserted before the current iterator item. This process uses the previous
link in the double linked list, so the insert public member function is not allowed with
single linked lists.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not inserted. If theundefiter exception is enabled, the exception is thrown.

If the insert fails and theoutofmemory exception is enabled in the list being iterated
over, the exception is thrown. The list remains unchanged.

Results: The new element is inserted before the current iterator item. A TRUE value (non-zero) is
returned if the insert is successful. A FALSE (zero) result is returned if the insert fails.

See Also: append,WCExcept::outofmemory,WCIterExcept::undefiter

382 List Iterators

WCPtrSListIter<Type>,WCPtrDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The list
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment
operator, operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

List Iterators 383

WCPtrSListIter<Type>,WCPtrDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class.
The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
the list.

The operator ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

384 List Iterators

WCPtrSListIter<Type>,WCPtrDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
int operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causes the
iterrange exception to be thrown, if enabled.

Results: The operator += public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

List Iterators 385

WCPtrDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
int operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class.
The list element previous to the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If the list is empty, the iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with a list or the iterator position previous to the decrement
was before the first element the list, theundefiter exception is thrown, if enabled.

Results: The operator -- public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is decremented past the first
element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,WCIterExcept::undefiter

386 List Iterators

WCPtrDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
int operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causes the
iterrange exception to be thrown, if enabled.

Results: The operator -= public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is decremented past the first
element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

List Iterators 387

WCPtrSListIter<Type>::reset(), WCPtrDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCPtrSListIter, WCPtrDListIter, container

388 List Iterators

WCPtrSListIter<Type>::reset(), WCPtrDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCPtrSListIter<Type>::reset(WCPtrSList<Type> &);
void WCPtrDListIter<Type>::reset(WCPtrDList<Type> &);

Semantics: The reset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCPtrSListIter, WCPtrDListIter, container

List Iterators 389

WCValConstSListIter<Type>, WCValConstDListIter<Type>

Declared: wclistit.h

The WCValConstSListIter<Type> and WCValConstDListIter<Type> classes
are the templated classes used to create iterator objects for constant single and double linked
list objects. These classes may be used to iterate over non-constant lists, but the
WCValDListIter<Type> and WCValSListIter<Type> classes provide additional
functionality for only non-constant lists.

In the description of each member function, the text Type is used to indicate the list element
type specified as the template parameter.

The WCIterExcept class is a base class of the WCValConstSListIter<Type> and
WCValConstDListIter<Type> classes and provides the exceptions member
function. This member function controls the exceptions which can be thrown by the
WCValConstSListIter<Type> and WCValConstDListIter<Type> objects. No
exceptions are enabled unless they are set by the exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate for the
constant list iterator classes. Setting those functions as private members in the derived class
is the standard mechanism to prevent them from being invoked.

int append(Type &);
int insert(Type &);

Public Member Functions

The following member functions are declared in the public interface:

WCValConstSListIter();
WCValConstSListIter(const WCValSList<Type> &);
~WCValConstSListIter();
WCValConstDListIter();
WCValConstDListIter(const WCValDList<Type> &);
~WCValConstDListIter();
const WCValSList<Type> *WCValConstSListIter<Type>::container()
const;
const WCValDList<Type> *WCValConstDListIter<Type>::container()
const;
Type current() const;
void reset();
void WCValConstSListIter<Type>::reset(const WCValSList<Type>
&);

390 List Iterators

WCValConstSListIter<Type>, WCValConstDListIter<Type>

void WCValConstDListIter<Type>::reset(const WCValDList<Type>
&);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();
int operator +=(int);

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

See Also: WCValSList::forAll, WCValDList::forAll

List Iterators 391

WCValConstSListIter<Type>::WCValConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCValConstSListIter();

Semantics: The WCValConstSListIter public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The reset member function
must be called to provide the iterator with a list to iterate over.

Results: The WCValConstSListIter public member function creates an initialized
WCValConstSListIter object.

See Also: WCValConstSListIter, ~WCValConstSListIter, reset

392 List Iterators

WCValConstSListIter<Type>::WCValConstSListIter()

Synopsis: #include <wclistit.h>
public:
WCValConstSListIter(const WCValSList<Type> &);

Semantics: The WCValConstSListIter public member function is a constructor for the class. The
value passed as a parameter is a WCValSList list object. The iterator will be initialized for
that list object and positioned before the first list element. To position the iterator to a valid
element within the list, increment it using any of the operator ++, operator (), or
operator += operators.

Results: The WCValConstSListIter public member function creates an initialized
WCValConstSListIter object positioned before the first element in the list.

See Also: ~WCValConstSListIter, operator (), operator ++, operator +=, reset

List Iterators 393

WCValConstSListIter<Type>::~WCValConstSListIter()

Synopsis: #include <wclistit.h>
public:
~WCValConstSListIter();

Semantics: The ~WCValConstSListIter public member function is the destructor for the class.
The call to the ~WCValConstSListIter public member function is inserted implicitly
by the compiler at the point where the WCValConstSListIter object goes out of scope.

Results: The WCValConstSListIter object is destroyed.

See Also: WCValConstSListIter

394 List Iterators

WCValConstDListIter<Type>::WCValConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCValConstDListIter();

Semantics: The WCValConstDListIter public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The reset member function
must be called to provide the iterator with a list to iterate over.

Results: The WCValConstDListIter public member function creates an initialized
WCValConstDListIter object.

See Also: WCValConstDListIter, ~WCValConstDListIter, reset

List Iterators 395

WCValConstDListIter<Type>::WCValConstDListIter()

Synopsis: #include <wclistit.h>
public:
WCValConstDListIter(const WCValDList<Type> &);

Semantics: The WCValConstDListIter public member function is a constructor for the class. The
value passed as a parameter is the WCValDList list object. The iterator will be initialized
for that list object and positioned before the first list element. To position the iterator to a
valid element within the list, increment it using any of the operator ++, operator
(), or operator += operators.

Results: The WCValConstDListIter public member function creates an initialized
WCValConstDListIter object positioned before the first list element.

See Also: WCValConstDListIter, ~WCValConstDListIter, operator (),
operator ++, operator +=, reset

396 List Iterators

WCValConstDListIter<Type>::~WCValConstDListIter()

Synopsis: #include <wclistit.h>
public:
~WCValConstDListIter();

Semantics: The ~WCValConstDListIter public member function is the destructor for the class.
The call to the ~WCValConstDListIter public member function is inserted implicitly
by the compiler at the point where the WCValConstDListIter object goes out of scope.

Results: The WCValConstDListIter object is destroyed.

See Also: WCValConstDListIter

List Iterators 397

WCValConstSListIter<Type>,WCValConstDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
const WCValSList<Type> *WCValConstSListIter<Type>::container()
const;
const WCValDList<Type> *WCValConstDListIter<Type>::container()
const;

Semantics: The container public member function returns a pointer to the list container object. If the
iterator has not been initialized with a list object, and theundefiter exception is
enabled, the exception is thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator
has not been initialized with a list.

See Also: WCValConstSListIter, WCValConstDListIter, reset,WCIterExcept::undefiter

398 List Iterators

WCValConstSListIter<Type>::current(), WCValConstDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type current();

Semantics: The current public member function returns the value of the list element at the current
iterator position.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: The value at the current iterator element is returned. If the current element is undefined, a
default initialized object is returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=,
reset,WCIterExcept::undefitem

List Iterators 399

WCValConstSListIter<Type>,WCValConstDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The list
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment
operator, operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

400 List Iterators

WCValConstSListIter<Type>,WCValConstDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class.
The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
the list.

The operator ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

List Iterators 401

WCValConstSListIter<Type>,WCValConstDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
int operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causes the
iterrange exception to be thrown, if enabled.

Results: The operator += public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

402 List Iterators

WCValConstDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
int operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class.
The list element previous to the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If the list is empty, the iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with a list or the iterator position previous to the decrement
was before the first element the list, theundefiter exception is thrown, if enabled.

Results: The operator -- public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is decremented past the first
element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,WCIterExcept::undefiter

List Iterators 403

WCValConstDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
int operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causes the
iterrange exception to be thrown, if enabled.

Results: The operator -= public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is decremented past the first
element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

404 List Iterators

WCValConstSListIter<Type>::reset(), WCValConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCValConstSListIter, WCValConstDListIter, container

List Iterators 405

WCValConstSListIter<Type>::reset(), WCValConstDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCValConstSListIter<Type>::reset(const WCValSList<Type>
&);
void WCValConstDListIter<Type>::reset(const WCValDList<Type>
&);

Semantics: The reset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCValConstSListIter, WCValConstDListIter, container

406 List Iterators

WCValSListIter<Type>, WCValDListIter<Type>

Declared: wclistit.h

The WCValSListIter<Type> and WCValDListIter<Type> classes are the
templated classes used to create iterator objects for single and double linked list objects.
These classes can be used only for non-constant lists. The
WCValDConstListIter<Type> and WCValSConstListIter<Type> classes are
provided to iterate over constant lists.

In the description of each member function, the text Type is used to indicate the list element
type specified as the template parameter.

The WCIterExcept class is a base class of the WCValSListIter<Type> and
WCValDListIter<Type> classes and provides the exceptions member function.
This member function controls the exceptions which can be thrown by the
WCValSListIter<Type> and WCValDListIter<Type> objects. No exceptions are
enabled unless they are set by the exceptions member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate in the single
linked list iterator classes. Setting those functions as private members in the derived class is
the standard mechanism to prevent them from being invoked. The following member
functions are declared in the single linked list iterator private interface:

int operator --();
int operator -=(int);
int insert(Type &);

Public Member Functions

The following member functions are declared in the public interface:

WCValSListIter();
WCValSListIter(WCValSList<Type> &);
~WCValSListIter();
WCValDListIter();
WCValDListIter(WCValDList<Type> &);
~WCValDListIter();
int append(Type &);
WCValSList<Type> *WCValSListIter<Type>::container() const;
WCValDList<Type> *WCValDListIter<Type>::container() const;
Type current() const;
void reset();
void WCValSListIter<Type>::reset(WCValSList<Type> &);
void WCValDListIter<Type>::reset(WCValDList<Type> &);

List Iterators 407

WCValSListIter<Type>, WCValDListIter<Type>

In the iterators for double linked lists only:

int insert(Type &);

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();
int operator +=(int);

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

See Also: WCValSList::forAll, WCValDList::forAll

Sample Program Using Value List Iterators

408 List Iterators

WCValSListIter<Type>, WCValDListIter<Type>

#include <wclistit.h>
#include <iostream.h>

//
// insert elem after all elements in the list less than or equal to
// elem
//voidinsertinorder(WCValDList<int>&list,intelem){

if(list.entries() == 0) {
// cannot insert in an empty list using a iterator
list.insert(elem);

} else {

WCValDListIter<int> iter(list);
while(++iter) {

if(iter.current() > elem) {
// insert elem before first element in list greater
// than elem
iter.insert(elem);
return;

}
}

// iterated past the end of the list
// append elem to the end of the list
list.append(elem);

}
}

void main() {
WCValDList<int> list;insertinorder(list,5);insertinorder(list,20);insertinorder(list,1);insertinorder(list,25);
cout << "List elements in ascending order:\n";

WCValDListIter<int> iter(list);
while(++iter) {

cout << iter.current() << "\n";
}

cout << "List elements in descending order\n";

// iterator is past the end of the list
while(--iter) {

cout << iter.current() << "\n";
}

}

List Iterators 409

WCValSListIter<Type>::WCValSListIter()

Synopsis: #include <wclistit.h>
public:
WCValSListIter();

Semantics: The WCValSListIter public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The reset member function must be called
to provide the iterator with a list to iterate over.

Results: The WCValSListIter public member function creates an initialized WCValSListIter
object.

See Also: WCValSListIter, ~WCValSListIter, reset

410 List Iterators

WCValSListIter<Type>::WCValSListIter()

Synopsis: #include <wclistit.h>
public:
WCValSListIter(WCValSList<Type> &);

Semantics: The WCValSListIter public member function is a constructor for the class. The value
passed as a parameter is a WCValSList list object. The iterator will be initialized for that
list object and positioned before the first list element. To position the iterator to a valid
element within the list, increment it using any of the operator ++, operator (), or
operator += operators.

Results: The WCValSListIter public member function creates an initialized WCValSListIter
object positioned before the first element in the list.

See Also: ~WCValSListIter, operator (), operator ++, operator +=, reset

List Iterators 411

WCValSListIter<Type>::~WCValSListIter()

Synopsis: #include <wclistit.h>
public:
~WCValSListIter();

Semantics: The ~WCValSListIter public member function is the destructor for the class. The call to
the ~WCValSListIter public member function is inserted implicitly by the compiler at
the point where the WCValSListIter object goes out of scope.

Results: The WCValSListIter object is destroyed.

See Also: WCValSListIter

412 List Iterators

WCValDListIter<Type>::WCValDListIter()

Synopsis: #include <wclistit.h>
public:
WCValDListIter();

Semantics: The WCValDListIter public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The reset member function must be called
to provide the iterator with a list to iterate over.

Results: The WCValDListIter public member function creates an initialized WCValDListIter
object.

See Also: WCValDListIter, ~WCValDListIter, reset

List Iterators 413

WCValDListIter<Type>::WCValDListIter()

Synopsis: #include <wclistit.h>
public:
WCValDListIter(WCValDList<Type> &);

Semantics: The WCValDListIter public member function is a constructor for the class. The value
passed as a parameter is the WCValDList list object. The iterator will be initialized for that
list object and positioned before the first list element. To position the iterator to a valid
element within the list, increment it using any of the operator ++, operator (), or
operator += operators.

Results: The WCValDListIter public member function creates an initialized WCValDListIter
object positioned before the first list element.

See Also: WCValDListIter, ~WCValDListIter, operator (), operator ++,
operator +=, reset

414 List Iterators

WCValDListIter<Type>::~WCValDListIter()

Synopsis: #include <wclistit.h>
public:
~WCValDListIter();

Semantics: The ~WCValDListIter public member function is the destructor for the class. The call to
the ~WCValDListIter public member function is inserted implicitly by the compiler at
the point where the WCValDListIter object goes out of scope.

Results: The WCValDListIter object is destroyed.

See Also: WCValDListIter

List Iterators 415

WCValSListIter<Type>::append(), WCValDListIter<Type>::append()

Synopsis: #include <wclistit.h>
public:
int append(Type &);

Semantics: The append public member function inserts a new element into the list container object.
The new element is inserted after the current iterator item.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not appended. If theundefiter exception is enabled, it is thrown.

If the append fails, theoutofmemory exception is thrown, if enabled in the list being
iterated over. The list remains unchanged.

Results: The new element is inserted after the current iterator item. A TRUE value (non-zero) is
returned if the append is successful. A FALSE (zero) result is returned if the append fails.

See Also: insert,WCExcept::outofmemory,WCIterExcept::undefiter

416 List Iterators

WCValSListIter<Type>,WCValDListIter<Type>::container()

Synopsis: #include <wclistit.h>
public:
WCValSList<Type> *WCValSListIter<Type>::container() const;
WCValDList<Type> *WCValDListIter<Type>::container() const;

Semantics: The container public member function returns a pointer to the list container object. If the
iterator has not been initialized with a list object, and theundefiter exception is
enabled, the exception is thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator
has not been initialized with a list.

See Also: WCValSListIter, WCValDListIter, reset,WCIterExcept::undefiter

List Iterators 417

WCValSListIter<Type>::current(), WCValDListIter<Type>::current()

Synopsis: #include <wclistit.h>
public:
Type current();

Semantics: The current public member function returns the value of the list element at the current
iterator position.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
case theundefitem exception is thrown, if enabled.

Results: The value at the current iterator element is returned. If the current element is undefined, a
default initialized object is returned.

See Also: operator (), operator ++, operator +=, operator --, operator -=,
reset,WCIterExcept::undefitem

418 List Iterators

WCValDListIter<Type>::insert()

Synopsis: #include <wclistit.h>
public:
int insert(Type &);

Semantics: The insert public member function inserts a new element into the list container object.
The new element is inserted before the current iterator item. This process uses the previous
link in the double linked list, so the insert public member function is not allowed with
single linked lists.

If the iterator is not associated with a list, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not inserted. If theundefiter exception is enabled, the exception is thrown.

If the insert fails and theoutofmemory exception is enabled in the list being iterated
over, the exception is thrown. The list remains unchanged.

Results: The new element is inserted before the current iterator item. A TRUE value (non-zero) is
returned if the insert is successful. A FALSE (zero) result is returned if the insert fails.

See Also: append,WCExcept::outofmemory,WCIterExcept::undefiter

List Iterators 419

WCValSListIter<Type>,WCValDListIter<Type>::operator ()()

Synopsis: #include <wclistit.h>
public:
int operator ()();

Semantics: The operator () public member function is the call operator for the class. The list
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

The operator () public member function has the same semantics as the pre-increment
operator, operator ++.

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator () public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: operator ++, operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

420 List Iterators

WCValSListIter<Type>,WCValDListIter<Type>::operator ++()

Synopsis: #include <wclistit.h>
public:
int operator ++();

Semantics: The operator ++ public member function is the pre-increment operator for the class.
The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
the list.

The operator ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
the first element in the list. If the list is empty, the iterator will be positioned after the end of
the list.

If the iterator is not associated with a list or the iterator position before the increment was
past the last element the list, theundefiter exception is thrown, if enabled.

Results: The operator ++ public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: current, operator (), operator +=, operator --, operator -=, reset,WCIterExcept::undefiter

List Iterators 421

WCValSListIter<Type>,WCValDListIter<Type>::operator +=()

Synopsis: #include <wclistit.h>
public:
int operator +=(int);

Semantics: The operator += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causes the
iterrange exception to be thrown, if enabled.

Results: The operator += public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is incremented past the end of
the list.

See Also: current, operator (), operator ++, operator --, operator -=, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

422 List Iterators

WCValDListIter<Type>::operator --()

Synopsis: #include <wclistit.h>
public:
int operator --();

Semantics: The operator -- public member function is the pre-decrement operator for the class.
The list element previous to the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If the list is empty, the iterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with a list or the iterator position previous to the decrement
was before the first element the list, theundefiter exception is thrown, if enabled.

Results: The operator -- public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is decremented past the first
element of the list.

See Also: current, operator (), operator ++, operator +=, operator -=, reset,WCIterExcept::undefiter

List Iterators 423

WCValDListIter<Type>::operator -=()

Synopsis: #include <wclistit.h>
public:
int operator -=(int);

Semantics: The operator -= public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previous to the iteration, and theundefiter exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causes the
iterrange exception to be thrown, if enabled.

Results: The operator -= public member function returns a non-zero value if the iterator is
positioned on a list item. Zero(0) is returned when the iterator is decremented past the first
element in the list.

See Also: current, operator (), operator ++, operator +=, operator --, reset,WCIterExcept::iterrange,WCIterExcept::undefiter

424 List Iterators

WCValSListIter<Type>::reset(), WCValDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void reset();

Semantics: The reset public member function resets the iterator to the initial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

See Also: WCValSListIter, WCValDListIter, container

List Iterators 425

WCValSListIter<Type>::reset(), WCValDListIter<Type>::reset()

Synopsis: #include <wclistit.h>
public:
void WCValSListIter<Type>::reset(WCValSList<Type> &);
void WCValDListIter<Type>::reset(WCValDList<Type> &);

Semantics: The reset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: The iterator is positioned before the first element of the specified list.

See Also: WCValSListIter, WCValDListIter, container

426 List Iterators

14 Queue Container

Queue containers maintain an ordered collection of data which is retrieved in the order in
which the data was entered into the queue. The queue class is implemented as a templated
class, allowing the use of any data type as the queue data.

A second template parameter specifies the storage class used to implement the queue. The
WCValSList, WCIsvSList and WCPtrSList classes are appropriate storage classes.

Queue Container 427

WCQueue<Type,FType>

Declared: wcqueue.h

The WCQueue<Type,FType> class is a templated class used to create objects which
maintain data in a queue.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type of the elements stored in the queue. The text FType is used to
indicate the template parameter defining the storage class used to maintain the queue.

For example, to create a queue of integers, the WCQueue<int,WCValSList<int> >
class can be used. The WCQueue<int *,WCPtrSList<int> > class will create a
queue of pointers to integers. To create an intrusive queue of objects of type isv_link
(derived from the WCSLink class), the WCQueue< isv_link *,WCIsvSList< isv_link >
> class can be used.

The WCExcept class is a base class of the WCQueue<Type,FType> class and provides
the exceptions member function. This member function controls the exceptions which
can be thrown by the WCQueue<Type,FType> object. No exceptions are enabled unless
they are set by the exceptions member function.

Requirements of Type

Type must provide any constructors and/or operators required by the FType class.

Public Member Functions

The following member functions are declared in the public interface:

WCQueue();WCQueue(void*(*)(sizet),void(*)(void*,sizet));
~WCQueue();
void clear();
int entries() const;
Type first() const;
Type get();
int insert(const Type &);
int isEmpty() const;
Type last() const;

Sample Program Using a Queue

#include <wcqueue.h>
#include <iostream.h>

main() {
WCQueue<int,WCValSList<int> > queue;

428 Queue Container

WCQueue<Type,FType>

queue.insert(7);
queue.insert(8);
queue.insert(9);
queue.insert(10);

cout << "\nNumber of queue entries: " << queue.entries() << "\n";
cout << "First entry = [" << queue.first() << "]\n";
cout << "Last entry = [" << queue.last() << "]\n";
while(!queue.isEmpty()) {

cout << queue.get() << "\n";
};
cout.flush();

}

Queue Container 429

WCQueue<Type,FType>::WCQueue()

Synopsis: #include <wcqueue.h>
public:
WCQueue();

Semantics: The public WCQueue<Type,FType> constructor creates an empty
WCQueue<Type,FType> object. The FType storage class constructor performs the
initialization.

Results: The public WCQueue<Type,FType> constructor creates an initialized
WCQueue<Type,FType> object.

See Also: ~WCQueue<Type,FType>

430 Queue Container

WCQueue<Type,FType>::WCQueue()

Synopsis: #include <wcqueue.h>
public:WCQueue(void*(*allocator)(sizet),void(*deallocator)(void*,sizet));

Semantics: The public WCQueue<Type,FType> constructor creates an empty
WCQueue<Type,FType> object. If FType is either the WCValSList or WCPtrSList
class, then the allocator function is registered to perform all memory allocations of the queue
elements, and the deallocator function to perform all freeing of the queue elements’ memory.
The allocator and deallocator functions are ignored if FType is the WCIsvSList class.
These functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and operator delete() can provide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCQueue<Type,FType> class.

The WCQueue<Type,FType> class calls the deallocator function only on memory
allocated by the allocator function. The deallocator shall free the memory pointed to by the
first argument which is of size the second argument. The size passed to the deallocator
function is guaranteed to be the same size passed to the allocator function when the memory
was allocated.

The allocator and deallocator functions may assume that for a list object instance, the
allocator is always called with the same first argument (the size of the memory to be
allocated). If FType is the WCValSList<Type> class, then the
WCValSListItemSize(Type) macro returns the size of the elements which are
allocated by the allocator function. Similarly, the WCPtrSListItemSize(Type)
macro returns the size of WCPtrSList<Type> elements.

The FType storage class constructor performs the initialization of the queue.

Results: The public WCQueue<Type,FType> constructor creates an initialized
WCQueue<Type,FType> object and registers the allocator and deallocator functions.

See Also: WCQueue<Type,FType>, ~WCQueue<Type,FType>

Queue Container 431

WCQueue<Type,FType>::~WCQueue()

Synopsis: #include <wcqueue.h>
public:
virtual ~WCQueue();

Semantics: The public ~WCQueue<Type,FType> destructor destroys the
WCQueue<Type,FType> object. The FType storage class destructor performs the
destruction. The call to the public ~WCQueue<Type,FType> destructor is inserted
implicitly by the compiler at the point where the WCQueue<Type,FType> object goes out
of scope.

If thenotempty exception is enabled, the exception is thrown if the queue is not empty of
queue elements.

Results: The WCQueue<Type,FType> object is destroyed.

See Also: WCQueue<Type,FType>, clear,WCExcept::notempty

432 Queue Container

WCQueue<Type,FType>::clear()

Synopsis: #include <wcqueue.h>
public:
void clear();

Semantics: The clear public member function is used to clear the queue object and set it to the state of
the object just after the initial construction. The queue object is not destroyed and re-created
by this operator, so the object destructor is not invoked. The queue elements are not cleared
by the queue class. However, the class used to maintain the queue, FType, may clear the
items as part of the clear function for that class. If it does not clear the items, any queue
items still in the list are lost unless pointed to by some pointer object in the program code.

Results: The clear public member function resets the queue object to the state of the object
immediately after the initial construction.

See Also: ~WCQueue<Type,FType>, isEmpty

Queue Container 433

WCQueue<Type,FType>::entries()

Synopsis: #include <wcqueue.h>
public:
int entries() const;

Semantics: The entries public member function is used to determine the number of queue elements
contained in the list object.

Results: The number of elements in the queue is returned. Zero(0) is returned if there are no queue
elements.

See Also: isEmpty

434 Queue Container

WCQueue<Type,FType>::first()

Synopsis: #include <wcqueue.h>
public:
Type first() const;

Semantics: The first public member function returns a queue element from the beginning of the
queue object. The queue element is not removed from the queue.

If the queue is empty, one of two exceptions can be thrown. If theemptycontainer
exception is enabled, then it will be thrown. Otherwise, the

indexrange exception will
be thrown, if enabled.

Results: The first queue element is returned. If there are no elements in the queue, the return value is
determined by the find member function of the FType class.

See Also: get, isEmpty, last,WCExcept::emptycontainer,WCExcept::indexrange, FType::find

Queue Container 435

WCQueue<Type,FType>::get()

Synopsis: #include <wcqueue.h>
public:
Type get();

Semantics: The get public member function returns the queue element which was first inserted into the
queue object. The queue element is also removed from the queue.

If the queue is empty, one of two exceptions can be thrown. If theemptycontainer
exception is enabled, then it will be thrown. Otherwise, the

indexrange exception will
be thrown, if enabled.

Results: The first element in the queue is removed and returned. If there are no elements in the
queue, the return value is determined by the get member function of the FType class.

See Also: first, insert, isEmpty,WCExcept::emptycontainer,WCExcept::indexrange, FType::get

436 Queue Container

WCQueue<Type,FType>::insert()

Synopsis: #include <wcqueue.h>
public:
int insert(const Type &);

Semantics: The insert public member function is used to insert the data into the queue. It will be the
last element in the queue, and the last to be retrieved.

If the insert fails, theoutofmemory exception will be thrown, if enabled. The queue
will remain unchanged.

Results: The queue element is inserted at the end of the queue. A TRUE value (non-zero) is returned
if the insert is successful. A FALSE (zero) result is returned if the insert fails.

See Also: get,WCExcept::outofmemory

Queue Container 437

WCQueue<Type,FType>::isEmpty()

Synopsis: #include <wcqueue.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a queue object has any queue
elements contained in it.

Results: A TRUE value (non-zero) is returned if the queue object does not have any queue elements
contained within it. A FALSE (zero) result is returned if the queue contains at least one
element.

See Also: entries

438 Queue Container

WCQueue<Type,FType>::last()

Synopsis: #include <wcqueue.h>
public:
Type last() const;

Semantics: The last public member function returns a queue element from the end of the queue object.
The queue element is not removed from the queue.

If the queue is empty, one of two exceptions can be thrown. If theemptycontainer
exception is enabled, then it will be thrown. Otherwise, the

indexrange exception will
be thrown, if enabled.

Results: The last queue element is returned. If there are no elements in the queue, the return value is
determined by the find member function of the FType class.

See Also: first, get, isEmpty,WCExcept::emptycontainer,WCExcept::indexrange, FType::find

Queue Container 439

WCQueue<Type,FType>::last()

440 Queue Container

15 Skip List Containers

This chapter describes skip list containers.

Skip List Containers 441

WCPtrSkipListDict<Key,Value>

Declared: wcskip.h

The WCPtrSkipListDict<Key,Value> class is a templated class used to store objects
in a dictionary. Dictionaries store values with an associated key, which may be of any type.
One example of a dictionary used in everyday life is the phone book. The phone numbers
are the data values, and the customer name is the key. The equality operator of the key’s
type is used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template
parameter defining the type of the indices pointed to by the pointers stored in the dictionary.
The text Value is used to indicate the template parameter defining the type of the data
pointed to by the pointers stored in the dictionary.

Note that pointers to the key values are stored in the dictionary. Destructors are not called on
the keys pointed to. The key values pointed to in the dictionary should not be changed such
that the equivalence to the old value is modified.

The iterator classes for skip lists have the same function and operator interface as the hash
iterators classes. See the chapter on hash iterators for more information.

The WCExcept class is a base class of the WCPtrSkipListDict<Key,Value> class
and provides the exceptions member function. This member function controls the
exceptions which can be thrown by the WCPtrSkipListDict<Key,Value> object. No
exceptions are enabled unless they are set by the exceptions member function.

Requirements of Key

The WCPtrSkipListDict<Key,Value> class requires Key to have:

A well defined equivalence operator with constant parameters
(int operator ==(const Key &) const).

A well defined operator less than with constant parameters
(int operator <(const Key &) const).

Public Member Functions

The following member functions are declared in the public interface:WCPtrSkipListDict(unsigned=WCSkipListDictPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);WCPtrSkipListDict(unsigned=WCSkipListDictPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(
442 Skip List Containers

WCPtrSkipListDict<Key,Value>sizetsize),void(*userdealloc)(void*old,sizetsize)
);
WCPtrSkipListDict(const WCPtrSkipListDict &);
virtual ~WCPtrSkipListDict();
void clear();
void clearAndDestroy();
int contains(const Key *) const;
unsigned entries() const;
Value * find(const Key *) const;
Value * findKeyAndValue(const Key *, Key * &) const;voidforAll(void(*userfn)(Key*,Value*,void*),void*
);
int insert(Key *, Value *);
int isEmpty() const;
Value * remove(const Key *);

Public Member Operators

The following member operators are declared in the public interface:

Value * & operator [](const Key *);
Value * const & operator [](const Key *) const;
WCPtrSkipListDict & operator =(const WCPtrSkipListDict &);
int operator ==(const WCPtrSkipListDict &) const;

Skip List Containers 443

WCPtrSkipListDict<Key,Value>::WCPtrSkipListDict()

Synopsis: #include <wcskip.h>
public:WCPtrSkipListDict(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);

Semantics: The public WCPtrSkipListDict<Key,Value> constructor creates an
WCPtrSkipListDict<Key,Value> object with no entries. The first optional
parameter, which defaults to the constantWCSKIPLISTPROBQUARTER, determines the
probability of having a certain number of pointers in each skip list node. The second
optional parameter, which defaults to the constantWCDEFAULTSKIPLISTMAXPTRS,
determines the maximum number of pointers that are allowed in any skip list node.WCDEFAULTSKIPLISTMAXPTRS is the maximum effective value of the second
parameter. If an allocation failure occurs while creating the skip list, theoutofmemory
exception is thrown if theoutofmemory exception is enabled.

Results: The public WCPtrSkipListDict<Key,Value> constructor creates an initialized
WCPtrSkipListDict<Key,Value> object.

See Also: ~WCPtrSkipListDict<Key,Value>,WCExcept::outofmemory

444 Skip List Containers

WCPtrSkipListDict<Key,Value>::WCPtrSkipListDict()

Synopsis: #include <wcskip.h>
public:WCPtrSkipListDict(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list dictionary. The semantics of this constructor are the same as the
constructor without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a list dictionary. To
determine the size of the objects that the memory management functions will be required to
allocate and free, the following macro may be used:WCPtrSkipListDictItemSize(Key,Value,numofpointers)

Results: The public WCPtrSkipListDict<Key,Value> constructor creates an initialized
WCPtrSkipListDict<Key,Value> object.

See Also: ~WCPtrSkipListDict<Key,Value>,WCExcept::outofmemory

Skip List Containers 445

WCPtrSkipListDict<Key,Value>::WCPtrSkipListDict()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipListDict(const WCPtrSkipListDict &);

Semantics: The public WCPtrSkipListDict<Key,Value> constructor is the copy constructor for
the WCPtrSkipListDict<Key,Value> class. The new skip list is created with the
same probability and maximum pointers, all values or pointers stored in the list, and the
exception trap states. If there is not enough memory to copy all of the values, then only
some will be copied, and the number of entries will correctly reflect the number copied. If
all of the elements cannot be copied, then theoutofmemory exception is thrown if it is
enabled.

Results: The public WCPtrSkipListDict<Key,Value> constructor creates an
WCPtrSkipListDict<Key,Value> object which is a copy of the passed dictionary.

See Also: operator =,WCExcept::outofmemory

446 Skip List Containers

WCPtrSkipListDict<Key,Value>::~WCPtrSkipListDict()

Synopsis: #include <wcskip.h>
public:
virtual ~WCPtrSkipListDict();

Semantics: The public ~WCPtrSkipListDict<Key,Value> destructor is the destructor for the
WCPtrSkipListDict<Key,Value> class. If the number of dictionary elements is not
zero and thenotempty exception is enabled, the exception is thrown. Otherwise, the
dictionary elements are cleared using the clear member function. The objects which the
dictionary elements point to are not deleted unless the clearAndDestroy member
function is explicitly called before the destructor is called. The call to the public
~WCPtrSkipListDict<Key,Value> destructor is inserted implicitly by the compiler
at the point where the WCPtrSkipListDict<Key,Value> object goes out of scope.

Results: The public ~WCPtrSkipListDict<Key,Value> destructor destroys an
WCPtrSkipListDict<Key,Value> object.

See Also: clear, clearAndDestroy,WCExcept::notempty

Skip List Containers 447

WCPtrSkipListDict<Key,Value>::clear()

Synopsis: #include <wcskip.h>
public:
void clear();

Semantics: The clear public member function is used to clear the dictionary so that it has no entries.
Objects pointed to by the dictionary elements are not deleted. The dictionary object is not
destroyed and re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the dictionary to have no elements.

See Also: ~WCPtrSkipListDict<Key,Value>, clearAndDestroy, operator =

448 Skip List Containers

WCPtrSkipListDict<Key,Value>::clearAndDestroy()

Synopsis: #include <wcskip.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the dictionary and delete
the objects pointed to by the dictionary elements. The dictionary object is not destroyed and
re-created by this function, so the dictionary object destructor is not invoked.

Results: The clearAndDestroy public member function clears the dictionary by deleting the
objects pointed to by the dictionary elements.

See Also: clear

Skip List Containers 449

WCPtrSkipListDict<Key,Value>::contains()

Synopsis: #include <wcskip.h>
public:
int contains(const Key *) const;

Semantics: The contains public member function returns non-zero if an element with the specified
key is stored in the dictionary, or zero if there is no equivalent element. Note that
equivalence is based on the equivalence operator of the Key type.

Results: The contains public member function returns a non-zero value if the Key is found in the
dictionary.

See Also: find, findKeyAndValue

450 Skip List Containers

WCPtrSkipListDict<Key,Value>::entries()

Synopsis: #include <wcskip.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements
stored in the dictionary.

Results: The entries public member function returns the number of elements in the dictionary.

See Also: isEmpty

Skip List Containers 451

WCPtrSkipListDict<Key,Value>::find()

Synopsis: #include <wcskip.h>
public:
Value * find(const Key *) const;

Semantics: The find public member function is used to find an element with an equivalent key in the
dictionary. If an equivalent element is found, a pointer to the element Value is returned.
Zero is returned if the element is not found. Note that equivalence is based on the
equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

452 Skip List Containers

WCPtrSkipListDict<Key,Value>::findKeyAndValue()

Synopsis: #include <wcskip.h>
public:
Value * findKeyAndValue(const Key *, Key * &) const;

Semantics: The findKeyAndValue public member function is used to find an element in the
dictionary with an key equivalent to the first parameter. If an equivalent element is found, a
pointer to the element Value is returned. The reference to a Key passed as the second
parameter is assigned the found element’s key. Zero is returned if the element is not found.
Note that equivalence is based on the equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

Skip List Containers 453

WCPtrSkipListDict<Key,Value>::forAll()

Synopsis: #include <wcskip.h>
public:
void forAll(void(*userfn)(Key*,Value*,void*),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for
every key-value pair in the dictionary. The user function has the prototypevoiduserfunc(Key*key,Value*value,void*data);
As the elements are visited, the user function is invoked with the Key and Value
components of the element passed as the first two parameters. The second parameter of the
forAll function is passed as the third parameter to the user function. This value can be
used to pass any appropriate data from the main code to the user function.

Results: The elements in the dictionary are all visited, with the user function being invoked for each
one.

See Also: find, findKeyAndValue

454 Skip List Containers

WCPtrSkipListDict<Key,Value>::insert()

Synopsis: #include <wcskip.h>
public:
int insert(Key *, Value *);

Semantics: The insert public member function inserts a key and value into the dictionary. If
allocation of the node to store the key-value pair fails, then theoutofmemory exception
is thrown if it is enabled. If the exception is not enabled, the insert will not be completed.

Results: The insert public member function inserts a key and value into the dictionary. If the
insert is successful, a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =,WCExcept::outofmemory

Skip List Containers 455

WCPtrSkipListDict<Key,Value>::isEmpty()

Synopsis: #include <wcskip.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the dictionary is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero
if the dictionary is empty.

See Also: entries

456 Skip List Containers

WCPtrSkipListDict<Key,Value>::operator []()

Synopsis: #include <wcskip.h>
public:
Value * & operator[](const Key *);

Semantics: operator [] is the dictionary index operator. A reference to the object stored in the
dictionary with the given Key is returned. If no equivalent element is found, then a new
key-value pair is created with the specified Key value, and initialized with the default
constructor. The returned reference can then be assigned to, so that insertions can be made
with the operator. If an allocation error occurs while inserting a new key-value pair, then theoutofmemory exception is thrown if it is enabled. If the exception is not enabled, then
a reference to address zero will be returned. This will result in a run-time error on systems
which trap address zero references.

Results: The operator [] public member function returns a reference to the element at the given
key value. If the key does not exist, a reference to a created element is returned. The result
of the operator may be assigned to.

See Also:WCExcept::outofmemory

Skip List Containers 457

WCPtrSkipListDict<Key,Value>::operator []()

Synopsis: #include <wcskip.h>
public:
Value * const & operator[](const Key *) const;

Semantics: operator [] is the dictionary index operator. A constant reference to the object stored in
the dictionary with the given Key is returned. If no equivalent element is found, then theindexrange exception is thrown if it is enabled. If the exception is not enabled, then a
reference to address zero will be returned. This will result in a run-time error on systems
which trap address zero references.

Results: The operator [] public member function returns a constant reference to the element at
the given key value. The result of the operator may not be assigned to.

See Also:WCExcept::indexrange

458 Skip List Containers

WCPtrSkipListDict<Key,Value>::operator =()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipListDict & operator =(const WCPtrSkipListDict &);

Semantics: The operator = public member function is the assignment operator for the
WCPtrSkipListDict<Key,Value> class. The left hand side dictionary is first cleared
using the clear member function, and then the right hand side dictionary is copied. The
new skip list is created with the same probability and maximum pointers, all values or
pointers stored in the list, and the exception trap states. If there is not enough memory to
copy all of the values or pointers in the dictionary, then only some will be copied, and theoutofmemory exception is thrown if it is enabled. The number of entries will correctly
reflect the number copied.

Results: The operator = public member function assigns the left hand side dictionary to be a copy
of the right hand side.

See Also: clear,WCExcept::outofmemory

Skip List Containers 459

WCPtrSkipListDict<Key,Value>::operator ==()

Synopsis: #include <wcskip.h>
public:
int operator ==(const WCPtrSkipListDict &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCPtrSkipListDict<Key,Value> class. Two dictionary objects are equivalent if
they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side dictionary are
the same object. A FALSE (zero) value is returned otherwise.

460 Skip List Containers

WCPtrSkipListDict<Key,Value>::remove()

Synopsis: #include <wcskip.h>
public:
Value * remove(const Key *);

Semantics: The remove public member function is used to remove the specified element from the
dictionary. If an equivalent element is found, the pointer value is returned. Zero is returned
if the element is not found. Note that equivalence is based on the equivalence operator of the
Key type.

Results: The element is removed from the dictionary if it found.

Skip List Containers 461

WCPtrSkipList<Type>, WCPtrSkipListSet<Type>

Declared: wcskip.h

WCPtrSkipList<Type> and WCPtrSkipListSet<Type> classes are templated
classes used to store objects in a skip list. A skip list is a probabilistic alternative to balanced
trees, and provides a reasonable performance balance to insertion, search, and deletion. A
skip list allows more than one copy of an element that is equivalent, while the skip list set
allows only one copy. The equality operator of the element’s type is used to locate the value.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type of the data pointed to by the pointers stored in the list.

Note that pointers to the elements are stored in the list. Destructors are not called on the
elements pointed to. The data values pointed to in the list should not be changed such that
the equivalence to the old value is modified.

The iterator classes for skip lists have the same function and operator interface as the hash
iterators classes. See the chapter on hash iterators for more information.

The WCExcept class is a base class of the WCPtrSkipList<Type> and
WCPtrSkipListSet<Type> classes and provides the exceptions member function.
This member function controls the exceptions which can be thrown by the
WCPtrSkipList<Type> and WCPtrSkipListSet<Type> objects. No exceptions
are enabled unless they are set by the exceptions member function.

Requirements of Type

The WCPtrSkipList<Type> and WCPtrSkipListSet<Type> classes requires
Type to have:

A well defined equivalence operator
(int operator ==(const Type &) const).

A well defined less than operator
(int operator <(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:WCPtrSkipList(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);WCPtrSkipList(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(sizetsize),void(*userdealloc)(void*old,sizetsize));
462 Skip List Containers

WCPtrSkipList<Type>, WCPtrSkipListSet<Type>

WCPtrSkipList(const WCPtrSkipList &);
virtual ~WCPtrSkipList();WCPtrSkipListSet(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);WCPtrSkipListSet(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(sizetsize),void(*userdealloc)(void*old,sizetsize));
WCPtrSkipListSet(const WCPtrSkipListSet &);
virtual ~WCPtrSkipListSet();
void clear();
void clearAndDestroy();
int contains(const Type *) const;
unsigned entries() const;
Type * find(const Type *) const;voidforAll(void(*userfn)(Type*,void*),void*);
int insert(Type *);
int isEmpty() const;
Type * remove(const Type *);

The following public member functions are available for the WCPtrSkipList class only:

unsigned occurrencesOf(const Type *) const;
unsigned removeAll(const Type *);

Public Member Operators

The following member operators are declared in the public interface:

WCPtrSkipList & operator =(const WCPtrSkipList &);
int operator ==(const WCPtrSkipList &) const;
WCPtrSkipListSet & operator =(const WCPtrSkipListSet &);
int operator ==(const WCPtrSkipListSet &) const;

Skip List Containers 463

WCPtrSkipListSet<Type>::WCPtrSkipListSet()

Synopsis: #include <wcskip.h>
public:WCPtrSkipListSet(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);

Semantics: The WCPtrSkipListSet<Type> constructor creates a WCPtrSkipListSet object
with no entries. The first optional parameter, which defaults to the constantWCSKIPLISTPROBQUARTER, determines the probability of having a certain number of
pointers in each skip list node. The second optional parameter, which defaults to the
constantWCDEFAULTSKIPLISTMAXPTRS, determines the maximum number of
pointers that are allowed in any skip list node.WCDEFAULTSKIPLISTMAXPTRS is
the maximum effective value of the second parameter. If an allocation failure occurs while
creating the skip list, theoutofmemory exception is thrown if theoutofmemory
exception is enabled.

Results: The WCPtrSkipListSet<Type> constructor creates an initialized
WCPtrSkipListSet object.

See Also: ~WCPtrSkipList<Type>,WCExcept::outofmemory

464 Skip List Containers

WCPtrSkipListSet<Type>::WCPtrSkipListSet()

Synopsis: #include <wcskip.h>
public:WCPtrSkipListSet(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a skip list. To determine
the size of the objects that the memory management functions will be required to allocate and
free, the following macro may be used:WCPtrSkipListSetItemSize(Type,numofpointers)

Results: The WCPtrSkipListSet<Type> constructor creates an initialized
WCPtrSkipListSet object.

See Also: ~WCPtrSkipList<Type>,WCExcept::outofmemory

Skip List Containers 465

WCPtrSkipListSet<Type>::WCPtrSkipListSet()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipListSet(const WCPtrSkipListSet &);

Semantics: The WCPtrSkipListSet<Type> constructor is the copy constructor for the
WCPtrSkipListSet class. The new skip list is created with the same probability and
maximum pointers, all values or pointers stored in the list, and the exception trap states. If
there is not enough memory to copy all of the values, then only some will be copied, and the
number of entries will correctly reflect the number copied. If all of the elements cannot be
copied, then theoutofmemory exception is thrown if it is enabled.

Results: The WCPtrSkipListSet<Type> constructor creates a WCPtrSkipListSet object
which is a copy of the passed list.

See Also: operator =,WCExcept::outofmemory

466 Skip List Containers

WCPtrSkipListSet<Type>::~WCPtrSkipListSet()

Synopsis: #include <wcskip.h>
public:
virtual ~WCPtrSkipListSet();

Semantics: The WCPtrSkipListSet<Type> destructor is the destructor for the
WCPtrSkipListSet class. If the number of elements is not zero and thenotempty
exception is enabled, the exception is thrown. Otherwise, the list elements are cleared using
the clear member function. The objects which the list elements point to are not deleted
unless the clearAndDestroy member function is explicitly called before the destructor is
called. The call to the WCPtrSkipListSet<Type> destructor is inserted implicitly by
the compiler at the point where the WCPtrSkipListSet object goes out of scope.

Results: The call to the WCPtrSkipListSet<Type> destructor destroys a
WCPtrSkipListSet object.

See Also: clear, clearAndDestroy,WCExcept::notempty

Skip List Containers 467

WCPtrSkipList<Type>::WCPtrSkipList()

Synopsis: #include <wcskip.h>
public:WCPtrSkipList(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);

Semantics: The WCPtrSkipList<Type> constructor creates a WCPtrSkipList object with no
entries. The first optional parameter, which defaults to the constantWCSKIPLISTPROBQUARTER, determines the probability of having a certain number of
pointers in each skip list node. The second optional parameter, which defaults to the
constantWCDEFAULTSKIPLISTMAXPTRS, determines the maximum number of
pointers that are allowed in any skip list node.WCDEFAULTSKIPLISTMAXPTRS is
the maximum effective value of the second parameter. If an allocation failure occurs while
creating the skip list, theoutofmemory exception is thrown if theoutofmemory
exception is enabled.

Results: The WCPtrSkipList<Type> constructor creates an initialized WCPtrSkipList object.

See Also: ~WCPtrSkipList<Type>,WCExcept::outofmemory

468 Skip List Containers

WCPtrSkipList<Type>::WCPtrSkipList()

Synopsis: #include <wcskip.h>
public:WCPtrSkipList(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a skip list. To determine
the size of the objects that the memory management functions will be required to allocate and
free, the following macro may be used:WCPtrSkipListItemSize(Type,numofpointers)

Results: The WCPtrSkipList<Type> constructor creates an initialized WCPtrSkipList object.

See Also: ~WCPtrSkipList<Type>,WCExcept::outofmemory

Skip List Containers 469

WCPtrSkipList<Type>::WCPtrSkipList()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipList(const WCPtrSkipList &);

Semantics: The WCPtrSkipList<Type> constructor is the copy constructor for the
WCPtrSkipList class. The new skip list is created with the same probability and
maximum pointers, all values or pointers stored in the list, and the exception trap states. If
there is not enough memory to copy all of the values, then only some will be copied, and the
number of entries will correctly reflect the number copied. If all of the elements cannot be
copied, then theoutofmemory exception is thrown if it is enabled.

Results: The WCPtrSkipList<Type> constructor creates a WCPtrSkipList object which is a
copy of the passed list.

See Also: operator =,WCExcept::outofmemory

470 Skip List Containers

WCPtrSkipList<Type>::~WCPtrSkipList()

Synopsis: #include <wcskip.h>
public:
virtual ~WCPtrSkipList();

Semantics: The WCPtrSkipList<Type> destructor is the destructor for the WCPtrSkipList
class. If the number of elements is not zero and thenotempty exception is enabled, the
exception is thrown. Otherwise, the list elements are cleared using the clear member
function. The objects which the list elements point to are not deleted unless the
clearAndDestroy member function is explicitly called before the destructor is called.
The call to the WCPtrSkipList<Type> destructor is inserted implicitly by the compiler
at the point where the WCPtrSkipList object goes out of scope.

Results: The call to the WCPtrSkipList<Type> destructor destroys a WCPtrSkipList object.

See Also: clear, clearAndDestroy,WCExcept::notempty

Skip List Containers 471

WCPtrSkipList<Type>::clear(), WCPtrSkipListSet<Type>::clear()

Synopsis: #include <wcskip.h>
public:
void clear();

Semantics: The clear public member function is used to clear the list so that it has no entries. Objects
pointed to by the list elements are not deleted. The list object is not destroyed and re-created
by this function, so the object destructor is not invoked.

Results: The clear public member function clears the list to have no elements.

See Also: ~WCPtrSkipList<Type>, clearAndDestroy, operator =

472 Skip List Containers

WCPtrSkipList<Type>,WCPtrSkipListSet<Type>::clearAndDestroy()

Synopsis: #include <wcskip.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the list and delete the
objects pointed to by the list elements. The list object is not destroyed and re-created by this
function, so the list object destructor is not invoked.

Results: The clearAndDestroy public member function clears the list by deleting the objects
pointed to by the list elements, and then removing the list elements from the list.

See Also: clear

Skip List Containers 473

WCPtrSkipList<Type>::contains(), WCPtrSkipListSet<Type>::contains()

Synopsis: #include <wcskip.h>
public:
int contains(const Type *) const;

Semantics: The contains public member function returns non-zero if the element is stored in the list,
or zero if there is no equivalent element. Note that equivalence is based on the equivalence
operator of the element type.

Results: The contains public member function returns a non-zero value if the element is found in
the list.

See Also: find

474 Skip List Containers

WCPtrSkipList<Type>::entries(), WCPtrSkipListSet<Type>::entries()

Synopsis: #include <wcskip.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements
stored in the list.

Results: The entries public member function returns the number of elements in the list.

See Also: isEmpty

Skip List Containers 475

WCPtrSkipList<Type>::find(), WCPtrSkipListSet<Type>::find()

Synopsis: #include <wcskip.h>
public:
Type * find(const Type *) const;

Semantics: The find public member function is used to find an element with an equivalent value in the
list. If an equivalent element is found, a pointer to the element is returned. Zero is returned
if the element is not found. Note that equivalence is based on the equivalence operator of the
element type.

Results: The element equivalent to the passed value is located in the list.

476 Skip List Containers

WCPtrSkipList<Type>::forAll(), WCPtrSkipListSet<Type>::forAll()

Synopsis: #include <wcskip.h>
public:
void forAll(void(*userfn)(Type*,void*),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for
every value in the list. The user function has the prototypevoiduserfunc(Type*value,void*data);
As the elements are visited, the user function is invoked with the element passed as the first.
The second parameter of the forAll function is passed as the second parameter to the user
function. This value can be used to pass any appropriate data from the main code to the user
function.

Results: The elements in the list are all visited, with the user function being invoked for each one.

See Also: find

Skip List Containers 477

WCPtrSkipList<Type>::insert(), WCPtrSkipListSet<Type>::insert()

Synopsis: #include <wcskip.h>
public:
int insert(Type *);

Semantics: The insert public member function inserts a value into the list. If allocation of the node to
store the value fails, then theoutofmemory exception is thrown if it is enabled. If the
exception is not enabled, the insert will not be completed.

With a WCPtrSkipListSet, there must be only one equivalent element in the set. If an
element equivalent to the inserted element is already in the list set, the list set will remain
unchanged, and thenotunique exception is thrown if it is enabled. If the exception is
not enabled, the insert will not be completed.

Results: The insert public member function inserts a value into the list. If the insert is successful,
a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =,WCExcept::outofmemory,WCExcept::notunique

478 Skip List Containers

WCPtrSkipList<Type>::isEmpty(), WCPtrSkipListSet<Type>::isEmpty()

Synopsis: #include <wcskip.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the list is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero
if the list is empty.

See Also: entries

Skip List Containers 479

WCPtrSkipList<Type>::occurrencesOf()

Synopsis: #include <wcskip.h>
public:
unsigned occurrencesOf(const Type *) const;

Semantics: The occurrencesOf public member function is used to return the current number of
elements stored in the list which are equivalent to the passed value. Note that equivalence is
based on the equivalence operator of the element type.

Results: The occurrencesOf public member function returns the number of elements in the list
which are equivalent to the passed value.

See Also: entries, find, isEmpty

480 Skip List Containers

WCPtrSkipList<Type>::operator =(), WCPtrSkipListSet<Type>::operator =()

Synopsis: #include <wcskip.h>
public:
WCPtrSkipList & operator =(const WCPtrSkipList &);
WCPtrSkipListSet & operator =(const WCPtrSkipListSet &);

Semantics: The operator = public member function is the assignment operator for the
WCPtrSkipList<Type> and WCPtrSkipListSet<Type> classes. The left hand
side list is first cleared using the clear member function, and then the right hand side list is
copied. The list function, exception trap states, and all of the list elements are copied. If
there is not enough memory to copy all of the values or pointers in the list, then only some
will be copied, and theoutofmemory exception is thrown if it is enabled. The number
of entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side list to be a copy of the
right hand side.

See Also: clear,WCExcept::outofmemory

Skip List Containers 481

WCPtrSkipList<Type>::operator ==(), WCPtrSkipListSet<Type>::operator ==()

Synopsis: #include <wcskip.h>
public:
int operator ==(const WCPtrSkipList &) const;
int operator ==(const WCPtrSkipListSet &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCPtrSkipList<Type> and WCPtrSkipListSet<Type> classes. Two list objects
are equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side list are the
same object. A FALSE (zero) value is returned otherwise.

482 Skip List Containers

WCPtrSkipList<Type>::remove(), WCPtrSkipListSet<Type>::remove()

Synopsis: #include <wcskip.h>
public:
Type * remove(const Type *);

Semantics: The remove public member function is used to remove the specified element from the list.
If an equivalent element is found, the pointer value is returned. Zero is returned if the
element is not found. If the list is a WCPtrSkipList and there is more than one element
equivalent to the specified element, then the last equivalent element added to the
WCPtrSkipList is removed. Note that equivalence is based on the equivalence operator
of the element type.

Results: The element is removed from the list.

Skip List Containers 483

WCPtrSkipList<Type>::removeAll()

Synopsis: #include <wcskip.h>
public:
unsigned removeAll(const Type *);

Semantics: The removeAll public member function is used to remove all elements equivalent to the
specified element from the list. Zero is returned if no equivalent elements are found. Note
that equivalence is based on the equivalence operator of the element type.

Results: All equivalent elements are removed from the list.

484 Skip List Containers

WCValSkipListDict<Key,Value>

Declared: wcskip.h

The WCValSkipListDict<Key,Value> class is a templated class used to store objects
in a dictionary. Dictionaries store values with an associated key, which may be of any type.
One example of a dictionary used in everyday life is the phone book. The phone numbers
are the data values, and the customer name is the key. The equality operator of the key’s
type is used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template
parameter defining the type of the indices used to store data in the dictionary. The text
Value is used to indicate the template parameter defining the type of the data stored in the
dictionary.

Values are copied into the dictionary, which could be undesirable if the stored objects are
complicated and copying is expensive. Value dictionaries should not be used to store objects
of a base class if any derived types of different sizes would be stored in the dictionary, or if
the destructor for a derived class must be called.

The iterator classes for skip lists have the same function and operator interface as the hash
iterators classes. See the chapter on hash iterators for more information.

The WCExcept class is a base class of the WCValSkipListDict<Key,Value> class
and provides the exceptions member function. This member function controls the
exceptions which can be thrown by the WCValSkipListDict<Key,Value> object. No
exceptions are enabled unless they are set by the exceptions member function.

Requirements of Key and Value

The WCValSkipListDict<Key,Value> class requires Key to have:

A default constructor (Key::Key()).

A well defined copy constructor (Key::Key(const Key &)).

A well defined assignment operator (Key & operator =(const Key &)).

A well defined equivalence operator with constant parameters
(int operator ==(const Key &) const).

A well defined operator less than with constant parameters
(int operator <(const Key &) const).

The WCValSkipListDict<Key,Value> class requires Value to have:

Skip List Containers 485

WCValSkipListDict<Key,Value>

A default constructor (Value::Value()).

A well defined copy constructor (Value::Value(const Value &)).

A well defined assignment operator (Value & operator =(const Value &)).

Public Member Functions

The following member functions are declared in the public interface:WCValSkipListDict(unsigned=WCSkipListDictPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);WCValSkipListDict(unsigned=WCSkipListDictPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(sizetsize),void(*userdealloc)(void*old,sizetsize)
);
WCValSkipListDict(const WCValSkipListDict &);
virtual ~WCValSkipListDict();
void clear();
int contains(const Key &) const;
unsigned entries() const;
int find(const Key &, Value &) const;
int findKeyAndValue(const Key &, Key &, Value &) const;voidforAll(void(*userfn)(Key,Value,void*),void*);
int insert(const Key &, const Value &);
int isEmpty() const;
int remove(const Key &);

Public Member Operators

The following member operators are declared in the public interface:

Value & operator [](const Key &);
const Value & operator [](const Key &) const;
WCValSkipListDict & operator =(const WCValSkipListDict &);
int operator ==(const WCValSkipListDict &) const;

486 Skip List Containers

WCValSkipListDict<Key,Value>::WCValSkipListDict()

Synopsis: #include <wcskip.h>
public:WCValSkipListDict(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);

Semantics: The public WCValSkipListDict<Key,Value> constructor creates an
WCValSkipListDict<Key,Value> object with no entries. The first optional
parameter, which defaults to the constantWCSKIPLISTPROBQUARTER, determines the
probability of having a certain number of pointers in each skip list node. The second
optional parameter, which defaults to the constantWCDEFAULTSKIPLISTMAXPTRS,
determines the maximum number of pointers that are allowed in any skip list node.WCDEFAULTSKIPLISTMAXPTRS is the maximum effective value of the second
parameter. If an allocation failure occurs while creating the skip list, theoutofmemory
exception is thrown if theoutofmemory exception is enabled.

Results: The public WCValSkipListDict<Key,Value> constructor creates an initialized
WCValSkipListDict<Key,Value> object.

See Also: ~WCValSkipListDict<Key,Value>,WCExcept::outofmemory

Skip List Containers 487

WCValSkipListDict<Key,Value>::WCValSkipListDict()

Synopsis: #include <wcskip.h>
public:WCValSkipListDict(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list dictionary. The semantics of this constructor are the same as the
constructor without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a list dictionary. To
determine the size of the objects that the memory management functions will be required to
allocate and free, the following macro may be used:WCValSkipListDictItemSize(Key,Value,numofpointers)

Results: The public WCValSkipListDict<Key,Value> constructor creates an initialized
WCValSkipListDict<Key,Value> object.

See Also: ~WCValSkipListDict<Key,Value>,WCExcept::outofmemory

488 Skip List Containers

WCValSkipListDict<Key,Value>::WCValSkipListDict()

Synopsis: #include <wcskip.h>
public:
WCValSkipListDict(const WCValSkipListDict &);

Semantics: The public WCValSkipListDict<Key,Value> constructor is the copy constructor for
the WCValSkipListDict<Key,Value> class. The new skip list is created with the
same probability and maximum pointers, all values or pointers stored in the list, and the
exception trap states. If there is not enough memory to copy all of the values, then only
some will be copied, and the number of entries will correctly reflect the number copied. If
all of the elements cannot be copied, then theoutofmemory exception is thrown if it is
enabled.

Results: The public WCValSkipListDict<Key,Value> constructor creates an
WCValSkipListDict<Key,Value> object which is a copy of the passed dictionary.

See Also: operator =,WCExcept::outofmemory

Skip List Containers 489

WCValSkipListDict<Key,Value>::~WCValSkipListDict()

Synopsis: #include <wcskip.h>
public:
virtual ~WCValSkipListDict();

Semantics: The public ~WCValSkipListDict<Key,Value> destructor is the destructor for the
WCValSkipListDict<Key,Value> class. If the number of dictionary elements is not
zero and thenotempty exception is enabled, the exception is thrown. Otherwise, the
dictionary elements are cleared using the clear member function. The call to the public
~WCValSkipListDict<Key,Value> destructor is inserted implicitly by the compiler
at the point where the WCValSkipListDict<Key,Value> object goes out of scope.

Results: The public ~WCValSkipListDict<Key,Value> destructor destroys an
WCValSkipListDict<Key,Value> object.

See Also: clear,WCExcept::notempty

490 Skip List Containers

WCValSkipListDict<Key,Value>::clear()

Synopsis: #include <wcskip.h>
public:
void clear();

Semantics: The clear public member function is used to clear the dictionary so that it has no entries.
Elements stored in the dictionary are destroyed using the destructors of Key and of Value.
The dictionary object is not destroyed and re-created by this function, so the object destructor
is not invoked.

Results: The clear public member function clears the dictionary to have no elements.

See Also: ~WCValSkipListDict<Key,Value>, operator =

Skip List Containers 491

WCValSkipListDict<Key,Value>::contains()

Synopsis: #include <wcskip.h>
public:
int contains(const Key &) const;

Semantics: The contains public member function returns non-zero if an element with the specified
key is stored in the dictionary, or zero if there is no equivalent element. Note that
equivalence is based on the equivalence operator of the Key type.

Results: The contains public member function returns a non-zero value if the Key is found in the
dictionary.

See Also: find, findKeyAndValue

492 Skip List Containers

WCValSkipListDict<Key,Value>::entries()

Synopsis: #include <wcskip.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements
stored in the dictionary.

Results: The entries public member function returns the number of elements in the dictionary.

See Also: isEmpty

Skip List Containers 493

WCValSkipListDict<Key,Value>::find()

Synopsis: #include <wcskip.h>
public:
int find(const Key &, Value &) const;

Semantics: The find public member function is used to find an element with an equivalent key in the
dictionary. If an equivalent element is found, a non-zero value is returned. The reference to
a Value passed as the second argument is assigned the found element’s Value. Zero is
returned if the element is not found. Note that equivalence is based on the equivalence
operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

494 Skip List Containers

WCValSkipListDict<Key,Value>::findKeyAndValue()

Synopsis: #include <wcskip.h>
public:
int findKeyAndValue(const Key &,
Key &, Value &) const;

Semantics: The findKeyAndValue public member function is used to find an element in the
dictionary with an key equivalent to the first parameter. If an equivalent element is found, a
non-zero value is returned. The reference to a Key passed as the second parameter is
assigned the found element’s key. The reference to a Value passed as the third argument is
assigned the found element’s Value. Zero is returned if the element is not found. Note
that equivalence is based on the equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

See Also: findKeyAndValue

Skip List Containers 495

WCValSkipListDict<Key,Value>::forAll()

Synopsis: #include <wcskip.h>
public:
void forAll(void(*userfn)(Key,Value,void*),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for
every key-value pair in the dictionary. The user function has the prototypevoiduserfunc(Keykey,Valuevalue,void*data);
As the elements are visited, the user function is invoked with the Key and Value
components of the element passed as the first two parameters. The second parameter of the
forAll function is passed as the third parameter to the user function. This value can be
used to pass any appropriate data from the main code to the user function.

Results: The elements in the dictionary are all visited, with the user function being invoked for each
one.

See Also: find, findKeyAndValue

496 Skip List Containers

WCValSkipListDict<Key,Value>::insert()

Synopsis: #include <wcskip.h>
public:
int insert(const Key &, const Value &);

Semantics: The insert public member function inserts a key and value into the dictionary. If
allocation of the node to store the key-value pair fails, then theoutofmemory exception
is thrown if it is enabled. If the exception is not enabled, the insert will not be completed.

Results: The insert public member function inserts a key and value into the dictionary. If the
insert is successful, a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =,WCExcept::outofmemory

Skip List Containers 497

WCValSkipListDict<Key,Value>::isEmpty()

Synopsis: #include <wcskip.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the dictionary is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero
if the dictionary is empty.

See Also: entries

498 Skip List Containers

WCValSkipListDict<Key,Value>::operator []()

Synopsis: #include <wcskip.h>
public:
Value & operator[](const Key &);

Semantics: operator [] is the dictionary index operator. A reference to the object stored in the
dictionary with the given Key is returned. If no equivalent element is found, then a new
key-value pair is created with the specified Key value, and initialized with the default
constructor. The returned reference can then be assigned to, so that insertions can be made
with the operator. If an allocation error occurs while inserting a new key-value pair, then theoutofmemory exception is thrown if it is enabled. If the exception is not enabled, then
a reference to address zero will be returned. This will result in a run-time error on systems
which trap address zero references.

Results: The operator [] public member function returns a reference to the element at the given
key value. If the key does not exist, a reference to a created element is returned. The result
of the operator may be assigned to.

See Also:WCExcept::outofmemory

Skip List Containers 499

WCValSkipListDict<Key,Value>::operator []()

Synopsis: #include <wcskip.h>
public:
const Value & operator[](const Key &) const;

Semantics: operator [] is the dictionary index operator. A constant reference to the object stored in
the dictionary with the given Key is returned. If no equivalent element is found, then theindexrange exception is thrown if it is enabled. If the exception is not enabled, then a
reference to address zero will be returned. This will result in a run-time error on systems
which trap address zero references.

Results: The operator [] public member function returns a constant reference to the element at
the given key value. The result of the operator may not be assigned to.

See Also:WCExcept::indexrange

500 Skip List Containers

WCValSkipListDict<Key,Value>::operator =()

Synopsis: #include <wcskip.h>
public:
WCValSkipListDict & operator =(const WCValSkipListDict &);

Semantics: The operator = public member function is the assignment operator for the
WCValSkipListDict<Key,Value> class. The left hand side dictionary is first cleared
using the clear member function, and then the right hand side dictionary is copied. The
new skip list is created with the same probability and maximum pointers, all values or
pointers stored in the list, and the exception trap states. If there is not enough memory to
copy all of the values or pointers in the dictionary, then only some will be copied, and theoutofmemory exception is thrown if it is enabled. The number of entries will correctly
reflect the number copied.

Results: The operator = public member function assigns the left hand side dictionary to be a copy
of the right hand side.

See Also: clear,WCExcept::outofmemory

Skip List Containers 501

WCValSkipListDict<Key,Value>::operator ==()

Synopsis: #include <wcskip.h>
public:
int operator ==(const WCValSkipListDict &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCValSkipListDict<Key,Value> class. Two dictionary objects are equivalent if
they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side dictionary are
the same object. A FALSE (zero) value is returned otherwise.

502 Skip List Containers

WCValSkipListDict<Key,Value>::remove()

Synopsis: #include <wcskip.h>
public:
int remove(const Key &);

Semantics: The remove public member function is used to remove the specified element from the
dictionary. If an equivalent element is found, a non-zero value is returned. Zero is returned
if the element is not found. Note that equivalence is based on the equivalence operator of the
Key type.

Results: The element is removed from the dictionary if it found.

Skip List Containers 503

WCValSkipList<Type>, WCValSkipListSet<Type>

Declared: wcskip.h

WCValSkipList<Type> and WCValSkipListSet<Type> classes are templated
classes used to store objects in a skip list. A skip list is a probabilistic alternative to balanced
trees, and provides a reasonable performance balance to insertion, search, and deletion. A
skip list allows more than one copy of an element that is equivalent, while the skip list set
allows only one copy. The equality operator of the element’s type is used to locate the value.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type of the data to be stored in the list.

Values are copied into the list, which could be undesirable if the stored objects are
complicated and copying is expensive. Value skip lists should not be used to store objects of
a base class if any derived types of different sizes would be stored in the list, or if the
destructor for a derived class must be called.

The iterator classes for skip lists have the same function and operator interface as the hash
iterators classes. See the chapter on hash iterators for more information.

The WCExcept class is a base class of the WCValSkipList<Type> and
WCValSkipListSet<Type> classes and provides the exceptions member function.
This member function controls the exceptions which can be thrown by the
WCValSkipList<Type> and WCValSkipListSet<Type> objects. No exceptions
are enabled unless they are set by the exceptions member function.

Requirements of Type

The WCValSkipList<Type> and WCValSkipListSet<Type> classes requires
Type to have:

A default constructor (Type::Type()).

A well defined copy constructor (Type::Type(const Type &)).

A well defined equivalence operator
(int operator ==(const Type &) const).

A well defined less than operator
(int operator <(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:

504 Skip List Containers

WCValSkipList<Type>, WCValSkipListSet<Type>WCValSkipList(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);WCValSkipList(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(sizetsize),void(*userdealloc)(void*old,sizetsize));
WCValSkipList(const WCValSkipList &);
virtual ~WCValSkipList();WCValSkipListSet(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);WCValSkipListSet(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(sizetsize),void(*userdealloc)(void*old,sizetsize));
WCValSkipListSet(const WCValSkipListSet &);
virtual ~WCValSkipListSet();
void clear();
int contains(const Type &) const;
unsigned entries() const;
int find(const Type &, Type &) const;voidforAll(void(*userfn)(Type,void*),void*);
int insert(const Type &);
int isEmpty() const;
int remove(const Type &);

The following public member functions are available for the WCValSkipList class only:

unsigned occurrencesOf(const Type &) const;
unsigned removeAll(const Type &);

Public Member Operators

The following member operators are declared in the public interface:

WCValSkipList & operator =(const WCValSkipList &);
int operator ==(const WCValSkipList &) const;
WCValSkipListSet & operator =(const WCValSkipListSet &);
int operator ==(const WCValSkipListSet &) const;

Skip List Containers 505

WCValSkipListSet<Type>::WCValSkipListSet()

Synopsis: #include <wcskip.h>
public:WCValSkipListSet(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);

Semantics: The WCValSkipListSet<Type> constructor creates a WCValSkipListSet object
with no entries. The first optional parameter, which defaults to the constantWCSKIPLISTPROBQUARTER, determines the probability of having a certain number of
pointers in each skip list node. The second optional parameter, which defaults to the
constantWCDEFAULTSKIPLISTMAXPTRS, determines the maximum number of
pointers that are allowed in any skip list node.WCDEFAULTSKIPLISTMAXPTRS is
the maximum effective value of the second parameter. If an allocation failure occurs while
creating the skip list, theoutofmemory exception is thrown if theoutofmemory
exception is enabled.

Results: The WCValSkipListSet<Type> constructor creates an initialized
WCValSkipListSet object.

See Also: ~WCValSkipList<Type>,WCExcept::outofmemory

506 Skip List Containers

WCValSkipListSet<Type>::WCValSkipListSet()

Synopsis: #include <wcskip.h>
public:WCValSkipListSet(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a skip list. To determine
the size of the objects that the memory management functions will be required to allocate and
free, the following macro may be used:WCValSkipListSetItemSize(Type,numofpointers)

Results: The WCValSkipListSet<Type> constructor creates an initialized
WCValSkipListSet object.

See Also: ~WCValSkipList<Type>,WCExcept::outofmemory

Skip List Containers 507

WCValSkipListSet<Type>::WCValSkipListSet()

Synopsis: #include <wcskip.h>
public:
WCValSkipListSet(const WCValSkipListSet &);

Semantics: The WCValSkipListSet<Type> constructor is the copy constructor for the
WCValSkipListSet class. The new skip list is created with the same probability and
maximum pointers, all values or pointers stored in the list, and the exception trap states. If
there is not enough memory to copy all of the values, then only some will be copied, and the
number of entries will correctly reflect the number copied. If all of the elements cannot be
copied, then theoutofmemory exception is thrown if it is enabled.

Results: The WCValSkipListSet<Type> constructor creates a WCValSkipListSet object
which is a copy of the passed list.

See Also: operator =,WCExcept::outofmemory

508 Skip List Containers

WCValSkipListSet<Type>::~WCValSkipListSet()

Synopsis: #include <wcskip.h>
public:
virtual ~WCValSkipListSet();

Semantics: The WCValSkipListSet<Type> destructor is the destructor for the
WCValSkipListSet class. If the number of elements is not zero and thenotempty
exception is enabled, the exception is thrown. Otherwise, the list elements are cleared using
the clear member function. The call to the WCValSkipListSet<Type> destructor is
inserted implicitly by the compiler at the point where the WCValSkipListSet object goes
out of scope.

Results: The call to the WCValSkipListSet<Type> destructor destroys a
WCValSkipListSet object.

See Also: clear,WCExcept::notempty

Skip List Containers 509

WCValSkipList<Type>::WCValSkipList()

Synopsis: #include <wcskip.h>
public:WCValSkipList(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS);

Semantics: The WCValSkipList<Type> constructor creates a WCValSkipList object with no
entries. The first optional parameter, which defaults to the constantWCSKIPLISTPROBQUARTER, determines the probability of having a certain number of
pointers in each skip list node. The second optional parameter, which defaults to the
constantWCDEFAULTSKIPLISTMAXPTRS, determines the maximum number of
pointers that are allowed in any skip list node.WCDEFAULTSKIPLISTMAXPTRS is
the maximum effective value of the second parameter. If an allocation failure occurs while
creating the skip list, theoutofmemory exception is thrown if theoutofmemory
exception is enabled.

Results: The WCValSkipList<Type> constructor creates an initialized WCValSkipList object.

See Also: ~WCValSkipList<Type>,WCExcept::outofmemory

510 Skip List Containers

WCValSkipList<Type>::WCValSkipList()

Synopsis: #include <wcskip.h>
public:WCValSkipList(unsigned=WCSKIPLISTPROBQUARTER,unsigned=WCDEFAULTSKIPLISTMAXPTRS,void*(*useralloc)(sizet),void(*userdealloc)(void*,sizet));

Semantics: Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return a zero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Your allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a skip list. To determine
the size of the objects that the memory management functions will be required to allocate and
free, the following macro may be used:WCValSkipListItemSize(Type,numofpointers)

Results: The WCValSkipList<Type> constructor creates an initialized WCValSkipList object.

See Also: ~WCValSkipList<Type>,WCExcept::outofmemory

Skip List Containers 511

WCValSkipList<Type>::WCValSkipList()

Synopsis: #include <wcskip.h>
public:
WCValSkipList(const WCValSkipList &);

Semantics: The WCValSkipList<Type> constructor is the copy constructor for the
WCValSkipList class. The new skip list is created with the same probability and
maximum pointers, all values or pointers stored in the list, and the exception trap states. If
there is not enough memory to copy all of the values, then only some will be copied, and the
number of entries will correctly reflect the number copied. If all of the elements cannot be
copied, then theoutofmemory exception is thrown if it is enabled.

Results: The WCValSkipList<Type> constructor creates a WCValSkipList object which is a
copy of the passed list.

See Also: operator =,WCExcept::outofmemory

512 Skip List Containers

WCValSkipList<Type>::~WCValSkipList()

Synopsis: #include <wcskip.h>
public:
virtual ~WCValSkipList();

Semantics: The WCValSkipList<Type> destructor is the destructor for the WCValSkipList
class. If the number of elements is not zero and thenotempty exception is enabled, the
exception is thrown. Otherwise, the list elements are cleared using the clear member
function. The call to the WCValSkipList<Type> destructor is inserted implicitly by the
compiler at the point where the WCValSkipList object goes out of scope.

Results: The call to the WCValSkipList<Type> destructor destroys a WCValSkipList object.

See Also: clear,WCExcept::notempty

Skip List Containers 513

WCValSkipList<Type>::clear(), WCValSkipListSet<Type>::clear()

Synopsis: #include <wcskip.h>
public:
void clear();

Semantics: The clear public member function is used to clear the list so that it has no entries.
Elements stored in the list are destroyed using the destructors of Type. The list object is
not destroyed and re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the list to have no elements.

See Also: ~WCValSkipList<Type>, operator =

514 Skip List Containers

WCValSkipList<Type>::contains(), WCValSkipListSet<Type>::contains()

Synopsis: #include <wcskip.h>
public:
int contains(const Type &) const;

Semantics: The contains public member function returns non-zero if the element is stored in the list,
or zero if there is no equivalent element. Note that equivalence is based on the equivalence
operator of the element type.

Results: The contains public member function returns a non-zero value if the element is found in
the list.

See Also: find

Skip List Containers 515

WCValSkipList<Type>::entries(), WCValSkipListSet<Type>::entries()

Synopsis: #include <wcskip.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to return the current number of elements
stored in the list.

Results: The entries public member function returns the number of elements in the list.

See Also: isEmpty

516 Skip List Containers

WCValSkipList<Type>::find(), WCValSkipListSet<Type>::find()

Synopsis: #include <wcskip.h>
public:
int find(const Type &, Type &) const;

Semantics: The find public member function is used to find an element with an equivalent value in the
list. If an equivalent element is found, a non-zero value is returned. The reference to the
element passed as the second argument is assigned the found element’s value. Zero is
returned if the element is not found. Note that equivalence is based on the equivalence
operator of the element type.

Results: The element equivalent to the passed value is located in the list.

Skip List Containers 517

WCValSkipList<Type>::forAll(), WCValSkipListSet<Type>::forAll()

Synopsis: #include <wcskip.h>
public:
void forAll(void(*userfn)(Type,void*),
void *);

Semantics: The forAll public member function causes the user supplied function to be invoked for
every value in the list. The user function has the prototypevoiduserfunc(Type&value,void*data);
As the elements are visited, the user function is invoked with the element passed as the first.
The second parameter of the forAll function is passed as the second parameter to the user
function. This value can be used to pass any appropriate data from the main code to the user
function.

Results: The elements in the list are all visited, with the user function being invoked for each one.

See Also: find

518 Skip List Containers

WCValSkipList<Type>::insert(), WCValSkipListSet<Type>::insert()

Synopsis: #include <wcskip.h>
public:
int insert(const Type &);

Semantics: The insert public member function inserts a value into the list. If allocation of the node to
store the value fails, then theoutofmemory exception is thrown if it is enabled. If the
exception is not enabled, the insert will not be completed.

With a WCValSkipListSet, there must be only one equivalent element in the set. If an
element equivalent to the inserted element is already in the list set, the list set will remain
unchanged, and thenotunique exception is thrown if it is enabled. If the exception is
not enabled, the insert will not be completed.

Results: The insert public member function inserts a value into the list. If the insert is successful,
a non-zero will returned. A zero will be returned if the insert fails.

See Also: operator =,WCExcept::outofmemory,WCExcept::notunique

Skip List Containers 519

WCValSkipList<Type>::isEmpty(), WCValSkipListSet<Type>::isEmpty()

Synopsis: #include <wcskip.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if the list is empty.

Results: The isEmpty public member function returns zero if it contains at least one entry, non-zero
if the list is empty.

See Also: entries

520 Skip List Containers

WCValSkipList<Type>::occurrencesOf()

Synopsis: #include <wcskip.h>
public:
unsigned occurrencesOf(const Type &) const;

Semantics: The occurrencesOf public member function is used to return the current number of
elements stored in the list which are equivalent to the passed value. Note that equivalence is
based on the equivalence operator of the element type.

Results: The occurrencesOf public member function returns the number of elements in the list
which are equivalent to the passed value.

See Also: entries, find, isEmpty

Skip List Containers 521

WCValSkipList<Type>::operator =(), WCValSkipListSet<Type>::operator =()

Synopsis: #include <wcskip.h>
public:
WCValSkipList & operator =(const WCValSkipList &);
WCValSkipListSet & operator =(const WCValSkipListSet &);

Semantics: The operator = public member function is the assignment operator for the
WCValSkipList<Type> and WCValSkipListSet<Type> classes. The left hand
side list is first cleared using the clear member function, and then the right hand side list is
copied. The list function, exception trap states, and all of the list elements are copied. If
there is not enough memory to copy all of the values or pointers in the list, then only some
will be copied, and theoutofmemory exception is thrown if it is enabled. The number
of entries will correctly reflect the number copied.

Results: The operator = public member function assigns the left hand side list to be a copy of the
right hand side.

See Also: clear,WCExcept::outofmemory

522 Skip List Containers

WCValSkipList<Type>::operator ==(), WCValSkipListSet<Type>::operator ==()

Synopsis: #include <wcskip.h>
public:
int operator ==(const WCValSkipList &) const;
int operator ==(const WCValSkipListSet &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCValSkipList<Type> and WCValSkipListSet<Type> classes. Two list objects
are equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side list are the
same object. A FALSE (zero) value is returned otherwise.

Skip List Containers 523

WCValSkipList<Type>::remove(), WCValSkipListSet<Type>::remove()

Synopsis: #include <wcskip.h>
public:
int remove(const Type &);

Semantics: The remove public member function is used to remove the specified element from the list.
If an equivalent element is found, a non-zero value is returned. Zero is returned if the
element is not found. If the list is a WCValSkipList and there is more than one element
equivalent to the specified element, then the last equivalent element added to the
WCValSkipList is removed. Note that equivalence is based on the equivalence operator
of the element type.

Results: The element is removed from the list.

524 Skip List Containers

WCValSkipList<Type>::removeAll()

Synopsis: #include <wcskip.h>
public:
unsigned removeAll(const Type &);

Semantics: The removeAll public member function is used to remove all elements equivalent to the
specified element from the list. Zero is returned if no equivalent elements are found. Note
that equivalence is based on the equivalence operator of the element type.

Results: All equivalent elements are removed from the list.

Skip List Containers 525

WCValSkipList<Type>::removeAll()

526 Skip List Containers

16 Stack Container

Stack containers maintain an ordered collection of data which is retrieved in the reverse order
to which the data was entered into the stack. The stack class is implemented as a templated
class, allowing the stacking of any data type.

A second template parameter specifies the storage class used to implement the stack. The
WCValSList, WCIsvSList and WCPtrSList classes are appropriate storage classes.

Stack Container 527

WCStack<Type,FType>

Declared: wcstack.h

The WCStack<Type,FType> class is a templated class used to create objects which
maintain data in a stack.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type of the elements stored in the stack. The text FType is used to
indicate the template parameter defining the storage class used to maintain the stack.

For example, to create a stack of integers, the WCStack<int,WCValSList<int> >
class can be used. The WCStack<int *,WCPtrSList<int> > class will create a
stack of pointers to integers. To create an intrusive stack of objects of type isv_link (derived
from the WCSLink class), the WCStack< isv_link *,WCIsvSList< isv_link > > class
can be used.

The WCExcept class is a base class of the WCStack<Type,FType> class and provides
the exceptions member function. This member function controls the exceptions which
can be thrown by the WCStack<Type,FType> object. No exceptions are enabled unless
they are set by the exceptions member function.

Requirements of Type

Type must provide any constructors and/or operators required by the FType class.

Public Member Functions

The following member functions are declared in the public interface:

WCStack();WCStack(void*(*)(sizet),void(*)(void*,sizet));
~WCStack();
void clear();
int entries() const;
int isEmpty() const;
Type pop();
int push(const Type &);
Type top() const;

Sample Program Using a Stack

#include <wcstack.h>
#include <iostream.h>

void main() {
WCStack<int,WCValSList<int> > stack;

528 Stack Container

WCStack<Type,FType>

stack.push(7);
stack.push(8);
stack.push(9);
stack.push(10);

cout << "\nNumber of stack entries: " << stack.entries() << "\n";
cout << "Top entry = [" << stack.top() << "]\n";
while(!stack.isEmpty()) {

cout << stack.pop() << "\n";
};
cout.flush();

}

Stack Container 529

WCStack<Type,FType>::WCStack()

Synopsis: #include <wcstack.h>
public:
WCStack();

Semantics: The public WCStack<Type,FType> constructor creates an empty
WCStack<Type,FType> object. The FType storage class constructor performs the
initialization.

Results: The public WCStack<Type,FType> constructor creates an initialized
WCStack<Type,FType> object.

See Also: ~WCStack<Type,FType>

530 Stack Container

WCStack<Type,FType>::WCStack()

Synopsis: #include <wcstack.h>
public:WCStack(void*(*allocator)(sizet),void(*deallocator)(void*,sizet));

Semantics: The public WCStack<Type,FType> constructor creates an empty
WCStack<Type,FType> object. If FType is either the WCValSList or WCPtrSList
class, then the allocator function is registered to perform all memory allocations of the stack
elements, and the deallocator function to perform all freeing of the stack elements’ memory.
The allocator and deallocator functions are ignored if FType is the WCIsvSList class.
These functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and operator delete() can provide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCStack<Type,FType> class.

The WCStack<Type,FType> class calls the deallocator function only on memory
allocated by the allocator function. The deallocator shall free the memory pointed to by the
first argument which is of size the second argument. The size passed to the deallocator
function is guaranteed to be the same size passed to the allocator function when the memory
was allocated.

The allocator and deallocator functions may assume that for a list object instance, the
allocator is always called with the same first argument (the size of the memory to be
allocated). If FType is the WCValSList<Type> class, then the
WCValSListItemSize(Type) macro returns the size of the elements which are
allocated by the allocator function. Similarly, the WCPtrSListItemSize(Type)
macro returns the size of WCPtrSList<Type> elements.

The FType storage class constructor performs the initialization of the stack.

Results: The public WCStack<Type,FType> constructor creates an initialized
WCStack<Type,FType> object and registers the allocator and deallocator functions.

See Also: WCStack<Type,FType>, ~WCStack<Type,FType>

Stack Container 531

WCStack<Type,FType>::~WCStack()

Synopsis: #include <wcstack.h>
public:
virtual ~WCStack();

Semantics: The public ~WCStack<Type,FType> destructor destroys the
WCStack<Type,FType> object. The FType storage class destructor performs the
destruction. The call to the public ~WCStack<Type,FType> destructor is inserted
implicitly by the compiler at the point where the WCStack<Type,FType> object goes out
of scope.

If thenotempty exception is enabled, the exception is thrown if the stack is not empty of
stack elements.

Results: The WCStack<Type,FType> object is destroyed.

See Also: WCStack<Type,FType>, clear,WCExcept::notempty

532 Stack Container

WCStack<Type,FType>::clear()

Synopsis: #include <wcstack.h>
public:
void clear();

Semantics: The clear public member function is used to clear the stack object and set it to the state of
the object just after the initial construction. The stack object is not destroyed and re-created
by this operator, so the object destructor is not invoked. The stack elements are not cleared
by the stack class. However, the class used to maintain the stack, FType, may clear the
items as part of the clear member function for that class. If it does not clear the items, any
stack items still in the list are lost unless pointed to by some pointer object in the program
code.

Results: The clear public member function resets the stack object to the state of the object
immediately after the initial construction.

See Also: ~WCStack<Type,FType>, isEmpty

Stack Container 533

WCStack<Type,FType>::entries()

Synopsis: #include <wcstack.h>
public:
int entries() const;

Semantics: The entries public member function is used to determine the number of stack elements
contained in the list object.

Results: The number of elements on the stack is returned. Zero(0) is returned if there are no stack
elements.

See Also: isEmpty

534 Stack Container

WCStack<Type,FType>::isEmpty()

Synopsis: #include <wcstack.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a stack object has any stack
elements contained in it.

Results: A TRUE value (non-zero) is returned if the stack object does not have any stack elements
contained within it. A FALSE (zero) result is returned if the stack contains at least one
element.

See Also: entries

Stack Container 535

WCStack<Type,FType>::pop()

Synopsis: #include <wcstack.h>
public:
Type pop();

Semantics: The pop public member function returns the top stack element from the stack object. The
top stack element is the last element pushed onto the stack. The stack element is also
removed from the stack.

If the stack is empty, one of two exceptions can be thrown. If theemptycontainer
exception is enabled, then it will be thrown. Otherwise, the

indexrange exception will
be thrown, if enabled.

Results: The top stack element is removed and returned. The return value is determined by the get
member function of the FType class if there are no elements on the stack.

See Also: isEmpty, push, top,WCExcept::emptycontainer,WCExcept::indexrange, FType::get

536 Stack Container

WCStack<Type,FType>::push()

Synopsis: #include <wcstack.h>
public:
int push(const Type &);

Semantics: The push public member function is used to push the data onto the top of the stack. It will
be the first element on the stack to be popped.

If the push fails, theoutofmemory exception will be thrown, if enabled, and the stack
will remain unchanged.

Results: The stack element is pushed onto the top of the stack. A TRUE value (non-zero) is returned
if the push is successful. A FALSE (zero) result is returned if the push fails.

See Also: pop,WCExcept::outofmemory

Stack Container 537

WCStack<Type,FType>::top()

Synopsis: #include <wcstack.h>
public:
Type top() const;

Semantics: The top public member function returns the top stack element from the stack object. The
top stack element is the last element pushed onto the stack. The stack element is not
removed from the stack.

If the stack is empty, one of two exceptions can be thrown. If theemptycontainer
exception is enabled, then it will be thrown. Otherwise, the

indexrange exception will
be thrown, if enabled.

Results: The top stack element is returned. The return value is determined by the find member
function of the FType class if there are no elements on the stack.

See Also: isEmpty, pop,WCExcept::emptycontainer,WCExcept::indexrange,
FType::find

538 Stack Container

17 Vector Containers

This chapter describes vector containers.

Vector Containers 539

WCPtrSortedVector<Type>, WCPtrOrderedVector<Type>

Declared: wcvector.h

The WCPtrSortedVector<Type> and WCPtrOrderedVector<Type> classes are
templated classes used to store objects in a vector. Ordered and Sorted vectors are powerful
arrays which can be resized and provide an abstract interface to insert, find and remove
elements. An ordered vector maintains the order in which elements are added, and allows
more than one copy of an element that is equivalent. The sorted vector allow only one copy
of an equivalent element, and inserts them in a sorted order. The sorted vector is less
efficient when inserting elements, but can provide a faster retrieval time.

Elements cannot be inserted into these vectors by assigning to a vector index. Vectors
automatically grow when necessary to insert an element if theresizerequired
exception is not enabled.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type pointed to by the pointers stored in the vector.

Note that lookups are performed on the types pointed to, not just by comparing pointers.
Two pointer elements are equivalent if the values they point to are equivalent. The values
pointed to do not need to be the same object.

The WCPtrOrderedVector class stores elements in the order which they are inserted
using the insert, append, prepend and insertAt member functions. Linear
searches are performed to locate entries, and the less than operator is not required.

The WCPtrSortedVector class stores elements in ascending order. This requires that
Type provides a less than operator. Insertions are more expensive than inserting or
appending into an ordered vector, since entries must be moved to make room for the new
element. A binary search is used to locate elements in a sorted vector, making searches
quicker than in the ordered vector.

Care must be taken when using the WCPtrSortedVector class not to change the ordering
of the vector elements. An object pointed to by a vector element must not be changed so that
it is not equivalent to the value when the pointer was inserted into the vector. The index
operator and the member functions find, first, and last all return pointers the
elements pointed to by the vector elements. Lookups assume elements are in sorted order, so
you should not use the returned pointers to change the ordering of the value pointed to.

The WCPtrVector class is also available. It provides a resizable and boundary safe vector
similar to standard arrays.

The WCExcept class is a base class of the WCPtrSortedVector<Type> and
WCPtrOrderedVector<Type> classes and provides the exceptions member
function. This member function controls the exceptions which can be thrown by the

540 Vector Containers

WCPtrSortedVector<Type>, WCPtrOrderedVector<Type>

WCPtrSortedVector<Type> and WCPtrOrderedVector<Type> objects. No
exceptions are enabled unless they are set by the exceptions member function.

Requirements of Type

Both the WCPtrSortedVector<Type> and WCPtrOrderedVector<Type> classes
require Type to have:

A well defined equivalence operator with constant parameters
(int operator ==(const Type &) const).

Additionally the WCPtrSortedVector class requires Type to have:

A well defined less than operator with constant parameters
(int operator <(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:WCPtrOrderedVector(sizet=WCDEFAULTVECTORLENGTH,unsigned=WCDEFAULTVECTORRESIZEGROW);
WCPtrOrderedVector(const WCPtrOrderedVector &);
virtual ~WCPtrOrderedVector();WCPtrSortedVector(sizet=WCDEFAULTVECTORLENGTH,unsigned=WCDEFAULTVECTORRESIZEGROW);
WCPtrSortedVector(const WCPtrSortedVector &);
virtual ~WCPtrSortedVector();
void clear();
void clearAndDestroy();
int contains(const Type *) const;
unsigned entries() const;
Type * find(const Type *) const;
Type * first() const;
int index(const Type *) const;
int insert(Type *);
int isEmpty() const;
Type * last() const;
int occurrencesOf(const Type *) const;
Type * remove(const Type *);
unsigned removeAll(const Type *);
Type * removeAt(int);
Type * removeFirst();
Type * removeLast();intresize(sizet);

Vector Containers 541

WCPtrSortedVector<Type>, WCPtrOrderedVector<Type>

The following public member functions are available for the WCPtrOrderedVector class
only:

int append(Type *);
int insertAt(int, Type *);
int prepend(Type *);

Public Member Operators

The following member operators are declared in the public interface:

Type * & operator [](int);
Type * const & operator [](int) const;
WCPtrOrderedVector & WCPtrOrderedVector::operator =(const
WCPtrOrderedVector &);
WCPtrSortedVector & WCPtrSortedVector::operator =(const
WCPtrSortedVector &);
int WCPtrOrderedVector::operator ==(const WCPtrOrderedVector
&) const;
int WCPtrSortedVector::operator ==(const WCPtrSortedVector &
) const;

542 Vector Containers

WCPtrOrderedVector<Type>::WCPtrOrderedVector()

Synopsis: #include <wcvector.h>
public:WCPtrOrderedVector(sizet=WCDEFAULTVECTORLENGTH,unsigned=WCDEFAULTVECTORRESIZEGROW);

Semantics: The WCPtrOrderedVector<Type> constructor creates an empty
WCPtrOrderedVector object able to store the number of elements specified in the first
optional parameter, which defaults to the constantWCDEFAULTVECTORLENGTH
(currently defined as 10). If theresizerequired exception is not enabled, then the
second optional parameter is used to specify the value to increase the vector size when an
element is inserted into a full vector. If zero(0) is specified as the second parameter, any
attempt to insert into a full vector fails. This parameter defaults to the constantWCDEFAULTVECTORRESIZEGROW (currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The WCPtrOrderedVector<Type> constructor creates an empty initialized
WCPtrOrderedVector object.

See Also:WCExcept::resizerequired

Vector Containers 543

WCPtrOrderedVector<Type>::WCPtrOrderedVector()

Synopsis: #include <wcvector.h>
public:
WCPtrOrderedVector(const WCPtrOrderedVector &);

Semantics: The WCPtrOrderedVector<Type> constructor is the copy constructor for the
WCPtrOrderedVector class. The new vector is created with the same length and resize
value as the passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. Theoutofmemory
exception is thrown if enabled in the vector being copied.

Results: The WCPtrOrderedVector<Type> creates a WCPtrOrderedVector object which is
a copy of the passed vector.

See Also: operator =,WCExcept::outofmemory

544 Vector Containers

WCPtrOrderedVector<Type>::~WCPtrOrderedVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCPtrOrderedVector();

Semantics: The WCPtrOrderedVector<Type> destructor is the destructor for the
WCPtrOrderedVector class. If the vector is not length zero and thenotempty
exception is enabled, the exception is thrown. Otherwise, the vector entries are cleared using
the clear member function. The objects which the vector entries point to are not deleted
unless the clearAndDestroy member function is explicitly called before the destructor is
called. The call to the WCPtrOrderedVector<Type> destructor is inserted implicitly
by the compiler at the point where the WCPtrOrderedVector object goes out of scope.

Results: The WCPtrOrderedVector<Type> destructor destroys an WCPtrOrderedVector
object.

See Also: clear, clearAndDestroy,WCExcept::notempty

Vector Containers 545

WCPtrSortedVector<Type>::WCPtrSortedVector()

Synopsis: #include <wcvector.h>
public:WCPtrSortedVector(sizet=WCDEFAULTVECTORLENGTH,unsigned=WCDEFAULTVECTORRESIZEGROW);

Semantics: The WCPtrSortedVector<Type> constructor creates an empty
WCPtrSortedVector object able to store the number of elements specified in the first
optional parameter, which defaults to the constantWCDEFAULTVECTORLENGTH
(currently defined as 10). If theresizerequired exception is not enabled, then the
second optional parameter is used to specify the value to increase the vector size when an
element is inserted into a full vector. If zero(0) is specified as the second parameter, any
attempt to insert into a full vector fails. This parameter defaults to the constantWCDEFAULTVECTORRESIZEGROW (currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The WCPtrSortedVector<Type> constructor creates an empty initialized
WCPtrSortedVector object.

See Also:WCExcept::resizerequired

546 Vector Containers

WCPtrSortedVector<Type>::WCPtrSortedVector()

Synopsis: #include <wcvector.h>
public:
WCPtrSortedVector(const WCPtrSortedVector &);

Semantics: The WCPtrSortedVector<Type> constructor is the copy constructor for the
WCPtrSortedVector class. The new vector is created with the same length and resize
value as the passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. Theoutofmemory
exception is thrown if enabled in the vector being copied.

Results: The WCPtrSortedVector<Type> constructor creates a WCPtrSortedVector object
which is a copy of the passed vector.

See Also: operator =,WCExcept::outofmemory

Vector Containers 547

WCPtrSortedVector<Type>::~WCPtrSortedVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCPtrSortedVector();

Semantics: The WCPtrSortedVector<Type> destructor is the destructor for the
WCPtrSortedVector class. If the vector is not length zero and thenotempty
exception is enabled, the exception is thrown. Otherwise, the vector entries are cleared using
the clear member function. The objects which the vector entries point to are not deleted
unless the clearAndDestroy member function is explicitly called before the destructor is
called. The call to the WCPtrSortedVector<Type> destructor is inserted implicitly by
the compiler at the point where the WCPtrSortedVector object goes out of scope.

Results: The WCPtrSortedVector<Type> destructor destroys an WCPtrSortedVector
object.

See Also: clear, clearAndDestroy,WCExcept::notempty

548 Vector Containers

WCPtrOrderedVector<Type>::append()

Synopsis: #include <wcvector.h>
public:
int append(Type *);

Semantics: The append public member function appends the passed element to be the last element in
the vector. This member function has the same semantics as the
WCPtrOrderedVector::insert member function.

This function is not provided by the WCPtrSortedVector class, since all elements must
be inserted in sorted order by the insert member function.

Several different results can occur if the vector is not large enough for the new element. If
theresizerequired exception is enabled, the exception is thrown. If the exception is
not enabled, the append fails if the amount the vector is to be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the resize member function. If resize fails,
the element is not appended to the vector and theoutofmemory exception is thrown, if
enabled.

Results: The append public member function appends an element to the WCPtrOrderedVector
object. A TRUE (non-zero) value is returned if the append is successful. If the append fails,
a FALSE (zero) value is returned.

See Also: insert, insertAt, prepend,WCExcept::outofmemory,WCExcept::resizerequired

Vector Containers 549

WCPtrSortedVector<Type>::clear(), WCPtrOrderedVector<Type>::clear()

Synopsis: #include <wcvector.h>
public:
void clear();

Semantics: The clear public member function is used to clear the vector so that it contains no entries,
and is zero size. Objects pointed to by the vector elements are not deleted. The vector object
is not destroyed and re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the vector to have zero length and no entries.

See Also: ~WCPtrOrderedVector, clearAndDestroy, operator =

550 Vector Containers

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::clearAndDestroy()

Synopsis: #include <wcvector.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the vector to have zero
length and delete the objects pointed to by the vector elements. The vector object is not
destroyed and re-created by this function, so the vector object destructor is not invoked.

Results: The clearAndDestroy public member function clears the vector by deleting the objects
pointed to by the vector elements and makes the vector zero length.

See Also: clear

Vector Containers 551

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::contains()

Synopsis: #include <wcvector.h>
public:
int contains(const Type *) const;

Semantics: The contains public member function is used to determine if a value is contained by a
vector. Note that comparisons are done on the objects pointed to, not the pointers
themselves. A linear search is used by the WCPtrOrderedVector class to find the value.
The WCPtrSortedVector class uses a binary search.

Results: The contains public member function returns a TRUE (non-zero) value if the element is
found in the vector. A FALSE (zero) value is returned if the vector does not contain the
element.

See Also: index, find

552 Vector Containers

WCPtrSortedVector<Type>::entries(), WCPtrOrderedVector<Type>::entries()

Synopsis: #include <wcvector.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to find the number of elements which are
stored in the vector.

Results: The entries public member function returns the number of elements in the vector.

See Also: isEmpty

Vector Containers 553

WCPtrSortedVector<Type>::find(), WCPtrOrderedVector<Type>::find()

Synopsis: #include <wcvector.h>
public:
Type * find(const Type *) const;

Semantics: The find public member function is used to find an element equivalent to the element
passed. Note that comparisons are done on the objects pointed to, not the pointers
themselves. The WCPtrOrderedVector class uses a linear search to find the element,
and the WCPtrSortedVector class uses a binary search.

Results: A pointer to the first equivalent element is returned. NULL(0) is returned if the element is
not in the vector.

See Also: contains, first, index, last, occurrencesOf, remove

554 Vector Containers

WCPtrSortedVector<Type>::first(), WCPtrOrderedVector<Type>::first()

Synopsis: #include <wcvector.h>
public:
Type * first() const;

Semantics: The first public member function returns the first element in the vector. The element is
not removed from the vector.

If the vector is empty, one of two exceptions can be thrown. Theemptycontainer
exception is thrown if it is enabled. Otherwise, if the

indexrange exception is enabled,
it is thrown. If neither exception is enabled, a first element of the vector is added with a
NULL value.

Results: The first public member function returns the value of the first element in the vector.

See Also: last, removeFirst,WCExcept::indexrange,WCExcept::resizerequired

Vector Containers 555

WCPtrSortedVector<Type>::index(), WCPtrOrderedVector<Type>::index()

Synopsis: #include <wcvector.h>
public:
int index(const Type *) const;

Semantics: The index public member function is used find the index of the first element equivalent to
the passed element. Note that comparisons are done on the objects pointed to, not the
pointers themselves. A linear search is used by the WCPtrOrderedVector class to find
the element. The WCPtrSortedVector class uses a binary search.

Results: The index public member function returns the index of the first element equivalent to the
parameter. If the passed value is not contained in the vector, negative one (-1) is returned.

See Also: contains, find, insertAt, operator [], removeAt

556 Vector Containers

WCPtrSortedVector<Type>::insert(), WCPtrOrderedVector<Type>::insert()

Synopsis: #include <wcvector.h>
public:
int insert(Type *);

Semantics: The insert public member function inserts the value into the vector.

The WCPtrOrderedVector::insert function inserts the value as the last element of
the vector, and has the same semantics as the WCPtrOrderedVector::append member
function.

A binary search is performed to determine where the value should be inserted for the
WCPtrSortedVector::insert function. Note that comparisons are done on the
objects pointed to, not the pointers themselves. Any elements greater than the inserted value
are copied up one index so that the new element is after all elements with value less than or
equal to it.

Several different results can occur if the vector is not large enough for the new element. If
theresizerequired exception is enabled, the exception is thrown. If the exception is
not enabled, the insert fails if the amount the vector is to be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the resize member function. If resize fails,
the element is not inserted to the vector and theoutofmemory exception is thrown, if
enabled.

Results: The insert public member function inserts an element in to the vector. A TRUE
(non-zero) value is returned if the insert is successful. If the insert fails, a FALSE (zero)
value is returned.

See Also: append, insertAt, prepend,WCExcept::outofmemory,WCExcept::resizerequired

Vector Containers 557

WCPtrOrderedVector<Type>::insertAt()

Synopsis: #include <wcvector.h>
public:
int insertAt(int, Type *);

Semantics: The insertAt public member function inserts the second argument into the vector before
the element at index given by the first argument. If the passed index is equal to the number
of entries in the vector, the new value is appended to the vector as the last element. All
vector elements with indexes greater than or equal to the first parameter are copied up one
index.

This function is not provided by the WCPtrSortedVector class, since all elements must
be inserted in sorted order by the insert member function.

If the passed index is negative or greater than the number of entries in the vector and theindexrange exception is enabled, the exception is thrown. If the exception is not
enabled, the new element is inserted as the first element when the index is negative, or as the
last element when the index is too large.

Several different results can occur if the vector is not large enough for the new element. If
theresizerequired exception is enabled, the exception is thrown. If the exception is
not enabled, the insert fails if the amount the vector is to be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the resize member function. If resize fails,
the element is not inserted into the vector and theoutofmemory exception is thrown, if
enabled.

Results: The insertAt public member function inserts an element into the
WCPtrOrderedVector object before the element at the given index. A TRUE (non-zero)
value is returned if the insert is successful. If the insert fails, a FALSE (zero) value is
returned.

See Also: append, insert, prepend, operator [], removeAt,WCExcept::indexrange,WCExcept::outofmemory,WCExcept::resizerequired

558 Vector Containers

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::isEmpty()

Synopsis: #include <wcvector.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a vector object has any entries
contained in it.

Results: A TRUE value (non-zero) is returned if the vector object does not have any vector elements
contained within it. A FALSE (zero) result is returned if the vector contains at least one
element.

See Also: entries

Vector Containers 559

WCPtrSortedVector<Type>::last(), WCPtrOrderedVector<Type>::last()

Synopsis: #include <wcvector.h>
public:
Type * last() const;

Semantics: The last public member function returns the last element in the vector. The element is not
removed from the vector.

If the vector is empty, one of two exceptions can be thrown. Theemptycontainer
exception is thrown if it is enabled. Otherwise, if the

indexrange exception is enabled,
it is thrown. If neither exception is enabled, a first element of the vector is added with a
NULL value.

Results: The last public member function returns the value of the last element in the vector.

See Also: first, removeLast,WCExcept::indexrange,WCExcept::resizerequired

560 Vector Containers

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::occurrencesOf()

Synopsis: #include <wcvector.h>
public:
int occurrencesOf(const Type *) const;

Semantics: The occurrencesOf public member function returns the number of elements contained in
the vector that are equivalent to the passed value. Note that comparisons are done on the
objects pointed to, not the pointers themselves. A linear search is used by the
WCPtrOrderedVector class to find the value. The WCPtrSortedVector class uses a
binary search.

Results: The occurrencesOf public member function returns the number of elements equivalent
to the passed value.

See Also: contains, find, index, operator [], removeAll

Vector Containers 561

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::operator []()

Synopsis: #include <wcvector.h>
public:
Type * & operator [](int);
Type * const & operator [](int) const;

Semantics: operator [] is the vector index operator. A reference to the object stored in the vector at
the given index is returned. If a constant vector is indexed, a reference to a constant element
is returned.

The append, insert, insertAt and prepend member functions are used to insert
a new element into a vector, and the remove, removeAll, removeAt,
removeFirst and removeLast member functions remove elements. The index operator
cannot be used to change the number of entries in the vector. Searches may be performed
using the find and index member functions.

If the vector is empty, one of two exceptions can be thrown. Theemptycontainer
exception is thrown if it is enabled. Otherwise, if the

indexrange exception is enabled,
it is thrown. If neither exception is enabled, a first element of the vector is added with a
NULL value. This element is added so that a reference to a valid vector element can be
returned.

If the index value is negative and the
indexrange exception is enabled, the exception is

thrown. An attempt to index an element with index greater than or equal to the number of
entries in the vector will also cause the

indexrange exception to be thrown if enabled.
If the exception is not enabled, attempting to index a negative element will index the first
element in the vector, and attempting to index an element after the last entry will index the
last element.

Care must be taken when using the WCPtrSortedVector class not to change the ordering
of the vector elements. The result returned by the index operator must not be assigned to or
modified in such a way that it is no longer equivalent (by Type’s equivalence operator) to
the value inserted into the vector. Failure to comply may cause lookups to work incorrectly,
since the binary search algorithm assumes elements are in sorted order.

Results: The operator [] public member function returns a reference to the element at the given
index. If the index is invalid, a reference to the closest valid element is returned. The result
of the non-constant index operator may be assigned to.

See Also: append, find, first, index, insert, insertAt, isEmpty, last, prepend,
remove, removeAt, removeAll, removeFirst, removeLast,WCExcept::emptycontainer,WCExcept::indexrange

562 Vector Containers

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::operator =()

Synopsis: #include <wcvector.h>
public:
WCPtrOrderedVector & WCPtrOrderedVector::operator =(const
WCPtrOrderedVector &);
WCPtrSortedVector & WCPtrSortedVector::operator =(const
WCPtrSortedVector &);

Semantics: The operator = public member function is the assignment operator for the class. The left
hand side vector is first cleared using the clear member function, and then the right hand
side vector is copied. The left hand side vector is made to have the same length and growth
amount as the right hand side (the growth amount is the second argument passed to the right
hand side vector constructor). All of the vector elements and exception trap states are
copied.

If the left hand side vector cannot be fully created, it will have zero length. Theoutofmemory exception is thrown if enabled in the right hand side vector.

Results: The operator = public member function assigns the left hand side vector to be a copy of
the right hand side.

See Also: clear, clearAndDestroy,WCExcept::outofmemory

Vector Containers 563

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::operator ==()

Synopsis: #include <wcvector.h>
public:
int WCPtrOrderedVector::operator ==(const WCPtrOrderedVector
&) const;
int WCPtrSortedVector::operator ==(const WCPtrSortedVector &
) const;

Semantics: The operator == public member function is the equivalence operator for the class. Two
vector objects are equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side vectors are the
same object. A FALSE (zero) value is returned otherwise.

564 Vector Containers

WCPtrOrderedVector<Type>::prepend()

Synopsis: #include <wcvector.h>
public:
int prepend(Type *);

Semantics: The prepend public member function inserts the passed element to be the first element in
the vector. All vector elements contained in the vector are copied up one index.

This function is not provided by the WCPtrSortedVector class, since all elements must
be inserted in sorted order by the insert member function.

Several different results can occur if the vector is not large enough for the new element. If
theresizerequired exception is enabled, the exception is thrown. If the exception is
not enabled, the prepend fails if the amount the vector is to be grown (the second parameter
to the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the resize member function. If resize fails,
the element is not inserted to the vector and theoutofmemory exception is thrown, if
enabled.

Results: The prepend public member function prepends an element to the
WCPtrOrderedVector object. A TRUE (non-zero) value is returned if the insert is
successful. If the insert fails, a FALSE (zero) value is returned.

See Also: append, insert, insertAt,WCExcept::outofmemory,WCExcept::resizerequired

Vector Containers 565

WCPtrSortedVector<Type>::remove(), WCPtrOrderedVector<Type>::remove()

Synopsis: #include <wcvector.h>
public:
Type * remove(const Type *);

Semantics: The remove public member function removes the first element in the vector which is
equivalent to the passed value. Note that comparisons are done on the objects pointed to, not
the pointers themselves. All vector elements stored after the removed elements are copied
down one index.

A linear search is used by the WCPtrOrderedVector class to find the element being
removed. The WCPtrSortedVector class uses a binary search.

Results: The remove public member function removes the first element in the vector which is
equivalent to the passed value. The removed pointer is returned. If the vector did not
contain an equivalent value, NULL(0) is returned.

See Also: clear, clearAndDestroy, find, removeAll, removeAt, removeFirst,
removeLast

566 Vector Containers

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::removeAll()

Synopsis: #include <wcvector.h>
public:
unsigned removeAll(const Type *);

Semantics: The removeAll public member function removes all elements in the vector which are
equivalent to the passed value. Note that comparisons are done on the objects pointed to, not
the pointers themselves. All vector elements stored after the removed elements are copied
down one or more indexes to take the place of the removed elements.

A linear search is used by the WCPtrOrderedVector class to find the elements being
removed. The WCPtrSortedVector class uses a binary search.

Results: The removeAll public member function removes all elements in the vector which are
equivalent to the passed value. The number of elements removed is returned.

See Also: clear, clearAndDestroy, find, occurrencesOf, remove, removeAt,
removeFirst, removeLast

Vector Containers 567

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::removeAt()

Synopsis: #include <wcvector.h>
public:
Type * removeAt(int);

Semantics: The removeAt public member function removes the element at the given index. All vector
elements stored after the removed elements are copied down one index.

If the vector is empty and theemptycontainer exception is enabled, the exception is
thrown.

If an attempt to remove an element with a negative index is made and the
indexrange

exception is enabled, the exception is thrown. If the exception is not enabled, the first
element is removed from the vector. Attempting to remove an element with index greater or
equal to the number of entries in the vector also causes the

indexrange exception to be
thrown if enabled. The last element in the vector is removed if the exception is not enabled.

Results: The removeAt public member function removes the element with the given index. If the
index is invalid, the closest element to the given index is removed. The removed pointer is
returned. If the vector was empty, NULL(0) is returned.

See Also: clear, clearAndDestroy, insertAt, operator [], remove, removeAll,
removeFirst, removeLast

568 Vector Containers

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::removeFirst()

Synopsis: #include <wcvector.h>
public:
Type * removeFirst();

Semantics: The removeFirst public member function removes the first element from a vector. All
other vector elements are copied down one index.

If the vector is empty and theemptycontainer exception is enabled, the exception is
thrown.

Results: The removeFirst public member function removes the first element from the vector. The
removed pointer is returned. If the vector was empty, NULL(0) is returned.

See Also: clear, clearAndDestroy, first, remove, removeAt, removeAll,
removeLast

Vector Containers 569

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::removeLast()

Synopsis: #include <wcvector.h>
public:
Type * removeLast();

Semantics: The removeLast public member function removes the last element from a vector. If the
vector is empty and theemptycontainer exception is enabled, the exception is thrown.

Results: The removeLast public member function removes the last element from the vector. The
removed pointer is returned. If the vector was empty, NULL(0) is returned.

See Also: clear, clearAndDestroy, last, remove, removeAt, removeAll,
removeFirst

570 Vector Containers

WCPtrSortedVector<Type>::resize(), WCPtrOrderedVector<Type>::resize()

Synopsis: #include <wcvector.h>
public:intresize(sizetnewsize);

Semantics: The resize public member function is used to change the vector size to be able to store
new_size elements. If new_size is larger than the previous vector size, all elements are
copied into the newly sized vector, and new elements can be added using the append,
insert, insertAt, and prepend member functions. If the vector is resized to a
smaller size, the first new_size elements are copied (all vector elements if the vector
contained new_size or fewer elements). The objects pointed to by the remaining elements are
not deleted.

If the resize cannot be performed and theoutofmemory exception is enabled, the
exception is thrown.

Results: The vector is resized to new_size. A TRUE value (non-zero) is returned if the resize is
successful. A FALSE (zero) result is returned if the resize fails.

See Also:WCExcept::outofmemory

Vector Containers 571

WCPtrVector<Type>

Declared: wcvector.h

The WCPtrVector<Type> class is a templated class used to store objects in a vector.
Vectors are similar to arrays, but vectors perform bounds checking and can be resized.
Elements are inserted into the vector by assigning to a vector index.

The WCPtrOrderedVector and WCPtrSortedVector classes are also available.
They provide a more abstract view of the vector and additional functionality, including
finding and removing elements.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type pointed to by the pointers stored in the vector.

The WCExcept class is a base class of the WCPtrVector<Type> class and provides the
exceptions member function. This member function controls the exceptions which can
be thrown by the WCPtrVector<Type> object. No exceptions are enabled unless they are
set by the exceptions member function.

Requirements of Type

The WCPtrVector<Type> class requires nothing from Type.

Public Member Functions

The following member functions are declared in the public interface:WCPtrVector(sizet=0);WCPtrVector(sizet,constType*);
WCPtrVector(const WCPtrVector &);
virtual ~WCPtrVector();
void clear();
void clearAndDestroy();sizetlength()const;intresize(sizet);
Public Member Operators

The following member operators are declared in the public interface:

Type * & operator [](int);
Type * const & operator [](int) const;
WCPtrVector & operator =(const WCPtrVector &);
int operator ==(const WCPtrVector &) const;

572 Vector Containers

WCPtrVector<Type>::WCPtrVector()

Synopsis: #include <wcvector.h>
public:WCPtrVector(sizet=0);

Semantics: The public WCPtrVector<Type> constructor creates a WCPtrVector<Type> object
able to store the number of elements specified in the optional parameter, which defaults to
zero. All vector elements are initialized to NULL(0).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The public WCPtrVector<Type> constructor creates an initialized
WCPtrVector<Type> object with the specified length.

See Also: WCPtrVector<Type>, ~WCPtrVector<Type>

Vector Containers 573

WCPtrVector<Type>::WCPtrVector()

Synopsis: #include <wcvector.h>
public:WCPtrVector(sizet,constType*);

Semantics: The public WCPtrVector<Type> constructor creates a WCPtrVector<Type> object
able to store the number of elements specified by the first parameter. All vector elements are
initialized to the pointer value given by the second parameter.

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The public WCPtrVector<Type> constructor creates an initialized
WCPtrVector<Type> object with the specified length and elements set to the given
value.

See Also: WCPtrVector<Type>, ~WCPtrVector<Type>

574 Vector Containers

WCPtrVector<Type>::WCPtrVector()

Synopsis: #include <wcvector.h>
public:
WCPtrVector(const WCPtrVector &);

Semantics: The public WCPtrVector<Type> constructor is the copy constructor for the
WCPtrVector<Type> class. The new vector is created with the same length as the given
vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. Theoutofmemory
exception is thrown if enabled in the vector being copied.

Results: The public WCPtrVector<Type> constructor creates a WCPtrVector<Type> object
which is a copy of the passed vector.

See Also: operator =,WCExcept::outofmemory

Vector Containers 575

WCPtrVector<Type>::~WCPtrVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCPtrVector();

Semantics: The public ~WCPtrVector<Type> destructor is the destructor for the
WCPtrVector<Type> class. If the vector is not length zero and thenotempty
exception is enabled, the exception is thrown. Otherwise, the vector elements are cleared
using the clear member function. The objects which the vector elements point to are not
deleted unless the clearAndDestroy member function is explicitly called before the
destructor is called. The call to the public ~WCPtrVector<Type> destructor is inserted
implicitly by the compiler at the point where the WCPtrVector<Type> object goes out of
scope.

Results: The public ~WCPtrVector<Type> destructor destroys an WCPtrVector<Type>
object.

See Also: clear, clearAndDestroy,WCExcept::notempty

576 Vector Containers

WCPtrVector<Type>::clear()

Synopsis: #include <wcvector.h>
public:
void clear();

Semantics: The clear public member function is used to clear the vector so that it is of zero length.
Objects pointed to by the vector elements are not deleted. The vector object is not destroyed
and re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the vector to have zero length and no vector
elements.

See Also: ~WCPtrVector<Type>, clearAndDestroy, operator =

Vector Containers 577

WCPtrVector<Type>::clearAndDestroy()

Synopsis: #include <wcvector.h>
public:
void clearAndDestroy();

Semantics: The clearAndDestroy public member function is used to clear the vector to have zero
length and delete the objects pointed to by the vector elements. The vector object is not
destroyed and re-created by this function, so the vector object destructor is not invoked.

Results: The clearAndDestroy public member function clears the vector by deleting the objects
pointed to by the vector elements and makes the vector zero length.

See Also: clear

578 Vector Containers

WCPtrVector<Type>::length()

Synopsis: #include <wcvector.h>
public:sizetlength()const;

Semantics: The length public member function is used to find the number of elements which can be
stored in the WCPtrVector<Type> object.

Results: The length public member function returns the length of the vector.

See Also: resize

Vector Containers 579

WCPtrVector<Type>::operator []()

Synopsis: #include <wcvector.h>
public:
Type * & operator [](int);
Type * const & operator [](int) const;

Semantics: operator [] is the vector index operator. A reference to the object stored in the vector at
the given index is returned. If a constant vector is indexed, a reference to a constant element
is returned. The index operator of a non-constant vector is the only way to insert an element
into the vector.

If an attempt to access an element with index greater than or equal to the length of a
non-constant vector is made and theresizerequired exception is enabled, the
exception is thrown. If the exception is not enabled, the vector is automatically resized using
the resize member function to have length the index value plus one. New vector elements
are initialized to NULL(0). If the resize failed, and theoutofmemory exception is
enabled, the exception is thrown. If the exception is not enabled and the resize failed, the last
element is indexed (a new element if the vector was zero length). If a negative value is used
to index the non-constant vector and the

indexrange exception is enabled, the exception
is thrown. If the exception is not enabled and the vector is empty, theresizerequired
exception may be thrown.

An attempt to index an empty constant vector may cause one of two exceptions to be thrown.
If theemptycontainer exception is enabled, it is thrown. Otherwise, theindexrange exception is thrown, if enabled. If neither exception is enabled, a first
vector element is added and indexed (so that a reference to a valid element can be returned).

Indexing with a negative value or a value greater than or equal to the length of a constant
vector causes the
indexrange exception to be thrown, if enabled.

Results: The operator [] public member function returns a reference to the element at the given
index. If the index is invalid, a reference to the closest valid element is returned. The result
of the non-constant index operator may be assigned to.

See Also: resize,WCExcept::emptycontainer,WCExcept::indexrange,WCExcept::outofmemory,WCExcept::resizerequired

580 Vector Containers

WCPtrVector<Type>::operator =()

Synopsis: #include <wcvector.h>
public:
WCPtrVector & operator =(const WCPtrVector &);

Semantics: The operator = public member function is the assignment operator for the
WCPtrVector<Type> class. The left hand side vector is first cleared using the clear
member function, and then the right hand side vector is copied. The left hand side vector is
made to have the same length as the right hand side. All of the vector elements and
exception trap states are copied.

If the left hand side vector cannot be fully created, it will have zero length. Theoutofmemory exception is thrown if enabled in the right hand side vector.

Results: The operator = public member function assigns the left hand side vector to be a copy of
the right hand side.

See Also: clear, clearAndDestroy,WCExcept::outofmemory

Vector Containers 581

WCPtrVector<Type>::operator ==()

Synopsis: #include <wcvector.h>
public:
int operator ==(const WCPtrVector &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCPtrVector<Type> class. Two vector objects are equivalent if they are the same
object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side vectors are the
same object. A FALSE (zero) value is returned otherwise.

582 Vector Containers

WCPtrVector<Type>::resize()

Synopsis: #include <wcvector.h>
public:intresize(sizetnewsize);

Semantics: The resize public member function is used to change the vector size to be able to store
new_size elements. If new_size is larger than the previous vector size, all elements will be
copied into the newly sized vector, and new elements are initialized to NULL(0). If the
vector is resized to a smaller size, the first new_size elements are copied. The objects
pointed to by the remaining elements are not deleted.

If the resize cannot be performed and theoutofmemory exception is enabled, the
exception is thrown.

Results: The vector is resized to new_size. A TRUE value (non-zero) is returned if the resize is
successful. A FALSE (zero) result is returned if the resize fails.

See Also:WCExcept::outofmemory

Vector Containers 583

WCValSortedVector<Type>, WCValOrderedVector<Type>

Declared: wcvector.h

The WCValSortedVector<Type> and WCValOrderedVector<Type> classes are
templated classes used to store objects in a vector. Ordered and Sorted vectors are powerful
arrays which can be resized and provide an abstract interface to insert, find and remove
elements. An ordered vector maintains the order in which elements are added, and allows
more than one copy of an element that is equivalent. The sorted vector allow only one copy
of an equivalent element, and inserts them in a sorted order. The sorted vector is less
efficient when inserting elements, but can provide a faster retrieval time.

Elements cannot be inserted into these vectors by assigning to a vector index. Vectors
automatically grow when necessary to insert an element if theresizerequired
exception is not enabled.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type of the elements stored in the vector.

Values are copied into the vector, which could be undesirable if the stored objects are
complicated and copying is expensive. Value vectors should not be used to store objects of a
base class if any derived types of different sizes would be stored in the vector, or if the
destructor for a derived class must be called.

The WCValOrderedVector class stores elements in the order which they are inserted
using the insert, append, prepend and insertAt member functions. Linear
searches are performed to locate entries, and the less than operator is not required.

The WCValSortedVector class stores elements in ascending order. This requires that
Type provides a less than operator. Insertions are more expensive than inserting or
appending into an ordered vector, since entries must be moved to make room for the new
element. A binary search is used to locate elements in a sorted vector, making searches
quicker than in the ordered vector.

Care must be taken when using the WCValSortedVector class not to change the ordering
of the vector elements. The result returned by the index operator must not be assigned to or
modified in such a way that it is no longer equivalent to the value inserted into the vector.
Lookups assume elements are in sorted order.

The WCValVector class is also available. It provides a resizable and boundary safe vector
similar to standard arrays.

The WCExcept class is a base class of the WCValSortedVector<Type> and
WCValOrderedVector<Type> classes and provides the exceptions member
function. This member function controls the exceptions which can be thrown by the

584 Vector Containers

WCValSortedVector<Type>, WCValOrderedVector<Type>

WCValSortedVector<Type> and WCValOrderedVector<Type> objects. No
exceptions are enabled unless they are set by the exceptions member function.

Requirements of Type

Both the WCValSortedVector<Type> and WCValOrderedVector<Type> classes
require Type to have:

A default constructor (Type::Type()).

A well defined copy constructor (Type::Type(const Type &)).

A well defined assignment operator
(Type & operator =(const Type &)).

The following override of operator new() if Type overrides the global operator
new():void*operatornew(sizet,void*ptr){return(ptr);}
A well defined equivalence operator with constant parameters
(int operator ==(const Type &) const).

Additionally the WCValSortedVector class requires Type to have:

A well defined less than operator with constant parameters
(int operator <(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:WCValOrderedVector(sizet=WCDEFAULTVECTORLENGTH,unsigned=WCDEFAULTVECTORRESIZEGROW);
WCValOrderedVector(const WCValOrderedVector &);
virtual ~WCValOrderedVector();WCValSortedVector(sizet=WCDEFAULTVECTORLENGTH,unsigned=WCDEFAULTVECTORRESIZEGROW);
WCValSortedVector(const WCValSortedVector &);
virtual ~WCValSortedVector();
void clear();
int contains(const Type &) const;
unsigned entries() const;
int find(const Type &, Type &) const;
Type first() const;

Vector Containers 585

WCValSortedVector<Type>, WCValOrderedVector<Type>

int index(const Type &) const;
int insert(const Type &);
int isEmpty() const;
Type last() const;
int occurrencesOf(const Type &) const;
int remove(const Type &);
unsigned removeAll(const Type &);
int removeAt(int);
int removeFirst();
int removeLast();intresize(sizet);
The following public member functions are available for the WCValOrderedVector class
only:

int append(const Type &);
int insertAt(int, const Type &);
int prepend(const Type &);

Public Member Operators

The following member operators are declared in the public interface:

Type & operator [](int);
const Type & operator [](int) const;
WCValOrderedVector & WCValOrderedVector::operator =(const
WCValOrderedVector &);
WCValSortedVector & WCValSortedVector::operator =(const
WCValSortedVector &);
int WCValOrderedVector::operator ==(const WCValOrderedVector
&) const;
int WCValSortedVector::operator ==(const WCValSortedVector &
) const;

586 Vector Containers

WCValOrderedVector<Type>::WCValOrderedVector()

Synopsis: #include <wcvector.h>
public:WCValOrderedVector(sizet=WCDEFAULTVECTORLENGTH,unsigned=WCDEFAULTVECTORRESIZEGROW);

Semantics: The WCValOrderedVector<Type> constructor creates an empty
WCValOrderedVector object able to store the number of elements specified in the first
optional parameter, which defaults to the constantWCDEFAULTVECTORLENGTH
(currently defined as 10). If theresizerequired exception is not enabled, then the
second optional parameter is used to specify the value to increase the vector size when an
element is inserted into a full vector. If zero(0) is specified as the second parameter, any
attempt to insert into a full vector fails. This parameter defaults to the constantWCDEFAULTVECTORRESIZEGROW (currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The WCValOrderedVector<Type> constructor creates an empty initialized
WCValOrderedVector object.

See Also:WCExcept::resizerequired

Vector Containers 587

WCValOrderedVector<Type>::WCValOrderedVector()

Synopsis: #include <wcvector.h>
public:
WCValOrderedVector(const WCValOrderedVector &);

Semantics: The WCValOrderedVector<Type> constructor is the copy constructor for the
WCValOrderedVector class. The new vector is created with the same length and resize
value as the passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. Theoutofmemory
exception is thrown if enabled in the vector being copied.

Results: The WCValOrderedVector<Type> creates a WCValOrderedVector object which is
a copy of the passed vector.

See Also: operator =,WCExcept::outofmemory

588 Vector Containers

WCValOrderedVector<Type>::~WCValOrderedVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCValOrderedVector();

Semantics: The WCValOrderedVector<Type> destructor is the destructor for the
WCValOrderedVector class. If the vector is not length zero and thenotempty
exception is enabled, the exception is thrown. Otherwise, the vector entries are cleared using
the clear member function. The call to the WCValOrderedVector<Type> destructor
is inserted implicitly by the compiler at the point where the WCValOrderedVector object
goes out of scope.

Results: The WCValOrderedVector<Type> destructor destroys an WCValOrderedVector
object.

See Also: clear,WCExcept::notempty

Vector Containers 589

WCValSortedVector<Type>::WCValSortedVector()

Synopsis: #include <wcvector.h>
public:WCValSortedVector(sizet=WCDEFAULTVECTORLENGTH,unsigned=WCDEFAULTVECTORRESIZEGROW);

Semantics: The WCValSortedVector<Type> constructor creates an empty
WCValSortedVector object able to store the number of elements specified in the first
optional parameter, which defaults to the constantWCDEFAULTVECTORLENGTH
(currently defined as 10). If theresizerequired exception is not enabled, then the
second optional parameter is used to specify the value to increase the vector size when an
element is inserted into a full vector. If zero(0) is specified as the second parameter, any
attempt to insert into a full vector fails. This parameter defaults to the constantWCDEFAULTVECTORRESIZEGROW (currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The WCValSortedVector<Type> constructor creates an empty initialized
WCValSortedVector object.

See Also:WCExcept::resizerequired

590 Vector Containers

WCValSortedVector<Type>::WCValSortedVector()

Synopsis: #include <wcvector.h>
public:
WCValSortedVector(const WCValSortedVector &);

Semantics: The WCValSortedVector<Type> constructor is the copy constructor for the
WCValSortedVector class. The new vector is created with the same length and resize
value as the passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. Theoutofmemory
exception is thrown if enabled in the vector being copied.

Results: The WCValSortedVector<Type> constructor creates a WCValSortedVector object
which is a copy of the passed vector.

See Also: operator =,WCExcept::outofmemory

Vector Containers 591

WCValSortedVector<Type>::~WCValSortedVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCValSortedVector();

Semantics: The WCValSortedVector<Type> destructor is the destructor for the
WCValSortedVector class. If the vector is not length zero and thenotempty
exception is enabled, the exception is thrown. Otherwise, the vector entries are cleared using
the clear member function. The call to the WCValSortedVector<Type> destructor is
inserted implicitly by the compiler at the point where the WCValSortedVector object
goes out of scope.

Results: The WCValSortedVector<Type> destructor destroys an WCValSortedVector
object.

See Also: clear,WCExcept::notempty

592 Vector Containers

WCValOrderedVector<Type>::append()

Synopsis: #include <wcvector.h>
public:
int append(const Type &);

Semantics: The append public member function appends the passed element to be the last element in
the vector. The data stored in the vector is a copy of the data passed as a parameter. This
member function has the same semantics as the WCValOrderedVector::insert
member function.

This function is not provided by the WCValSortedVector class, since all elements must
be inserted in sorted order by the insert member function.

Several different results can occur if the vector is not large enough for the new element. If
theresizerequired exception is enabled, the exception is thrown. If the exception is
not enabled, the append fails if the amount the vector is to be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the resize member function. If resize fails,
the element is not appended to the vector and theoutofmemory exception is thrown, if
enabled.

Results: The append public member function appends an element to the WCValOrderedVector
object. A TRUE (non-zero) value is returned if the append is successful. If the append fails,
a FALSE (zero) value is returned.

See Also: insert, insertAt, prepend,WCExcept::outofmemory,WCExcept::resizerequired

Vector Containers 593

WCValSortedVector<Type>::clear(), WCValOrderedVector<Type>::clear()

Synopsis: #include <wcvector.h>
public:
void clear();

Semantics: The clear public member function is used to clear the vector so that it contains no entries,
and is zero size. Elements stored in the vector are destroyed using Type’s destructor. The
vector object is not destroyed and re-created by this function, so the object destructor is not
invoked.

Results: The clear public member function clears the vector to have zero length and no entries.

See Also: ~WCValOrderedVector, operator =

594 Vector Containers

WCValSortedVector<Type>,WCValOrderedVector<Type>::contains()

Synopsis: #include <wcvector.h>
public:
int contains(const Type &) const;

Semantics: The contains public member function is used to determine if a value is contained by a
vector. A linear search is used by the WCValOrderedVector class to find the value. The
WCValSortedVector class uses a binary search.

Results: The contains public member function returns a TRUE (non-zero) value if the element is
found in the vector. A FALSE (zero) value is returned if the vector does not contain the
element.

See Also: index, find

Vector Containers 595

WCValSortedVector<Type>::entries(), WCValOrderedVector<Type>::entries()

Synopsis: #include <wcvector.h>
public:
unsigned entries() const;

Semantics: The entries public member function is used to find the number of elements which are
stored in the vector.

Results: The entries public member function returns the number of elements in the vector.

See Also: isEmpty

596 Vector Containers

WCValSortedVector<Type>::find(), WCValOrderedVector<Type>::find()

Synopsis: #include <wcvector.h>
public:
int find(const Type &, Type &) const;

Semantics: The find public member function is used to find an element equivalent to the first
argument. The WCValOrderedVector class uses a linear search to find the element, and
the WCValSortedVector class uses a binary search.

Results: If an equivalent element is found, a TRUE (non-zero) value is returned, and the second
parameter is assigned the first equivalent value. A FALSE (zero) value is returned and the
second parameter is unchanged if the element is not in the vector.

See Also: contains, first, index, last, occurrencesOf, remove

Vector Containers 597

WCValSortedVector<Type>::first(), WCValOrderedVector<Type>::first()

Synopsis: #include <wcvector.h>
public:
Type first() const;

Semantics: The first public member function returns the first element in the vector. The element is
not removed from the vector.

If the vector is empty, one of two exceptions can be thrown. Theemptycontainer
exception is thrown if it is enabled. Otherwise, if the

indexrange exception is enabled,
it is thrown. If neither exception is enabled, a first element of the vector is added with a
default value.

Results: The first public member function returns the value of the first element in the vector.

See Also: last, removeFirst,WCExcept::indexrange,WCExcept::resizerequired

598 Vector Containers

WCValSortedVector<Type>::index(), WCValOrderedVector<Type>::index()

Synopsis: #include <wcvector.h>
public:
int index(const Type &) const;

Semantics: The index public member function is used find the index of the first element equivalent to
the passed element. A linear search is used by the WCValOrderedVector class to find
the element. The WCValSortedVector class uses a binary search.

Results: The index public member function returns the index of the first element equivalent to the
parameter. If the passed value is not contained in the vector, negative one (-1) is returned.

See Also: contains, find, insertAt, operator [], removeAt

Vector Containers 599

WCValSortedVector<Type>::insert(), WCValOrderedVector<Type>::insert()

Synopsis: #include <wcvector.h>
public:
int insert(const Type &);

Semantics: The insert public member function inserts the value into the vector. The data stored in the
vector is a copy of the data passed as a parameter.

The WCValOrderedVector::insert function inserts the value as the last element of
the vector, and has the same semantics as the WCValOrderedVector::append member
function.

A binary search is performed to determine where the value should be inserted for the
WCValSortedVector::insert function. Any elements greater than the inserted value
are copied up one index (using Type’s assignment operator), so that the new element is
after all elements with value less than or equal to it.

Several different results can occur if the vector is not large enough for the new element. If
theresizerequired exception is enabled, the exception is thrown. If the exception is
not enabled, the insert fails if the amount the vector is to be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the resize member function. If resize fails,
the element is not inserted to the vector and theoutofmemory exception is thrown, if
enabled.

Results: The insert public member function inserts an element in to the vector. A TRUE
(non-zero) value is returned if the insert is successful. If the insert fails, a FALSE (zero)
value is returned.

See Also: append, insertAt, prepend,WCExcept::outofmemory,WCExcept::resizerequired

600 Vector Containers

WCValOrderedVector<Type>::insertAt()

Synopsis: #include <wcvector.h>
public:
int insertAt(int, const Type &);

Semantics: The insertAt public member function inserts the second argument into the vector before
the element at index given by the first argument. If the passed index is equal to the number
of entries in the vector, the new value is appended to the vector as the last element. The data
stored in the vector is a copy of the data passed as a parameter. All vector elements with
indexes greater than or equal to the first parameter are copied (using Type’s assignment
operator) up one index.

This function is not provided by the WCValSortedVector class, since all elements must
be inserted in sorted order by the insert member function.

If the passed index is negative or greater than the number of entries in the vector and theindexrange exception is enabled, the exception is thrown. If the exception is not
enabled, the new element is inserted as the first element when the index is negative, or as the
last element when the index is too large.

Several different results can occur if the vector is not large enough for the new element. If
theresizerequired exception is enabled, the exception is thrown. If the exception is
not enabled, the insert fails if the amount the vector is to be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the resize member function. If resize fails,
the element is not inserted into the vector and theoutofmemory exception is thrown, if
enabled.

Results: The insertAt public member function inserts an element into the
WCValOrderedVector object before the element at the given index. A TRUE (non-zero)
value is returned if the insert is successful. If the insert fails, a FALSE (zero) value is
returned.

See Also: append, insert, prepend, operator [], removeAt,WCExcept::indexrange,WCExcept::outofmemory,WCExcept::resizerequired

Vector Containers 601

WCValSortedVector<Type>,WCValOrderedVector<Type>::isEmpty()

Synopsis: #include <wcvector.h>
public:
int isEmpty() const;

Semantics: The isEmpty public member function is used to determine if a vector object has any entries
contained in it.

Results: A TRUE value (non-zero) is returned if the vector object does not have any vector elements
contained within it. A FALSE (zero) result is returned if the vector contains at least one
element.

See Also: entries

602 Vector Containers

WCValSortedVector<Type>::last(), WCValOrderedVector<Type>::last()

Synopsis: #include <wcvector.h>
public:
Type last() const;

Semantics: The last public member function returns the last element in the vector. The element is not
removed from the vector.

If the vector is empty, one of two exceptions can be thrown. Theemptycontainer
exception is thrown if it is enabled. Otherwise, if the

indexrange exception is enabled,
it is thrown. If neither exception is enabled, a first element of the vector is added with a
default value.

Results: The last public member function returns the value of the last element in the vector.

See Also: first, removeLast,WCExcept::indexrange,WCExcept::resizerequired

Vector Containers 603

WCValSortedVector<Type>,WCValOrderedVector<Type>::occurrencesOf()

Synopsis: #include <wcvector.h>
public:
int occurrencesOf(const Type &) const;

Semantics: The occurrencesOf public member function returns the number of elements contained in
the vector that are equivalent to the passed value. A linear search is used by the
WCValOrderedVector class to find the value. The WCValSortedVector class uses a
binary search.

Results: The occurrencesOf public member function returns the number of elements equivalent
to the passed value.

See Also: contains, find, index, operator [], removeAll

604 Vector Containers

WCValSortedVector<Type>,WCValOrderedVector<Type>::operator []()

Synopsis: #include <wcvector.h>
public:
Type & operator [](int);
const Type & operator [](int) const;

Semantics: operator [] is the vector index operator. A reference to the object stored in the vector at
the given index is returned. If a constant vector is indexed, a reference to a constant element
is returned.

The append, insert, insertAt and prepend member functions are used to insert
a new element into a vector, and the remove, removeAll, removeAt,
removeFirst and removeLast member functions remove elements. The index operator
cannot be used to change the number of entries in the vector. Searches may be performed
using the find and index member functions.

If the vector is empty, one of two exceptions can be thrown. Theemptycontainer
exception is thrown if it is enabled. Otherwise, if the

indexrange exception is enabled,
it is thrown. If neither exception is enabled, a first element of the vector is added with a
default value. This element is added so that a reference to a valid vector element can be
returned.

If the index value is negative and the
indexrange exception is enabled, the exception is

thrown. An attempt to index an element with index greater than or equal to the number of
entries in the vector will also cause the

indexrange exception to be thrown if enabled.
If the exception is not enabled, attempting to index a negative element will index the first
element in the vector, and attempting to index an element after the last entry will index the
last element.

Care must be taken when using the WCValSortedVector class not to change the ordering
of the vector elements. The result returned by the index operator must not be assigned to or
modified in such a way that it is no longer equivalent (by Type’s equivalence operator) to
the value inserted into the vector. Failure to comply may cause lookups to work incorrectly,
since the binary search algorithm assumes elements are in sorted order.

Results: The operator [] public member function returns a reference to the element at the given
index. If the index is invalid, a reference to the closest valid element is returned. The result
of the non-constant index operator may be assigned to.

See Also: append, find, first, index, insert, insertAt, isEmpty, last, prepend,
remove, removeAt, removeAll, removeFirst, removeLast,WCExcept::emptycontainer,WCExcept::indexrange

Vector Containers 605

WCValSortedVector<Type>,WCValOrderedVector<Type>::operator =()

Synopsis: #include <wcvector.h>
public:
WCValOrderedVector & WCValOrderedVector::operator =(const
WCValOrderedVector &);
WCValSortedVector & WCValSortedVector::operator =(const
WCValSortedVector &);

Semantics: The operator = public member function is the assignment operator for the class. The left
hand side vector is first cleared using the clear member function, and then the right hand
side vector is copied. The left hand side vector is made to have the same length and growth
amount as the right hand side (the growth amount is the second argument passed to the right
hand side vector constructor). All of the vector elements and exception trap states are
copied.

If the left hand side vector cannot be fully created, it will have zero length. Theoutofmemory exception is thrown if enabled in the right hand side vector.

Results: The operator = public member function assigns the left hand side vector to be a copy of
the right hand side.

See Also: clear,WCExcept::outofmemory

606 Vector Containers

WCValSortedVector<Type>,WCValOrderedVector<Type>::operator ==()

Synopsis: #include <wcvector.h>
public:
int WCValOrderedVector::operator ==(const WCValOrderedVector
&) const;
int WCValSortedVector::operator ==(const WCValSortedVector &
) const;

Semantics: The operator == public member function is the equivalence operator for the class. Two
vector objects are equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side vectors are the
same object. A FALSE (zero) value is returned otherwise.

Vector Containers 607

WCValOrderedVector<Type>::prepend()

Synopsis: #include <wcvector.h>
public:
int prepend(const Type &);

Semantics: The prepend public member function inserts the passed element to be the first element in
the vector. The data stored in the vector is a copy of the data passed as a parameter. All
vector elements contained in the vector are copied (using Type’s assignment operator) up
one index.

This function is not provided by the WCValSortedVector class, since all elements must
be inserted in sorted order by the insert member function.

Several different results can occur if the vector is not large enough for the new element. If
theresizerequired exception is enabled, the exception is thrown. If the exception is
not enabled, the prepend fails if the amount the vector is to be grown (the second parameter
to the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the resize member function. If resize fails,
the element is not inserted to the vector and theoutofmemory exception is thrown, if
enabled.

Results: The prepend public member function prepends an element to the
WCValOrderedVector object. A TRUE (non-zero) value is returned if the insert is
successful. If the insert fails, a FALSE (zero) value is returned.

See Also: append, insert, insertAt,WCExcept::outofmemory,WCExcept::resizerequired

608 Vector Containers

WCValSortedVector<Type>::remove(), WCValOrderedVector<Type>::remove()

Synopsis: #include <wcvector.h>
public:
int remove(const Type &);

Semantics: The remove public member function removes the first element in the vector which is
equivalent to the passed value. All vector elements stored after the removed elements are
copied (using Type’s assignment operator) down one index.

A linear search is used by the WCValOrderedVector class to find the element being
removed. The WCValSortedVector class uses a binary search.

Results: The remove public member function removes the first element in the vector which is
equivalent to the passed value. A TRUE (non-zero) value is returned if an equivalent
element was contained in the vector and removed. If the vector did not contain an equivalent
value, a FALSE (zero) value is returned.

See Also: clear, find, removeAll, removeAt, removeFirst, removeLast

Vector Containers 609

WCValSortedVector<Type>,WCValOrderedVector<Type>::removeAll()

Synopsis: #include <wcvector.h>
public:
unsigned removeAll(const Type &);

Semantics: The removeAll public member function removes all elements in the vector which are
equivalent to the passed value. All vector elements stored after the removed elements are
copied (using Type’s assignment operator) down one or more indexes to take the place of
the removed elements.

A linear search is used by the WCValOrderedVector class to find the elements being
removed. The WCValSortedVector class uses a binary search.

Results: The removeAll public member function removes all elements in the vector which are
equivalent to the passed value. The number of elements removed is returned.

See Also: clear, find, occurrencesOf, remove, removeAt, removeFirst, removeLast

610 Vector Containers

WCValSortedVector<Type>,WCValOrderedVector<Type>::removeAt()

Synopsis: #include <wcvector.h>
public:
int removeAt(int);

Semantics: The removeAt public member function removes the element at the given index. All vector
elements stored after the removed elements are copied (using Type’s assignment operator)
down one index.

If the vector is empty and theemptycontainer exception is enabled, the exception is
thrown.

If an attempt to remove an element with a negative index is made and the
indexrange

exception is enabled, the exception is thrown. If the exception is not enabled, the first
element is removed from the vector. Attempting to remove an element with index greater or
equal to the number of entries in the vector also causes the

indexrange exception to be
thrown if enabled. The last element in the vector is removed if the exception is not enabled.

Results: The removeAt public member function removes the element with the given index. If the
index is invalid, the closest element to the given index is removed. A TRUE (non-zero)
value is returned if an element was removed. If the vector was empty, FALSE (zero) value is
returned.

See Also: clear, insertAt, operator [], remove, removeAll, removeFirst,
removeLast

Vector Containers 611

WCValSortedVector<Type>,WCValOrderedVector<Type>::removeFirst()

Synopsis: #include <wcvector.h>
public:
int removeFirst();

Semantics: The removeFirst public member function removes the first element from a vector. All
other vector elements are copied (using Type’s assignment operator) down one index.

If the vector is empty and theemptycontainer exception is enabled, the exception is
thrown.

Results: The removeFirst public member function removes the first element from the vector. A
TRUE (non-zero) value is returned if an element was removed. If the vector was empty,
FALSE (zero) value is returned.

See Also: clear, first, remove, removeAt, removeAll, removeLast

612 Vector Containers

WCValSortedVector<Type>,WCValOrderedVector<Type>::removeLast()

Synopsis: #include <wcvector.h>
public:
int removeLast();

Semantics: The removeLast public member function removes the last element from a vector. If the
vector is empty and theemptycontainer exception is enabled, the exception is thrown.

Results: The removeLast public member function removes the last element from the vector. A
TRUE (non-zero) value is returned if an element was removed. If the vector was empty,
FALSE (zero) value is returned.

See Also: clear, last, remove, removeAt, removeAll, removeFirst

Vector Containers 613

WCValSortedVector<Type>::resize(), WCValOrderedVector<Type>::resize()

Synopsis: #include <wcvector.h>
public:intresize(sizetnewsize);

Semantics: The resize public member function is used to change the vector size to be able to store
new_size elements. If new_size is larger than the previous vector size, all elements are
copied (using Type’s copy constructor) into the newly sized vector, and new elements can
be added using the append, insert, insertAt, and prepend member functions.
If the vector is resized to a smaller size, the first new_size elements are copied (all vector
elements if the vector contained new_size or fewer elements). The remaining elements are
destroyed using Type’s destructor.

If the resize cannot be performed and theoutofmemory exception is enabled, the
exception is thrown.

Results: The vector is resized to new_size. A TRUE value (non-zero) is returned if the resize is
successful. A FALSE (zero) result is returned if the resize fails.

See Also:WCExcept::outofmemory

614 Vector Containers

WCValVector<Type>

Declared: wcvector.h

The WCValVector<Type> class is a templated class used to store objects in a vector.
Vectors are similar to arrays, but vectors perform bounds checking and can be resized.
Elements are inserted into the vector by assigning to a vector index.

The WCValOrderedVector and WCValSortedVector classes are also available.
They provide a more abstract view of the vector and additional functionality, including
finding and removing elements.

Values are copied into the vector, which could be undesirable if the stored objects are
complicated and copying is expensive. Value vectors should not be used to store objects of a
base class if any derived types of different sizes would be stored in the vector, or if the
destructor for a derived class must be called.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type of the elements stored in the vector.

The WCExcept class is a base class of the WCValVector<Type> class and provides the
exceptions member function. This member function controls the exceptions which can
be thrown by the WCValVector<Type> object. No exceptions are enabled unless they are
set by the exceptions member function.

Requirements of Type

The WCValVector<Type> class requires Type to have:

A default constructor (Type::Type()).

A well defined copy constructor (Type::Type(const Type &)).

The following override of operator new() only if Type overrides the global
operator new():void*operatornew(sizet,void*ptr){return(ptr);}
Public Member Functions

The following member functions are declared in the public interface:WCValVector(sizet=0);WCValVector(sizet,constType&);
WCValVector(const WCValVector &);
virtual ~WCValVector();
void clear();

Vector Containers 615

WCValVector<Type>sizetlength()const;intresize(sizet);
Public Member Operators

The following member operators are declared in the public interface:

Type & operator [](int);
const Type & operator [](int) const;
WCValVector & operator =(const WCValVector &);
int operator ==(const WCValVector &) const;

616 Vector Containers

WCValVector<Type>::WCValVector()

Synopsis: #include <wcvector.h>
public:WCValVector(sizet=0);

Semantics: The public WCValVector<Type> constructor creates a WCValVector<Type> object
able to store the number of elements specified in the optional parameter, which defaults to
zero. All vector elements are initialized with Type’s default constructor.

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The public WCValVector<Type> constructor creates an initialized
WCValVector<Type> object with the specified length.

See Also: WCValVector<Type>, ~WCValVector<Type>

Vector Containers 617

WCValVector<Type>::WCValVector()

Synopsis: #include <wcvector.h>
public:WCValVector(sizet,constType&);

Semantics: The public WCValVector<Type> constructor creates a WCValVector<Type> object
able to store the number of elements specified by the first parameter. All vector elements are
initialized to the value of the second parameter using Type’s copy constructor.

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The public WCValVector<Type> constructor creates an initialized
WCValVector<Type> object with the specified length and elements set to the given
value.

See Also: WCValVector<Type>, ~WCValVector<Type>

618 Vector Containers

WCValVector<Type>::WCValVector()

Synopsis: #include <wcvector.h>
public:
WCValVector(const WCValVector &);

Semantics: The public WCValVector<Type> constructor is the copy constructor for the
WCValVector<Type> class. The new vector is created with the same length as the given
vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. Theoutofmemory
exception is thrown if enabled in the vector being copied.

Results: The public WCValVector<Type> constructor creates a WCValVector<Type> object
which is a copy of the passed vector.

See Also: operator =,WCExcept::outofmemory

Vector Containers 619

WCValVector<Type>::~WCValVector()

Synopsis: #include <wcvector.h>
public:
virtual ~WCValVector();

Semantics: The public ~WCValVector<Type> destructor is the destructor for the
WCValVector<Type> class. If the vector is not length zero and thenotempty
exception is enabled, the exception is thrown. Otherwise, the vector elements are cleared
using the clear member function. The call to the public ~WCValVector<Type>
destructor is inserted implicitly by the compiler at the point where the
WCValVector<Type> object goes out of scope.

Results: The public ~WCValVector<Type> destructor destroys an WCValVector<Type>
object.

See Also: clear,WCExcept::notempty

620 Vector Containers

WCValVector<Type>::clear()

Synopsis: #include <wcvector.h>
public:
void clear();

Semantics: The clear public member function is used to clear the vector so that it is of zero length.
Elements stored in the vector are destroyed using Type’s destructor. The vector object is
not destroyed and re-created by this function, so the object destructor is not invoked.

Results: The clear public member function clears the vector to have zero length and no vector
elements.

See Also: ~WCValVector<Type>, operator =

Vector Containers 621

WCValVector<Type>::length()

Synopsis: #include <wcvector.h>
public:sizetlength()const;

Semantics: The length public member function is used to find the number of elements which can be
stored in the WCValVector<Type> object.

Results: The length public member function returns the length of the vector.

See Also: resize

622 Vector Containers

WCValVector<Type>::operator []()

Synopsis: #include <wcvector.h>
public:
Type & operator [](int);
const Type & operator [](int) const;

Semantics: operator [] is the vector index operator. A reference to the object stored in the vector at
the given index is returned. If a constant vector is indexed, a reference to a constant element
is returned. The index operator of a non-constant vector is the only way to insert an element
into the vector.

If an attempt to access an element with index greater than or equal to the length of a
non-constant vector is made and theresizerequired exception is enabled, the
exception is thrown. If the exception is not enabled, the vector is automatically resized using
the resize member function to have length the index value plus one. New vector elements
are initialized using Type’s default constructor. If the resize failed, and theoutofmemory exception is enabled, the exception is thrown. If the exception is not
enabled and the resize failed, the last element is indexed (a new element if the vector was
zero length). If a negative value is used to index the non-constant vector and theindexrange exception is enabled, the exception is thrown. If the exception is not
enabled and the vector is empty, theresizerequired exception may be thrown.

An attempt to index an empty constant vector may cause one of two exceptions to be thrown.
If theemptycontainer exception is enabled, it is thrown. Otherwise, theindexrange exception is thrown, if enabled. If neither exception is enabled, a first
vector element is added and indexed (so that a reference to a valid element can be returned).

Indexing with a negative value or a value greater than or equal to the length of a constant
vector causes the
indexrange exception to be thrown, if enabled.

Results: The operator [] public member function returns a reference to the element at the given
index. If the index is invalid, a reference to the closest valid element is returned. The result
of the non-constant index operator may be assigned to.

See Also: resize,WCExcept::emptycontainer,WCExcept::indexrange,WCExcept::outofmemory,WCExcept::resizerequired

Vector Containers 623

WCValVector<Type>::operator =()

Synopsis: #include <wcvector.h>
public:
WCValVector & operator =(const WCValVector &);

Semantics: The operator = public member function is the assignment operator for the
WCValVector<Type> class. The left hand side vector is first cleared using the clear
member function, and then the right hand side vector is copied. The left hand side vector is
made to have the same length as the right hand side. All of the vector elements and
exception trap states are copied.

If the left hand side vector cannot be fully created, it will have zero length. Theoutofmemory exception is thrown if enabled in the right hand side vector.

Results: The operator = public member function assigns the left hand side vector to be a copy of
the right hand side.

See Also: clear,WCExcept::outofmemory

624 Vector Containers

WCValVector<Type>::operator ==()

Synopsis: #include <wcvector.h>
public:
int operator ==(const WCValVector &) const;

Semantics: The operator == public member function is the equivalence operator for the
WCValVector<Type> class. Two vector objects are equivalent if they are the same
object and share the same address.

Results: A TRUE (non-zero) value is returned if the left hand side and right hand side vectors are the
same object. A FALSE (zero) value is returned otherwise.

Vector Containers 625

WCValVector<Type>::resize()

Synopsis: #include <wcvector.h>
public:intresize(sizetnewsize);

Semantics: The resize public member function is used to change the vector size to be able to store
new_size elements. If new_size is larger than the previous vector size, all elements will be
copied (using Type’s copy constructor) into the newly sized vector, and new elements are
initialized with Type’s default constructor. If the vector is resized to a smaller size, the
first new_size elements are copied. The remaining elements are destroyed using Type’s
destructor.

If the resize cannot be performed and theoutofmemory exception is enabled, the
exception is thrown.

Results: The vector is resized to new_size. A TRUE value (non-zero) is returned if the resize is
successful. A FALSE (zero) result is returned if the resize fails.

See Also:WCExcept::outofmemory

626 Vector Containers

18 Input/Output Classes

The input/output stream classes provide program access to the file system. In addition,
various options for formatting of output and reading of input are provided.

Input/Output Classes 627

filebuf

Declared: fstream.h

Derived from:
streambuf

The filebuf class is derived from the streambuf class, and provides additional
functionality required to communicate with external files. Seek operations are supported
when the underlying file supports seeking. Both input and output operations may be
performed using a filebuf object, again when the underlying file supports read/write
access.

filebuf objects are buffered by default, so the reserve area is allocated automatically
unless one is specified when the filebuf object is created. The get area and put area
pointers operate as if they were tied together. There is only one current position in a
filebuf object.

The filebuf class allows only the get area or the put area, but not both, to be active at a
time. This follows from the capability of files opened for both reading and writing to have
operations of each type performed at arbitrary locations in the file. When writing is
occurring, the characters are buffered in the put area. If a seek or read operation is done, the
put area must be flushed before the next operation in order to ensure that the characters are
written to the proper location in the file. Similarly, if reading is occurring, characters are
buffered in the get area. If a write operation is done, the get area must be flushed and
synchronized before the write operation in order to ensure the write occurs at the proper
location in the file. If a seek operation is done, the get area does not have to be
synchronized, but is discarded. When the get area is empty and a read is done, the
underflow virtual member function reads more characters and fills the get area again.
When the put area is full and a write is done, the overflow virtual member function writes
the characters and makes the put area empty again.

C++ programmers who wish to use files without deriving new objects do not need to
explicitly create or use a filebuf object.

Public Data Members

The following data member is declared in the public interface. Its value is the default file
protection that is used when creating new files. It is primarily referenced as a default
argument in member functions.

static int const openprot;

Public Member Functions

The following member functions are declared in the public interface:

628 Input/Output Classes

filebuf

filebuf();
filebuf(filedesc);
filebuf(filedesc, char *, int);
~filebuf();intisopen()const;
filedesc fd() const;
filebuf *attach(filedesc);
filebuf *open(char const *,
ios::openmode,
int = filebuf::openprot);
filebuf *close();
virtual int pbackfail(int);
virtual int overflow(int = EOF);
virtual int underflow();
virtual streambuf *setbuf(char *, int);
virtual streampos seekoff(streamoff,
ios::seekdir,
ios::openmode);
virtual int sync();

See Also: fstreambase, streambuf

Input/Output Classes 629

filebuf::attach()

Synopsis: #include <fstream.h>
public:
filebuf *filebuf::attach(filedesc hdl);

Semantics: The attach public member function connects an existing filebuf object to an open file
via the file’s descriptor or handle specified by hdl. If the filebuf object is already
connected to a file, the attach public member function fails. Otherwise, the attach
public member function extracts information from the file system to determine the
capabilities of the file and hence the filebuf object.

Results: The attach public member function returns a pointer to the filebuf object on success,
otherwise NULL is returned.

See Also: filebuf, fd, open

630 Input/Output Classes

filebuf::close()

Synopsis: #include <fstream.h>
public:
filebuf *filebuf::close();

Semantics: The close public member function disconnects the filebuf object from a connected file
and closes the file. Any buffered output is flushed before the file is closed.

Results: The close public member function returns a pointer to the filebuf object on success,
otherwise NULL is returned.

See Also: filebuf, fd,
isopen

Input/Output Classes 631

filebuf::fd()

Synopsis: #include <fstream.h>
public:
filedesc filebuf::fd() const;

Semantics: The fd public member function queries the state of the filebuf object file handle.

Results: The fd public member function returns the file descriptor or handle of the file to which the
filebuf object is currently connected. If the filebuf object is not currently connected
to a file, EOF is returned.

See Also: filebuf::attach,
isopen

632 Input/Output Classes

filebuf::filebuf()

Synopsis: #include <fstream.h>
public:
filebuf::filebuf();

Semantics: This form of the public filebuf constructor creates a filebuf object that is not currently
connected to any file. A call to the fd member function for this created filebuf object
returns EOF, unless a file is connected using the attach member function.

Results: The public filebuf constructor produces a filebuf object that is not currently
connected to any file.

See Also: ~filebuf, attach, open

Input/Output Classes 633

filebuf::filebuf()

Synopsis: #include <fstream.h>
public:
filebuf::filebuf(filedesc hdl);

Semantics: This form of the public filebuf constructor creates a filebuf object that is connected to
an open file. The file is specified via the hdl parameter, which is a file descriptor or handle.

This form of the public filebuf constructor is similar to using the default constructor, and
calling the attach member function. A call to the fd member function for this created
filebuf object returns hdl.

Results: The public filebuf constructor produces a filebuf object that is connected to hdl.

See Also: ~filebuf, attach, open

634 Input/Output Classes

filebuf::filebuf()

Synopsis: #include <fstream.h>
public:
filebuf::filebuf(filedesc hdl, char *buf, int len);

Semantics: This form of the public filebuf constructor creates a filebuf object that is connected to
an open file and that uses the buffer specified by buf and len. The file is specified via the hdl
parameter, which is a file descriptor or handle. If buf is NULL and/or len is less than or equal
to zero, the filebuf object is unbuffered, so that reading and/or writing take place one
character at a time.

This form of the public filebuf constructor is similar to using the default constructor, and
calling the attach and setbuf member functions.

Results: The public filebuf constructor constructor produces a filebuf object that is connected
to hdl.

See Also: ~filebuf, attach, open, setbuf

Input/Output Classes 635

filebuf::~filebuf()

Synopsis: #include <fstream.h>
public:
filebuf::~filebuf();

Semantics: The public ~filebuf destructor closes the file if it was explicitly opened using the open
member function. Otherwise, the destructor takes no explicit action. The streambuf
destructor is called to destroy that portion of the filebuf object. The call to the public
~filebuf destructor is inserted implicitly by the compiler at the point where the filebuf
object goes out of scope.

Results: The filebuf object is destroyed.

See Also: ~filebuf, close

636 Input/Output Classes

filebuf::is_open()

Synopsis: #include <fstream.h>
public:intfilebuf::isopen();

Semantics: The
isopen public member function queries the filebuf object state.

Results: The
isopen public member function returns a non-zero value if the filebuf object is

currently connected to a file. Otherwise, zero is returned.

See Also: filebuf::attach, close, fd, open

Input/Output Classes 637

filebuf::open()

Synopsis: #include <fstream.h>
public:
filebuf *filebuf::open(const char *name,
ios::openmode mode,
int prot = filebuf::openprot);

Semantics: The open public member function is used to connect the filebuf object to a file specified
by the name parameter. The file is opened using the specified mode. For details about the
mode parameter, see the description of ios::openmode. The prot parameter specifies the
file protection attributes to use when creating a file.

Results: The open public member function returns a pointer to the filebuf object on success,
otherwise NULL is returned.

See Also: filebuf, close,
isopen, openprot

638 Input/Output Classes

filebuf::openprot

Synopsis: #include <fstream.h>
public:
static int const filebuf::openprot;

Semantics: The openprot public member data is used to specify the default file protection to be used
when creating new files. This value is used as the default if no user specified value is
provided.

The default value is octal 0644. This is generally interpreted as follows:

• Owner: read/write

• Group: read

• World: read

Note that not all operating systems support all bits.

See Also: filebuf, open

Input/Output Classes 639

filebuf::overflow()

Synopsis: #include <fstream.h>
public:
virtual int filebuf::overflow(int ch = EOF);

Semantics: The overflow public virtual member function provides the output communication to the
file to which the filebuf object is connected. Member functions in the streambuf class
call the overflow public virtual member function for the derived class when the put area is
full.

The overflow public virtual member function performs the following steps:

1. If no buffer is present, a buffer is allocated with the streambuf::allocate
member function, which may call the doallocate virtual member function.
The put area is then set up. If, after calling streambuf::allocate, no
buffer is present, the filebuf object is unbuffered and ch (if not EOF) is written
directly to the file without buffering, and no further action is taken.

2. If the get area is present, it is flushed with a call to the sync virtual member
function. Note that the get area won’t be present if a buffer was set up in step 1.

3. If ch is not EOF, it is added to the put area, if possible.

4. Any characters in the put area are written to the file.

5. The put area pointers are updated to reflect the new state of the put area. If the
write did not complete, the unwritten portion of the put area is still present. If the
put area was full before the write, ch (if not EOF) is placed at the start of the put
area. Otherwise, the put area is empty.

Results: The overflow public virtual member function returns
NOTEOF

 on success, otherwise
EOF is returned.

See Also: streambuf::overflow
filebuf::underflow

640 Input/Output Classes

filebuf::pbackfail()

Synopsis: #include <fstream.h>
public:
virtual int filebuf::pbackfail(int ch);

Semantics: The pbackfail public virtual member function handles an attempt to put back a character
when there is no room at the beginning of the get area. The pbackfail public virtual
member function first calls the sync virtual member function to flush the put area and then
it attempts to seek backwards over ch in the associated file.

Results: The pbackfail public virtual member function returns ch on success, otherwise EOF is
returned.

See Also: streambuf::pbackfail

Input/Output Classes 641

filebuf::seekoff()

Synopsis: #include <fstream.h>
public:
virtual streampos filebuf::seekoff(streamoff offset,
ios::seekdir dir,
ios::openmode mode);

Semantics: The seekoff public virtual member function is used to position the filebuf object (and
hence the file) to a particular offset so that subsequent input or output operations commence
from that point. The offset is specified by the offset and dir parameters.

Since the get area and put area pointers are tied together for the filebuf object, the mode
parameter is ignored.

Before the actual seek occurs, the get area and put area of the filebuf object are flushed
via the sync virtual member function. Then, the new position in the file is calculated and
the seek takes place.

The dir parameter may be ios::beg, ios::cur, or ios::end and is interpreted in
conjunction with the offset parameter as follows:

ios::beg the offset is relative to the start and should be a positive value.
ios::cur the offset is relative to the current position and may be positive

(seek towards end) or negative (seek towards start).
ios::end the offset is relative to the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate
sign, the seekoff public virtual member function fails.

Results: The seekoff public virtual member function returns the new position in the file on success,
otherwise EOF is returned.

See Also: streambuf::seekoff

642 Input/Output Classes

filebuf::setbuf()

Synopsis: #include <fstream.h>
public:
virtual streambuf *filebuf::setbuf(char *buf, int len);

Semantics: The setbuf public virtual member function is used to offer a buffer, specified by buf and
len to the filebuf object. If the buf parameter is NULL or the len is less than or equal to
zero, the request is to make the filebuf object unbuffered.

If the filebuf object is already connected to a file and has a buffer, the offer is rejected.
In other words, a call to the setbuf public virtual member function after the filebuf
object has started to be used usually fails because the filebuf object has set up a buffer.

If the request is to make the filebuf object unbuffered, the offer succeeds.

If the buf is too small (less than five characters), the offer is rejected. Five characters are
required to support the default putback area.

Otherwise, the buf is acceptable and the offer succeeds.

If the offer succeeds, the streambuf::setb member function is called to set up the
pointers to the buffer. The streambuf::setb member function releases the old buffer (if
present), depending on how that buffer was allocated.

Calls to the setbuf public virtual member function are usually made by a class derived
from the fstream class, not directly by a user program.

Results: The setbuf public virtual member function returns a pointer to the filebuf object on
success, otherwise NULL is returned.

See Also: streambuf::setbuf

Input/Output Classes 643

filebuf::sync()

Synopsis: #include <fstream.h>
public:
virtual int filebuf::sync();

Semantics: The sync public virtual member function synchronizes the filebuf object with the
external file or device. If the put area contains characters it is flushed. This leaves the file
positioned after the last written character. If the get area contains buffered (unread)
characters, file is backed up to be positioned after the last read character.

Note that the get area and put area never both contain characters.

Results: The sync public virtual member function returns
NOTEOF

 on success, otherwise EOF is
returned.

See Also: streambuf::sync

644 Input/Output Classes

filebuf::underflow()

Synopsis: #include <fstream.h>
public:
virtual int filebuf::underflow();

Semantics: The underflow public virtual member function provides the input communication from
the file to which the filebuf object is connected. Member functions in the streambuf
class call the underflow public virtual member function for the derived class when the get
area is empty.

The underflow public virtual member function performs the following steps:

1. If no reserve area is present, a buffer is allocated with the
streambuf::allocate member function, which may call the doallocate
virtual member function. If, after calling allocate, no reserve area is present,
the filebuf object is unbuffered and a one-character reserve area (plus putback
area) is set up to do unbuffered input. This buffer is embedded in the filebuf
object. The get area is set up as empty.

2. If the put area is present, it is flushed using the sync virtual member function.

3. The unused part of the get area is used to read characters from the file connected
to the filebuf object. The get area pointers are then set up to reflect the new
get area.

Results: The underflow public virtual member function returns the first unread character of the get
area, on success, otherwise EOF is returned. Note that the get pointer is not advanced on
success.

See Also: streambuf::underflow
filebuf::overflow

Input/Output Classes 645

fstream

Declared: fstream.h

Derived from:
fstreambase, iostream

The fstream class is used to access files for reading and writing. The file can be opened
and closed, and read, write and seek operations can be performed.

The fstream class provides very little of its own functionality. It is derived from both the
fstreambase and iostream classes. The fstream constructors, destructor and
member function provide simplified access to the appropriate equivalents in the base classes.

Of the available I/O stream classes, creating an fstream object is the preferred method of
accessing a file for both input and output.

Public Member Functions

The following public member functions are declared:

fstream();
fstream(char const *,
ios::openmode = ios::in|ios::out,
int = filebuf::openprot);
fstream(filedesc);
fstream(filedesc, char *, int);
~fstream();
void open(char const *,
ios::openmode = ios::in|ios::out,
int = filebuf::openprot);

See Also: fstreambase, ifstream, iostream, ofstream

646 Input/Output Classes

fstream::fstream()

Synopsis: #include <fstream.h>
public:
fstream::fstream();

Semantics: This form of the public fstream constructor creates an fstream object that is not
connected to a file. The open or attach member functions should be used to connect the
fstream object to a file.

Results: The public fstream constructor produces an fstream object that is not connected to a
file.

See Also: ~fstream, open, fstreambase::attach

Input/Output Classes 647

fstream::fstream()

Synopsis: #include <fstream.h>
public:
fstream::fstream(const char *name,
ios::openmode mode = ios::in|ios::out,
int prot = filebuf::openprot);

Semantics: This form of the public fstream constructor creates an fstream object that is connected
to the file specified by the name parameter, using the specified mode and prot parameters.
The connection is made via the C library open function.

Results: The public fstream constructor produces an fstream object that is connected to the file
specified by name. If the open fails, ios::failbit and ios::badbit are set in the
error state in the inherited ios object.

See Also: ~fstream, open, openmode, openprot

648 Input/Output Classes

fstream::fstream()

Synopsis: #include <fstream.h>
public:
fstream::fstream(filedesc hdl);

Semantics: This form of the public fstream constructor creates an fstream object that is attached to
the file specified by the hdl parameter.

Results: The public fstream constructor produces an fstream object that is attached to hdl. If the
attach fails, ios::failbit and ios::badbit are set in the error state in the inherited
ios object.

See Also: ~fstream, fstreambase::attach, fstreambase::fd

Input/Output Classes 649

fstream::fstream()

Synopsis: #include <fstream.h>
public:
fstream::fstream(filedesc hdl, char *buf, int len);

Semantics: This form of the public fstream constructor creates an fstream object that is connected
to the file specified by the hdl parameter. The buffer specified by the buf and len parameters
is offered to the associated filebuf object via the setbuf member function. If the buf
parameter is NULL or the len is less than or equal to zero, the filebuf is unbuffered, so
that each read or write operation reads or writes a single character at a time.

Results: The public fstream constructor produces an fstream object that is attached to hdl. If the
connection to hdl fails, ios::failbit and ios::badbit are set in the error state in the
inherited ios object. If the setbuf fails, ios::failbit is set in the error state in the
inherited ios object.

See Also: ~fstream, filebuf::setbuf, fstreambase::attach

650 Input/Output Classes

fstream::~fstream()

Synopsis: #include <fstream.h>
public:
fstream::~fstream();

Semantics: The public ~fstream destructor does not do anything explicit. The call to the public
~fstream destructor is inserted implicitly by the compiler at the point where the fstream
object goes out of scope.

Results: The public ~fstream destructor destroys the fstream object.

See Also: fstream

Input/Output Classes 651

fstream::open()

Synopsis: #include <fstream.h>
public:
void fstream::open(const char *name,
ios::openmode mode = ios::in|ios::out,
int prot = filebuf::openprot);

Semantics: The open public member function connects the fstream object to the file specified by the
name parameter, using the specified mode and prot parameters. The mode parameter is
optional and usually is not specified unless additional bits (such as ios::binary or
ios::text) are to be specified. The connection is made via the C library open function.

Results: If the open fails, ios::failbit is set in the error state in the inherited ios object.

See Also: fstreambase::attach, fstreambase::close, fstreambase::fd,fstreambase::isopen
fstream::openmode, openprot

652 Input/Output Classes

fstreambase

Declared: fstream.h

Derived from:
ios

Derived by: ifstream, ofstream, fstream

The fstreambase class is a base class that provides common functionality for the three
file-based classes, ifstream, ofstream and fstream. The fstreambase class is
derived from the ios class, providing the stream state information, plus it provides member
functions for opening and closing files. The actual file manipulation work is performed by
the filebuf class.

It is not intended that fstreambase objects be created. Instead, the user should create an
ifstream, ofstream or fstream object.

Protected Member Functions

The following member functions are declared in the protected interface:

fstreambase();
fstreambase(char const *,
ios::openmode,
int = filebuf::openprot);
fstreambase(filedesc);
fstreambase(filedesc, char *, int);
~fstreambase();

Public Member Functions

The following member functions are declared in the public interface:

void attach(filedesc);
void close();
filedesc fd() const;intisopen()const;
void open(char const *,
ios::openmode,
int = filebuf::openprot);
filebuf *rdbuf() const;
void setbuf(char *, int);

See Also: filebuf, fstream, ifstream, ofstream

Input/Output Classes 653

fstreambase::attach()

Synopsis: #include <fstream.h>
public:
void fstreambase::attach(filedesc hdl);

Semantics: The attach public member function connects the fstreambase object to the file
specified by the hdl parameter.

Results: If the attach public member function fails, ios::failbit bit is set in the error state in
the inherited ios object. The error state in the inherited ios object is cleared on success.

See Also: fstreambase::fd,
isopen, open

654 Input/Output Classes

fstreambase::close()

Synopsis: #include <fstream.h>
public:
void fstreambase::close();

Semantics: The close public member function disconnects the fstreambase object from the file
with which it is associated. If the fstreambase object is not associated with a file, the
close public member function fails.

Results: If the close public member function fails, ios::failbit is set in the error state in the
inherited ios object.

See Also: fstreambase::fd,
isopen, open

Input/Output Classes 655

fstreambase::fstreambase()

Synopsis: #include <fstream.h>
protected:
fstreambase::fstreambase();

Semantics: The protected fstreambase constructor creates an fstreambase object that is
initialized, but not connected to anything. The open or attach member function should
be used to connect the fstreambase object to a file.

Results: The protected fstreambase constructor produces an fstreambase object.

See Also: ~fstreambase, attach, open

656 Input/Output Classes

fstreambase::fstreambase()

Synopsis: #include <fstream.h>
protected:
fstreambase::fstreambase(char const *name,
ios::openmode mode,
int prot = filebuf::openprot);

Semantics: This protected fstreambase constructor creates an fstreambase object that is
initialized and connected to the file indicated by name using the specified mode and prot.
The fstreambase object is connected to the specified file via the open C library
function.

Results: The protected fstreambase constructor produces an fstreambase object. If the call to
open for the file fails, ios::failbit and ios::badbit are set in the error state in the
inherited ios object.

See Also: ~fstreambase, open, openmode, openprot

Input/Output Classes 657

fstreambase::fstreambase()

Synopsis: #include <fstream.h>
protected:
fstreambase::fstreambase(filedesc hdl);

Semantics: This protected fstreambase constructor creates an fstreambase object that is
initialized and connected to the open file specified by the hdl parameter.

Results: The protected fstreambase constructor produces an fstreambase object. If the attach
to the file fails, ios::failbit and ios::badbit are set in the error state in the
inherited ios object.

See Also: ~fstreambase, attach

658 Input/Output Classes

fstreambase::fstreambase()

Synopsis: #include <fstream.h>
protected:
fstreambase::fstreambase(filedesc hdl, char *buf, int len);

Semantics: This protected fstreambase constructor creates an fstreambase object that is
initialized and connected to the open file specified by the hdl parameter. The buffer,
specified by the buf and len parameters, is offered via the setbuf virtual member function
to be used as the reserve area for the filebuf associated with the fstreambase object.

Results: The protected fstreambase constructor produces an fstreambase object. If the attach
to the file fails, ios::failbit and ios::badbit are set in the error state in the
inherited ios object.

See Also: ~fstreambase, attach, setbuf

Input/Output Classes 659

fstreambase::~fstreambase()

Synopsis: #include <fstream.h>
protected:
fstreambase::~fstreambase();

Semantics: The protected ~fstreambase destructor does not do anything explicit. The filebuf
object associated with the fstreambase object is embedded within the fstreambase
object, so the filebuf destructor is called. The ios destructor is called for that portion of
the fstreambase object. The call to the protected ~fstreambase destructor is inserted
implicitly by the compiler at the point where the fstreambase object goes out of scope.

Results: The fstreambase object is destroyed.

See Also: fstreambase, close

660 Input/Output Classes

fstreambase::is_open()

Synopsis: #include <fstream.h>
public:intfstreambase::isopen()const;

Semantics: The
isopen public member function queries the current state of the file associated with

the fstreambase object. Calling the
isopen public member function is equivalent to

calling the fd member function and testing for EOF.

Results: The
isopen public member function returns a non-zero value if the fstreambase

object is currently connected to a file, otherwise zero is returned.

See Also: fstreambase::attach, fd, open

Input/Output Classes 661

fstreambase::fd()

Synopsis: #include <fstream.h>
public:
filedesc fstreambase::fd() const;

Semantics: The fd public member function returns the file descriptor for the file to which the
fstreambase object is connected.

Results: The fd public member function returns the file descriptor for the file to which the
fstreambase object is connected. If the fstreambase object is not currently
connected to a file, EOF is returned.

See Also: fstreambase::attach,
isopen, open

662 Input/Output Classes

fstreambase::open()

Synopsis: #include <fstream.h>
public:
void fstreambase::open(const char *name,
ios::openmode mode,
int prot = filebuf::openprot);

Semantics: The open public member function connects the fstreambase object to the file specified
by name, using the specified mode and prot. The connection is made via the C library open
function.

Results: If the open fails, ios::failbit is set in the error state in the inherited ios object. The
error state in the inherited ios object is cleared on success.

See Also: fstreambase::attach, close, fd,
isopen, openmode, openprot

Input/Output Classes 663

fstreambase::rdbuf()

Synopsis: #include <fstream.h>
public:
filebuf *fstreambase::rdbuf() const;

Semantics: The rdbuf public member function returns the address of the filebuf object currently
associated with the fstreambase object.

Results: The rdbuf public member function returns a pointer to the filebuf object currently
associated with the fstreambase object If there is no associated filebuf, NULL is
returned.

See Also: ios::rdbuf

664 Input/Output Classes

fstreambase::setbuf()

Synopsis: #include <fstream.h>
public:
void fstreambase::setbuf(char *buf, int len);

Semantics: The setbuf public member function offers the specified buffer to the filebuf object
associated with the fstreambase object. The filebuf may or may not reject the offer,
depending upon its state.

Results: If the offer is rejected, ios::failbit is set in the error state in the inherited ios object.

See Also: filebuf::setbuf

Input/Output Classes 665

ifstream

Declared: fstream.h

Derived from:
fstreambase, istream

The ifstream class is used to access existing files for reading. Such files can be opened
and closed, and read and seek operations can be performed.

The ifstream class provides very little of its own functionality. Derived from both the
fstreambase and istream classes, its constructors, destructor and member functions
provide simplified access to the appropriate equivalents in those base classes.

Of the available I/O stream classes, creating an ifstream object is the preferred method of
accessing a file for input only operations.

Public Member Functions

The following public member functions are declared:

ifstream();
ifstream(char const *,
ios::openmode = ios::in,
int = filebuf::openprot);
ifstream(filedesc);
ifstream(filedesc, char *, int);
~ifstream();
void open(char const *,
ios::openmode = ios::in,
int = filebuf::openprot);

See Also: fstream, fstreambase, istream, ofstream

666 Input/Output Classes

ifstream::ifstream()

Synopsis: #include <fstream.h>
public:
ifstream::ifstream();

Semantics: This form of the public ifstream constructor creates an ifstream object that is not
connected to a file. The open or attach member functions should be used to connect the
ifstream object to a file.

Results: The public ifstream constructor produces an ifstream object that is not connected to a
file.

See Also: ~ifstream, open, fstreambase::attach

Input/Output Classes 667

ifstream::ifstream()

Synopsis: #include <fstream.h>
public:
ifstream::ifstream(const char *name,
ios::openmode mode = ios::in,
int prot = filebuf::openprot);

Semantics: This form of the public ifstream constructor creates an ifstream object that is
connected to the file specified by the name parameter, using the specified mode and prot
parameters. The connection is made via the C library open function.

Results: The public ifstream constructor produces an ifstream object that is connected to the
file specified by name. If the open fails, ios::failbit and ios::badbit are set in
the error state in the inherited ios object.

See Also: ~ifstream, open, openmode, openprot, fstreambase::attach,
fstreambase::fd,
fstreambase::isopen

668 Input/Output Classes

ifstream::ifstream()

Synopsis: #include <fstream.h>
public:
ifstream::ifstream(filedesc hdl);

Semantics: This form of the public ifstream constructor creates an ifstream object that is attached
to the file specified by the hdl parameter.

Results: The public ifstream constructor produces an ifstream object that is attached to hdl. If
the attach fails, ios::failbit and ios::badbit are set in the error state in the
inherited ios object.

See Also: fstreambase::attach
~ifstream, open

Input/Output Classes 669

ifstream::ifstream()

Synopsis: #include <fstream.h>
public:
ifstream::ifstream(filedesc hdl, char *buf, int len);

Semantics: This form of the public ifstream constructor creates an ifstream object that is
connected to the file specified by the hdl parameter. The buffer specified by the buf and len
parameters is offered to the associated filebuf object via the setbuf member function.
If the buf parameter is NULL or the len is less than or equal to zero, the filebuf is
unbuffered, so that each read or write operation reads or writes a single character at a time.

Results: The public ifstream constructor produces an ifstream object that is attached to hdl. If
the connection to hdl fails, ios::failbit and ios::badbit are set in the error state in
the inherited ios object. If the setbuf fails, ios::failbit is set in the error state in
the inherited ios object.

See Also: fstreambase::attach, fstreambase::setbuf
~ifstream, open

670 Input/Output Classes

ifstream::~ifstream()

Synopsis: #include <fstream.h>
public:
ifstream::~ifstream();

Semantics: The public ~ifstream destructor does not do anything explicit. The call to the public
~ifstream destructor is inserted implicitly by the compiler at the point where the
ifstream object goes out of scope.

Results: The public ~ifstream destructor destroys the ifstream object.

See Also: ifstream

Input/Output Classes 671

ifstream::open()

Synopsis: #include <fstream.h>
public:
void ifstream::open(const char *name,
ios::openmode mode = ios::in,
int prot = filebuf::openprot);

Semantics: The open public member function connects the ifstream object to the file specified by
the name parameter, using the specified mode and prot parameters. The mode parameter is
optional and usually is not specified unless additional bits (such as ios::binary or
ios::text) are to be specified. The connection is made via the C library open function.

Results: If the open fails, ios::failbit is set in the error state in the inherited ios object.

See Also: fstreambase::attach, fstreambase::close, fstreambase::fd,fstreambase::isopen
ifstream::openmode, openprot

672 Input/Output Classes

ios

Declared: iostream.h

Derived by: istream, ostream

The ios class is used to group together common functionality needed for other derived
stream classes. It is not intended that objects of type ios be created.

This class maintains state information about the stream. (the ios name can be thought of as
a short-form for I/O State). Error flags, formatting flags, and values and the connection to
the buffers used for the input and output are all maintained by the ios class. No information
about the buffer itself is stored in an ios object, merely the pointer to the buffer
information.

Protected Member Functions

The following member functions are declared in the protected interface:

ios();
void init(streambuf *);
void setstate(ios::iostate);

Public Enumerations

The following enumeration typedefs are declared in the public interface:

typedef int iostate;
typedef long fmtflags;
typedef int openmode;
typedef int seekdir;

Public Member Functions

The following member functions are declared in the public interface:

ios(streambuf *);
virtual ~ios();
ostream *tie() const;
ostream *tie(ostream *);
streambuf *rdbuf() const;
ios::iostate rdstate() const;
ios::iostate clear(ios::iostate = 0);
int good() const;
int bad() const;
int fail() const;
int eof() const;

Input/Output Classes 673

ios

ios::iostate exceptions(ios::iostate);
ios::iostate exceptions() const;
ios::fmtflags setf(ios::fmtflags, ios::fmtflags);
ios::fmtflags setf(ios::fmtflags);
ios::fmtflags unsetf(ios::fmtflags);
ios::fmtflags flags(ios::fmtflags);
ios::fmtflags flags() const;
char fill(char);
char fill() const;
int precision(int);
int precision() const;
int width(int);
int width() const;
long &iword(int);
void *&pword(int);staticvoidsyncwithstdio();
static ios::fmtflags bitalloc();
static int xalloc();

Public Member Operators

The following member operators are declared in the public interface:

operator void *() const;
int operator !() const;

See Also: iostream, istream, ostream, streambuf

674 Input/Output Classes

ios::bad()

Synopsis: #include <iostream.h>
public:
int ios::bad() const;

Semantics: The bad public member function queries the state of the ios object.

Results: The bad public member function returns a non-zero value if ios::badbit is set in the
error state in the inherited ios object, otherwise zero is returned.

See Also: ios::clear, eof, fail, good, iostate, operator !, operator void *,
rdstate, setstate

Input/Output Classes 675

ios::bitalloc()

Synopsis: #include <iostream.h>
public:
static ios::fmtflags ios::bitalloc();

Semantics: The bitalloc public static member function is used to allocate a new ios::fmtflags
bit for use by user derived classes.

Because the bitalloc public static member function manipulates static member data,
its behavior is not tied to any one object but affects the entire class of objects. The value that
is returned by the bitalloc public static member function is valid for all objects of all
classes derived from the ios class. No subsequent call to the bitalloc public static
member function will return the same value as a previous call.

The bit value allocated may be used with the member functions that query and affect
ios::fmtflags. In particular, the bit can be set with the setf or flags member
functions or the setiosflags manipulator, and reset with the unsetf or flags
member functions or the resetiosflags manipulator.

There are two constants defined in <iostream.h> which indicate the number of bits
available when a program starts.
LASTFORMATFLAG

 indicates the last bit used by the
built-in format flags described by ios::fmtflags.

LASTFLAGBIT
 indicates the

last bit that is available for the bitalloc public static member function to allocate. The
difference between the bit positions indicates how many bits are available.

Results: The bitalloc public static member function returns the next available ios::fmtflags
bit for use by user derived classes. If no more bits are available, zero is returned.

See Also: ios::fmtflags

676 Input/Output Classes

ios::clear()

Synopsis: #include <iostream.h>
public:
iostate ios::clear(ios::iostate flags = 0);

Semantics: The clear public member function is used to change the current value of ios::iostate
in the ios object. ios::iostate is cleared, all bits specified in flags are set.

Results: The clear public member function returns the previous value of ios::iostate.

See Also: ios::bad, eof, fail, good, iostate, operator !, operator void *,
rdstate, setstate

Input/Output Classes 677

ios::eof()

Synopsis: #include <iostream.h>
public:
int ios::eof() const;

Semantics: The eof public member function queries the state of the ios object.

Results: The eof public member function returns a non-zero value if ios::eofbit is set in the
error state in the inherited ios object, otherwise zero is returned.

See Also: ios::bad, clear, fail, good, iostate, rdstate, setstate

678 Input/Output Classes

ios::exceptions()

Synopsis: #include <iostream.h>
public:
ios::iostate ios::exceptions() const;
ios::iostate ios::exceptions(int enable);

Semantics: The exceptions public member function queries and/or sets the bits that control which
exceptions are enabled. ios::iostate within the ios object is used to enable and
disable exceptions.

When a condition arises that sets a bit in ios::iostate, a check is made to see if the
same bit is also set in the exception bits. If so, an exception is thrown. Otherwise, no
exception is thrown.

The first form of the exceptions public member function looks up the current setting of
the exception bits. The bit values are those described by ios::iostate.

The second form of the exceptions public member function sets the exceptions bits to
those specified in the enable parameter, and returns the current settings.

Results: The exceptions public member function returns the previous setting of the exception bits.

See Also: ios::clear, iostate, rdstate, setstate

Input/Output Classes 679

ios::fail()

Synopsis: #include <iostream.h>
public:
int ios::fail() const;

Semantics: The fail public member function queries the state of the ios object.

Results: The fail public member function returns a non-zero value if ios::failbit or
ios::badbit is set in the error state in the inherited ios object, otherwise zero is
returned.

See Also: ios::bad, clear, eof, good, iostate, operator !, operator void *,
rdstate, setstate

680 Input/Output Classes

ios::fill()

Synopsis: #include <iostream.h>
public:
char ios::fill() const;
char ios::fill(char fillchar);

Semantics: The fill public member function queries and/or sets the fill character used when the size
of a formatted object is smaller than the format width specified.

The first form of the fill public member function looks up the current value of the fill
character.

The second form of the fill public member function sets the fill character to fillchar.

By default, the fill character is a space.

Results: The fill public member function returns the previous value of the fill character.

See Also: ios::fmtflags, manipulator setfill

Input/Output Classes 681

ios::flags()

Synopsis: #include <iostream.h>
public:
ios::fmtflags ios::flags() const;
ios::fmtflags ios::flags(ios::fmtflags setbits);

Semantics: The flags public member function is used to query and/or set the value of
ios::fmtflags in the ios object.

The first form of the flags public member function looks up the current
ios::fmtflags value.

The second form of the flags public member function sets ios::fmtflags to the value
specified in the setbits parameter.

Note that the setf public member function only turns bits on, while the flags public
member function turns some bits on and some bits off.

Results: The flags public member function returns the previous ios::fmtflags value.

See Also: ios::fmtflags, setf, unsetf, manipulator dec, manipulator hex, manipulator oct,
manipulator resetiosflags, manipulator setbase, manipulator setiosflags

682 Input/Output Classes

ios::fmtflags

Synopsis: #include <iostream.h>
public:enumfmtflags{
skipws = 0x0001, // skip whitespace
left = 0x0002, // align field to left edge
right = 0x0004, // align field to right edge
internal = 0x0008, // sign at left, value at right
dec = 0x0010, // decimal conversion for integers
oct = 0x0020, // octal conversion for integers
hex = 0x0040, // hexadecimal conversion for integers
showbase = 0x0080, // show dec/octal/hex base on output
showpoint = 0x0100, // show decimal and digits on output
uppercase = 0x0200, // use uppercase for format characters
showpos = 0x0400, // use + for output positive numbers
scientific = 0x0800, // use scientific notation for output
fixed = 0x1000, // use floating notation for output
unitbuf = 0x2000, // flush stream after output
stdio = 0x4000, // flush stdout/stderr after output

basefield = dec | oct | hex,
adjustfield= left | right | internal,
floatfield = scientific | fixed
};
typedef long fmtflags;

Semantics: The type
ios::fmtflags is a set of bits representing methods of formatting objects

written to the stream and interpreting objects read from the stream. The ios::fmtflags
member typedef represents the same set of bits, but uses a long to represent the values,
thereby avoiding problems made possible by the compiler’s ability to use smaller types for
enumerations. All uses of these bits should use the ios::fmtflags member typedef.

The bit values defined by the ios::fmtflags member typedef are set and read by the
member functions setf, unsetf and flags, as well as the manipulators setiosflags
and resetiosflags.

Because one field is used to store all of these bits, there are three special values used to mask
various groups of bits. These values are named ios::basefield,
ios::adjustfield and ios::floatfield, and are discussed with the bits that they
are used to mask.

ios::skipws controls whether or not whitespace characters are automatically skipped
when using an operator >> extractor. If ios::skipws is on, any use of the
operator >> extractor skips whitespace characters before inputting the next item.
Otherwise, skipping of whitespace characters must be handled by the program.

Input/Output Classes 683

ios::fmtflags

ios::left, ios::right and ios::internal control the alignment of items written
using an operator << inserter. These bits are usually used in conjunction with the format
width and fill character.

ios::adjustfield can be used to mask the alignment bits returned by the setf,
unsetf and flags member functions, and for setting new values to ensure that no other
bits are accidentally affected.

When the item to be written is smaller than the format width specified, fill characters are
written to occupy the additional space. If ios::left is in effect, the item is written in the
left portion of the available space, and fill characters are written in the right portion. If
ios::right is in effect, the item is written in the right portion of the available space, and
fill characters are written in the left portion. If ios::internal is in effect, any sign
character or base indicator is written in the left portion, the digits are written in the right
portion, and fill characters are written in between.

If no alignment is specified, ios::right is assumed.

If the item to be written is as big as or bigger than the format width specified, no fill
characters are written and the alignment is ignored.

ios::dec, ios::oct and ios::hex control the base used to format integers being
written to the stream, and also control the interpretation of integers being read from the
stream.

ios::basefield can be used to mask the base bits returned by the member functions
setf, unsetf and flags, and for setting new values to ensure that no other bits are
accidentally affected.

When an integer is being read from the stream, these bits control the base used for the
interpretation of the digits. If none of these bits is set, a number that starts with 0x or 0X is
interpreted as hexadecimal (digits 0123456789, plus the letters abcdef or ABCDEF), a
number that starts with 0 (zero) is interpreted as octal (digits 01234567), otherwise the
number is interpreted as decimal (digits 0123456789). If one of the bits is set, then the
prefix is not necessary and the number is interpreted according to the bit.

When any one of the integer types is being written to the stream, it can be written in decimal,
octal or hexadecimal. If none of these bits is set, ios::dec is assumed.

If ios::dec is set (or assumed), the integer is written in decimal (digits 0123456789).
No prefix is included.

If ios::oct is set, the integer is written in octal (digits 01234567). No sign character is
written, as the number is treated as an unsigned quantity upon conversion to octal.

684 Input/Output Classes

ios::fmtflags

If ios::hex is set, the integer is written in hexadecimal (digits 0123456789, plus the
letters abcdef or ABCDEF, depending on the setting of ios::uppercase). No sign
character is written, as the number is treated as an unsigned quantity upon conversion to
hexadecimal.

ios::showbase controls whether or not integers written to the stream in octal or
hexadecimal form have a prefix that indicates the base of the number. If the bit is set,
decimal numbers are written without a prefix, octal numbers are written with the prefix 0
(zero) and hexadecimal numbers are written with the prefix 0x or 0X depending on the
setting of ios::uppercase. If the ios::showbase is not set, no prefixes are written.

ios::showpoint is used to control whether or not the decimal point and trailing zeroes
are trimmed when floating-point numbers are written to the stream. If the bit is set, no
trimming is done, causing the number to appear with the specified format precision. If the
bit is not set, any trailing zeroes after the decimal point are trimmed, and if not followed by
any digits, the decimal point is removed as well.

ios::uppercase is used to force to upper-case all letters used in formatting numbers,
including the letter-digits abcdef, the x hexadecimal prefix, and the e used for the
exponents in floating-point numbers.

ios::showpos controls whether or not a + is added to the front of positive integers being
written to the stream. If the bit is set, the number is positive and the number is being written
in decimal, a + is written before the first digit.

ios::scientific and ios::fixed controls the form used for writing floating-point
numbers to the stream. Floating-point numbers can be written in scientific notation (also
called exponential notation) or in fixed-point notation.

ios::floatfield can be used to mask the floating-format bits returned by the member
functions setf, unsetf and flags, and for setting new values to ensure that no other bits
are accidentally affected.

If ios::scientific is set, the floating-point number is written with a leading - sign (for
negative numbers), a digit, a decimal point, more digits, an e (or E if ios::uppercase is
set), a + or - sign, and two or three digits representing the exponent. The digit before the
decimal is not zero unless the number is zero. The total number of digits before and after the
decimal is equal to the specified format precision. If ios::showpoint is not set,
trimming of the decimal and digits following the decimal may occur.

If ios::fixed is set, the floating-point number is written with a - sign (for negative
numbers), at least one digit, the decimal point, and as many digits following the decimal as
specified by the format precision. If ios::showpoint is not set, trimming of the decimal
and digits following the decimal may occur.

Input/Output Classes 685

ios::fmtflags

If neither ios::scientific nor ios::fixed is specified, the floating-point number is
formatted using scientific notation provided one or both of the following conditions are met:

• the exponent is less than -4, or,

• the exponent is greater than the format precision.

Otherwise, fixed-point notation is used.

ios::unitbuf controls whether or not the stream is flushed after each item is written. If
the bit is set, every item that is written to the stream is followed by a flush operation, which
ensures that the I/O stream buffer associated with the stream is kept empty, immediately
transferring the data to its final destination.

ios::stdio controls whether or not the stream is synchronized after each item is written.
If the bit is set, every item that is written to the stream causes the stream to be synchronized,
which means any input or output buffers are flushed so that an I/O operation performed using
C (not C++) I/O behaves in an understandable way. If the output buffer was not flushed,
writing using C++ and then C I/O functions could cause the output from the C functions to
appear before the output from the C++ functions, since the characters might be sitting in the
C++ output buffer. Similarly, after the C output operations are done, a call should be made
to the C library fflush function on the appropriate stream before resuming C++ output
operations.

See Also: ios::flags, setf, unsetf, manipulator dec, manipulator hex, manipulator oct,
manipulator resetiosflags, manipulator setbase, manipulator setiosflags

686 Input/Output Classes

ios::good()

Synopsis: #include <iostream.h>
public:
int ios::good() const;

Semantics: The good public member function queries the state of the ios object.

Results: The good public member function returns a non-zero value if none of ios::iostate is
clear, otherwise zero is returned.

See Also: ios::bad, clear, eof, fail, iostate, rdstate, setstate

Input/Output Classes 687

ios::init()

Synopsis: #include <iostream.h>
protected:
void ios::init(streambuf *sb);

Semantics: The init public protected member function is used by derived classes to explicitly initialize
the ios portion of the derived object, and to associate a streambuf with the ios object.
The init public protected member function performs the following steps:

1. The default fill character is set to a space.

2. The format precision is set to six.

3. The streambuf pointer (returned by the rdbuf member function) is set to sb.

4. The remaining fields of the ios object are initialized to zero.

Results: If sb is NULL the ios::badbit is set in the error state in the inherited ios object.

See Also: ios, rdbuf

688 Input/Output Classes

ios::ios()

Synopsis: #include <iostream.h>
protected:
ios::ios();

Semantics: This form of the protected ios constructor creates a default ios object that is initialized,
but does not have an associated streambuf. Initialization of an ios object is handled by
the init protected member function.

Results: This protected ios constructor creates an ios object and sets ios::badbit in the error
state in the inherited ios object.

See Also: ~ios, init

Input/Output Classes 689

ios::ios()

Synopsis: #include <iostream.h>
public:
ios::ios(streambuf *sb);

Semantics: This form of the public ios constructor creates an ios object that is initialized and has an
associated streambuf. Initialization of an ios object is handled by the init protected
member function. Once the init protected member function is completed, the ios object’s
streambuf pointer is set to sb. If sb is not NULL, ios::badbit is cleared from the
error state in the inherited ios object.

Results: This public ios constructor creates an ios object and, if sb is NULL, sets ios::badbit
in the error state in the inherited ios object.

See Also: ~ios, init

690 Input/Output Classes

ios::~ios()

Synopsis: #include <iostream.h>
public:
virtual ios::~ios();

Semantics: The public virtual ~ios destructor destroys an ios object. The call to the public virtual
~ios destructor is inserted implicitly by the compiler at the point where the ios object goes
out of scope.

Results: The ios object is destroyed.

See Also: ios

Input/Output Classes 691

ios::iostate

Synopsis: #include <iostream.h>
public:enumiostate{
goodbit = 0x00, // no errors
badbit = 0x01, // operation failed, may not proceed
failbit = 0x02, // operation failed, may proceed
eofbit = 0x04 // end of file encountered
};
typedef int iostate;

Semantics: The type
ios::iostate is a set of bits representing the current state of the stream. The

ios::iostate member typedef represents the same set of bits, but uses an int to
represent the values, thereby avoiding problems made possible by the compiler’s ability to
use smaller types for enumerations. All uses of these bits should use the ios::iostate
member typedef.

The bit values defined by the ios::iostate member typedef can be read and set by the
member functions rdstate and clear, and can be used to control exception handling
with the member function exceptions.

ios::badbit represents the state where the stream is no longer usable because of some
error condition.

ios::failbit represents the state where the previous operation on the stream failed, but
the stream is still usable. Subsequent operations on the stream are possible, but the state
must be cleared using the clear member function.

ios::eofbit represents the state where the end-of-file condition has been encountered.
The stream may still be used, but the state must be cleared using the clear member
function.

Even though ios::goodbit is not a bit value (because its value is zero, which has no bits
on), it is provided for completeness.

See Also: ios::bad, clear, eof, fail, good, operator !, operator void *, rdstate,
setstate

692 Input/Output Classes

ios::iword()

Synopsis: #include <iostream.h>
public:
long &ios::iword(int index);

Semantics: The iword public member function creates a reference to a long int, which may be used
to store and retrieve any suitable integer value. The index parameter specifies which long
int is to be referenced and must be obtained from a call to the xalloc static member
function.

Note that the iword and pword public member functions return references to the same
storage with a different type. Therefore, each index obtained from the xalloc static
member function can be used only for an integer or a pointer, not both.

Since the iword public member function returns a reference and the ios class cannot
predict how many such items will be required by a program, it should be assumed that each
call to the xalloc static member function invalidates all previous references returned by
the iword public member function. Therefore, the iword public member function should
be called each time the reference is needed.

Results: The iword public member function returns a reference to a long int.

See Also: ios::pword, xalloc

Input/Output Classes 693

ios::openmode

Synopsis: #include <iostream.h>
public:enumopenmode{
in = 0x0001, // open for input
out = 0x0002, // open for output
atend = 0x0004, // seek to end after opening
append = 0x0008, // open for output, append to the end
truncate = 0x0010, // discard contents after opening
nocreate = 0x0020, // open only an existing file
noreplace = 0x0040, // open only a new file
text = 0x0080, // open as text file
binary = 0x0100, // open as binary file

app = append, // synonym
ate = atend, // synonym
trunc = truncate // synonym
};
typedef int openmode;

Semantics: The type
ios::openmode is a set of bits representing ways of opening a stream. The

ios::openmode member typedef represents the same set of bits, but uses an int to
represent the values, thereby avoiding problems made possible by the compiler’s ability to
use smaller types for enumerations. All uses of these bits should use the ios::openmode
member typedef.

The bit values defined by ios::openmode member typedef can be specified in the
constructors for stream objects, as well as in various member functions.

ios::in is specified in a stream for which input operations may be performed.
ios::out is specified in a stream for which output operations may be performed. A
stream for which only ios::in is specified is referred to as an input stream. A stream for
which only ios::out is specified is referred to as an output stream. A stream where both
ios::in and ios::out are specified is referred to as an input/output stream.

ios::atend and ios::ate are equivalent, and either one is specified for streams that
are to be positioned to the end before the first operation takes place. ios:ate is provided
for historical purposes and compatibility with other implementations of I/O streams. Note
that this bit positions the stream to the end exactly once, when the stream is opened.

ios::append and ios::app are equivalent, and either one is specified for streams that
are to be positioned to the end before any and all output operations take place. ios::app
is provided for historical purposes and compatibility with other implementations of I/O
streams. Note that this bit causes the stream to be positioned to the end before each output
operation, while ios::atend causes the stream to be positioned to the end only when first
opened.

694 Input/Output Classes

ios::openmode

ios::truncate and ios::trunc are equivalent, and either one is specified for streams
that are to be truncated to zero length before the first operation takes place. ios::trunc is
provided for historical purposes and compatibility with other implementations of I/O
streams.

ios::nocreate is specified if the file must exist before it is opened. If the file does not
exist, an error occurs.

ios::noreplace is specified if the file must not exist before it is opened. That is, the file
must be a new file. If the file exists, an error occurs.

ios::text is specified if the file is to be treated as a text file. A text file is divided into
records, and each record is terminated by a new-line character, usually represented as ’\n’.
The new-line character is translated into a form that is compatible with the underlying file
system’s concept of text files. This conversion happens automatically whenever the new-line
is written to the file, and the inverse conversion (to the new-line character) happens
automatically whenever the end of a record is read from the file system.

ios::binary is specified if the file is to be treated as a binary file. Binary files are
streams of characters. No character has a special meaning. No grouping of characters into
records is apparent to the program, although the underlying file system may cause such a
grouping to occur.

The following default behaviors are defined:

If ios::out is specified and none of ios::in, ios::append or ios::atend are
specified, ios::truncate is assumed.

If ios::append is specified, ios::out is assumed.

If ios::truncate is specified, ios::out is assumed.

If neither ios::text nor ios::binary is specified, ios::text is assumed.

Input/Output Classes 695

ios::operator !()

Synopsis: #include <iostream.h>
public:
int ios::operator !() const;

Semantics: The operator ! public member function tests the error state in the inherited ios object
of the ios object.

Results: The operator ! public member function returns a non-zero value if either of
ios::failbit or ios::badbit bits are set in the error state in the inherited ios
object, otherwise zero is returned.

See Also: ios::bad, clear, fail, good, iostate, operator void *, rdstate,
setstate

696 Input/Output Classes

ios::operator void *()

Synopsis: #include <iostream.h>
public:
ios::operator void *() const;

Semantics: The operator void * public member function converts the ios object into a pointer to
void. The actual pointer value returned is meaningless and intended only for comparison
with NULL to determine the error state in the inherited ios object of the ios object.

Results: The operator void * public member function returns a NULL pointer if either of
ios::failbit or ios::badbit bits are set in the error state in the inherited ios
object, otherwise a non- NULL pointer is returned.

See Also: ios::bad, clear, fail, good, iostate, operator !, rdstate, setstate

Input/Output Classes 697

ios::precision()

Synopsis: #include <iostream.h>
public:
int ios::precision() const;
int ios::precision(int prec);

Semantics: The precision public member function is used to query and/or set the format precision.
The format precision is used to control the number of digits of precision used when
formatting floating-point numbers. For scientific notation, the format precision describes the
total number of digits before and after the decimal point, but not including the exponent. For
fixed-point notation, the format precision describes the number of digits after the decimal
point.

The first form of the precision public member function looks up the current format
precision.

The second form of the precision public member function sets the format precision to
prec.

By default, the format precision is six. If prec is specified to be less than zero, the format
precision is set to six. Otherwise, the specified format precision is used. For scientific
notation, a format precision of zero is treated as a precision of one.

Results: The precision public member function returns the previous format precision setting.

See Also: ios::fmtflags, manipulator setprec

698 Input/Output Classes

ios::pword()

Synopsis: #include <iostream.h>
public:
void * &ios::pword(int index);

Semantics: The pword public member function creates a reference to a void pointer, which may be
used to store and retrieve any suitable pointer value. The index parameter specifies which
void pointer is to be referenced and must be obtained from a call to the xalloc static
member function.

Note that the iword and pword public member functions return references to the same
storage with a different type. Therefore, each index obtained from the xalloc static
member function can be used only for an integer or a pointer, not both.

Since the pword public member function returns a reference and the ios class cannot
predict how many such items will be required by a program, it should be assumed that each
call to the xalloc static member function invalidates all previous references returned by
the pword public member function. Therefore, the pword public member function should
be called each time the reference is needed.

Results: The pword public member function returns a reference to a void pointer.

See Also: ios::iword, xalloc

Input/Output Classes 699

ios::rdbuf()

Synopsis: #include <iostream.h>
public:
streambuf *ios::rdbuf() const;

Semantics: The rdbuf public member function looks up the pointer to the streambuf object which
maintains the buffer associated with the ios object.

Results: The rdbuf public member function returns the pointer to the streambuf object associated
with the ios object. If there is no associated streambuf object, NULL is returned.

700 Input/Output Classes

ios::rdstate()

Synopsis: #include <iostream.h>
public:
iostate ios::rdstate() const;

Semantics: The rdstate public member function is used to query the current value of
ios::iostate in the ios object without modifying it.

Results: The rdstate public member function returns the current value of ios::iostate.

See Also: ios::bad, clear, eof, fail, good, iostate, operator !, operator void *,
setstate

Input/Output Classes 701

ios::seekdir

Synopsis: #include <iostream.h>
public:enumseekdir{
beg, // seek from beginning
cur, // seek from current position
end // seek from end
};
typedef int seekdir;

Semantics: The type
ios::seekdir is a set of bits representing different methods of seeking within

a stream. The ios::seekdir member typedef represents the same set of bits, but uses an
int to represent the values, thereby avoiding problems made possible by the compiler’s
ability to use smaller types for enumerations. All uses of these bits should use the
ios::seekdir member typedef.

The bit values defined by ios::seekdir member typedef are used by the member
functions seekg and seekp, as well the seekoff and seekpos member functions in
classes derived from the streambuf class.

ios::beg causes the seek offset to be interpreted as an offset from the beginning of the
stream. The offset is specified as a positive value.

ios::cur causes the seek offset to be interpreted as an offset from the current position of
the stream. If the offset is a negative value, the seek is towards the start of the stream.
Otherwise, the seek is towards the end of the stream.

ios::end causes the seek offset to be interpreted as an offset from the end of the stream.
The offset is specified as a negative value.

702 Input/Output Classes

ios::setf()

Synopsis: #include <iostream.h>
public:
ios::fmtflags ios::setf(ios::fmtflags onbits);
ios::fmtflags ios::setf(ios::fmtflags setbits,
ios::fmtflags mask);

Semantics: The setf public member function is used to set bits in ios::fmtflags in the ios
object.

The first form is used to turn on the bits that are on in the onbits parameter. (onbits is or’ed
into ios::fmtflags).

The second form is used to turn off the bits specified in the mask parameter and turn on the
bits specified in the setbits parameter. This form is particularly useful for setting the bits
described by the ios::basefield, ios::adjustfield and ios::floatfield
values, where only one bit should be on at a time.

Results: Both forms of the setf public member function return the previous ios::fmtflags
value.

See Also: ios::fmtflags, setf, unsetf, manipulator dec, manipulator hex, manipulator oct,
manipulator setbase, manipulator setiosflags, manipulator resetiosflags

Input/Output Classes 703

ios::setstate()

Synopsis: #include <iostream.h>
protected:voidios::setstate(intorbits);

Semantics: The setstate protected member function is provided as a convenience for classes derived
from the ios class. It turns on the error state in the inherited ios object bits that are set in
the or_bits parameter, and leaves the other error state in the inherited ios object bits
unchanged.

Results: The setstate protected member function sets the bits specified by or_bits in the error
state in the inherited ios object.

See Also: ios::bad, clear, eof, fail, good, iostate, operator !, operator void *,
rdstate

704 Input/Output Classes

ios::sync_with_stdio()

Synopsis: #include <iostream.h>
public:staticvoidios::syncwithstdio();

Semantics: Thesyncwithstdio public static member function is obsolete. It is provided for
compatibility.

Results: Thesyncwithstdio public static member function has no return value.

Input/Output Classes 705

ios::tie()

Synopsis: #include <iostream.h>
public:
ostream *ios::tie() const;
ostream *ios::tie(ostream *ostrm);

Semantics: The tie public member function is used to query and/or set up a connection between the
ios object and another stream. The connection causes the output stream specified by ostrm
to be flushed whenever the ios object is about to read characters from a device or is about
to write characters to an output buffer or device.

The first form of the tie public member function is used to query the current tie.

The second form of the tie public member function is used to set the tied stream to ostrm.

Normally, the predefined streams cin and cerr set up ties to cout so that any input from
the terminal flushes any buffered output, and any writes to cerr flush cout before the
characters are written. cout does not set up a tie to cerr because cerr has the flag
ios::unitbuf set, so it flushes itself after every write operation.

Results: Both forms of the tie public member function return the previous tie value.

See Also: ios::fmtflags

706 Input/Output Classes

ios::unsetf()

Synopsis: #include <iostream.h>
public:
ios::fmtflags ios::unsetf(ios::fmtflags offbits);

Semantics: The unsetf public member function is used to turn off bits in ios::fmtflags that are
set in the offbits parameter. All other bits in ios::fmtflags are unchanged.

Results: The unsetf public member function returns the old ios::fmtflags value.

See Also: ios::fmtflags, setf, unsetf, manipulator dec, manipulator hex, manipulator oct,
manipulator setbase, manipulator setiosflags, manipulator resetiosflags

Input/Output Classes 707

ios::width()

Synopsis: #include <iostream.h>
public:
int ios::width() const;
int ios::width(int wid);

Semantics: The width public member function is used to query and/or set the format width used to
format the next item. A format width of zero indicates that the item is to be written using
exactly the number of positions required. Other values indicate that the item must occupy at
least that many positions. If the formatted item is larger than the specified format width, the
format width is ignored and the item is formatted using the required number of positions.

The first form of the width public member function is used to query the format width that is
to be used for the next item.

The second form of the width public member function is used to set the format width to wid
for the next item to be formatted.

After an item has been formatted, the format width is reset to zero. Therefore, any non-zero
format width must be set before each item that is to be formatted.

Results: The width public member function returns the previous format width.

See Also: ios::fmtflags, manipulator setw, manipulator setwidth

708 Input/Output Classes

ios::xalloc()

Synopsis: #include <iostream.h>
public:
static int ios::xalloc();

Semantics: The xalloc public static member function returns an index into an array of items that the
program may use for any purpose. Each item can be either a long int or a pointer to
void. The index can be used with the iword and pword member functions.

Because the xalloc public static member function manipulates static member data, its
behavior is not tied to any one object but affects the entire class of objects. The value that is
returned by the xalloc public static member function is valid for all objects of all classes
derived from the ios class. No subsequent call to the xalloc public static member
function will return the same value as a previous call.

Results: The xalloc public static member function returns an index for use with the iword and
pword member functions.

See Also: ios::iword, pword

Input/Output Classes 709

iostream

Declared: iostream.h

Derived from:
istream, ostream

Derived by: fstream, strstream

The iostream class supports reading and writing of characters from and to the standard
input/output devices, usually the keyboard and screen. The iostream class provides
formatted conversion of characters to and from other types (e.g. integers and floating-point
numbers). The associated streambuf class provides the methods for communicating with
the actual device, while the iostream class provides the interpretation of the characters.

Generally, an iostream object won’t be created by a program, since there is no mechanism
at this level to "open" a device. No instance of an iostream object is created by default,
since it is usually not possible to perform both input and output on the standard input/output
devices. The iostream class is provided as a base class for other derived classes that can
provide both input and output capabilities through the same object. The fstream and
strstream classes are examples of classes derived from the iostream class.

Protected Member Functions

The following protected member functions are declared:

iostream();

Public Member Functions

The following public member functions are declared:

iostream(ios const &);
iostream(streambuf *);
virtual ~iostream();

Public Member Operators

The following public member operators are declared:

iostream & operator =(streambuf *);
iostream & operator =(ios const &);

See Also: ios, istream, ostream

710 Input/Output Classes

iostream::iostream()

Synopsis: #include <iostream.h>
protected:
iostream::iostream();

Semantics: This form of the protected iostream constructor creates an iostream object without an
attached streambuf object.

This form of the protected iostream constructor is only used implicitly by the compiler
when it generates a constructor for a derived class.

Results: The protected iostream constructor produces an initialized iostream object.
ios::badbit is set in the error state in the inherited ios object.

See Also: ~iostream

Input/Output Classes 711

iostream::iostream()

Synopsis: #include <iostream.h>
public:
iostream::iostream(ios const &strm);

Semantics: This form of the public iostream constructor creates an iostream object associated with
the streambuf object currently associated with the strm parameter. The iostream
object is initialized and will use the strm streambuf object for subsequent operations.
strm will continue to use the streambuf object.

Results: The public iostream constructor produces an initialized iostream object. If there is no
streambuf object currently associated with the strm parameter, ios::badbit is set in
the error state in the inherited ios object.

See Also: ~iostream

712 Input/Output Classes

iostream::iostream()

Synopsis: #include <iostream.h>
public:
iostream::iostream(streambuf *sb);

Semantics: This form of the public iostream constructor creates an iostream object with an
attached streambuf object.

Since a user program usually will not create an iostream object, this form of the public
iostream constructor is unlikely to be explicitly used, except in the member initializer list
for the constructor of a derived class. The sb parameter is a pointer to a streambuf object,
which should be connected to the source and sink of characters for the stream.

Results: The public iostream constructor produces an initialized iostream object. If the sb
parameter is NULL, ios::badbit is set in the error state in the inherited ios object.

See Also: ~iostream

Input/Output Classes 713

iostream::~iostream()

Synopsis: #include <iostream.h>
public:
virtual iostream::~iostream();

Semantics: The public ~iostream destructor does not do anything explicit. The ios destructor is
called for that portion of the iostream object. The call to the public ~iostream
destructor is inserted implicitly by the compiler at the point where the iostream object
goes out of scope.

Results: The iostream object is destroyed.

See Also: iostream

714 Input/Output Classes

iostream::operator =()

Synopsis: #include <iostream.h>
public:
iostream &iostream::operator =(streambuf *sb);

Semantics: This form of the operator = public member function initializes the target iostream
object and sets up an association between the iostream object and the streambuf object
specified by the sb parameter.

Results: The operator = public member function returns a reference to the iostream object that
is the target of the assignment. If the sb parameter is NULL, ios::badbit is set in the
error state in the inherited ios object.

Input/Output Classes 715

iostream::operator =()

Synopsis: #include <iostream.h>
public:
iostream &iostream::operator =(const ios &strm);

Semantics: This form of the operator = public member function initializes the iostream object
and sets up an association between the iostream object and the streambuf object
currently associated with the strm parameter.

Results: The operator = public member function returns a reference to the iostream object that
is the target of the assignment. If there is no streambuf object currently associated with
the strm parameter, ios::badbit is set in the error state in the inherited ios object.

716 Input/Output Classes

istream

Declared: iostream.h

Derived from:
ios

Derived by: iostream, ifstream, istrstream

The istream class supports reading characters from a class derived from streambuf,
and provides formatted conversion of characters into other types (such as integers and
floating-point numbers). The streambuf class provides the methods for communicating
with the external device (keyboard, disk), while the istream class provides the
interpretation of the resulting characters.

Generally, an istream object won’t be explicitly created by a program, since there is no
mechanism at this level to open a device. The only default istream object in a program is
cin, which reads from standard input (usually the keyboard).

The istream class supports two basic concepts of input: formatted and unformatted. The
overloaded operator >> member functions are called extractors and they provide the
support for formatted input. The rest of the member functions deal with unformatted input,
managing the state of the ios object and providing a friendlier interface to the associated
streambuf object.

Protected Member Functions

The following protected member functions are declared:

istream();
eatwhite();

Public Member Functions

The following public member functions are declared:

istream(istream const &);
istream(streambuf *);
virtual ~istream();
int ipfx(int = 0);
void isfx();
int get();
istream &get(char *, int, char = ’\n’);
istream &get(signed char *, int, char = ’\n’);
istream &get(unsigned char *, int, char = ’\n’);
istream &get(char &);
istream &get(signed char &);

Input/Output Classes 717

istream

istream &get(unsigned char &);
istream &get(streambuf &, char = ’\n’);
istream &getline(char *, int, char = ’\n’);
istream &getline(signed char *, int, char = ’\n’);
istream &getline(unsigned char *, int, char = ’\n’);
istream &ignore(int = 1, int = EOF);
istream &read(char *, int);
istream &read(signed char *, int);
istream &read(unsigned char *, int);
istream &seekg(streampos);
istream &seekg(streamoff, ios::seekdir);
istream &putback(char);
streampos tellg();
int gcount() const;
int peek();
int sync();

Public Member Operators

The following public member operators are declared:

istream &operator =(streambuf *);
istream &operator =(istream const &);
istream &operator >>(char *);
istream &operator >>(signed char *);
istream &operator >>(unsigned char *);
istream &operator >>(char &);
istream &operator >>(signed char &);
istream &operator >>(unsigned char &);
istream &operator >>(signed short &);
istream &operator >>(unsigned short &);
istream &operator >>(signed int &);
istream &operator >>(unsigned int &);
istream &operator >>(signed long &);
istream &operator >>(unsigned long &);
istream &operator >>(float &);
istream &operator >>(double &);
istream &operator >>(long double &);
istream &operator >>(streambuf &);
istream &operator >>(istream &(*)(istream &));
istream &operator >>(ios &(*)(ios &));

See Also: ios, iostream, ostream

718 Input/Output Classes

istream::eatwhite()

Synopsis: #include <iostream.h>
protected:
void istream::eatwhite();

Semantics: The eatwhite protected member function extracts and discards whitespace characters from
the istream object, until a non-whitespace character is found. The non-whitespace
character is not extracted.

Results: The eatwhite protected member function sets ios::eofbit in the error state in the
inherited ios object if end-of-file is encountered as the first character while extracting
whitespace characters.

See Also: istream::ignore, ios::fmtflags

Input/Output Classes 719

istream::gcount()

Synopsis: #include <iostream.h>
public:
int istream::gcount() const;

Semantics: The gcount public member function determines the number of characters extracted by the
last unformatted input member function.

Results: The gcount public member function returns the number of characters extracted by the last
unformatted input member function.

See Also: istream::get, getline, read

720 Input/Output Classes

istream::get()

Synopsis: #include <iostream.h>
public:
int istream::get();

Semantics: This form of the get public member function performs an unformatted read of a single
character from the istream object.

Results: This form of the get public member function returns the character read from the istream
object. If the istream object is positioned at end-of-file before the read, EOF is returned
and ios::eofbit bit is set in the error state in the inherited ios object.
ios::failbit bit is not set by this form of the get public member function.

See Also: istream::putback

Input/Output Classes 721

istream::get()

Synopsis: #include <iostream.h>
public:
istream &istream::get(char &ch);
istream &istream::get(signed char &ch);
istream &istream::get(unsigned char &ch);

Semantics: These forms of the get public member function perform an unformatted read of a single
character from the istream object and store the character in the ch parameter.

Results: These forms of the get public member function return a reference to the istream object.
ios::eofbit is set in the error state in the inherited ios object if the istream object is
positioned at end-of-file before the attempt to read the character. ios::failbit is set in
the error state in the inherited ios object if no character is read.

See Also: istream::read, operator >>

722 Input/Output Classes

istream::get()

Synopsis: #include <iostream.h>
public:
istream &istream::get(char *buf, int len,
char delim = ’\n’);
istream &istream::get(signed char *buf, int len,
char delim = ’\n’);
istream &istream::get(unsigned char *buf, int len,
char delim = ’\n’);

Semantics: These forms of the get public member function perform an unformatted read of at most len
-1 characters from the istream object and store them starting at the memory location
specified by the buf parameter. If the character specified by the delim parameter is
encountered in the istream object before len -1 characters have been read, the read
terminates without extracting the delimiting character.

After the read terminates, whether or not an error occurred, a null character is stored in buf
following the last character read from the istream object.

If the delim parameter is not specified, the new-line character is assumed.

Results: These forms of the get public member function return a reference to the istream object.
If end-of-file is encountered as the first character, ios::eofbit is set in the error state in
the inherited ios object. If no characters are stored into buf, ios::failbit is set in the
error state in the inherited ios object.

See Also: istream::getline, read, operator >>

Input/Output Classes 723

istream::get()

Synopsis: #include <iostream.h>
public:
istream &istream::get(streambuf &sb, char delim = ’\n’);

Semantics: This form of the get public member function performs an unformatted read of characters
from the istream object and transfers them to the streambuf object specified in the sb
parameter. The transfer stops if end-of-file is encountered, the delimiting character specified
in the delim parameter is found, or if the store into the sb parameter fails. If the delim
character is found, it is not extracted from the istream object and is not transferred to the
sb object.

If the delim parameter is not specified, the new-line character is assumed.

Results: The get public member function returns a reference to the istream object.
ios::failbit is set in the error state in the inherited ios object if the store into the
streambuf object fails.

See Also: istream::getline, read, operator >>

724 Input/Output Classes

istream::getline()

Synopsis: #include <iostream.h>
public:
istream &istream::getline(char *buf, int len,
char delim = ’\n’);
istream &istream::getline(signed char *buf, int len,
char delim = ’\n’);
istream &istream::getline(unsigned char *buf, int len,
char delim = ’\n’);

Semantics: The getline public member function performs an unformatted read of at most len -1
characters from the istream object and stores them starting at the memory location
specified by the buf parameter. If the delimiting character, specified by the delim parameter,
is encountered in the istream object before len -1 characters have been read, the read
terminates after extracting the delim character.

If len -1 characters have been read and the next character is the delim character, it is not
extracted.

After the read terminates, whether or not an error occurred, a null character is stored in the
buffer following the last character read from the istream object.

If the delim parameter is not specified, the new-line character is assumed.

Results: The getline public member function returns a reference to the istream object. If
end-of-file is encountered as the first character, ios::eofbit is set in the error state in the
inherited ios object. If end-of-file is encountered before len characters are transferred or
the delim character is reached, ios::failbit is set in the error state in the inherited ios
object.

See Also: istream::get, read, operator >>

Input/Output Classes 725

istream::ignore()

Synopsis: #include <iostream.h>
public:
istream &istream::ignore(int num = 1, int delim = EOF);

Semantics: The ignore public member function extracts and discards up to num characters from the
istream object. If the num parameter is not specified, the ignore public member
function extracts and discards one character. If the delim parameter is not EOF and it is
encountered before num characters have been extracted, the extraction ceases after discarding
the delimiting character. The extraction stops if end-of-file is encountered.

If the num parameter is specified as a negative number, no limit is imposed on the number of
characters extracted and discarded. The operation continues until the delimiting character is
found and discarded, or until end-of-file. This behavior is a WATCOM extension.

Results: The ignore public member function returns a reference to the istream object. If
end-of-file is encountered as the first character, ios::eofbit is set in the error state in the
inherited ios object.

See Also: istream::eatwhite

726 Input/Output Classes

istream::ipfx()

Synopsis: #include <iostream.h>
public:
int istream::ipfx(int noskipws = 0);

Semantics: The ipfx public member function is a prefix function executed before each of the formatted
and unformatted read operations. If any bits are set in ios::iostate, the ipfx public
member function immediately returns 0, indicating that the prefix function failed. Failure in
the prefix function causes the input operation to fail.

If the noskipws parameter is 0 or unspecified and the ios::skipws bit is on in
ios::fmtflags, whitespace characters are discarded and the istream object is
positioned so that the next character read is the first character after the discarded whitespace.
Otherwise, no whitespace skipping takes place.

The formatted input functions that read specific types of objects (such as integers and
floating-point numbers) call the ipfx public member function with the noskipws parameter
set to zero, allowing leading whitespaces to be discarded if the ios::skipws bit is on in
ios::fmtflags. The unformatted input functions that read characters without
interpretation call the ipfx public member function with a the noskipws parameter set to 1
so that no whitespace characters are discarded.

If the istream object is tied to an output stream, the output stream is flushed.

Results: If the istream object is not in an error state in the inherited ios object when the above
processing is completed, the ipfx public member function returns a non-zero value to
indicate success. Otherwise, zero is returned to indicate failure.

See Also: istream::isfx

Input/Output Classes 727

istream::isfx()

Synopsis: #include <iostream.h>
public:
void istream::isfx();

Semantics: The isfx public member function is a suffix function executed just before the end of each
of the formatted and unformatted read operations.

As currently implemented, the isfx public member function does not do anything.

See Also: istream::ipfx

728 Input/Output Classes

istream::istream()

Synopsis: #include <iostream.h>
protected:
istream::istream();

Semantics: This form of the protected istream constructor creates an istream object without an
associated streambuf object.

This form of the protected istream constructor is only used implicitly by the compiler
when it generates a constructor for a derived class.

Results: This form of the protected istream constructor creates an initialized istream object.
ios::badbit is set in the error state in the inherited ios object.

See Also: ~istream

Input/Output Classes 729

istream::istream()

Synopsis: #include <iostream.h>
public:
istream::istream(istream const &istrm);

Semantics: This form of the public istream constructor creates an istream object associated with
the streambuf object currently associated with the istrm parameter. The istream object
is initialized and will use the istrm streambuf object for subsequent operations. istrm will
continue to use the streambuf object.

Results: This form of the public istream constructor creates an initialized istream object. If
there is no streambuf object currently associated with the istrm parameter,
ios::badbit is set in the error state in the inherited ios object.

See Also: ~istream

730 Input/Output Classes

istream::istream()

Synopsis: #include <iostream.h>
public:
istream::istream(streambuf *sb);

Semantics: This form of the public istream constructor creates an istream object with an associated
streambuf object specified by the sb parameter.

This function is likely to be used for the creation of an istream object that is associated
with the same streambuf object as another istream object.

Results: This form of the public istream constructor creates an initialized istream object. If the
sb parameter is NULL, ios::badbit is set in the error state in the inherited ios object.

See Also: ~istream

Input/Output Classes 731

istream::~istream()

Synopsis: #include <iostream.h>
public:
virtual istream::~istream();

Semantics: The public virtual ~istream destructor does not do anything explicit. The ios destructor
is called for that portion of the istream object. The call to the public virtual ~istream
destructor is inserted implicitly by the compiler at the point where the istream object goes
out of scope.

Results: The istream object is destroyed.

See Also: istream

732 Input/Output Classes

istream::operator =()

Synopsis: #include <iostream.h>
public:
istream &istream::operator =(streambuf *sb);

Semantics: This form of the operator = public member function is used to associate a streambuf
object, specified by the sb parameter, with an existing istream object. The istream
object is initialized and will use the specified streambuf object for subsequent operations.

Results: This form of the operator = public member function returns a reference to the istream
object that is the target of the assignment. If the sb parameter is NULL, ios::badbit is
set in the error state in the inherited ios object.

Input/Output Classes 733

istream::operator =()

Synopsis: #include <iostream.h>
public:
istream &istream::operator =(istream const &istrm);

Semantics: This form of the operator = public member function is used to associate the istream
object with the streambuf object currently associated with the istrm parameter. The
istream object is initialized and will use the istrm’s streambuf object for subsequent
operations. The istrm object will continue to use the streambuf object.

Results: This form of the operator = public member function returns a reference to the istream
object that is the target of the assignment. If there is no streambuf object currently
associated with the istrm parameter, ios::badbit is set in the error state in the inherited
ios object.

734 Input/Output Classes

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(char *buf);
istream &istream::operator >>(signed char *buf);
istream &istream::operator >>(unsigned char *buf);

Semantics: These forms of the operator >> public member function perform a formatted read of
characters from the istream object and place them in the buffer specified by the buf
parameter. Characters are read until a whitespace character is found or the maximum size
has been read. If a whitespace character is found, it is not transferred to the buffer and
remains in the istream object.

If a non-zero format width has been specified, it is interpreted as the maximum number of
characters that may be placed in buf. No more than format width-1 characters are read from
the istream object and transferred to buf. If format width is zero, characters are
transferred until a whitespace character is found.

Since these forms of the operator >> public member function use format width, it is reset
to zero after each use. It must be set before each input operation that requires a non-zero
format width.

A null character is added following the last transferred character, even if the transfer fails
because of an error.

Results: These forms of the operator >> public member function return a reference to the
istream object so that further extraction operations may be specified in the same
statement. If no characters are transferred to buf, ios::failbit is set in the error state in
the inherited ios object. If the first character read yielded end-of-file, ios::eofbit is
set in the error state in the inherited ios object.

See Also: istream::get, getline, read

Input/Output Classes 735

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(char &ch);
istream &istream::operator >>(signed char &ch);
istream &istream::operator >>(unsigned char &ch);

Semantics: These forms of the operator >> public member function perform a formatted read of a
single character from the istream object and place it in the ch parameter.

Results: These forms of the operator >> public member function return a reference to the
istream object so that further extraction operations may be specified in the same
statement. If the character read yielded end-of-file, ios::eofbit is set in the error state
in the inherited ios object.

See Also: istream::get

736 Input/Output Classes

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(signed int &num);
istream &istream::operator >>(unsigned int &num);
istream &istream::operator >>(signed long &num);
istream &istream::operator >>(unsigned long &num);
istream &istream::operator >>(signed short &num);
istream &istream::operator >>(unsigned short &num);

Semantics: These forms the operator >> public member function perform a formatted read of an
integral value from the istream object and place it in the num parameter.

The number may be preceded by a + or - sign.

If ios::dec is the only bit set in the ios::basefield bits of ios::fmtflags, the
number is interpreted as a decimal (base 10) integer, composed of the digits 0123456789.

If ios::oct is the only bit set in the ios::basefield bits of ios::fmtflags, the
number is interpreted as an octal (base 8) integer, composed of the digits 01234567.

If ios::hex is the only bit set in the ios::basefield bits of ios::fmtflags, the
number is interpreted as a hexadecimal (base 16) integer, composed of the digits
0123456789 and the letters abcdef or ABCDEF.

If no bits are set in the ios::basefield bits of ios::fmtflags, the operator looks
for a prefix to determine the base of the number. If the first two characters are 0x or 0X, the
number is interpreted as a hexadecimal number. If the first character is a 0 (and the second
is not an x or X), the number is interpreted as an octal integer. Otherwise, no prefix is
expected and the number is interpreted as a decimal integer.

If more than one bit is set in the ios::basefield bits of ios::fmtflags, the number
is interpreted as a decimal integer.

Results: These forms of the operator >> public member function return a reference to the
istream object so that further extraction operations may be specified in the same
statement. If end-of-file is encountered as the first character, ios::eofbit is set in the
error state in the inherited ios object. If an overflow occurs while converting to the
required integer type, the ios::failbit is set in the error state in the inherited ios
object.

See Also: ios::fmtflags

Input/Output Classes 737

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(float &num);
istream &istream::operator >>(double &num);
istream &istream::operator >>(long double &num);

Semantics: These forms of the operator >> public member function perform a formatted read of a
floating-point value from the istream object and place it in the num parameter.

The floating-point value may be specified in any form that is acceptable to the C++ compiler.

Results: These forms of the operator >> public member function return a reference to the
istream object so that further extraction operations may be specified in the same
statement. If end-of-file is encountered as the first character, ios::eofbit is set in the
error state in the inherited ios object. If an overflow occurs while converting to the
required type, the ios::failbit is set in the error state in the inherited ios object.

738 Input/Output Classes

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(streambuf &sb);

Semantics: This form of the operator >> public member function transfers all the characters from
the istream object into the sb parameter. Reading continues until end-of-file is
encountered.

Results: This form of the operator >> public member function return a reference to the
istream object so that further extraction operations may be specified in the same
statement.

Input/Output Classes 739

istream::operator >>()

Synopsis: #include <iostream.h>
public:
istream &istream::operator >>(istream &(*fn)(istream &));
istream &istream::operator >>(ios &(*fn)(ios &));

Semantics: These forms of the operator >> public member function are used to implement the
non-parameterized manipulators for the istream class. The function specified by the fn
parameter is called with the istream object as its parameter.

Results: These forms of the operator >> public member function return a reference to the
istream object so that further extraction operations may be specified in the same
statement.

740 Input/Output Classes

istream::peek()

Synopsis: #include <iostream.h>
public:
int istream::peek();

Semantics: The peek public member function looks up the next character to be extracted from the
istream object, without extracting the character.

Results: The peek public member function returns the next character to be extracted from the
istream object. If the istream object is positioned at end-of-file, EOF is returned.

See Also: istream::get

Input/Output Classes 741

istream::putback()

Synopsis: #include <iostream.h>
public:
istream &istream::putback(char ch);

Semantics: The putback public member function attempts to put the extracted character specified by
the ch parameter back into the istream object. The ch character must be the same as the
character before the current position of the istream object, usually the last character
extracted from the stream. If it is not the same character, the result of the next character
extraction is undefined.

The number of characters that can be put back is defined by the istream object, but is
usually at least 4. Depending on the status of the buffers used for input, it may be possible to
put back more than 4 characters.

Results: The putback public member function returns a reference to the istream object. If the
putback public member function is unable to put back the ch parameter, ios::failbit
is set in the error state in the inherited ios object.

See Also: istream::get

742 Input/Output Classes

istream::read()

Synopsis: #include <iostream.h>
public:
istream &istream::read(char *buf, int len);
istream &istream::read(signed char *buf, int len);
istream &istream::read(unsigned char *buf, int len);

Semantics: The read public member function performs an unformatted read of at most len characters
from the istream object and stores them in the memory locations starting at buf. If
end-of-file is encountered before len characters have been transferred, the transfer stops and
ios::failbit is set in the error state in the inherited ios object.

The number of characters extracted can be determined with the gcount member function.

Results: The read public member function returns a reference to the istream object. If end-of-file
is encountered as the first character, ios::eofbit is set in the error state in the inherited
ios object. If end-of-file is encountered before len characters are transferred,
ios::failbit is set in the error state in the inherited ios object.

See Also: istream::gcount, get, getline

Input/Output Classes 743

istream::seekg()

Synopsis: #include <iostream.h>
public:
istream &istream::seekg(streampos pos);

Semantics: The seekg public member function positions the istream object to the position specified
by the pos parameter so that the next input operation commences from that position.

Results: The seekg public member function returns a reference to the istream object. If the seek
operation fails, ios::failbit is set in the error state in the inherited ios object.

See Also: istream::tellg, ostream::tellp, ostream::seekp

744 Input/Output Classes

istream::seekg()

Synopsis: #include <iostream.h>
public:
istream &istream::seekg(streamoff offset, ios::seekdir dir);

Semantics: The seekg public member function positions the istream object to the specified position
so that the next input operation commences from that position.

The dir parameter may be ios::beg, ios::cur, or ios::end and is interpreted in
conjunction with the offset parameter as follows:

ios::beg the offset is relative to the start and should be a positive value.
ios::cur the offset is relative to the current position and may be positive

(seek towards end) or negative (seek towards start).
ios::end the offset is relative to the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate
sign, the seekg public member function fails.

Results: The seekg public member function returns a reference to the istream object. If the seek
operation fails, ios::failbit is set in the error state in the inherited ios object.

See Also: ostream::tellp, ostream::seekp
istream::tellg

Input/Output Classes 745

istream::sync()

Synopsis: #include <iostream.h>
public:
int istream::sync();

Semantics: The sync public member function synchronizes the input buffer and the istream object
with whatever source of characters is being used. The sync public member function uses
the streambuf class’s sync virtual member function to carry out the synchronization.
The specific behavior is dependent on what type of streambuf derived object is associated
with the istream object.

Results: The sync public member function returns
NOTEOF

 on success, otherwise EOF is
returned.

746 Input/Output Classes

istream::tellg()

Synopsis: #include <iostream.h>
public:
streampos istream::tellg();

Semantics: The tellg public member function determines the position in the istream object of the
next character available for reading. The first character in an istream object is at offset
zero.

Results: The tellg public member function returns the position of the next character available for
reading.

See Also: ostream::tellp, ostream::seekp
istream::seekg

Input/Output Classes 747

istrstream

Declared: strstrea.h

Derived from:
strstreambase, istream

The istrstream class is used to create and read from string stream objects.

The istrstream class provides little of its own functionality. Derived from the
strstreambase and istream classes, its constructors and destructor provide simplified
access to the appropriate equivalents in those base classes.

Of the available I/O stream classes, creating an istrstream object is the preferred method
of performing read operations from a string stream.

Public Member Functions

The following member functions are declared in the public interface:

istrstream(char *);
istrstream(signed char *);
istrstream(unsigned char *);
istrstream(char *, int);
istrstream(signed char *, int);
istrstream(unsigned char *, int);
~istrstream();

See Also: istream, ostrstream, strstream, strstreambase

748 Input/Output Classes

istrstream::istrstream()

Synopsis: #include <strstrea.h>
public:
istrstream::istrstream(char *str);
istrstream::istrstream(signed char *str);
istrstream::istrstream(unsigned char *str);

Semantics: This form of the public istrstream constructor creates an istrstream object
consisting of the null terminated C string specified by the str parameter. The inherited
istream member functions can be used to read from the istrstream object.

Results: This form of the public istrstream constructor creates an initialized istrstream
object.

See Also: ~istrstream

Input/Output Classes 749

istrstream::istrstream()

Synopsis: #include <strstrea.h>
public:
istrstream::istrstream(char *str, int len);
istrstream::istrstream(signed char *str, int len);
istrstream::istrstream(unsigned char *str, int len);

Semantics: This form of the public istrstream constructor creates an istrstream object
consisting of the characters starting at str and ending at str + len - 1. The inherited
istream member functions can be used to read from the istrstream object.

Results: This form of the public istrstream constructor creates an initialized istrstream
object.

See Also: ~istrstream

750 Input/Output Classes

istrstream::~istrstream()

Synopsis: #include <strstrea.h>
public:
istrstream::~istrstream();

Semantics: The public ~istrstream destructor does not do anything explicit. The call to the public
~istrstream destructor is inserted implicitly by the compiler at the point where the
istrstream object goes out of scope.

Results: The istrstream object is destroyed.

See Also: istrstream

Input/Output Classes 751

Manipulators

Declared: iostream.h and iomanip.h

Manipulators are designed to be inserted into or extracted from a stream. Manipulators come
in two forms, non-parameterized and parameterized. The non-parameterized manipulators
are simpler and are declared in <iostream.h>. The parameterized manipulators require
more complexity and are declared in <iomanip.h>.

<iomanip.h> defines two macros
SMANIPdefine and
SMANIPmake to implement

parameterized manipulators. The workings of the
SMANIPdefine and
SMANIPmake

macros are disclosed in the header file and are not discussed here.

Non-parameterized Manipulators

The following non-parameterized manipulators are declared in <iostream.h>:

ios &dec(ios &);
ios &hex(ios &);
ios &oct(ios &);
istream &ws(istream &);
ostream &endl(ostream &);
ostream &ends(ostream &);
ostream &flush(ostream &);

Parameterized Manipulators

The following parameterized manipulators are declared in <iomanip.h>:SMANIPdefine(long)resetiosflags(long);SMANIPdefine(int)setbase(int);SMANIPdefine(int)setfill(int);SMANIPdefine(long)setiosflags(long);SMANIPdefine(int)setprecision(int);SMANIPdefine(int)setw(int);SMANIPdefine(int)setwidth(int);

752 Input/Output Classes

manipulator dec()

Synopsis: #include <iostream.h>
ios &dec(ios &strm);

Semantics: The dec manipulator sets the ios::basefield bits for decimal formatting in
ios::fmtflags in the strm ios object.

See Also: ios::fmtflags

Input/Output Classes 753

manipulator endl()

Synopsis: #include <iostream.h>
ostream &endl(ostream &ostrm);

Semantics: The endl manipulator writes a new-line character to the stream specified by the ostrm
parameter and performs a flush.

See Also: ostream::flush

754 Input/Output Classes

manipulator ends()

Synopsis: #include <iostream.h>
ostream &ends(ostream &ostrm);

Semantics: The ends manipulator writes a null character to the stream specified by the ostrm parameter.

Input/Output Classes 755

manipulator flush()

Synopsis: #include <iostream.h>
ostream &flush(ostream &ostrm);

Semantics: The flush manipulator flushes the stream specified by the ostrm parameter. The flush is
performed in the same manner as the flush member function.

See Also: ostream::flush

756 Input/Output Classes

manipulator hex()

Synopsis: #include <iostream.h>
ios &hex(ios &strm);

Semantics: The hex manipulator sets the ios::basefield bits for hexadecimal formatting in
ios::fmtflags in the strm ios object.

See Also: ios::fmtflags

Input/Output Classes 757

manipulator oct()

Synopsis: #include <iostream.h>
ios &oct(ios &strm);

Semantics: The oct manipulator sets the ios::basefield bits for octal formatting in
ios::fmtflags in the strm ios object.

See Also: ios::fmtflags

758 Input/Output Classes

manipulator resetiosflags()

Synopsis: #include <iomanip.h>SMANIPdefine(long)resetiosflags(longflags)
Semantics: The resetiosflags manipulator turns off the bits in ios::fmtflags that correspond

to the bits that are on in the flags parameter. No other bits are affected.

See Also: ios::flags, ios::fmtflags, ios::setf, ios::unsetf

Input/Output Classes 759

manipulator setbase()

Synopsis: #include <iomanip.h>SMANIPdefine(int)setbase(intbase);
Semantics: The setbase manipulator sets the ios::basefield bits in ios::fmtflags to the

value specified by the base parameter within the stream that the setbase manipulator is
operating upon.

See Also: ios::fmtflags

760 Input/Output Classes

manipulator setfill()

Synopsis: #include <iomanip.h>SMANIPdefine(int)setfill(intfill)
Semantics: The setfill manipulator sets the fill character to the value specified by the fill parameter

within the stream that the setfill manipulator is operating upon.

See Also: ios::fill

Input/Output Classes 761

manipulator setiosflags()

Synopsis: #include <iomanip.h>SMANIPdefine(long)setiosflags(longflags);
Semantics: The setiosflags manipulator turns on the bits in ios::fmtflags that correspond to

the bits that are on in the flags parameter. No other bits are affected.

See Also: ios::flags, ios::fmtflags, ios::setf, ios::unsetf

762 Input/Output Classes

manipulator setprecision()

Synopsis: #include <iomanip.h>SMANIPdefine(int)setprecision(intprec);
Semantics: The setprecision manipulator sets the format precision to the value specified by the

prec parameter within the stream that the setprecision manipulator is operating upon.

See Also: ios::precision

Input/Output Classes 763

manipulator setw()

Synopsis: #include <iomanip.h>SMANIPdefine(int)setw(intwid);
Semantics: The setw manipulator sets the format width to the value specified by the wid parameter

within the stream that the setw manipulator is operating upon.

See Also: ios::width, manipulator setwidth

764 Input/Output Classes

manipulator setwidth()

Synopsis: #include <iomanip.h>SMANIPdefine(int)setwidth(intwid);
Semantics: The setwidth manipulator sets the format width to the value specified by the wid

parameter within the stream that the setwidth manipulator is operating upon.

This function is a WATCOM extension.

See Also: ios::width, manipulator setw

Input/Output Classes 765

manipulator ws()

Synopsis: #include <iostream.h>
istream &ws(istream &istrm);

Semantics: The ws manipulator extracts and discards whitespace characters from the istrm parameter,
leaving the stream positioned at the next non-whitespace character.

The ws manipulator is needed particularly when the ios::skipws bit is not set in
ios::fmtflags in the istrm object. In this case, whitespace characters must be explicitly
removed from the stream, since the formatted input operations will not automatically remove
them.

See Also: istream::eatwhite, istream::ignore

766 Input/Output Classes

ofstream

Declared: fstream.h

Derived from:
fstreambase, ostream

The ofstream class is used to create new files or access existing files for writing. The file
can be opened and closed, and write and seek operations can be performed.

The ofstream class provides very little of its own functionality. Derived from both the
fstreambase and ostream classes, its constructors, destructor and member function
provide simplified access to the appropriate equivalents in those base classes.

Of the available I/O stream classes, creating an ofstream object is the preferred method of
accessing a file for output operations.

Public Member Functions

The following public member functions are declared:

ofstream();
ofstream(char const *,
ios::openmode = ios::out,
int = filebuf::openprot);
ofstream(filedesc);
ofstream(filedesc, char *, int);
~ofstream();
void open(char const *,
ios::openmode = ios::out,
int = filebuf::openprot);

See Also: fstream, fstreambase, ifstream, ostream

Input/Output Classes 767

ofstream::ofstream()

Synopsis: #include <fstream.h>
public:
ofstream::ofstream();

Semantics: This form of the public ofstream constructor creates an ofstream object that is not
connected to a file. The open or attach member functions should be used to connect the
ofstream object to a file.

Results: The public ofstream constructor produces an ofstream object that is not connected to a
file.

See Also: ~ofstream

768 Input/Output Classes

ofstream::ofstream()

Synopsis: #include <fstream.h>
public:
ofstream::ofstream(const char *name,
ios::openmode mode = ios::out,
int prot = filebuf::openprot);

Semantics: This form of the public ofstream constructor creates an ofstream object that is
connected to the file specified by the name parameter, using the specified mode and prot
parameters. The connection is made via the C library open function.

Results: The public ofstream constructor produces an ofstream object that is connected to the
file specified by name. If the open fails, ios::failbit and ios::badbit are set in
the error state in the inherited ios object.

See Also: ~ofstream, open, fstreambase::close, openmode, openprot

Input/Output Classes 769

ofstream::ofstream()

Synopsis: #include <fstream.h>
public:
ofstream::ofstream(filedesc hdl);

Semantics: This form of the public ofstream constructor creates an ofstream object that is attached
to the file specified by the hdl parameter.

Results: The public ofstream constructor produces an ofstream object that is attached to hdl. If
the attach fails, ios::failbit and ios::badbit are set in the error state in the
inherited ios object.

See Also: ~ofstream, fstreambase::attach, fstreambase::fd

770 Input/Output Classes

ofstream::ofstream()

Synopsis: #include <fstream.h>
public:
ofstream::ofstream(filedesc hdl, char *buf, int len);

Semantics: This form of the public ofstream constructor creates an ofstream object that is
connected to the file specified by the hdl parameter. The buffer specified by the buf and len
parameters is offered to the associated filebuf object via the setbuf member function.
If the buf parameter is NULL or the len is less than or equal to zero, the filebuf is
unbuffered, so that each read or write operation reads or writes a single character at a time.

Results: The public ofstream constructor produces an ofstream object that is attached to hdl. If
the connection to hdl fails, ios::failbit and ios::badbit are set in the error state in
the inherited ios object. If the setbuf fails, ios::failbit is set in the error state in
the inherited ios object.

See Also: ~ofstream, fstreambase::attach, fstreambase::fd,
fstreambase::setbuf

Input/Output Classes 771

ofstream::~ofstream()

Synopsis: #include <fstream.h>
public:
ofstream::~ofstream();

Semantics: The public ~ofstream destructor does not do anything explicit. The call to the public
~ofstream destructor is inserted implicitly by the compiler at the point where the
ofstream object goes out of scope.

Results: The public ~ofstream destructor destroys the ofstream object.

See Also: ofstream

772 Input/Output Classes

ofstream::open()

Synopsis: #include <fstream.h>
public:
void ofstream::open(const char *name,
ios::openmode mode = ios::out,
int prot = filebuf::openprot);

Semantics: The open public member function connects the ofstream object to the file specified by
the name parameter, using the specified mode and prot parameters. The mode parameter is
optional and usually is not specified unless additional bits (such as ios::binary or
ios::text) are to be specified. The connection is made via the C library open function.

Results: If the open fails, ios::failbit is set in the error state in the inherited ios object.

See Also: ofstream, openmode, openprot, fstreambase::attach,
fstreambase::close, fstreambase::fd,

fstreambase::isopen

Input/Output Classes 773

ostream

Declared: iostream.h

Derived from:
ios

Derived by: iostream, ofstream, ostrstream

The ostream class supports writing characters to a class derived from the streambuf
class, and provides formatted conversion of types (such as integers and floating-point
numbers) into characters. The class derived from the streambuf class provides the
methods for communicating with the external device (screen, disk), while the ostream
class provides the conversion of the types into characters.

Generally, ostream objects won’t be explicitly created by a program, since there is no
mechanism at this level to open a device. The only default ostream objects in a program
are cout, cerr, and clog which write to the standard output and error devices (usually the
screen).

The ostream class supports two basic concepts of output: formatted and unformatted. The
overloaded operator << member functions are called inserters and they provide the
support for formatted output. The rest of the member functions deal with unformatted
output, managing the state of the ios object and providing a friendlier interface to the
associated streambuf object.

Protected Member Functions

The following protected member functions are declared:

ostream();

Public Member Functions

The following public member functions are declared:

ostream(ostream const &);
ostream(streambuf *);
virtual ~ostream();
ostream &flush();
int opfx();
void osfx();
ostream &put(char);
ostream &put(signed char);
ostream &put(unsigned char);
ostream &seekp(streampos);
ostream &seekp(streamoff, ios::seekdir);

774 Input/Output Classes

ostream

streampos tellp();
ostream &write(char const *, int);
ostream &write(signed char const *, int);
ostream &write(unsigned char const *, int);

Public Member Operators

The following public member operators are declared:

ostream &operator =(streambuf *);
ostream &operator =(ostream const &);
ostream &operator <<(char);
ostream &operator <<(signed char);
ostream &operator <<(unsigned char);
ostream &operator <<(signed short);
ostream &operator <<(unsigned short);
ostream &operator <<(signed int);
ostream &operator <<(unsigned int);
ostream &operator <<(signed long);
ostream &operator <<(unsigned long);
ostream &operator <<(float);
ostream &operator <<(double);
ostream &operator <<(long double);
ostream &operator <<(void *);
ostream &operator <<(streambuf &);
ostream &operator <<(char const *);
ostream &operator <<(signed char const *);
ostream &operator <<(unsigned char const *);
ostream &operator <<(ostream &(*)(ostream &));
ostream &operator <<(ios &(*)(ios &));

See Also: ios, iostream, istream

Input/Output Classes 775

ostream::flush()

Synopsis: #include <iostream.h>
public:
ostream &ostream::flush();

Semantics: The flush public member function causes the ostream object’s buffers to be flushed,
forcing the contents to be written to the actual device connected to the ostream object.

Results: The flush public member function returns a reference to the ostream object. On failure,
ios::failbit is set in the error state in the inherited ios object.

See Also: ostream::osfx

776 Input/Output Classes

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(char ch);
ostream &ostream::operator <<(signed char ch);
ostream &ostream::operator <<(unsigned char ch);

Semantics: These forms of the operator << public member function write the ch character into the
ostream object.

Results: These forms of the operator << public member function return a reference to the
ostream object so that further insertion operations may be specified in the same statement.
ios::failbit is set in the error state in the inherited ios object if an error occurs.

See Also: ostream::put

Input/Output Classes 777

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(char const *str);
ostream &ostream::operator <<(signed char const *str);
ostream &ostream::operator <<(unsigned char const *str);

Semantics: These forms of the operator << public member function perform a formatted write of the
contents of the C string specified by the str parameter to the ostream object. The
characters from str are transferred up to, but not including the terminating null character.

Results: These forms of the operator << public member function return a reference to the
ostream object so that further insertion operations may be specified in the same statement.
ios::failbit is set in the error state in the inherited ios object if an error occurs.

778 Input/Output Classes

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(signed int num);
ostream &ostream::operator <<(unsigned int num);
ostream &ostream::operator <<(signed long num);
ostream &ostream::operator <<(unsigned long num);
ostream &ostream::operator <<(signed short num);
ostream &ostream::operator <<(unsigned short num);

Semantics: These forms of the operator << public member function perform a formatted write of the
integral value specified by the num parameter to the ostream object. The integer value is
converted to a string of characters which are written to the ostream object. num is
converted to a base representation depending on the setting of the ios::basefield bits
in ios::fmtflags. If the ios::oct bit is the only bit on, the conversion is to an octal
(base 8) representation. If the ios::hex bit is the only bit on, the conversion is to a
hexadecimal (base 16) representation. Otherwise, the conversion is to a decimal (base 10)
representation.

For decimal conversions only, a sign may be written in front of the number. If the number is
negative, a - minus sign is written. If the number is positive and the ios::showpos bit is
on in ios::fmtflags, a + plus sign is written. No sign is written for a value of zero.

If the ios::showbase bit is on in ios::fmtflags, and the conversion is to octal or
hexadecimal, the base indicator is written next. The base indicator for a conversion to octal
is a zero. The base indicator for a conversion to hexadecimal is 0x or 0X, depending on the
setting of the ios::uppercase bit in ios::fmtflags.

If the value being written is zero, the conversion is to octal, and the ios::showbase bit is
on, nothing further is written since a single zero is sufficient.

The value of num is then converted to characters. For conversions to decimal, the magnitude
of the number is converted to a string of decimal digits 0123456789. For conversions to
octal, the number is treated as an unsigned quantity and converted to a string of octal digits
01234567. For conversions to hexadecimal, the number is treated as an unsigned quantity
and converted to a string of hexadecimal digits 0123456789 and the letters abcdef or
ABCDEF, depending on the setting of the ios::uppercase in ios::fmtflags. The
string resulting from the conversion is then written to the ostream object.

If the ios::internal bit is set in ios::fmtflags and padding is required, the
padding characters are written after the sign and/or base indicator (if present) and before the
digits.

Input/Output Classes 779

ostream::operator <<()

Results: These forms of the operator << public member function return a reference to the
ostream object so that further insertion operations may be specified in the same statement.
ios::failbit is set in the error state in the inherited ios object if an error occurs.

780 Input/Output Classes

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(float num);
ostream &ostream::operator <<(double num);
ostream &ostream::operator <<(long double num);

Semantics: These forms of the operator << public member function perform a formatted write of the
floating-point value specified by the num parameter to the ostream object. The number is
converted to either scientific (exponential) form or fixed-point form, depending on the
setting of the ios::floatfield bits in ios::fmtflags. If ios::scientific is
the only bit set, the conversion is to scientific form. If ios::fixed is the only bit set, the
conversion is to fixed-point form. Otherwise (neither or both bits set), the value of the
number determines the conversion used. If the exponent is less than -4 or is greater than or
equal to the format precision, the scientific form is used. Otherwise, the fixed-point form is
used.

Scientific form consists of a minus sign (for negative numbers), one digit, a decimal point,
format precision-1 digits, an e or E (depending on the setting of the ios::uppercase
bit), a minus sign (for negative exponents) or a plus sign (for zero or positive exponents), and
two or three digits for the exponent. The digit before the decimal is not zero, unless the
number is zero. If the format precision is zero (or one), no digits are written following the
decimal point.

Fixed-point form consists of a minus sign (for negative numbers), one or more digits, a
decimal point, and format precision digits.

If the ios::showpoint bit is not set in ios::fmtflags, trailing zeroes are trimmed
after the decimal point (and before the exponent for scientific form), and if no digits remain
after the decimal point, the decimal point is discarded as well.

If the ios::internal bit is set in ios::fmtflags and padding is required, the
padding characters are written after the sign (if present) and before the digits.

Results: These forms of the operator << public member function return a reference to the
ostream object so that further insertion operations may be specified in the same statement.
ios::failbit is set in the error state in the inherited ios object if an error occurs.

Input/Output Classes 781

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(void *ptr);

Semantics: This form of the operator << public member function performs a formatted write of the
pointer value specified by the ptr parameter to the ostream object. The ptr parameter is
converted to an implementation-defined string of characters and written to the ostream
object. With the Open Watcom C++ implementation, the string starts with 0x or 0X
(depending on the setting of the ios::uppercase bit), followed by 4 hexadecimal digits
for 16-bit pointers and 8 hexadecimal digits for 32-bit pointers. Leading zeroes are added to
ensure the correct number of digits are written. For far pointers, 4 additional hexadecimal
digits and a colon are inserted immediately after the 0x prefix.

Results: This form of the operator << public member function returns a reference to the
ostream object so that further insertion operations may be specified in the same statement.
ios::failbit is set in the error state in the inherited ios object if an error occurs during
the write.

782 Input/Output Classes

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(streambuf &sb);

Semantics: This form of the operator << public member function transfers the contents of the sb
streambuf object to the ostream object. Reading from the streambuf object stops
when the read fails. No padding with the fill character takes place on output to the
ostream object.

Results: This form of the operator << public member function returns a reference to the
ostream object so that further insertion operations may be specified in the same statement.
ios::failbit is set in the error state in the inherited ios object if an error occurs.

Input/Output Classes 783

ostream::operator <<()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator <<(ostream &(*fn)(ostream &));
ostream &ostream::operator <<(ios &(*fn)(ios &));

Semantics: These forms of the operator << public member function are used to implement the
non-parameterized manipulators for the ostream class. The function specified by the fn
parameter is called with the ostream object as its parameter.

Results: These forms of the operator << public member function return a reference to the
ostream object so that further insertions operations may be specified in the same
statement.

784 Input/Output Classes

ostream::operator =()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator =(streambuf *sb);

Semantics: This form of the operator = public member function is used to associate a streambuf
object, specified by the sb parameter, with an existing ostream object. The ostream
object is initialized and will use the specified streambuf object for subsequent operations.

Results: This form of the operator = public member function returns a reference to the ostream
object that is the target of the assignment. If the sb parameter is NULL, ios::badbit is
set in the error state in the inherited ios object.

Input/Output Classes 785

ostream::operator =()

Synopsis: #include <iostream.h>
public:
ostream &ostream::operator =(const ostream &ostrm);

Semantics: This form of the operator = public member function is used to associate the ostream
object with the streambuf object currently associated with the ostrm parameter. The
ostream object is initialized and will use the ostrm’s streambuf object for subsequent
operations. The ostrm object will continue to use the streambuf object.

Results: This form of the operator = public member function returns a reference to the ostream
object that is the target of the assignment. If there is no streambuf object currently
associated with the ostrm parameter, ios::badbit is set in the error state in the inherited
ios object.

786 Input/Output Classes

ostream::opfx()

Synopsis: #include <iostream.h>
public:
int ostream::opfx();

Semantics: If opfx public member function is a prefix function executed before each of the formatted
and unformatted output operations. If any bits are set in ios::iostate, the opfx public
member function immediately returns zero, indicating that the prefix function failed. Failure
in the prefix function causes the output operation to fail.

If the ostream object is tied to another ostream object, the other ostream object is
flushed.

Results: The opfx public member function returns a non-zero value on success, otherwise zero is
returned.

See Also: ostream::osfx, flush, ios::tie

Input/Output Classes 787

ostream::osfx()

Synopsis: #include <iostream.h>
public:
void ostream::osfx();

Semantics: The osfx public member function is a suffix function executed at the end of each of the
formatted and unformatted output operations.

If the ios::unitbuf bit is set in ios::fmtflags, the flush member function is
called. If the ios::stdio bit is set in ios::fmtflags, the C library fflush function
is invoked on the stdout and stderr file streams.

See Also: ostream::osfx, flush

788 Input/Output Classes

ostream::ostream()

Synopsis: #include <iostream.h>
protected:
ostream::ostream();

Semantics: This form of the protected ostream constructor creates an ostream object without an
attached streambuf object.

This form of the protected ostream constructor is only used implicitly by the compiler
when it generates a constructor for a derived class.

Results: This form of the protected ostream constructor creates an initialized ostream object.
ios::badbit is set in the error state in the inherited ios object.

See Also: ~ostream

Input/Output Classes 789

ostream::ostream()

Synopsis: #include <iostream.h>
public:
ostream::ostream(ostream const &ostrm);

Semantics: This form of the public ostream constructor creates an ostream object associated with
the streambuf object currently associated with the ostrm parameter. The ostream
object is initialized and will use the ostrm’s streambuf object for subsequent operations.
The ostrm object will continue to use the streambuf object.

Results: This form of the public ostream constructor creates an initialized ostream object. If
there is no streambuf object currently associated with the ostrm parameter,
ios::badbit is set in the error state in the inherited ios object.

See Also: ~ostream

790 Input/Output Classes

ostream::ostream()

Synopsis: #include <iostream.h>
public:
ostream::ostream(streambuf *sb);

Semantics: This form of the public ostream constructor creates an ostream object with an associated
streambuf object specified by the sb parameter.

This function is likely to be used for the creation of an ostream object that is associated
with the same streambuf object as another ostream object.

Results: This form of the public ostream constructor creates an initialized ostream object. If the
sb parameter is NULL, ios::badbit is set in the error state in the inherited ios object.

See Also: ~ostream

Input/Output Classes 791

ostream::~ostream()

Synopsis: #include <iostream.h>
public:
virtual ostream::~ostream();

Semantics: The public virtual ~ostream destructor does not do anything explicit. The ios destructor
is called for that portion of the ostream object. The call to the public virtual ~ostream
destructor is inserted implicitly by the compiler at the point where the ostream object goes
out of scope.

Results: The ostream object is destroyed.

See Also: ostream

792 Input/Output Classes

ostream::put()

Synopsis: #include <iostream.h>
public:
ostream &ostream::put(char ch);
ostream &ostream::put(signed char ch);
ostream &ostream::put(unsigned char ch);

Semantics: These forms of the put public member function write the ch character to the ostream
object.

Results: These forms of the put public member function return a reference to the ostream object.
If an error occurs, ios::failbit is set in the error state in the inherited ios object.

See Also: ostream::operator <<, write

Input/Output Classes 793

ostream::seekp()

Synopsis: #include <iostream.h>
public:
ostream &ostream::seekp(streampos pos);

Semantics: This from of the seekp public member function positions the ostream object to the
position specified by the pos parameter so that the next output operation commences from
that position.

The pos value is an absolute position within the stream. It may be obtained via a call to the
tellp member function.

Results: This from of the seekp public member function returns a reference to the ostream object.
If the seek operation fails, ios::failbit is set in the error state in the inherited ios
object.

See Also: ostream::tellp, istream::tellg, istream::seekg

794 Input/Output Classes

ostream::seekp()

Synopsis: #include <iostream.h>
public:
ostream &ostream::seekp(streamoff offset, ios::seekdir dir);

Semantics: This from of the seekp public member function positions the ostream object to the
specified position so that the next output operation commences from that position.

The dir parameter may be ios::beg, ios::cur, or ios::end and is interpreted in
conjunction with the offset parameter as follows:

ios::beg the offset is relative to the start and should be a positive value.
ios::cur the offset is relative to the current position and may be positive

(seek towards end) or negative (seek towards start).
ios::end the offset is relative to the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate
sign, the seekp public member function fails.

Results: This from of the seekp public member function returns a reference to the ostream object.
If the seek operation fails, ios::failbit is set in the error state in the inherited ios
object.

See Also: ostream::tellp, istream::tellg, istream::seekg

Input/Output Classes 795

ostream::tellp()

Synopsis: #include <iostream.h>
public:
streampos ostream::tellp();

Semantics: The tellp public member function returns the position in the ostream object at which the
next character will be written. The first character in an ostream object is at offset zero.

Results: The tellp public member function returns the position in the ostream object at which the
next character will be written.

See Also: ostream::seekp, istream::tellg, istream::seekg

796 Input/Output Classes

ostream::write()

Synopsis: #include <iostream.h>
public:
ostream &ostream::write(char const *buf, int len);
ostream &ostream::write(signed char const *buf, int len);
ostream &ostream::write(unsigned char const *buf, int len);

Semantics: The write public member function performs an unformatted write of the characters
specified by the buf and len parameters into the ostream object.

Results: These member functions return a reference to the ostream object. If an error occurs,
ios::failbit is set in the error state in the inherited ios object.

Input/Output Classes 797

ostrstream

Declared: strstrea.h

Derived from:
strstreambase, ostream

The ostrstream class is used to create and write to string stream objects.

The ostrstream class provides little of its own functionality. Derived from the
strstreambase and ostream classes, its constructors and destructor provide simplified
access to the appropriate equivalents in those base classes. The member functions provide
specialized access to the string stream object.

Of the available I/O stream classes, creating an ostrstream object is the preferred method
of performing write operations to a string stream.

Public Member Functions

The following member functions are declared in the public interface:

ostrstream();
ostrstream(char *, int, ios::openmode = ios::out);
ostrstream(signed char *, int, ios::openmode = ios::out);
ostrstream(unsigned char *, int, ios::openmode = ios::out);
~ostrstream();
int pcount() const;
char *str();

See Also: istrstream, ostream, ostrstream, strstreambase

798 Input/Output Classes

ostrstream::ostrstream()

Synopsis: #include <strstrea.h>
public:
ostrstream::ostrstream();

Semantics: This form of the public ostrstream constructor creates an empty ostrstream object.
Dynamic allocation is used. The inherited stream member functions can be used to access
the ostrstream object.

Results: This form of the public ostrstream constructor creates an initialized, empty
ostrstream object.

See Also: ~ostrstream

Input/Output Classes 799

ostrstream::ostrstream()

Synopsis: #include <strstrea.h>
public:
ostrstream::ostrstream(char *str,
int len,
ios::openmode mode = ios::out);
ostrstream::ostrstream(signed char *str,
int len,
ios::openmode mode = ios::out);
ostrstream::ostrstream(unsigned char *str,
int len,
ios::openmode mode = ios::out);

Semantics: These forms of the public ostrstream constructor create an initialized ostrstream
object. Dynamic allocation is not used. The buffer is specified by the str and len parameters.
If the ios::append or ios::atend bits are set in the mode parameter, the str parameter
is assumed to contain a C string terminated by a null character, and writing commences at the
null character. Otherwise, writing commences at str.

Results: This form of the public ostrstream constructor creates an initialized ostrstream
object.

See Also: ~ostrstream

800 Input/Output Classes

ostrstream::~ostrstream()

Synopsis: #include <strstrea.h>
public:
ostrstream::~ostrstream();

Semantics: The public ~ostrstream destructor does not do anything explicit. The call to the public
~ostrstream destructor is inserted implicitly by the compiler at the point where the
ostrstream object goes out of scope.

Results: The ostrstream object is destroyed.

See Also: ostrstream

Input/Output Classes 801

ostrstream::pcount()

Synopsis: #include <strstrea.h>
public:
int ostrstream::pcount() const;

Semantics: The pcount public member function computes the number of characters that have been
written to the ostrstream object. This value is particularly useful if the ostrstream
object does not contain a C string (terminated by a null character), so that the number of
characters cannot be determined with the C library strlen function. If the ostrstream
object was created by appending to a C string in a static buffer, the length of the original
string is included in the character count.

Results: The pcount public member function returns the number of characters contained in the
ostrstream object.

802 Input/Output Classes

ostrstream::str()

Synopsis: #include <strstrea.h>
public:
char *ostrstream::str();

Semantics: The str public member function creates a pointer to the buffer being used by the
ostrstream object. If the ostrstream object was created without dynamic allocation
(static mode), the pointer is the same as the buffer pointer passed in the constructor.

For ostrstream objects using dynamic allocation, the str public member function makes
an implicit call to the strstreambuf::freeze member function. If nothing has been
written to the ostrstream object, the returned pointer will be NULL.

Note that the buffer does not necessarily end with a null character. If the pointer returned by
the str public member function is to be interpreted as a C string, it is the program’s
responsibility to ensure that the null character is present.

Results: The str public member function returns a pointer to the buffer being used by the
ostrstream object.

Input/Output Classes 803

stdiobuf

Declared: stdiobuf.h

Derived from:
streambuf

The stdiobuf class specializes the streambuf class and is used to implement the
standard input/output buffering required for the cin, cout, cerr and clog predefined
objects.

The stdiobuf class behaves in a similar way to the filebuf class, but does not need to
switch between the get area and put area, since no stdiobuf object can be created for
both reading and writing. When the get area is empty and a read is done, the underflow
virtual member function reads more characters and fills the get area again. When the put
area is full and a write is done, the overflow virtual member function writes the characters
and makes the put area empty again.

C++ programmers who wish to use the standard input/output streams without deriving new
objects do not need to explicitly create or use a stdiobuf object.

Public Member Functions

The following member functions are declared in the public interface:

stdiobuf();
stdiobuf(FILE *);
~stdiobuf();
virtual int overflow(int = EOF);
virtual int underflow();
virtual int sync();

See Also: streambuf, ios

804 Input/Output Classes

stdiobuf::overflow()

Synopsis: #include <stdiobuf.h>
public:
virtual int stdiobuf::overflow(int ch = EOF);

Semantics: The overflow public virtual member function provides the output communication to the
standard output and standard error devices to which the stdiobuf object is connected.
Member functions in the streambuf class call the overflow public virtual member
function for the derived class when the put area is full.

The overflow public virtual member function performs the following steps:

1. If no buffer is present, a buffer is allocated with the streambuf::allocate
member function, which may call the doallocate virtual member function.
The put area is then set up. If, after calling streambuf::allocate, no
buffer is present, the stdiobuf object is unbuffered and ch (if not EOF) is
written directly to the file without buffering, and no further action is taken.

2. If the get area is present, it is flushed with a call to the sync virtual member
function. Note that the get area won’t be present if a buffer was set up in step 1.

3. If ch is not EOF, it is added to the put area, if possible.

4. Any characters in the put area are written to the file.

5. The put area pointers are updated to reflect the new state of the put area. If the
write did not complete, the unwritten portion of the put area is still present. If the
put area was full before the write, ch (if not EOF) is placed at the start of the put
area. Otherwise, the put area is empty.

Results: The overflow public virtual member function returns
NOTEOF

 on success, otherwise
EOF is returned.

See Also: stdiobuf::underflow, streambuf::overflow

Input/Output Classes 805

stdiobuf::stdiobuf()

Synopsis: #include <stdiobuf.h>
public:
stdiobuf::stdiobuf();

Semantics: This form of the public stdiobuf constructor creates a stdiobuf object that is
initialized but not yet connected to a file.

Results: This form of the public stdiobuf constructor creates a stdiobuf object.

See Also: ~stdiobuf

806 Input/Output Classes

stdiobuf::stdiobuf()

Synopsis: #include <stdiobuf.h>
public:
stdiobuf::stdiobuf(FILE *fptr);

Semantics: This form of the public stdiobuf constructor creates a stdiobuf object that is
initialized and connected to a C library FILE stream. Usually, one of stdin, stdout or
stderr is specified for the fptr parameter.

Results: This form of the public stdiobuf constructor creates a stdiobuf object that is
initialized and connected to a C library FILE stream.

See Also: ~stdiobuf

Input/Output Classes 807

stdiobuf::~stdiobuf()

Synopsis: #include <stdiobuf.h>
public:
stdiobuf::~stdiobuf();

Semantics: The public ~stdiobuf destructor does not do anything explicit. The streambuf
destructor is called for that portion of the stdiobuf object. The call to the public
~stdiobuf destructor is inserted implicitly by the compiler at the point where the
stdiobuf object goes out of scope.

Results: The stdiobuf object is destroyed.

See Also: stdiobuf

808 Input/Output Classes

stdiobuf::sync()

Synopsis: #include <stdiobuf.h>
public:
virtual int stdiobuf::sync();

Semantics: The sync public virtual member function synchronizes the stdiobuf object with the
associated device. If the put area contains characters, it is flushed. If the get area contains
buffered characters, the sync public virtual member function fails.

Results: The sync public virtual member function returns
NOTEOF

 on success, otherwise, EOF
is returned.

See Also: streambuf::sync

Input/Output Classes 809

stdiobuf::underflow()

Synopsis: #include <stdiobuf.h>
public:
virtual int stdiobuf::underflow();

Semantics: The underflow public virtual member function provides the input communication from
the standard input device to which the stdiobuf object is connected. Member functions in
the streambuf class call the underflow public virtual member function for the derived
class when the get area is empty.

The underflow public virtual member function performs the following steps:

1. If no reserve area is present, a buffer is allocated with the
streambuf::allocate member function, which may call the doallocate
virtual member function. If, after calling allocate, no reserve area is present,
the stdiobuf object is unbuffered and a one-character reserve area (plus
putback area) is set up to do unbuffered input. This buffer is embedded in the
stdiobuf object. The get area is set up as empty.

2. The unused part of the get area is used to read characters from the file connected
to the stdiobuf object. The get area pointers are then set up to reflect the new
get area.

Results: The underflow public virtual member function returns the first unread character of the get
area, on success, otherwise EOF is returned. Note that the get pointer is not advanced on
success.

See Also: stdiobuf::overflow, streambuf::underflow

810 Input/Output Classes

streambuf

Declared: streambu.h

Derived by: filebuf, stdiobuf, strstreambuf

The streambuf class is responsible for maintaining the buffer used to create an efficient
implementation of the stream classes. Through its pure virtual functions, it is also
responsible for the actual communication with the device associated with the stream.

The streambuf class is abstract, due to the presence of pure virtual member functions.
Abstract classes may not be instantiated, only inherited. Hence, streambuf objects will
not be created by user programs.

Stream objects maintain a pointer to an associated streambuf object and present the
interface that the user deals with most often. Whenever a stream member function wishes to
read or write characters, it uses the rdbuf member function to access the associated
streambuf object and its member functions. Through judicious use of inline functions,
most reads and writes of characters access the buffer directly without even doing a function
call. Whenever the buffer gets filled (writing) or exhausted (reading), these inline functions
invoke the function required to rectify the situation so that the proper action can take place.

A streambuf object can be unbuffered, but most often has one buffer which can be used
for both input and output operations. The buffer (called the reserve area) is divided into two
areas, called the get area and the put area. For a streambuf object being used exclusively
to write, the get area is empty or not present. Likewise, a streambuf object being used
exclusively for reading has an empty or non-existent put area.

The use of the get area and put area differs among the various classes derived from the
streambuf class.

The filebuf class allows only the get area or the put area, but not both, to be active at a
time. This follows from the capability of files opened for both reading and writing to have
operations of each type performed at arbitrary locations in the file. When writing is
occurring, the characters are buffered in the put area. If a seek or read operation is done, the
put area must be flushed before the next operation in order to ensure that the characters are
written to the proper location in the file. Similarly, if reading is occurring, characters are
buffered in the get area. If a write operation is done, the get area must be flushed and
synchronized before the write operation in order to ensure the write occurs at the proper
location in the file. If a seek operation is done, the get area does not have to be
synchronized, but is discarded. When the get area is empty and a read is done, the
underflow virtual member function reads more characters and fills the get area again.
When the put area is full and a write is done, the overflow virtual member function writes
the characters and makes the put area empty again.

Input/Output Classes 811

streambuf

The stdiobuf class behaves in a similar way to the filebuf class, but does not need to
switch between the get area and put area, since no stdiobuf object can be created for
both reading and writing. When the get area is empty and a read is done, the underflow
virtual member function reads more characters and fills the get area again. When the put
area is full and a write is done, the overflow virtual member function writes the characters
and makes the put area empty again.

The strstreambuf class differs quite markedly from the filebuf and stdiobuf
classes. Since there is no actual source or destination for the characters in strstream
objects, the buffer itself takes on that role. When writing is occurring and the put area is
full, the overflow virtual member function reallocates the buffer to a larger size (if
possible), the put area is extended and the writing continues. If reading is occurring and the
get area is empty, the underflow virtual member function checks to see if the put area is
present and not empty. If so, the get area is extended to overlap the put area.

The reserve area is marked by two pointer values. The base member function returns the
pointer to the start of the buffer. The ebuf member function returns the pointer to the end
of the buffer (last character + 1). The setb protected member function is used to set both
pointers.

Within the reserve area, the get area is marked by three pointer values. The eback member
function returns a pointer to the start of the get area. The egptr member function returns a
pointer to the end of the get area (last character + 1). The gptr member function returns
the get pointer. The get pointer is a pointer to the next character to be extracted from the get
area. Characters before the get pointer have already been consumed by the program, while
characters at and after the get pointer have been read from their source and are buffered and
waiting to be read by the program. The setg member function is used to set all three
pointer values. If any of these pointers are NULL, there is no get area.

Also within the reserve area, the put area is marked by three pointer values. The pbase
member function returns a pointer to the start of the put area. The epptr member function
returns a pointer to the end of the put area (last character + 1). The pptr member function
returns the put pointer. The put pointer is a pointer to the next available position into which
a character may be stored. Characters before the put pointer are buffered and waiting to be
written to their final destination, while character positions at and after the put pointer have
yet to be written by the program. The setp member function is used to set all three pointer
values. If any of these pointers are NULL, there is no put area.

Unbuffered I/O is also possible. If unbuffered, the overflow virtual member function is
used to write single characters directly to their final destination without using the put area.
Similarly, the underflow virtual member function is used to read single characters directly
from their source without using the get area.

Protected Member Functions

812 Input/Output Classes

streambuf

The following member functions are declared in the protected interface:

streambuf();
streambuf(char *, int);
virtual ~streambuf();
int allocate();
char *base() const;
char *ebuf() const;
int blen() const;
void setb(char *, char *, int);
char *eback() const;
char *gptr() const;
char *egptr() const;
void gbump(streamoff);
void setg(char *, char *, char *);
char *pbase() const;
char *pptr() const;
char *epptr() const;
void pbump(streamoff);
void setp(char *, char *);
int unbuffered(int);
int unbuffered() const;
virtual int doallocate();

Public Member Functions

The following member functions are declared in the public interface:intinavail()const;intoutwaiting()const;
int snextc();
int sgetn(char *, int);
int speekc();
int sgetc();
int sgetchar();
int sbumpc();
void stossc();
int sputbackc(char);
int sputc(int);
int sputn(char const *, int);
void dbp();virtualintdosgetn(char*,int);virtualintdosputn(charconst*,int);
virtual int pbackfail(int);
virtual int overflow(int = EOF) = 0;
virtual int underflow() = 0;

Input/Output Classes 813

streambuf

virtual streambuf *setbuf(char *, int);
virtual streampos seekoff(streamoff, ios::seekdir,
ios::openmode = ios::in|ios::out);
virtual streampos seekpos(streampos,
ios::openmode = ios::in|ios::out);
virtual int sync();

See Also: filebuf, stdiobuf, strstreambuf

814 Input/Output Classes

streambuf::allocate()

Synopsis: #include <streambu.h>
protected:
int streambuf::allocate();

Semantics: The allocate protected member function works in tandem with the doallocate
protected virtual member function to manage allocation of the streambuf object reserve
area. Classes derived from the streambuf class should call the allocate protected
member function, rather than the doallocate protected virtual member function. The
allocate protected member function determines whether or not the streambuf object is
allowed to allocate a buffer for use as the reserve area. If a reserve area already exists or if
the streambuf object unbuffering state is non-zero, the allocate protected member
function fails. Otherwise, it calls the doallocate protected virtual member function.

Results: The allocate protected member function returns
NOTEOF

 on success, otherwise EOF
is returned.

See Also: streambuf::doallocate, underflow, overflow

Input/Output Classes 815

streambuf::base()

Synopsis: #include <streambu.h>
protected:
char *streambuf::base() const;

Semantics: The base protected member function returns a pointer to the start of the reserve area that
the streambuf object is using.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.
ebuf() end of the reserve area.
blen() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr() end of the get area.

pbase() start of the put area.
pptr() the put pointer.
epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are
characters buffered but not yet read. From pbase to pptr are characters buffered and not
yet written. From pptr to epptr is unused buffer area.

Results: The base protected member function returns a pointer to the start of the reserve area that
the streambuf object is using. If the streambuf object currently does not have a
reserve area, NULL is returned.

See Also: streambuf::blen, ebuf, setb

816 Input/Output Classes

streambuf::blen()

Synopsis: #include <streambu.h>
protected:
int streambuf::blen() const;

Semantics: The blen protected member function reports the length of the reserve area that the
streambuf object is using.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.
ebuf() end of the reserve area.
blen() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr() end of the get area.

pbase() start of the put area.
pptr() the put pointer.
epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are
characters buffered but not yet read. From pbase to pptr are characters buffered and not
yet written. From pptr to epptr is unused buffer area.

Results: The blen protected member function returns the length of the reserve area that the
streambuf object is using. If the streambuf object currently does not have a reserve
area, zero is returned.

See Also: streambuf::base, ebuf, setb

Input/Output Classes 817

streambuf::dbp()

Synopsis: #include <streambu.h>
public:
void streambuf::dbp();

Semantics: The dbp public member function dumps information about the streambuf object directly
to stdout, and is used for debugging classes derived from the streambuf class.

The following is an example of what the dbp public member function dumps:
STREAMBUF Debug Info:this=00030679,unbuffered=0,deletereserve=1
base = 00070010, ebuf = 00070094
eback = 00000000, gptr = 00000000, egptr = 00000000
pbase = 00070010, pptr = 00070010, epptr = 00070094

818 Input/Output Classes

streambuf::do_sgetn()

Synopsis: #include <streambu.h>
public:virtualintdosgetn(char*buf,intlen);

Semantics: The
dosgetn public virtual member function works in tandem with the sgetn member

function to transfer len characters from the get area into buf.

Classes derived from the streambuf class should call the sgetn member function, rather
than the
dosgetn public virtual member function.

Derived Implementation Protocol:
Classes derived from the streambuf class that implement the

dosgetn public virtual
member function should support copying up to len characters from the source through the get
area and into buf.

Default Implementation:
The default
dosgetn public virtual member function provided with the streambuf

class calls the underflow virtual member function to fetch more characters and then
copies the characters from the get area into buf.

Results: The
dosgetn public virtual member function returns the number of characters

successfully transferred.

See Also: streambuf::sgetn

Input/Output Classes 819

streambuf::do_sputn()

Synopsis: #include <streambu.h>
public:virtualintdosputn(charconst*buf,intlen);

Semantics: The
dosputn public virtual member function works in tandem with the sputn member

function to transfer len characters from buf to the end of the put area and advances the put
pointer.

Classes derived from the streambuf class should call the sputn member function, rather
than the
dosputn public virtual member function.

Derived Implementation Protocol:
Classes derived from the streambuf class that implement the

dosputn public virtual
member function should support copying up to len characters from buf through the put area
and out to the destination device.

Default Implementation:
The default
dosputn public virtual member function provided with the streambuf

class calls the overflow virtual member function to flush the put area and then copies the
rest of the characters from buf into the put area.

Results: The
dosputn public virtual member function returns the number of characters

successfully written. If an error occurs, this number may be less than len.

See Also: streambuf::sputn

820 Input/Output Classes

streambuf::doallocate()

Synopsis: #include <streambu.h>
protected:
virtual int streambuf::doallocate();

Semantics: The doallocate protected virtual member function manages allocation of the
streambuf object’s reserve area in tandem with the allocate protected member
function.

Classes derived from the streambuf class should call the allocate protected member
function rather than the doallocate protected virtual member function.

The doallocate protected virtual member function does the actual memory allocation,
and can be defined for each class derived from the streambuf class.

Derived Implementation Protocol:
Classes derived from the streambuf class should implement the doallocate protected
virtual member function such that it does the following:

1. attempts to allocate an area of memory,

2. calls the setb protected member function to initialize the reserve area pointers,

3. performs any class specific operations required.

Default Implementation:
The default doallocate protected virtual member function provided with the
streambuf class attempts to allocate a buffer area with the operator new intrinsic
function. It then calls the setb protected member function to set up the pointers to the
reserve area.

Results: The doallocate protected virtual member function returns
NOTEOF

 on success,
otherwise EOF is returned.

See Also: streambuf::allocate

Input/Output Classes 821

streambuf::eback()

Synopsis: #include <streambu.h>
protected:
char *streambuf::eback() const;

Semantics: The eback protected member function returns a pointer to the start of the get area within
the reserve area used by the streambuf object.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.
ebuf() end of the reserve area.
blen() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr() end of the get area.

pbase() start of the put area.
pptr() the put pointer.
epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are
characters buffered but not yet read. From pbase to pptr are characters buffered and not
yet written. From pptr to epptr is unused buffer area.

Results: The eback protected member function returns a pointer to the start of the get area. If the
streambuf object currently does not have a get area, NULL is returned.

See Also: streambuf::egptr, gptr, setg

822 Input/Output Classes

streambuf::ebuf()

Synopsis: #include <streambu.h>
protected:
char *streambuf::ebuf() const;

Semantics: The ebuf protected member function returns a pointer to the end of the reserve area that the
streambuf object is using. The character pointed at is actually the first character past the
end of the reserve area.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.
ebuf() end of the reserve area.
blen() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr() end of the get area.

pbase() start of the put area.
pptr() the put pointer.
epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are
characters buffered but not yet read. From pbase to pptr are characters buffered and not
yet written. From pptr to epptr is unused buffer area.

Results: The ebuf protected member function returns a pointer to the end of the reserve area. If the
streambuf object currently does not have a reserve area, NULL is returned.

See Also: streambuf::base, blen, setb

Input/Output Classes 823

streambuf::egptr()

Synopsis: #include <streambu.h>
protected:
char *streambuf::egptr() const;

Semantics: The egptr protected member function returns a pointer to the end of the get area within the
reserve area used by the streambuf object. The character pointed at is actually the first
character past the end of the get area.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.
ebuf() end of the reserve area.
blen() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr() end of the get area.

pbase() start of the put area.
pptr() the put pointer.
epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are
characters buffered but not yet read. From pbase to pptr are characters buffered and not
yet written. From pptr to epptr is unused buffer area.

Results: The egptr protected member function returns a pointer to the end of the get area. If the
streambuf object currently does not have a get area, NULL is returned.

See Also: streambuf::eback, gptr, setg

824 Input/Output Classes

streambuf::epptr()

Synopsis: #include <streambu.h>
protected:
char *streambuf::epptr() const;

Semantics: The epptr protected member function returns a pointer to the end of the put area within the
reserve area used by the streambuf object. The character pointed at is actually the first
character past the end of the put area.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.
ebuf() end of the reserve area.
blen() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr() end of the get area.

pbase() start of the put area.
pptr() the put pointer.
epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are
characters buffered but not yet read. From pbase to pptr are characters buffered and not
yet written. From pptr to epptr is unused buffer area.

Results: The epptr protected member function returns a pointer to the end of the put area. If the
streambuf object currently does not have a put area, NULL is returned.

See Also: streambuf::pbase, pptr, setp

Input/Output Classes 825

streambuf::gbump()

Synopsis: #include <streambu.h>
protected:
void streambuf::gbump(streamoff offset);

Semantics: The gbump protected member function increments the get pointer by the specified offset,
without regard for the boundaries of the get area. The offset parameter may be positive or
negative.

Results: The gbump protected member function returns nothing.

See Also: streambuf::gptr, pbump, sbumpc, sputbackc

826 Input/Output Classes

streambuf::gptr()

Synopsis: #include <streambu.h>
protected:
char *streambuf::gptr() const;

Semantics: The gptr protected member function returns a pointer to the next available character in the
get area within the reserve area used by the streambuf object. This pointer is called the
get pointer.

If the get pointer points beyond the end of the get area, all characters in the get area have
been read by the program and a subsequent read causes the underflow virtual member
function to be called to fetch more characters from the source to which the streambuf
object is attached.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.
ebuf() end of the reserve area.
blen() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr() end of the get area.

pbase() start of the put area.
pptr() the put pointer.
epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are
characters buffered but not yet read. From pbase to pptr are characters buffered and not
yet written. From pptr to epptr is unused buffer area.

Results: The gptr protected member function returns a pointer to the next available character in the
get area. If the streambuf object currently does not have a get area, NULL is returned.

See Also: streambuf::eback, egptr, setg

Input/Output Classes 827

streambuf::in_avail()

Synopsis: #include <streambu.h>
public:intstreambuf::inavail()const;

Semantics: The
inavail public member function computes the number of input characters buffered

in the get area that have not yet been read by the program. These characters can be read with
a guarantee that no errors will occur.

Results: The
inavail public member function returns the number of buffered input characters.

See Also: streambuf::egptr, gptr

828 Input/Output Classes

streambuf::out_waiting()

Synopsis: #include <streambu.h>
public:intstreambuf::outwaiting()const;

Semantics: Theoutwaiting public member function computes the number of characters that have
been buffered in the put area and not yet been written to the output device.

Results: Theoutwaiting public member function returns the number of buffered output
characters.

See Also: streambuf::pbase, pptr

Input/Output Classes 829

streambuf::overflow()

Synopsis: #include <streambu.h>
public:
virtual int streambuf::overflow(int ch = EOF) = 0;

Semantics: The overflow public virtual member function is used to flush the put area when it is full.

Derived Implementation Protocol:
Classes derived from the streambuf class should implement the overflow public virtual
member function so that it performs the following:

1. if no reserve area is present and the streambuf object is not unbuffered,
allocate a reserve area using the allocate member function and set up the
reserve area pointers using the setb protected member function,

2. flush any other uses of the reserve area,

3. write any characters in the put area to the streambuf object’s destination,

4. set up the put area pointers to reflect the characters that were written,

5. return
NOTEOF

 on success, otherwise return EOF.

Default Implementation:
There is no default streambuf class implementation of the overflow public virtual
member function. The overflow public virtual member function must be defined for all
classes derived from the streambuf class.

Results: The overflow public virtual member function returns
NOTEOF

 on success, otherwise
EOF is returned.

See Also: filebuf::overflow, stdiobuf::overflow, strstreambuf::overflow

830 Input/Output Classes

streambuf::pbackfail()

Synopsis: #include <streambu.h>
public:
virtual int streambuf::pbackfail(int ch);

Semantics: The pbackfail public virtual member function is called by the sputbackc member
function when the get pointer is at the beginning of the get area, and so there is no place to
put the ch parameter.

Derived Implementation Protocol:
Classes derived from the streambuf class should implement the pbackfail public
virtual member function such that it attempts to put ch back into the source of the stream.

Default Implementation:
The default streambuf class implementation of the pbackfail public virtual member
function is to return EOF.

Results: If the pbackfail public virtual member function succeeds, it returns ch. Otherwise, EOF
is returned.

Input/Output Classes 831

streambuf::pbase()

Synopsis: #include <streambu.h>
protected:
char *streambuf::pbase() const;

Semantics: The pbase protected member function returns a pointer to the start of the put area within
the reserve area used by the streambuf object.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.
ebuf() end of the reserve area.
blen() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr() end of the get area.

pbase() start of the put area.
pptr() the put pointer.
epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are
characters buffered but not yet read. From pbase to pptr are characters buffered and not
yet written. From pptr to epptr is unused buffer area.

Results: The pbase protected member function returns a pointer to the start of the put area. If the
streambuf object currently does not have a put area, NULL is returned.

See Also: streambuf::epptr, pptr, setp

832 Input/Output Classes

streambuf::pbump()

Synopsis: #include <streambu.h>
protected:
void streambuf::pbump(streamoff offset);

Semantics: The pbump protected member function increments the put pointer by the specified offset,
without regard for the boundaries of the put area. The offset parameter may be positive or
negative.

Results: The pbump protected member function returns nothing.

See Also: streambuf::gbump, pbase, pptr

Input/Output Classes 833

streambuf::pptr()

Synopsis: #include <streambu.h>
protected:
char *streambuf::pptr() const;

Semantics: The pptr protected member function returns a pointer to the next available space in the put
area within the reserve area used by the streambuf object. This pointer is called the put
pointer.

If the put pointer points beyond the end of the put area, the put area is full and a subsequent
write causes the overflow virtual member function to be called to empty the put area to
the device to which the streambuf object is attached.

The reserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.
ebuf() end of the reserve area.
blen() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr() end of the get area.

pbase() start of the put area.
pptr() the put pointer.
epptr() end of the put area.

From eback to gptr are characters buffered and read. From gptr to egptr are
characters buffered but not yet read. From pbase to pptr are characters buffered and not
yet written. From pptr to epptr is unused buffer area.

Results: The pptr protected member function returns a pointer to the next available space in the put
area. If the streambuf object currently does not have a put area, NULL is returned.

See Also: streambuf::epptr, pbase, setp

834 Input/Output Classes

streambuf::sbumpc()

Synopsis: #include <streambu.h>
public:
int streambuf::sbumpc();

Semantics: The sbumpc public member function extracts the next available character from the get area
and advances the get pointer. If no character is available, it calls the underflow virtual
member function to fetch more characters from the source into the get area.

Due to the sbumpc member functions’s awkward name, the sgetchar member function
was added to take its place in the WATCOM implementation.

Results: The sbumpc public member function returns the next available character in the get area. If
no character is available, EOF is returned.

See Also: streambuf::gbump, sgetc, sgetchar, sgetn, snextc, sputbackc

Input/Output Classes 835

streambuf::seekoff()

Synopsis: #include <streambu.h>
public:
virtual streampos streambuf::seekoff(streamoff offset,
ios::seekdir dir,
ios::openmode mode);

Semantics: The seekoff public virtual member function is used for positioning to a relative location
within the streambuf object, and hence within the device that is connected to the
streambuf object. The offset and dir parameters specify the relative change in position.
The mode parameter controls whether the get pointer and/or the put pointer are repositioned.

Derived Implementation Protocol:
Classes derived from the streambuf class should implement the seekoff virtual
member function so that it uses its parameters in the following way.

The mode parameter may be ios::in, ios::out, or ios::in|ios::out and should
be interpreted as follows, provided the interpretation is meaningful:

ios::in the get pointer should be moved.
ios::out the put pointer should be moved.
ios::in|ios::out both the get pointer and the put pointer should be moved.

If mode has any other value, the seekoff public virtual member function fails.

The dir parameter may be ios::beg, ios::cur, or ios::end and is interpreted in
conjunction with the offset parameter as follows:

ios::beg the offset is relative to the start and should be a positive value.
ios::cur the offset is relative to the current position and may be positive

(seek towards end) or negative (seek towards start).
ios::end the offset is relative to the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate
sign, the seekoff public virtual member function fails.

Default Implementation:
The default implementation of the seekoff public virtual member function provided by the
streambuf class returns EOF.

Results: The seekoff public virtual member function returns the new position in the stream on
success, otherwise EOF is returned.

See Also: streambuf::seekpos

836 Input/Output Classes

streambuf::seekpos()

Synopsis: #include <streambu.h>
public:
virtual streampos streambuf::seekpos(streampos pos,
ios::openmode mode = ios::in|ios::out);

Semantics: The seekpos public virtual member function is used for positioning to an absolute location
within the streambuf object, and hence within the device that is connected to the
streambuf object. The pos parameter specifies the absolute position. The mode
parameter controls whether the get pointer and/or the put pointer are repositioned.

Derived Implementation Protocol:
Classes derived from the streambuf class should implement the seekpos public virtual
member function so that it uses its parameters in the following way.

The mode parameter may be ios::in, ios::out, or ios::in|ios::out and should
be interpreted as follows, provided the interpretation is meaningful:

ios::in the get pointer should be moved.
ios::out the put pointer should be moved.
ios::in|ios::out both the get pointer and the put pointer should be moved.

If mode has any other value, the seekpos public virtual member function fails.

In general the seekpos public virtual member function is equivalent to calling the
seekoff virtual member function with the offset set to pos, the direction set to ios::beg
and the mode set to mode.

Default Implementation:
The default implementation of the seekpos public virtual member function provided by the
streambuf class calls the seekoff virtual member function with the offset set to pos, the
direction set to ios::beg, and the mode set to mode.

Results: The seekpos public virtual member function returns the new position in the stream on
success, otherwise EOF is returned.

See Also: streambuf::seekoff

Input/Output Classes 837

streambuf::setb()

Synopsis: #include <streambu.h>
protected:
void streambuf::setb(char *base, char *ebuf, int autodel);

Semantics: The setb protected member function is used to set the pointers to the reserve area that the
streambuf object is using.

The base parameter is a pointer to the start of the reserve area and corresponds to the value
that the base member function returns.

The ebuf parameter is a pointer to the end of the reserve area and corresponds to the value
that the ebuf member function returns.

The autodel parameter indicates whether or not the streambuf object can free the reserve
area when the streambuf object is destroyed or when a new reserve area is set up in a
subsequent call to the setb protected member function. If the autodel parameter is
non-zero, the streambuf object can delete the reserve area, using the
operator delete intrinsic function. Otherwise, a zero value indicates that the buffer
will be deleted elsewhere.

If either of the base or ebuf parameters are NULL or if ebuf <= base, the streambuf object
does not have a buffer and input/output operations are unbuffered, unless another buffer is
set up.

Note that the setb protected member function is used to set the reserve area pointers, while
the setbuf protected member function is used to offer a buffer to the streambuf object.

See Also: streambuf::base, blen, ebuf, setbuf

838 Input/Output Classes

streambuf::setbuf()

Synopsis: #include <streambu.h>
public:
virtual streambuf *streambuf::setbuf(char *buf, int len);

Semantics: The setbuf public virtual member function is used to offer a buffer specified by the buf
and len parameters to the streambuf object for use as its reserve area. Note that the
setbuf public virtual member function is used to offer a buffer, while the setb protected
member function is used to set the reserve area pointers once a buffer has been accepted.

Derived Implementation Protocol:
Classes derived from the streambuf class may implement the setbuf public virtual
member function if the default behavior is not suitable.

Derived classes that provide their own implementations of the setbuf public virtual
member function may accept or reject the offered buffer. Often, if a buffer is already
allocated, the offered buffer is rejected, as it may be difficult to transfer the information from
the current buffer.

Default Implementation:
The default setbuf public virtual member function provided by the streambuf class
rejects the buffer if one is already present.

If no buffer is present and either buf is NULL or len is zero, the offer is accepted and the
streambuf object is unbuffered.

Otherwise, no buffer is present and one is specified. If len is less than five characters the
buffer is too small and it is rejected. Otherwise, the buffer is accepted.

Results: The setbuf public virtual member function returns the address of the streambuf object
if the offered buffer is accepted, otherwise NULL is returned.

See Also: streambuf::setb

Input/Output Classes 839

streambuf::setg()

Synopsis: #include <streambu.h>
protected:
void streambuf::setg(char *eback, char *gptr, char *egptr);

Semantics: The setg protected member function is used to set the three get area pointers.

The eback parameter is a pointer to the start of the get area and corresponds to the value that
the eback member function returns.

The gptr parameter is a pointer to the first available character in the get area, that is, the get
pointer, and usually is greater than the eback parameter in order to accommodate a putback
area. The gptr parameter corresponds to the value that the gptr member function returns.

The egptr parameter is a pointer to the end of the get area and corresponds to the value that
the egptr member function returns.

If any of the three parameters are NULL, there is no get area.

See Also: streambuf::eback, egptr, gptr

840 Input/Output Classes

streambuf::setp()

Synopsis: #include <streambu.h>
protected:
void streambuf::setp(char *pbase, char *epptr);

Semantics: The setp protected member function is used to set the three put area pointers.

The pbase parameter is a pointer to the start of the put area and corresponds to the value that
the pbase member function returns.

The epptr parameter is a pointer to the end of the put area and corresponds to the value that
the epptr member function returns.

The put pointer is set to the pbase parameter value and corresponds to the value that the
pptr member function returns.

If either parameter is NULL, there is no put area.

See Also: streambuf::epptr, pbase, pptr

Input/Output Classes 841

streambuf::sgetc()

Synopsis: #include <streambu.h>
public:
int streambuf::sgetc();

Semantics: The sgetc public member function returns the next available character in the get area. The
get pointer is not advanced. If the get area is empty, the underflow virtual member
function is called to fetch more characters from the source into the get area.

Due to the sgetc member function’s confusing name (the C library getc function does
advance the pointer), the speekc member function was added to take its place in the
WATCOM implementation.

Results: The sgetc public member function returns the next available character in the get area. If
no character is available, EOF is returned.

See Also: streambuf::sbumpc, sgetchar, sgetn, snextc, speekc

842 Input/Output Classes

streambuf::sgetchar()

Synopsis: #include <streambu.h>
public:
int streambuf::sgetchar();

Semantics: The sgetchar public member function extracts the next available character from the get
area and advances the get pointer. If no character is available, it calls the underflow
virtual member function to fetch more characters from the source into the get area.

Due to the sbumpc member functions’s awkward name, the sgetchar member function
was added to take its place in the WATCOM implementation.

Results: The sgetchar public member function returns the next available character in the get area.
If no character is available, EOF is returned.

See Also: streambuf::gbump, sgetc, sgetchar, sgetn, snextc, speekc, sputbackc

Input/Output Classes 843

streambuf::sgetn()

Synopsis: #include <streambu.h>
public:
int streambuf::sgetn(char *buf, int len);

Semantics: The sgetn public member function transfers up to len characters from the get area into buf.
If there are not enough characters in the get area, the

dosgetn virtual member function is
called to fetch more.

Classes derived from the streambuf class should call the sgetn public member function,
rather than the
dosgetn virtual member function.

Results: The sgetn public member function returns the number of characters transferred from the
get area into buf.

See Also:streambuf::dosgetn, sbumpc, sgetc, sgetchar, speekc

844 Input/Output Classes

streambuf::snextc()

Synopsis: #include <streambu.h>
public:
int streambuf::snextc();

Semantics: The snextc public member function advances the get pointer and then returns the character
following the get pointer. The get pointer is left pointing at the returned character.

If the get pointer cannot be advanced, the underflow virtual member function is called to
fetch more characters from the source into the get area.

Results: The snextc public member function advances the get pointer and returns the next available
character in the get area. If there is no next available character, EOF is returned.

See Also: streambuf::sbumpc, sgetc, sgetchar, sgetn, speekc

Input/Output Classes 845

streambuf::speekc()

Synopsis: #include <streambu.h>
public:
int streambuf::speekc();

Semantics: The speekc public member function returns the next available character in the get area.
The get pointer is not advanced. If the get area is empty, the underflow virtual member
function is called to fetch more characters from the source into the get area.

Due to the sgetc member function’s confusing name (the C library getc function does
advance the pointer), the speekc member function was added to take its place in the
WATCOM implementation.

Results: The speekc public member function returns the next available character in the get area. If
no character is available, EOF is returned.

See Also: streambuf::sbumpc, sgetc, sgetchar, sgetn, snextc

846 Input/Output Classes

streambuf::sputbackc()

Synopsis: #include <streambu.h>
public:
int streambuf::sputbackc(char ch);

Semantics: The sputbackc public member function is used to put a character back into the get area.
The ch character specified must be the same as the character before the get pointer, otherwise
the behavior is undefined. The get pointer is backed up by one position. At least four
characters may be put back without any intervening reads.

Results: The sputbackc public member function returns ch on success, otherwise EOF is returned.

See Also: streambuf::gbump, sbumpc, sgetchar

Input/Output Classes 847

streambuf::sputc()

Synopsis: #include <streambu.h>
public:
int streambuf::sputc(int ch);

Semantics: The sputc public member function adds the character ch to the end of the put area and
advances the put pointer. If the put area is full before the character is added, the overflow
virtual member function is called to empty the put area and write the character.

Results: The sputc public member function returns ch on success, otherwise EOF is returned.

See Also: streambuf::sgetc, sputn

848 Input/Output Classes

streambuf::sputn()

Synopsis: #include <streambu.h>
public:
int streambuf::sputn(char const *buf, int len);

Semantics: The sputn public member function transfers up to len characters from buf to the end of the
put area and advance the put pointer. If the put area is full or becomes full and more
characters are to be written, the
dosputn virtual member function is called to empty the

put area and finish writing the characters.

Classes derived from the streambuf class should call the sputn public member function,
rather than the
dosputn virtual member function.

Results: The sputn public member function returns the number of characters successfully written.
If an error occurs, this number may be less than len.

See Also:streambuf::dosputn, sputc

Input/Output Classes 849

streambuf::stossc()

Synopsis: #include <streambu.h>
public:
void streambuf::stossc();

Semantics: The stossc public member function advances the get pointer by one without returning a
character. If the get area is empty, the underflow virtual member function is called to
fetch more characters and then the get pointer is advanced.

See Also: streambuf::gbump, sbumpc, sgetchar, snextc

850 Input/Output Classes

streambuf::streambuf()

Synopsis: #include <streambu.h>
protected:
streambuf::streambuf();

Semantics: This form of the protected streambuf constructor creates an empty streambuf object
with all fields initialized to zero. No reserve area is yet allocated, but the streambuf
object is buffered unless a subsequent call to the setbuf or unbuffered member
functions dictate otherwise.

Results: This form of the protected streambuf constructor creates an initialized streambuf
object with no associated reserve area.

See Also: ~streambuf

Input/Output Classes 851

streambuf::streambuf()

Synopsis: #include <streambu.h>
protected:
streambuf::streambuf(char *buf, int len);

Semantics: This form of the protected streambuf constructor creates an empty streambuf object
with all fields initialized to zero. The buf and len parameters are passed to the setbuf
member function, which sets up the buffer (if specified), or makes the streambuf object
unbuffered (if the buf parameter is NULL or the len parameter is not positive).

Results: This form of the protected streambuf constructor creates an initialized streambuf
object with an associated reserve area.

See Also: ~streambuf, setbuf

852 Input/Output Classes

streambuf::~streambuf()

Synopsis: #include <streambu.h>
protected:
virtual streambuf::~streambuf();

Semantics: The streambuf object is destroyed. If the buffer was allocated by the streambuf
object, it is freed. Otherwise, the buffer is not freed and must be freed by the user of the
streambuf object. The call to the protected ~streambuf destructor is inserted
implicitly by the compiler at the point where the streambuf object goes out of scope.

Results: The streambuf object is destroyed.

See Also: streambuf

Input/Output Classes 853

streambuf::sync()

Synopsis: #include <streambu.h>
public:
virtual int streambuf::sync();

Semantics: The sync public virtual member function is used to synchronize the streambuf object’s
get area and put area with the associated device.

Derived Implementation Protocol:
Classes derived from the streambuf class should implement the sync public virtual
member function such that it attempts to perform the following:

1. flush the put area,

2. discard the contents of the get area and reposition the stream device so that the
discarded characters may be read again.

Default Implementation:
The default implementation of the sync public virtual member function provided by the
streambuf class takes no action. It succeeds if the get area and the put area are empty,
otherwise it fails.

Results: The sync public virtual member function returns
NOTEOF

 on success, otherwise EOF is
returned.

854 Input/Output Classes

streambuf::unbuffered()

Synopsis: #include <streambu.h>
protected:
int ios::unbuffered() const;
int ios::unbuffered(int unbuf);

Semantics: The unbuffered protected member function is used to query and/or set the unbuffering
state of the streambuf object. A non-zero unbuffered state indicates that the streambuf
object is unbuffered. An unbuffered state of zero indicates that the streambuf object is
buffered.

The first form of the unbuffered protected member function is used to query the current
unbuffering state.

The second form of the unbuffered protected member function is used to set the
unbuffering state to unbuf.

Note that the unbuffering state only affects the allocate protected member function,
which does nothing if the unbuffering state is non-zero. Setting the unbuffering state to a
non-zero value does not mean that future I/O operations will be unbuffered.

To determine if current I/O operations are unbuffered, use the base protected member
function. A return value of NULL from the base protected member function indicates that
unbuffered I/O operations will be used.

Results: The unbuffered protected member function returns the previous unbuffered state.

See Also: streambuf::allocate, pbase, setbuf

Input/Output Classes 855

streambuf::underflow()

Synopsis: #include <streambu.h>
public:
virtual int streambuf::underflow() = 0;

Semantics: The underflow public virtual member function is used to fill the get area when it is
empty.

Derived Implementation Protocol:
Classes derived from the streambuf class should implement the underflow public
virtual member function so that it performs the following:

1. if no reserve area is present and the streambuf object is buffered, allocate the
reserve area using the allocate member function and set up the reserve area
pointers using the setb protected member function,

2. flush any other uses of the reserve area,

3. read some characters from the streambuf object’s source into the get area,

4. set up the get area pointers to reflect the characters that were read,

5. return the first character of the get area, or EOF if no characters could be read.

Default Implementation:
There is no default streambuf class implementation of the underflow public virtual
member function. The underflow public virtual member function must be defined for all
classes derived from the streambuf class.

Results: The underflow public virtual member function returns the first character read into the get
area, or EOF if no characters could be read.

See Also: filebuf::underflow, stdiobuf::underflow, strstreambuf::underflow

856 Input/Output Classes

strstream

Declared: strstrea.h

Derived from:
strstreambase, iostream

The strstream class is used to create and write to string stream objects.

The strstream class provides little of its own functionality. Derived from the
strstreambase and iostream classes, its constructors and destructor provide
simplified access to the appropriate equivalents in those base classes. The member functions
provide specialized access to the string stream object.

Of the available I/O stream classes, creating a strstream object is the preferred method of
performing read and write operations on a string stream.

Public Member Functions

The following member functions are declared in the public interface:

strstream();
strstream(char *,
int,
ios::openmode = ios::in|ios::out);
strstream(signed char *,
int,
ios::openmode = ios::in|ios::out);
strstream(unsigned char *,
int,
ios::openmode = ios::in|ios::out);
~strstream();
char *str();

See Also: istrstream, ostrstream, strstreambase

Input/Output Classes 857

strstream::str()

Synopsis: #include <strstrea.h>
public:
char *strstream::str();

Semantics: The str public member function creates a pointer to the buffer being used by the
strstream object. If the strstream object was created without dynamic allocation
(static mode), the pointer is the same as the buffer pointer passed in the constructor.

For strstream objects using dynamic allocation, the str public member function makes
an implicit call to the strstreambuf::freeze member function. If nothing has been
written to the strstream object, the returned pointer will be NULL.

Note that the buffer does not necessarily end with a null character. If the pointer returned by
the str public member function is to be interpreted as a C string, it is the program’s
responsibility to ensure that the null character is present.

Results: The str public member function returns a pointer to the buffer being used by the
strstream object.

See Also: strstreambuf::str, strstreambuf::freeze

858 Input/Output Classes

strstream::strstream()

Synopsis: #include <strstrea.h>
public:
strstream::strstream();

Semantics: This form of the public strstream constructor creates an empty strstream object.
Dynamic allocation is used. The inherited stream member functions can be used to access
the strstream object. Note that the get pointer and put pointer are not necessarily
pointing at the same location, so moving one pointer (e.g. by doing a write) does not affect
the location of the other pointer.

Results: This form of the public strstream constructor creates an initialized, empty strstream
object.

See Also: ~strstream

Input/Output Classes 859

strstream::strstream()

Synopsis: #include <strstrea.h>
public:
strstream::strstream(char *str,
int len,
ios::openmode mode);
strstream::strstream(signed char *str,
int len,
ios::openmode mode);
strstream::strstream(unsigned char *str,
int len,
ios::openmode mode);

Semantics: These forms of the public strstream constructor create an initialized strstream object.
Dynamic allocation is not used. The buffer is specified by the str and len parameters. If the
ios::append or ios::atend bits are set in the mode parameter, the str parameter is
assumed to contain a C string terminated by a null character, and writing commences at the
null character. Otherwise, writing commences at str. Reading commences at str.

Results: This form of the public strstream constructor creates an initialized strstream object.

See Also: ~strstream

860 Input/Output Classes

strstream::~strstream()

Synopsis: #include <strstrea.h>
public:
strstream::~strstream();

Semantics: The public ~strstream destructor does not do anything explicit. The call to the public
~strstream destructor is inserted implicitly by the compiler at the point where the
strstream object goes out of scope.

Results: The strstream object is destroyed.

See Also: strstream

Input/Output Classes 861

strstreambase

Declared: strstrea.h

Derived from:
ios

Derived by: istrstream, ostrstream, strstream

The strstreambase class is a base class that provides common functionality for the three
string stream-based classes, istrstream, ostrstream and strstream. The
strstreambase class is derived from the ios class which provides the stream state
information. The strstreambase class provides constructors for string stream objects
and one member function.

Protected Member Functions

The following member functions are declared in the protected interface:

strstreambase();
strstreambase(char *, int, char * = 0);
~strstreambase();

Public Member Functions

The following member function is declared in the public interface:

strstreambuf *rdbuf() const;

See Also: istrstream, ostrstream, strstream, strstreambuf

862 Input/Output Classes

strstreambase::rdbuf()

Synopsis: #include <strstrea.h>
public:
strstreambuf *strstreambase::rdbuf() const;

Semantics: The rdbuf public member function creates a pointer to the strstreambuf associated
with the strstreambase object. Since the strstreambuf object is embedded within
the strstreambase object, this function never returns NULL.

Results: The rdbuf public member function returns a pointer to the strstreambuf associated
with the strstreambase object.

Input/Output Classes 863

strstreambase::strstreambase()

Synopsis: #include <strstrea.h>
protected:
strstreambase::strstreambase();

Semantics: This form of the protected strstreambase constructor creates a strstreambase
object that is initialized, but empty. Dynamic allocation is used to store characters. No
buffer is allocated. A buffer is be allocated when data is first written to the
strstreambase object.

This form of the protected strstreambase constructor is only used implicitly by the
compiler when it generates a constructor for a derived class.

Results: The protected strstreambase constructor creates an initialized strstreambase
object.

See Also: ~strstreambase

864 Input/Output Classes

strstreambase::strstreambase()

Synopsis: #include <strstrea.h>
protected:
strstreambase::strstreambase(char *str,
int len,
char *pstart);

Semantics: This form of the protected strstreambase constructor creates a strstreambase
object that is initialized and uses the buffer specified by the str and len parameters as its
reserve area within the associated strstreambuf object. Dynamic allocation is not used.

This form of the protected strstreambase constructor is unlikely to be explicitly used,
except in the member initializer list for the constructor of a derived class.

The str, len and pstart parameters are interpreted as follows:

1. The buffer starts at str.

2. If len is positive, the buffer is len characters long.

3. If len is zero, str is a pointer to a C string which is terminated by a null character,
and the length of the buffer is the length of the string.

4. If len is negative, the buffer is unbounded. This last form should be used with
extreme caution, since no buffer is truly unlimited in size and it would be easy to
write beyond the available space.

5. If the pstart parameter is NULL, the strstreambase object is read-only.

6. Otherwise, pstart divides the buffer into two regions. The get area starts at str
and ends at pstart-1. The put area starts at pstart and goes to the end of the
buffer.

Results: The protected strstreambase constructor creates an initialized strstreambase
object.

See Also: ~strstreambase

Input/Output Classes 865

strstreambase::~strstreambase()

Synopsis: #include <strstrea.h>
protected:
strstreambase::~strstreambase();

Semantics: The protected ~strstreambase destructor does not do anything explicit. The call to the
protected ~strstreambase destructor is inserted implicitly by the compiler at the point
where the strstreambase object goes out of scope.

Results: The strstreambase object is destroyed.

See Also: strstreambase

866 Input/Output Classes

strstreambuf

Declared: strstrea.h

Derived from:
streambuf

The strstreambuf class is derived from the streambuf class and provides additional
functionality required to write characters to and read characters from a string buffer. Read
and write operations can occur at different positions in the string buffer, since the get pointer
and put pointer are not necessarily connected. Seek operations are also supported.

The reserve area used by the strstreambuf object may be either fixed in size or
dynamic. Generally, input strings are of a fixed size, while output streams are dynamic,
since the final size may not be predictable. For dynamic buffers, the strstreambuf
object automatically grows the buffer when necessary.

The strstreambuf class differs quite markedly from the filebuf and stdiobuf
classes. Since there is no actual source or destination for the characters in strstream
objects, the buffer itself takes on that role. When writing is occurring and the put area is
full, the overflow virtual member function reallocates the buffer to a larger size (if
possible), the put area is extended and the writing continues. If reading is occurring and the
get area is empty, the underflow virtual member function checks to see if the put area is
present and not empty. If so, the get area is extended to overlap the put area.

C++ programmers who wish to use string streams without deriving new objects will probably
never explicitly create or use a strstreambuf object.

Protected Member Functions

The following member function is declared in the protected interface:

virtual int doallocate();

Public Member Functions

The following member functions are declared in the public interface:

strstreambuf();
strstreambuf(int);
strstreambuf(void *(*)(long), void (*)(void *));
strstreambuf(char *, int, char * = 0);
~strstreambuf();intallocsizeincrement(int);
void freeze(int = 1);
char *str();
virtual int overflow(int = EOF);

Input/Output Classes 867

strstreambuf

virtual int underflow();
virtual streambuf *setbuf(char *, int);
virtual streampos seekoff(streamoff,
ios::seekdir,
ios::openmode);
virtual int sync();

See Also: streambuf, strstreambase

868 Input/Output Classes

strstreambuf::alloc_size_increment()

Synopsis: #include <strstrea.h>
public:intstrstreambuf::allocsizeincrement(intincrement);

Semantics: Theallocsizeincrement public member function modifies the allocation size used
when the buffer is first allocated or reallocated by dynamic allocation. The increment
parameter is added to the previous allocation size for future use.

This function is a WATCOM extension.

Results: Theallocsizeincrement public member function returns the previous value of the
allocation size.

See Also: strstreambuf::doallocate, setbuf

Input/Output Classes 869

strstreambuf::doallocate()

Synopsis: #include <strstrea.h>
protected:
virtual int strstreambuf::doallocate();

Semantics: The doallocate protected virtual member function is called by the allocate member
function when it is determined that the put area is full and needs to be extended.

The doallocate protected virtual member function performs the following steps:

1. If dynamic allocation is not being used, the doallocate protected virtual
member function fails.

2. A new size for the buffer is determined. If the allocation size is bigger than the
current size, the allocation size is used. Otherwise, the buffer size is increased byDEFAULTMAINBUFSIZE

, which is 512.

3. A new buffer is allocated. If an allocation function was specified in the
constructor for the strstreambuf object, that allocation function is used,
otherwise the operator new intrinsic function is used. If the allocation fails,
the doallocate protected virtual member function fails.

4. If necessary, the contents of the get area are copied to the newly allocated buffer
and the get area pointers are adjusted accordingly.

5. The contents of the put area are copied to the newly allocated buffer and the put
area pointers are adjusted accordingly, extending the put area to the end of the
new buffer.

6. The old buffer is freed. If a free function was specified in the constructor for the
strstreambuf object, that free function is used, otherwise the
operator delete intrinsic function is used.

Results: The doallocate protected virtual member function returns
NOTEOF

 on success,
otherwise EOF is returned.

See Also:strstreambuf::allocsizeincrement, setbuf
870 Input/Output Classes

strstreambuf::freeze()

Synopsis: #include <strstrea.h>
public:
void strstreambuf::freeze(int frozen = 1);

Semantics: The freeze public member function enables and disables automatic deletion of the reserve
area. If the freeze public member function is called with no parameter or a non-zero
parameter, the strstreambuf object is frozen. If the freeze public member function is
called with a zero parameter, the strstreambuf object is unfrozen.

A frozen strstreambuf object does not free the reserve area in the destructor. If the
strstreambuf object is destroyed while it is frozen, it is the program’s responsibility to
also free the reserve area.

If characters are written to the strstreambuf object while it is frozen, the effect is
undefined since the reserve area may be reallocated and therefore may move. However, if
the strstreambuf object is frozen and then unfrozen, characters may be written to it.

Results: The freeze public member function returns the previous frozen state.

See Also: strstreambuf::str, ~strstreambuf

Input/Output Classes 871

strstreambuf::overflow()

Synopsis: #include <strstrea.h>
public:
virtual int strstreambuf::overflow(int ch = EOF);

Semantics: The overflow public virtual member function provides the output communication between
the streambuf member functions and the strstreambuf object. Member functions in
the streambuf class call the overflow public virtual member function when the put
area is full. The overflow public virtual member function attempts to grow the put area
so that writing may continue.

The overflow public virtual member function performs the following steps:

1. If dynamic allocation is not being used, the put area cannot be extended, so the
overflow public virtual member function fails.

2. If dynamic allocation is being used, a new buffer is allocated using the
doallocate member function. It handles copying the contents of the old buffer
to the new buffer and discarding the old buffer.

3. If the ch parameter is not EOF, it is added to the end of the extended put area and
the put pointer is advanced.

Results: The overflow public virtual member function returns
NOTEOF

 when it successfully
extends the put area, otherwise EOF is returned.

See Also: streambuf::overflow
strstreambuf::underflow

872 Input/Output Classes

strstreambuf::seekoff()

Synopsis: #include <strstrea.h>
public:
virtual streampos strstreambuf::seekoff(streamoff offset,
ios::seekdir dir,
ios::openmode mode);

Semantics: The seekoff public virtual member function positions the get pointer and/or put pointer to
the specified position in the reserve area. If the get pointer is moved, it is moved to a
position relative to the start of the reserve area (which is also the start of the get area). If a
position is specified that is beyond the end of the get area but is in the put area, the get area
is extended to include the put area. If the put pointer is moved, it is moved to a position
relative to the start of the put area, not relative to the start of the reserve area.

The seekoff public virtual member function seeks offset bytes from the position specified
by the dir parameter.

The mode parameter may be ios::in, ios::out, or ios::in|ios::out and should
be interpreted as follows, provided the interpretation is meaningful:

ios::in the get pointer should be moved.
ios::out the put pointer should be moved.
ios::in|ios::out both the get pointer and the put pointer should be moved.

If mode has any other value, the seekoff public virtual member function fails.
ios::in|ios::out is not valid if the dir parameter is ios::cur.

The dir parameter may be ios::beg, ios::cur, or ios::end and is interpreted in
conjunction with the offset parameter as follows:

ios::beg the offset is relative to the start and should be a positive value.
ios::cur the offset is relative to the current position and may be positive

(seek towards end) or negative (seek towards start).
ios::end the offset is relative to the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate
sign, the seekoff public virtual member function fails.

Results: The seekoff public virtual member function returns the new position in the file on success,
otherwise EOF is returned. If both or ios::in|ios::out are specified and the dir
parameter is ios::cur the returned position refers to the put pointer.

Input/Output Classes 873

strstreambuf::setbuf()

Synopsis: #include <strstrea.h>
public:
virtual streambuf *strstreambuf::setbuf(char *, int size);

Semantics: The setbuf public virtual member function is used to control the size of the allocations
when the strstreambuf object is using dynamic allocation. The first parameter is
ignored. The next time an allocation is required, at least the number of characters specified
in the size parameter is allocated. If the specified size is not sufficient, the allocation reverts
to its default behavior, which is to extend the buffer by

DEFAULTMAINBUFSIZE
, which

is 512 characters.

If a program is going to write a large number of characters to the strstreambuf object, it
should call the setbuf public virtual member function to indicate the size of the next
allocation, to prevent multiple allocations as the buffer gets larger.

Results: The setbuf public virtual member function returns a pointer to the strstreambuf
object.

See Also:strstreambuf::allocsizeincrement, doallocate

874 Input/Output Classes

strstreambuf::str()

Synopsis: #include <strstrea.h>
public:
char *strstreambuf::str();

Semantics: The str public member function freezes the strstreambuf object and returns a pointer
to the reserve area. This pointer remains valid after the strstreambuf object is
destroyed provided the strstreambuf object remains frozen, since the destructor does not
free the reserve area if it is frozen.

The returned pointer may be NULL if the strstreambuf object is using dynamic
allocation but has not yet had anything written to it.

If the strstreambuf object is not using dynamic allocation, the pointer returned by the
str public member function is the same buffer pointer provided to the constructor. For a
strstreambuf object using dynamic allocation, the pointer points to a dynamically
allocated area.

Note that the reserve area does not necessarily end with a null character. If the pointer
returned by the str public member function is to be interpreted as a C string, it is the
program’s responsibility to ensure that the null character is present.

Results: The str public member function returns a pointer to the reserve area and freezes the
strstreambuf object.

See Also: strstreambuf::freeze

Input/Output Classes 875

strstreambuf::strstreambuf()

Synopsis: #include <strstrea.h>
public:
strstreambuf::strstreambuf();

Semantics: This form of the public strstreambuf constructor creates an empty strstreambuf
object that uses dynamic allocation. No reserve area is allocated to start. Whenever
characters are written to extend the strstreambuf object, the reserve area is reallocated
and copied as required. The size of allocation is determined by the strstreambuf object
unless the setbuf orallocsizeincrement member functions are called to change
the allocation size. The default allocation size is determined by the constantDEFAULTMAINBUFSIZE

, which is 512.

Results: This form of the public strstreambuf constructor creates a strstreambuf object.

See Also: strstreambuf::doallocate, ~strstreambuf

876 Input/Output Classes

strstreambuf::strstreambuf()

Synopsis: #include <strstrea.h>
public:strstreambuf::strstreambuf(intallocsize);

Semantics: This form of the public strstreambuf constructor creates an empty strstreambuf
object that uses dynamic allocation. No buffer is allocated to start. Whenever characters are
written to extend the strstreambuf object, the reserve area is reallocated and copied as
required. The size of the first allocation is determined by the alloc_size parameter, unless
changed by a call to the setbuf orallocsizeincrement member functions.

Note that the alloc_size parameter is the starting reserve area size. When the reserve area is
reallocated, the strstreambuf object uses

DEFAULTMAINBUFSIZE
 to increase the

reserve area size, unless the setbuf orallocsizeincrement member functions
have been called to specify a new allocation size.

Results: This form of the public strstreambuf constructor creates a strstreambuf object.

See Also:strstreambuf::allocsizeincrement, doallocate, setbuf,
~strstreambuf

Input/Output Classes 877

strstreambuf::strstreambuf()

Synopsis: #include <strstrea.h>
public:strstreambuf::strstreambuf(void*(*allocfn)(long),void(*freefn)(void*));

Semantics: This form of the public strstreambuf constructor creates an empty strstreambuf
object that uses dynamic allocation. No buffer is allocated to start. Whenever characters are
written to extend the strstreambuf object, the reserve area is reallocated and copied as
required, using the specified alloc_fn and free_fn functions. The size of allocation is
determined by the class unless the setbuf orallocsizeincrement member
functions are called to change the allocation size. The default allocation size is determined
by the constant
DEFAULTMAINBUFSIZE

, which is 512.

When a new reserve area is allocated, the function specified by the alloc_fn parameter is
called with a long integer value indicating the number of bytes to allocate. If alloc_fn
is NULL, the operator new intrinsic function is used. Likewise, when the reserve area is
freed, the function specified by the free_fn parameter is called with the pointer returned by
the alloc_fn function as the parameter. If free_fn is NULL, the operator delete
intrinsic function is used.

Results: This form of the public strstreambuf constructor creates a strstreambuf object.

See Also:strstreambuf::allocsizeincrement, doallocate, setbuf,
~strstreambuf

878 Input/Output Classes

strstreambuf::strstreambuf()

Synopsis: #include <strstrea.h>
public:
strstreambuf::strstreambuf(char *str,
int len,
char *pstart = NULL);
strstreambuf::strstreambuf(signed char *str,
int len,
signed char *pstart = NULL);
strstreambuf::strstreambuf(unsigned char *str,
int len,
unsigned char *pstart = NULL);

Semantics: This form of the public strstreambuf constructor creates a strstreambuf object that
does not use dynamic allocation (unless str is NULL). The strstreambuf object is said to
be using static allocation. The str and len parameters specify the bounds of the reserve area.

The str, len and pstart parameters are interpreted as follows:

1. The buffer starts at str.

2. If len is positive, the buffer is len characters long.

3. If len is zero, str is a pointer to a C string which is terminated by a null character,
and the length of the buffer is the length of the string.

4. If len is negative, the buffer is unbounded. This last form should be used with
extreme caution, since no buffer is truly unlimited in size and it would be easy to
write beyond the available space.

5. If the pstart parameter is NULL, the strstreambuf object is read-only.

6. Otherwise, pstart divides the buffer into two regions. The get area starts at str
and ends at pstart-1. The put area starts at pstart and goes to the end of the
buffer.

If the get area is exhausted and characters have been written to the put area, the get area is
extended to include the put area.

The get pointer and put pointer do not necessarily point at the same position in the reserve
area, so a read followed by a write does not imply that the write stores following the last
character read. The get pointer is positioned following the last read operation, and the put
pointer is positioned following the last write operation, unless the seekoff member
function has been used to reposition the pointer(s).

Note that if str is NULL the effect is to create an empty dynamic strstreambuf object.

Input/Output Classes 879

strstreambuf::strstreambuf()

Results: This form of the public strstreambuf constructor creates a strstreambuf object.

See Also: ~strstreambuf

880 Input/Output Classes

strstreambuf::~strstreambuf()

Synopsis: #include <strstrea.h>
public:
strstreambuf::~strstreambuf();

Semantics: The public ~strstreambuf destructor destroys the strstreambuf object after
discarding the reserve area. The reserve area is discarded only if the strstreambuf
object is using dynamic allocation and is not frozen. The reserve area is freed using the free
function specified by the form of the constructor that allows specification of the allocate and
free functions, or using the operator delete intrinsic function. If the
strstreambuf object is frozen or using static allocation, the user of the strstreambuf
object must have a pointer to the reserve area and is responsible for freeing it. The call to
the public ~strstreambuf destructor is inserted implicitly by the compiler at the point
where the strstreambuf object goes out of scope.

Results: The strstreambuf object is destroyed.

See Also: strstreambuf

Input/Output Classes 881

strstreambuf::sync()

Synopsis: #include <strstrea.h>
public:
virtual int strstreambuf::sync();

Semantics: The sync public virtual member function does nothing because there is no external device
with which to synchronize.

Results: The sync public virtual member function returns
NOTEOF

.

882 Input/Output Classes

strstreambuf::underflow()

Synopsis: #include <strstrea.h>
public:
virtual int strstreambuf::underflow();

Semantics: The underflow public virtual member function provides the input communication between
the streambuf member functions and the strstreambuf object. Member functions in
the streambuf class call the underflow public virtual member function when the get
area is empty.

If there is a non-empty put area present following the get area, the get area is extended to
include the put area, allowing the input operation to continue using the put area. Otherwise
the get area cannot be extended.

Results: The underflow public virtual member function returns the first available character in the
get area on successful extension, otherwise EOF is returned.

See Also: streambuf::underflow
strstreambuf::overflow

Input/Output Classes 883

strstreambuf::underflow()

884 Input/Output Classes

19 String Class

This class is used to store arbitrarily long sequences of characters in memory. Objects of this
type may be concatenated, substringed, compared and searched without the need for memory
management by the user. Unlike a C string, this object has no delimiting character, so any
character in the collating sequence, or character set, may be stored in an object.

The class documented here is the Open Watcom legacy string class. It is not related to thestd::basicstring class template nor to its corresponding specialization
std::string.

String Class 885

String

Declared: string.hpp

The String class is used to store arbitrarily long sequences of characters in memory.
Objects of this type may be concatenated, substringed, compared and searched without the
need for memory management by the user. Unlike a C string, a String object has no
delimiting character, so any character in the collating sequence, or character set, may be
stored in a String object.

Public Functions

The following constructors and destructors are declared:

String();String(sizet,capacity);String(Stringconst&,sizet=0,sizet=NPOS);String(charconst*,sizet=NPOS);String(char,sizet=1);
~String();

The following member functions are declared:

operator char const *();
operator char() const;
String &operator =(String const &);
String &operator =(char const *);
String &operator +=(String const &);
String &operator +=(char const *);Stringoperator()(sizet,sizet)const;char&operator()(sizet);charconst&operator[](sizet)const;char&operator[](sizet);
int operator !() const;sizetlength()const;charconst&getat(sizet)const;voidputat(sizet,char);
int match(String const &) const;
int match(char const *) const;intindex(Stringconst&,sizet=0)const;intindex(charconst*,sizet=0)const;
String upper() const;
String lower() const;
int valid() const;intallocmultsize()const;intallocmultsize(int);
The following friend functions are declared:

886 String Class

String

friend int operator ==(String const &, String const &);
friend int operator ==(String const &, char const *);
friend int operator ==(char const *, String const &);
friend int operator ==(String const &, char);
friend int operator ==(char , String const &);
friend int operator !=(String const &, String const &);
friend int operator !=(String const &, char const *);
friend int operator !=(char const *, String const &);
friend int operator !=(String const &, char);
friend int operator !=(char , String const &);
friend int operator <(String const &, String const &);
friend int operator <(String const &, char const *);
friend int operator <(char const *, String const &);
friend int operator <(String const &, char);
friend int operator <(char , String const &);
friend int operator <=(String const &, String const &);
friend int operator <=(String const &, char const *);
friend int operator <=(char const *, String const &);
friend int operator <=(String const &, char);
friend int operator <=(char , String const &);
friend int operator >(String const &, String const &);
friend int operator >(String const &, char const *);
friend int operator >(char const *, String const &);
friend int operator >(String const &, char);
friend int operator >(char , String const &);
friend int operator >=(String const &, String const &);
friend int operator >=(String const &, char const *);
friend int operator >=(char const *, String const &);
friend int operator >=(String const &, char);
friend int operator >=(char , String const &);
friend String operator +(String &, String const &);
friend String operator +(String &, char const *);
friend String operator +(char const *, String const &);
friend String operator +(String &, char);
friend String operator +(char , String const &);
friend int valid(String const &);

The following I/O Stream inserter and extractor functions are declared:

friend istream &operator >>(istream &, String &);
friend ostream &operator <<(ostream &, String const &);

String Class 887

String::alloc_mult_size()

Synopsis: #include <string.hpp>
public:intString::allocmultsize()const;intString::allocmultsize(intmult);

Semantics: Theallocmultsize public member function is used to query and/or change the
allocation multiple size.

The first form of theallocmultsize public member function queries the current
setting.

The second form of theallocmultsize public member function sets the value to a
multiple of 8 based on the mult parameter. The value of mult is rounded down to a multiple
of 8 characters. If mult is less than 8, the new multiple size is 1 and allocation sizes are
exact.

The scheme used to store a String object allocates the memory for the characters in
multiples of some size. By default, this size is 8 characters. A String object with a length
of 10 actually has 16 characters of storage allocated for it. Concatenating more characters on
the end of the String object only allocates a new storage block if more than 6 (16-10)
characters are appended. This scheme tries to find a balance between reallocating frequently
(multiples of a small value) and creating a large amount of unused space (multiples of a large
value).

Results: Theallocmultsize public member function returns the previous allocation multiple
size.

888 String Class

String::get_at()

Synopsis: #include <string.hpp>
public:charconst&String::getat(sizetpos);

Semantics: Thegetat public member function creates a const reference to the character at offset pos
within the String object. This reference may not be used to modify that character. The
first character of a String object is at position zero.

If pos is greater than or equal to the length of the String object, and the resulting reference
is used, the behavior is undefined.

The reference is associated with the String object, and therefore has meaning only as long
as the String object is not modified (or destroyed). If the String object has been
modified and an old reference is used, the behavior is undefined.

Results: Thegetat public member function returns a const reference to a character.

See Also:
String::putat, operator [], operator ()

String Class 889

String::index()

Synopsis: #include <string.hpp>
public:intString::index(Stringconst&str,sizetpos=0)const;intString::index(charconst*pch,sizetpos=0)const;

Semantics: The index public member function computes the offset at which a sequence of characters in
the String object is found.

The first form searches the String object for the contents of the str String object.

The second form searches the String object for the sequence of characters pointed at by
pch.

If pos is specified, the search begins at that offset from the start of the String object.
Otherwise, the search begins at offset zero (the first character).

The index public member function treats upper and lower case letters as not equal.

Results: The index public member function returns the offset at which the sequence of characters is
found. If the substring is not found, -1 is returned.

See Also: String::lower, operator !=, operator ==, match, upper

890 String Class

String::length()

Synopsis: #include <string.hpp>
public:sizetString::length()const;

Semantics: The length public member function computes the number of characters contained in the
String object.

Results: The length public member function returns the number of characters contained in the
String object.

String Class 891

String::lower()

Synopsis: #include <string.hpp>
public:
String String::lower() const;

Semantics: The lower public member function creates a String object whose value is the same as the
original object’s value, except that all upper-case letters have been converted to lower-case.

Results: The lower public member function returns a lower-case String object.

See Also: String::upper

892 String Class

String::match()

Synopsis: #include <string.hpp>
public:
int String::match(String const &str) const;
int String::match(char const *pch) const;

Semantics: The match public member function compares two character sequences to find the offset
where they differ.

The first form compares the String object to the str String object.

The second form compares the String object to the pch C string.

The first character is at offset zero. The match public member function treats upper and
lower case letters as not equal.

Results: The match public member function returns the offset at which the two character sequences
differ. If the character sequences are equal, -1 is returned.

See Also: String::index, lower, operator !=, operator ==, upper

String Class 893

String::operator !()

Synopsis: #include <string.hpp>
public:
int String::operator !() const;

Semantics: The operator ! public member function tests the validity of the String object.

Results: The operator ! public member function returns a non-zero value if the String object
is invalid, otherwise zero is returned.

See Also: String::valid, valid

894 String Class

String operator !=()

Synopsis: #include <string.hpp>
public:
friend int operator !=(String const &lft,
String const &rht);
friend int operator !=(String const &lft,
char const *rht);
friend int operator !=(char const *lft,
String const &rht);
friend int operator !=(String const &lft,
char rht);
friend int operator !=(char lft,
String const &rht);

Semantics: The operator != function compares two sequences of characters in terms of an
inequality relationship.

A String object is different from another String object if the lengths are different or
they contain different sequences of characters. A String object and a C string are different
if their lengths are different or they contain a different sequence of characters. A C string is
terminated by a null character. A String object and a character are different if the
String object does not contain only the character. Upper-case and lower-case characters
are considered different.

Results: The operator != function returns a non-zero value if the lengths or sequences of
characters in the lft and rht parameter are different, otherwise zero is returned.

See Also: String::operator ==, operator <, operator <=, operator >,
operator >=

String Class 895

String::operator ()()

Synopsis: #include <string.hpp>
public:char&String::operator()(sizetpos);

Semantics: The operator () public member function creates a reference to the character at offset
pos within the String object. This reference may be used to modify that character. The
first character of a String object is at position zero.

If pos is greater than or equal to the length of the String object, and the resulting reference
is used, the behavior is undefined.

If the reference is used to modify other characters within the String object, the behavior is
undefined.

The reference is associated with the String object, and therefore has meaning only as long
as the String object is not modified (or destroyed). If the String object has been
modified and an old reference is used, the behavior is undefined.

Results: The operator () public member function returns a reference to a character.

See Also: String::operator [], operator char, operator char const *

896 String Class

String::operator ()()

Synopsis: #include <string.hpp>
public:StringString::operator()(sizetpos,sizetlen)const;

Semantics: This form of the operator () public member function extracts a sub-sequence of
characters from the String object. A new String object is created that contains the
sub-sequence of characters. The sub-sequence begins at offset pos within the String
object and continues for len characters. The first character of a String object is at position
zero.

If pos is greater than or equal to the length of the String object, the result is empty.

If len is such that pos + len exceeds the length of the object, the result is the sub-sequence of
characters from the String object starting at offset pos and running to the end of the
String object.

Results: The operator () public member function returns a String object.

See Also: String::operator [], operator char, operator char const *

String Class 897

String operator +()

Synopsis: #include <string.hpp>
public:
friend String operator +(String &lft,
String const &rht);
friend String operator +(String &lft,
char const *rht);
friend String operator +(char const *lft,
String const &rht);
friend String operator +(String &lft,
char rht);
friend String operator +(char lft,
String const &rht);

Semantics: The operator + function concatenates two sequences of characters into a new String
object. The new String object contains the sequence of characters from the lft parameter
followed by the sequence of characters from the rht parameter.

A NULL pointer to a C string is treated as a pointer to an empty C string.

Results: The operator + function returns a new String object that contains the characters from
the lft parameter followed by the characters from the rht parameter.

See Also: String::operator +=

898 String Class

String::operator +=()

Synopsis: #include <string.hpp>
public:
String &String::operator +=(String const &str);
String &String::operator +=(char const *pch);

Semantics: The operator += public member function appends the contents of the parameter to the
end of the String object.

The first form of the operator += public member function appends the contents of the str
String object to the String object.

The second form appends the null-terminated sequence of characters stored at pch to the
String object. If the pch parameter is NULL, nothing is appended.

Results: The operator += public member function returns a reference to the String object that
was the target of the assignment.

See Also: String::operator =

String Class 899

String operator <()

Synopsis: #include <string.hpp>
public:
friend int operator <(String const &lft, String const &rht);
friend int operator <(String const &lft, char const *rht);
friend int operator <(char const *lft, String const &rht);
friend int operator <(String const &lft, char rht);
friend int operator <(char lft, String const &rht);

Semantics: The operator < function compares two sequences of characters in terms of a less-than
relationship.

lft is less-than rht if lft if the characters of lft occur before the characters of rht in the
collating sequence. Upper-case and lower-case characters are considered different.

Results: The operator < function returns a non-zero value if the lft sequence of characters is less
than the rht sequence, otherwise zero is returned.

See Also: String::operator !=, operator ==, operator <=, operator >,
operator >=

900 String Class

String operator <<()

Synopsis: #include <string.hpp>
public:
friend ostream &operator <<(ostream &strm,
String const &str);

Semantics: The operator << function is used to write the sequence of characters in the str String
object to the strm ostream object. Like C strings, the value of the str String object is
written to strm without the addition of any characters. No special processing occurs for any
characters in the String object that have special meaning for the strm object, such as
carriage-returns.

The underlying implementation of the operator << function uses the ostream write
method, which writes unformatted characters to the output stream. If formatted output is
required, then the programmer should make use of the classes accessor methods, such as
c_str(), and pass the resulting data item to the stream using the appropriate insert operator.

Results: The operator << function returns a reference to the strm parameter.

See Also: ostream

String Class 901

String operator <=()

Synopsis: #include <string.hpp>
public:
friend int operator <=(String const &lft,
String const &rht);
friend int operator <=(String const &lft,
char const *rht);
friend int operator <=(char const *lft,
String const &rht);
friend int operator <=(String const &lft,
char rht);
friend int operator <=(char lft,
String const &rht);

Semantics: The operator <= function compares two sequences of characters in terms of a less-than
or equal relationship.

lft is less-than or equal to rht if the characters of lft are equal to or occur before the characters
of rht in the collating sequence. Upper-case and lower-case characters are considered
different.

Results: The operator <= function returns a non-zero value if the lft sequence of characters is less
than or equal to the rht sequence, otherwise zero is returned.

See Also: String::operator !=, operator ==, operator <, operator >,
operator >=

902 String Class

String::operator =()

Synopsis: #include <string.hpp>
public:
String &String::operator =(String const &str);
String &String::operator =(char const *pch);

Semantics: The operator = public member function sets the contents of the String object to be the
same as the parameter.

The first form of the operator = public member function sets the value of the String
object to be the same as the value of the str String object.

The second form sets the value of the String object to the null-terminated sequence of
characters stored at pch. If the pch parameter is NULL, the String object is empty.

Results: The operator = public member function returns a reference to the String object that
was the target of the assignment.

See Also: String::operator +=, String

String Class 903

String operator ==()

Synopsis: #include <string.hpp>
public:
friend int operator ==(String const &lft,
String const &rht);
friend int operator ==(String const &lft,
char const *rht);
friend int operator ==(char const *lft,
String const &rht);
friend int operator ==(String const &lft,
char rht);
friend int operator ==(char lft,
String const &rht);

Semantics: The operator == function compares two sequences of characters in terms of an equality
relationship.

A String object is equal to another String object if they have the same length and they
contain the same sequence of characters. A String object and a C string are equal if their
lengths are the same and they contain the same sequence of characters. The C string is
terminated by a null character. A String object and a character are equal if the String
object contains only that character. Upper-case and lower-case characters are considered
different.

Results: The operator == function returns a non-zero value if the lengths and sequences of
characters in the lft and rht parameter are identical, otherwise zero is returned.

See Also: String::operator !=, operator <, operator <=, operator >,
operator >=

904 String Class

String operator >()

Synopsis: #include <string.hpp>
public:
friend int operator >(String const &lft, String const &rht);
friend int operator >(String const &lft, char const *rht);
friend int operator >(char const *lft, String const &rht);
friend int operator >(String const &lft, char rht);
friend int operator >(char lft, String const &rht);

Semantics: The operator > function compares two sequences of characters in terms of a
greater-than relationship.

lft is greater-than rht if the characters of lft occur after the characters of rht in the collating
sequence. Upper-case and lower-case characters are considered different.

Results: The operator > function returns a non-zero value if the lft sequence of characters is
greater than the rht sequence, otherwise zero is returned.

See Also: String::operator !=, operator ==, operator <, operator <=,
operator >=

String Class 905

String operator >=()

Synopsis: #include <string.hpp>
public:
friend int operator >=(String const &lft,
String const &rht);
friend int operator >=(String const &lft,
char const *rht);
friend int operator >=(char const *lft,
String const &rht);
friend int operator >=(String const &lft,
char rht);
friend int operator >=(char lft,
String const &rht);

Semantics: The operator >= function compares two sequences of characters in terms of a
greater-than or equal relationship.

lft is greater-than or equal to rht if the characters of lft are equal to or occur after the
characters of rht in the collating sequence. Upper-case and lower-case characters are
considered different.

Results: The operator >= function returns a non-zero value if the lft sequence of characters is
greater than or equal to the rht sequence, otherwise zero is returned.

See Also: String::operator !=, operator ==, operator <, operator <=,
operator >

906 String Class

String operator >>()

Synopsis: #include <string.hpp>
public:
friend istream &operator >>(istream &strm, String &str);

Semantics: The operator >> function is used to read a sequence of characters from the strm
istream object into the str String object. Like C strings, the gathering of characters for
a str String object ends at the first whitespace encountered, so that the last character
placed in str is the character before the whitespace.

Results: The operator >> function returns a reference to the strm parameter.

See Also: istream

String Class 907

String::operator []()

Synopsis: #include <string.hpp>
public:charconst&String::operator[](sizetpos)const;char&String::operator[](sizetpos);

Semantics: The operator [] public member function creates either a const or a non-const reference
to the character at offset pos within the String object. The non-const reference may be
used to modify that character. The first character of a String object is at position zero.

If pos is greater than or equal to the length of the String object, and the resulting reference
is used, the behavior is undefined.

If the non-const reference is used to modify other characters within the String object, the
behavior is undefined.

The reference is associated with the String object, and therefore has meaning only as long
as the String object is not modified (or destroyed). If the String object has been
modified and an old reference is used, the behavior is undefined.

Results: The operator [] public member function returns either a const or a non-const reference
to a character.

See Also: String::operator (), operator char, operator char const *

908 String Class

String::operator char()

Synopsis: #include <string.hpp>
public:
String::operator char();

Semantics: The operator char public member function converts a String object into the first
character it contains. If the String object is empty, the result is the null character.

Results: The operator char public member function returns the first character contained in the
String object. If the String object is empty, the null character is returned.

See Also: String::operator (), operator [], operator char const *

String Class 909

String::operator char const *()

Synopsis: #include <string.hpp>
public:
String::operator char const *();

Semantics: The operator char const * public member function converts a String object into
a C string containing the same length and sequence of characters, terminated by a null
character. If the String object contains a null character the resulting C string is terminated
by that null character.

The returned pointer is associated with the String object, and therefore has meaning only
as long as the String object is not modified. If the intention is to be able to refer to the C
string after the String object has been modified, a copy of the string should be made,
perhaps by using the C library strdup function.

The returned pointer is a pointer to a constant C string. If the pointer is used in some way to
modify the C string, the behavior is undefined.

Results: The operator char const * public member function returns a pointer to a
null-terminated constant C string that contains the same characters as the String object.

See Also: String::operator (), operator [], operator char

910 String Class

String::put_at()

Synopsis: #include <string.hpp>
public:voidString::putat(sizetpos,charchr);

Semantics: Theputat public member function modifies the character at offset pos within the
String object. The character at the specified offset is set to the value of chr. If pos is
greater than the number of characters within the String object, chr is appended to the
String object.

Results: Theputat public member function has no return value.

See Also:String::getat, operator [], operator (), operator +=, operator +

String Class 911

String::String()

Synopsis: #include <string.hpp>
public:
String::String();

Semantics: This form of the public String constructor creates a default String object containing no
characters. The created String object has length zero.

Results: This form of the public String constructor produces a String object.

See Also: String::operator =, operator +=, ~String

912 String Class

String::String()

Synopsis: #include <string.hpp>
public:String::String(sizetsize,String::capacitycap);

Semantics: This form of the public String constructor creates a String object. The function
constructs a String object of length size if cap is equal to the enumerated default_size.
The function reserves size bytes of memory and sets the length of the String object to be
zero if cap is equal to the enumerated reserve.

Results: This form of the public String constructor produces a String object of size size.

See Also: String::operator =, ~String

String Class 913

String::String()

Synopsis: #include <string.hpp>
public:
String::String(String const &str,sizetpos=0,sizetnum=NPOS);

Semantics: This form of the public String constructor creates a String object which contains a
sub-string of the str parameter. The sub-string starts at position pos within str and continues
for num characters or until the end of the str parameter, whichever comes first.

Results: This form of the public String constructor produces a sub-string or duplicate of the str
parameter.

See Also: String::operator =, operator (), operator [], ~String

914 String Class

String::String()

Synopsis: #include <string.hpp>
public:String::String(charconst*pch,sizetnum=NPOS);

Semantics: This form of the public String constructor creates a String object from a C string. The
String object contains the sequence of characters located at the pch parameter. Characters
are included up to num or the end of the C string pointed at by pch. Note that C strings are
terminated by a null character and that the value of the created String object does not
contain that character, nor any following it.

Results: This form of the public String constructor produces a String object of at most length n
containing the characters in the C string starting at the pch parameter.

See Also: String::operator =, operator char const *, operator (),
operator [], ~String

String Class 915

String::String()

Synopsis: #include <string.hpp>
public:String::String(charch,sizetrep=1);

Semantics: This form of the public String constructor creates a String object containing rep copies
of the ch parameter.

Results: This form of the public String constructor produces a String object of length rep
containing only the character specified by the ch parameter.

See Also: String::operator =, operator char, ~String

916 String Class

String::~String()

Synopsis: #include <string.hpp>
public:
String::~String();

Semantics: The public ~String destructor destroys the String object. The call to the public
~String destructor is inserted implicitly by the compiler at the point where the String
object goes out of scope.

Results: The String object is destroyed.

See Also: String

String Class 917

String::upper()

Synopsis: #include <string.hpp>
public:
String String::upper() const;

Semantics: The upper public member function creates a new String object whose value is the same
as the original String object, except that all lower-case letters have been converted to
upper-case.

Results: The upper public member function returns a new upper-case String object.

See Also: String::lower

918 String Class

String valid()

Synopsis: #include <string.hpp>
public:
friend int valid(String const &str);

Semantics: The valid function tests the validity of the str String object.

Results: The valid function returns a non-zero value if the str String object is valid, otherwise
zero is returned.

See Also: String::operator !, valid

String Class 919

String::valid()

Synopsis: #include <string.hpp>
public:
int String::valid() const;

Semantics: The valid public member function tests the validity of the String object.

Results: The valid public member function returns a non-zero value if the String object is valid,
otherwise zero is returned.

See Also: String::operator !, valid

920 String Class

Index

WCPtrConstSListIter<Type> 354
WCPtrDList<Type> 264, 274

_ WCPtrDListIter<Type> 371, 379
WCPtrOrderedVector<Type> 542, 549
WCPtrSList<Type> 264, 274
WCPtrSListIter<Type> 371, 379__NOT_EOF 9
WCPtrSortedVector<Type> 542, 549
WCValConstDListIter<Type> 390
WCValConstSListIter<Type> 390
WCValDList<Type> 291, 302A
WCValDListIter<Type> 407, 416
WCValOrderedVector<Type> 586, 593
WCValSList<Type> 291, 302
WCValSListIter<Type> 407, 416abs, related function
WCValSortedVector<Type> 586, 593Complex 21, 23

arg, related functionacos, related function
Complex 21, 26Complex 21, 24

asin, related functionacosh, related function
Complex 21, 27Complex 21, 25

asinh, related functionadjustfield, member enumeration
Complex 21, 28ios 683

atan, related functionall_fine, member enumeration
Complex 21, 29WCExcept 74

atanh, related functionWCIterExcept 80
Complex 21, 30alloc_mult_size, member function

ate, member enumerationString 886, 888
ios 694alloc_size_increment, member function

atend, member enumerationstrstreambuf 867, 869
ios 694allocate, member function

attach, member functionstreambuf 813, 815
filebuf 629-630allocator
fstreambase 653-654function 267, 271, 295, 299, 431, 531

app, member enumeration
ios 694

append, member enumeration
Bios 694

append, member function
WCIsvConstDListIter<Type> 318
WCIsvConstSListIter<Type> 318

bad, member functionWCIsvDList<Type> 241, 249
ios 673, 675WCIsvDListIter<Type> 335, 343

badbit, member enumerationWCIsvSList<Type> 241, 249
ios 692WCIsvSListIter<Type> 335, 343

base, member functionWCPtrConstDListIter<Type> 354

921

Index

streambuf 813, 816 WCPtrDList<Type> 264, 275
basefield, member enumeration WCPtrHashDict<Key,Value> 89, 96

ios 683 WCPtrHashSet<Type> 112, 123
beg, member enumeration WCPtrHashTable<Type> 112, 123

ios 702 WCPtrOrderedVector<Type> 541, 550
binary, member enumeration WCPtrSkipList<Type> 463, 472

ios 694 WCPtrSkipListDict<Key,Value> 443, 448
bitalloc, member function WCPtrSkipListSet<Type> 463, 472

ios 674, 676 WCPtrSList<Type> 264, 275
bitHash, member function WCPtrSortedVector<Type> 541, 550

WCPtrHashDict<Key,Value> 89, 94 WCPtrVector<Type> 572, 577
WCPtrHashSet<Type> 112, 121 WCQueue<Type,FType> 428, 433
WCPtrHashTable<Type> 112, 121 WCStack<Type,FType> 528, 533
WCValHashDict<Key,Value> 138, 143 WCValDList<Type> 291, 303
WCValHashSet<Type> 160, 169 WCValHashDict<Key,Value> 138, 145
WCValHashTable<Type> 160, 169 WCValHashSet<Type> 160, 171

blen, member function WCValHashTable<Type> 160, 171
streambuf 813, 817 WCValOrderedVector<Type> 585, 594

buckets, member function WCValSkipList<Type> 505, 514
WCPtrHashDict<Key,Value> 89, 95 WCValSkipListDict<Key,Value> 486, 491
WCPtrHashSet<Type> 112, 122 WCValSkipListSet<Type> 505, 514
WCPtrHashTable<Type> 112, 122 WCValSList<Type> 291, 303
WCValHashDict<Key,Value> 138, 144 WCValSortedVector<Type> 585, 594
WCValHashSet<Type> 160, 170 WCValVector<Type> 616, 621
WCValHashTable<Type> 160, 170 clearAndDestroy, member function

WCIsvDList<Type> 241, 251
WCIsvSList<Type> 241, 251
WCPtrDList<Type> 264, 276
WCPtrHashDict<Key,Value> 89, 97C
WCPtrHashSet<Type> 112, 124
WCPtrHashTable<Type> 112, 124
WCPtrOrderedVector<Type> 541, 551

cerr 11 WCPtrSkipList<Type> 463, 473
check_all, member enumeration WCPtrSkipListDict<Key,Value> 443, 449

WCExcept 74 WCPtrSkipListSet<Type> 463, 473
WCIterExcept 80 WCPtrSList<Type> 264, 276

check_none, member enumeration WCPtrSortedVector<Type> 541, 551
WCExcept 74 WCPtrVector<Type> 572, 578
WCIterExcept 80 WCValDList<Type> 291, 304

cin 11 WCValSList<Type> 291, 304
clear, member function clog 11

ios 673, 677 close, member function
WCIsvDList<Type> 241, 250 filebuf 629, 631
WCIsvSList<Type> 241, 250 fstreambase 653, 655

922

Index

common types 9 Complex::operator = 20, 56
Complex class 19 Complex::real 20, 61
Complex related functions Complex::~Complex 20, 34

abs 21, 23 conj, related function
acos 21, 24 Complex 21, 35
acosh 21, 25 constructor
arg 21, 26 Complex 20, 31-33
asin 21, 27 filebuf 629, 633-635
asinh 21, 28 fstream 646-650
atan 21, 29 fstreambase 653, 656-659
atanh 21, 30 ifstream 666-670
conj 21, 35 ios 673, 689-690
cos 21, 36 iostream 710-713
cosh 21, 37 istream 717, 729-731
exp 21, 38 istrstream 748-750
imag 21, 40 ofstream 767-771
log 21 ostream 774, 789-791
log10 21, 42 ostrstream 798-800
norm 21, 43 stdiobuf 804, 806-807
num 41 streambuf 813, 851-852
operator != 21, 44 String 886, 912-916
operator * 21, 45 strstream 857, 859-860
operator + 20-21, 48 strstreambase 862, 864-865
operator - 21, 51 strstreambuf 867, 876-879
operator / 21, 53 WCDLink 237-238
operator << 20, 55 WCExcept 70-71
operator == 21, 57 WCIsvConstSListIter<Type> 318
operator >> 20, 58 WCIsvSList<Type> 240-241
polar 21, 59 WCIsvSListIter<Type> 335
pow 21, 60 WCIterExcept 76-77
real 21, 62 WCPtrConstSListIter<Type> 354
sin 21, 63 WCPtrHashDict<Key,Value> 90-92
sinh 21, 64 WCPtrHashDictIter<Key,Value> 186
sqrt 21, 65 WCPtrHashSetIter<Type> 208
tan 22, 66 WCPtrHashTable<Type> 113-115, 117-119
tanh 22, 67 WCPtrSkipList<Type> 464-466, 468-470

Complex::Complex 20, 31-33 WCPtrSkipListDict<Key,Value> 444-446
Complex::imag 20, 39 WCPtrSList<Type> 264
Complex::operator *= 20, 46 WCPtrSListIter<Type> 371
Complex::operator + 20, 47 WCPtrSortedVector<Type> 543-544, 546-547
Complex::operator += 20, 49 WCPtrVector<Type> 572-575
Complex::operator - 20, 50 WCQueue<Type,FType> 428, 430-431
Complex::operator -= 20, 52 WCSLink 288-289
Complex::operator /= 20, 54 WCStack<Type,FType> 528, 530-531

923

Index

WCValConstSListIter<Type> 390 WCValDList<Type> 291, 305
WCValHashDict<Key,Value> 139-141 WCValHashDict<Key,Value> 138, 146
WCValHashDictIter<Key,Value> 197 WCValHashSet<Type> 160, 172
WCValHashSetIter<Type> 221 WCValHashTable<Type> 160, 172
WCValHashTable<Type> 161-163, 165-167 WCValOrderedVector<Type> 585, 595
WCValSkipList<Type> 506-508, 510-512 WCValSkipList<Type> 505, 515
WCValSkipListDict<Key,Value> 487-489 WCValSkipListDict<Key,Value> 486, 492
WCValSList<Type> 291 WCValSkipListSet<Type> 505, 515
WCValSListIter<Type> 407 WCValSList<Type> 291, 305
WCValSortedVector<Type> 587-588, WCValSortedVector<Type> 585, 595

590-591 cos, related function
WCValVector<Type> 615, 617-619 Complex 21, 36

container, member function cosh, related function
WCIsvConstDListIter<Type> 318, 326 Complex 21, 37
WCIsvConstSListIter<Type> 318, 326 cout 11
WCIsvDListIter<Type> 335, 344 cur, member enumeration
WCIsvSListIter<Type> 335, 344 ios 702
WCPtrConstDListIter<Type> 354, 362 current, member function
WCPtrConstSListIter<Type> 354, 362 WCIsvConstDListIter<Type> 318, 327
WCPtrDListIter<Type> 371, 380 WCIsvConstSListIter<Type> 318, 327
WCPtrHashDictIter<Key,Value> 186, 190 WCIsvDListIter<Type> 335, 345
WCPtrHashSetIter<Type> 208, 215 WCIsvSListIter<Type> 335, 345
WCPtrHashTableIter<Type> 208, 215 WCPtrConstDListIter<Type> 354, 363
WCPtrSListIter<Type> 371, 380 WCPtrConstSListIter<Type> 354, 363
WCValConstDListIter<Type> 390, 398 WCPtrDListIter<Type> 371, 381
WCValConstSListIter<Type> 390, 398 WCPtrHashSetIter<Type> 208, 216
WCValDListIter<Type> 407, 417 WCPtrHashTableIter<Type> 208, 216
WCValHashDictIter<Key,Value> 197, 201 WCPtrSListIter<Type> 371, 381
WCValHashSetIter<Type> 221, 228 WCValConstDListIter<Type> 390, 399
WCValHashTableIter<Type> 221, 228 WCValConstSListIter<Type> 390, 399
WCValSListIter<Type> 407, 417 WCValDListIter<Type> 407, 418

contains, member function WCValHashSetIter<Type> 221, 229
WCIsvDList<Type> 241, 252 WCValHashTableIter<Type> 221, 229
WCIsvSList<Type> 241, 252 WCValSListIter<Type> 407, 418
WCPtrDList<Type> 264, 277
WCPtrHashDict<Key,Value> 89, 98
WCPtrHashSet<Type> 112, 125
WCPtrHashTable<Type> 112, 125 D
WCPtrOrderedVector<Type> 541, 552
WCPtrSkipList<Type> 463, 474
WCPtrSkipListDict<Key,Value> 443, 450

dbp, member functionWCPtrSkipListSet<Type> 463, 474
streambuf 813, 818WCPtrSList<Type> 264, 277

dealloctorWCPtrSortedVector<Type> 541, 552

924

Index

function 267, 271, 295, 299, 431, 531 WCValHashDict<Key,Value> 142
dec, manipulator 752-753 WCValHashDictIter<Key,Value> 197
dec, member enumeration WCValHashSetIter<Type> 221

ios 683 WCValHashTable<Type> 164, 168
destructor WCValSkipList<Type> 509, 513

Complex 20, 34 WCValSkipListDict<Key,Value> 490
filebuf 629, 636 WCValSList<Type> 291
fstream 646, 651 WCValSListIter<Type> 407
fstreambase 653, 660 WCValSortedVector<Type> 589, 592
ifstream 666, 671 WCValVector<Type> 615, 620
ios 673, 691 do_sgetn, member function
iostream 710, 714 streambuf 813, 819
istream 717, 732 do_sputn, member function
istrstream 748, 751 streambuf 813, 820
ofstream 767, 772 doallocate, member function
ostream 774, 792 streambuf 813, 821
ostrstream 798, 801 strstreambuf 867, 870
stdiobuf 804, 808
streambuf 813, 853
String 886, 917
strstream 857, 861 E
strstreambase 862, 866
strstreambuf 867, 881
WCDLink 237, 239

eatwhite, member functionWCExcept 70, 72
istream 717, 719WCIsvConstSListIter<Type> 318

eback, member functionWCIsvSList<Type> 240-241
streambuf 813, 822WCIsvSListIter<Type> 335

ebuf, member functionWCIterExcept 76, 78
streambuf 813, 823WCPtrConstSListIter<Type> 354

egptr, member functionWCPtrHashDict<Key,Value> 93
streambuf 813, 824WCPtrHashDictIter<Key,Value> 186

empty_containerWCPtrHashSetIter<Type> 208
exception 74, 254-255, 257, 279-280, 282,WCPtrHashTable<Type> 116, 120

307-308, 310, 435-436, 439, 536, 538,WCPtrSkipList<Type> 467, 471
555, 560, 562, 568-570, 580, 598, 603,WCPtrSkipListDict<Key,Value> 447
605, 611-613, 623WCPtrSList<Type> 264

empty_container, member enumerationWCPtrSListIter<Type> 371
WCExcept 74WCPtrSortedVector<Type> 545, 548

end, member enumerationWCPtrVector<Type> 572, 576
ios 702WCQueue<Type,FType> 428, 432

endl, manipulator 752, 754WCSLink 288, 290
ends, manipulator 752, 755WCStack<Type,FType> 528, 532
entries, member functionWCValConstSListIter<Type> 390

925

Index

WCIsvDList<Type> 241, 253
WCIsvSList<Type> 241, 253

FWCPtrDList<Type> 264, 278
WCPtrHashDict<Key,Value> 89, 99
WCPtrHashSet<Type> 112, 126
WCPtrHashTable<Type> 112, 126 fail, member function
WCPtrOrderedVector<Type> 541, 553 ios 673, 680
WCPtrSkipList<Type> 463, 475 failbit, member enumeration
WCPtrSkipListDict<Key,Value> 443, 451 ios 692
WCPtrSkipListSet<Type> 463, 475 fd, member function
WCPtrSList<Type> 264, 278 filebuf 629, 632
WCPtrSortedVector<Type> 541, 553 fstreambase 653, 662
WCQueue<Type,FType> 428, 434 filebuf 811
WCStack<Type,FType> 528, 534 filebuf::attach 629-630
WCValDList<Type> 292, 306 filebuf::close 629, 631
WCValHashDict<Key,Value> 138, 147 filebuf::fd 629, 632
WCValHashSet<Type> 160, 173 filebuf::filebuf 629, 633-635
WCValHashTable<Type> 160, 173 filebuf::is_open 629, 637
WCValOrderedVector<Type> 585, 596 filebuf::open 629, 638
WCValSkipList<Type> 505, 516 filebuf::openprot 628, 639
WCValSkipListDict<Key,Value> 486, 493 filebuf::overflow 629, 640
WCValSkipListSet<Type> 505, 516 filebuf::pbackfail 629, 641
WCValSList<Type> 292, 306 filebuf::seekoff 629, 642
WCValSortedVector<Type> 585, 596 filebuf::setbuf 629, 643

EOF 9 filebuf::sync 629, 644
eof, member function filebuf::underflow 629, 645

ios 674, 678 filebuf::~filebuf 629, 636
eofbit, member enumeration filedesc 9

ios 692 fill character 681
epptr, member function fill, member function

streambuf 813, 825 ios 674, 681
exception handling 4 find, member function
exceptions 74 WCIsvDList<Type> 241, 254

function 80 WCIsvSList<Type> 241, 254
exceptions, member function WCPtrDList<Type> 264, 279

ios 674, 679 WCPtrHashDict<Key,Value> 89, 100
WCExcept 70, 73 WCPtrHashSet<Type> 112, 127
WCIterExcept 76, 79 WCPtrHashTable<Type> 112, 127

exp, related function WCPtrOrderedVector<Type> 541, 554
Complex 21, 38 WCPtrSkipList<Type> 463, 476

extractor 13, 717 WCPtrSkipListDict<Key,Value> 443, 452
WCPtrSkipListSet<Type> 463, 476
WCPtrSList<Type> 264, 279

926

Index

WCPtrSortedVector<Type> 541, 554 WCPtrHashDict<Key,Value> 89, 102
WCValDList<Type> 292, 307 WCPtrHashSet<Type> 112, 128
WCValHashDict<Key,Value> 138, 148 WCPtrHashTable<Type> 112, 128
WCValHashSet<Type> 160, 174 WCPtrSkipList<Type> 463, 477
WCValHashTable<Type> 160, 174 WCPtrSkipListDict<Key,Value> 443, 454
WCValOrderedVector<Type> 585, 597 WCPtrSkipListSet<Type> 463, 477
WCValSkipList<Type> 505, 517 WCPtrSList<Type> 264, 281
WCValSkipListDict<Key,Value> 486, 494 WCValDList<Type> 292, 309
WCValSkipListSet<Type> 505, 517 WCValHashDict<Key,Value> 138, 150
WCValSList<Type> 292, 307 WCValHashSet<Type> 160, 175
WCValSortedVector<Type> 585, 597 WCValHashTable<Type> 160, 175

findKeyAndValue, member function WCValSkipList<Type> 505, 518
WCPtrHashDict<Key,Value> 89, 101 WCValSkipListDict<Key,Value> 486, 496
WCPtrSkipListDict<Key,Value> 443, 453 WCValSkipListSet<Type> 505, 518
WCValHashDict<Key,Value> 138, 149 WCValSList<Type> 292, 309
WCValSkipListDict<Key,Value> 486, 495 format precision 698

findLast, member function format width 708
WCIsvDList<Type> 241, 255 formatted input 13
WCIsvSList<Type> 241, 255 formatted output 15
WCPtrDList<Type> 264, 280 freeze, member function
WCPtrSList<Type> 264, 280 strstreambuf 867, 871
WCValDList<Type> 292, 308 fstream 653, 710
WCValSList<Type> 292, 308 fstream::fstream 646-650

first, member function fstream::open 646, 652
WCPtrOrderedVector<Type> 541, 555 fstream::~fstream 646, 651
WCPtrSortedVector<Type> 541, 555 fstreambase 646, 666, 767
WCQueue<Type,FType> 428, 435 fstreambase::attach 653-654
WCValOrderedVector<Type> 586, 598 fstreambase::close 653, 655
WCValSortedVector<Type> 586, 598 fstreambase::fd 653, 662

fixed, member enumeration fstreambase::fstreambase 653, 656-659
ios 683 fstreambase::is_open 653, 661

flags, member function fstreambase::open 653, 663
ios 674, 682 fstreambase::rdbuf 653, 664

floatfield, member enumeration fstreambase::setbuf 653, 665
ios 683 fstreambase::~fstreambase 653, 660

flush, manipulator 752, 756 functions and types 17
flush, member function

ostream 774, 776
fmtflags, member enumeration

ios 673, 683 G
forall, member function

WCIsvDList<Type> 241, 256
WCIsvSList<Type> 241, 256

gbump, member functionWCPtrDList<Type> 264, 281

927

Index

streambuf 813, 826 limits 5
gcount, member function list 5

istream 718, 720 map 5
get area 811 memory 5
get pointer 827 new 5
get, member function numeric 5

istream 717-718, 721-724 ostream 5
WCIsvDList<Type> 241, 257 set 5
WCIsvSList<Type> 241, 257 stdiobuf 6
WCPtrDList<Type> 264, 282 streambuf 6
WCPtrSList<Type> 264, 282 string 6
WCQueue<Type,FType> 428, 436 strstream 6
WCValDList<Type> 292, 310 vector 6
WCValSList<Type> 292, 310 wcdefs 6

get_at, member function wclbase 6
String 886, 889 wclcom 6

getline, member function wclibase 6
istream 718, 725 wclist 6

good, member function wclistit 6
ios 673, 687 wcqueue 7

goodbit, member enumeration wcstack 7
ios 692 hex, manipulator 752, 757

gptr, member function hex, member enumeration
streambuf 813, 827 ios 683

H I

header files ifstream 653, 717
algorithm 3 ifstream::ifstream 666-670
complex 4 ifstream::open 666, 672
exception 4 ifstream::~ifstream 666, 671
fstream 4 ignore, member function
functional 4 istream 718, 726
generic 4 imag, member function
iomanip 4 Complex 20, 39
ios 4 imag, related function
iosfwd 4 Complex 21, 40
iostream 4 in, member enumeration
istream 5 ios 694
iterator 5 in_avail, member function

928

Index

streambuf 813, 828 WCValConstDListIter<Type> 390
index, member function WCValConstSListIter<Type> 390

String 886, 890 WCValDList<Type> 292, 312
WCIsvDList<Type> 241, 258-259 WCValDListIter<Type> 407-408, 419
WCIsvSList<Type> 241, 258-259 WCValHashDict<Key,Value> 138, 151
WCPtrDList<Type> 264, 283 WCValHashSet<Type> 160, 176
WCPtrOrderedVector<Type> 541, 556 WCValHashTable<Type> 160, 176
WCPtrSList<Type> 264, 283 WCValOrderedVector<Type> 586, 600
WCPtrSortedVector<Type> 541, 556 WCValSkipList<Type> 505, 519
WCValDList<Type> 292, 311 WCValSkipListDict<Key,Value> 486, 497
WCValOrderedVector<Type> 586, 599 WCValSkipListSet<Type> 505, 519
WCValSList<Type> 292, 311 WCValSList<Type> 292, 312
WCValSortedVector<Type> 586, 599 WCValSListIter<Type> 407-408, 419

index_range WCValSortedVector<Type> 586, 600
exception 74, 106, 154, 255, 280, 308, insertAt, member function

435-436, 439, 458, 500, 536, 538, 555, WCPtrOrderedVector<Type> 542, 558
558, 560, 562, 580, 598, 601, 603, 605, WCPtrSortedVector<Type> 542, 558
623 WCValOrderedVector<Type> 586, 601

index_range, member enumeration WCValSortedVector<Type> 586, 601
WCExcept 74 inserter 15, 774

init, member function internal, member enumeration
ios 673, 688 ios 683

insert, member function intrusive
WCIsvConstDListIter<Type> 318 classes 240
WCIsvConstSListIter<Type> 318 ios 653, 717, 774, 862
WCIsvDList<Type> 241, 260 ios::adjustfield 683
WCIsvDListIter<Type> 335-336, 346 ios::app 694
WCIsvSList<Type> 241, 260 ios::append 694
WCIsvSListIter<Type> 335-336, 346 ios::ate 694
WCPtrConstDListIter<Type> 354 ios::atend 694
WCPtrConstSListIter<Type> 354 ios::bad 673, 675
WCPtrDList<Type> 264, 284 ios::badbit 692
WCPtrDListIter<Type> 371-372, 382 ios::basefield 683
WCPtrHashDict<Key,Value> 89, 103 ios::beg 702
WCPtrHashSet<Type> 112, 129 ios::binary 694
WCPtrHashTable<Type> 112, 129 ios::bitalloc 674, 676
WCPtrOrderedVector<Type> 541, 557 ios::clear 673, 677
WCPtrSkipList<Type> 463, 478 ios::cur 702
WCPtrSkipListDict<Key,Value> 443, 455 ios::dec 683
WCPtrSkipListSet<Type> 463, 478 ios::end 702
WCPtrSList<Type> 264, 284 ios::eof 674, 678
WCPtrSListIter<Type> 371-372, 382 ios::eofbit 692
WCPtrSortedVector<Type> 541, 557 ios::exceptions 674, 679
WCQueue<Type,FType> 428, 437 ios::fail 673, 680

929

Index

ios::failbit 692 ios::uppercase 683
ios::fill 674, 681 ios::width 674, 708
ios::fixed 683 ios::xalloc 674, 709
ios::flags 674, 682 ios::~ios 673, 691
ios::floatfield 683 iostate, member enumeration
ios::fmtflags 673, 683 ios 673, 692
ios::good 673, 687 iostream 646, 717, 774, 857
ios::goodbit 692 iostream::iostream 710-713
ios::hex 683 iostream::operator = 710, 715-716
ios::in 694 iostream::~iostream 710, 714
ios::init 673, 688 ipfx, member function
ios::internal 683 istream 717, 727
ios::ios 673, 689-690 is_open, member function
ios::iostate 673, 692 filebuf 629, 637
ios::iword 674, 693 fstreambase 653, 661
ios::left 683 isEmpty, member function
ios::nocreate 694 WCIsvDList<Type> 241, 261
ios::noreplace 694 WCIsvSList<Type> 241, 261
ios::oct 683 WCPtrDList<Type> 264, 285
ios::openmode 673, 694 WCPtrHashDict<Key,Value> 89, 104
ios::operator ! 674, 696 WCPtrHashSet<Type> 112, 130
ios::operator void * 674, 697 WCPtrHashTable<Type> 112, 130
ios::out 694 WCPtrOrderedVector<Type> 541, 559
ios::precision 674, 698 WCPtrSkipList<Type> 463, 479
ios::pword 674, 699 WCPtrSkipListDict<Key,Value> 443, 456
ios::rdbuf 673, 700 WCPtrSkipListSet<Type> 463, 479
ios::rdstate 673, 701 WCPtrSList<Type> 264, 285
ios::right 683 WCPtrSortedVector<Type> 541, 559
ios::scientific 683 WCQueue<Type,FType> 428, 438
ios::seekdir 673, 702 WCStack<Type,FType> 528, 535
ios::setf 674, 703 WCValDList<Type> 292, 313
ios::setstate 673, 704 WCValHashDict<Key,Value> 138, 152
ios::showbase 683 WCValHashSet<Type> 160, 177
ios::showpoint 683 WCValHashTable<Type> 160, 177
ios::showpos 683 WCValOrderedVector<Type> 586, 602
ios::skipws 683 WCValSkipList<Type> 505, 520
ios::stdio 683 WCValSkipListDict<Key,Value> 486, 498
ios::sync_with_stdio 674, 705 WCValSkipListSet<Type> 505, 520
ios::text 694 WCValSList<Type> 292, 313
ios::tie 673, 706 WCValSortedVector<Type> 586, 602
ios::trunc 694 isfx, member function
ios::truncate 694 istream 717, 728
ios::unitbuf 683 istream 666, 673, 710, 748
ios::unsetf 674, 707 istream input 13

930

Index

istream::eatwhite 717, 719
istream::gcount 718, 720

Listream::get 717-718, 721-724
istream::getline 718, 725
istream::ignore 718, 726
istream::ipfx 717, 727 last, member function
istream::isfx 717, 728 WCPtrOrderedVector<Type> 541, 560
istream::istream 717, 729-731 WCPtrSortedVector<Type> 541, 560
istream::operator = 718, 733-734 WCQueue<Type,FType> 428, 439
istream::operator >> 718, 735-740 WCValOrderedVector<Type> 586, 603
istream::peek 718, 741 WCValSortedVector<Type> 586, 603
istream::putback 718, 742 left, member enumeration
istream::read 718, 743 ios 683
istream::seekg 718, 744-745 length, member function
istream::sync 718, 746 String 886, 891
istream::tellg 718, 747 WCPtrVector<Type> 572, 579
istream::~istream 717, 732 WCValVector<Type> 616, 622
istrstream 717, 862 list containers 6
istrstream::istrstream 748-750 log, related function
istrstream::~istrstream 748, 751 Complex 21
iter_range log10, related function

exception 80, 330, 332, 349, 351, 366, 368, Complex 21, 42
385, 387, 402, 404, 422, 424 lower, member function

iter_range, member enumeration String 886, 892
WCIterExcept 80

iterator classes 6
iword, member function

ios 674, 693 M

K manipulator manipulators
dec 752-753
endl 752, 754
ends 752, 755

key, member function flush 752, 756
WCPtrHashDictIter<Key,Value> 186, 191 hex 752, 757
WCValHashDictIter<Key,Value> 197, 202 oct 752, 758

resetiosflags 752, 759
setbase 752, 760
setfill 752, 761
setiosflags 752, 762
setprecision 752, 763
setw 752, 764

931

Index

setwidth 752, 765 Complex 41
ws 752, 766

manipulators
dec 752-753
endl 752, 754 O
ends 752, 755
flush 752, 756
hex 752, 757

occurrencesOf, member functionoct 752, 758
WCPtrHashSet<Type> 112, 131resetiosflags 752, 759
WCPtrHashTable<Type> 112, 131setbase 752, 760
WCPtrOrderedVector<Type> 541, 561setfill 752, 761
WCPtrSkipList<Type> 463, 480setiosflags 752, 762
WCPtrSkipListSet<Type> 463, 480setprecision 752, 763
WCPtrSortedVector<Type> 541, 561setw 752, 764
WCValHashSet<Type> 160, 178setwidth 752, 765
WCValHashTable<Type> 160, 178ws 752, 766
WCValOrderedVector<Type> 586, 604match, member function
WCValSkipList<Type> 505, 521String 886, 893
WCValSkipListSet<Type> 505, 521
WCValSortedVector<Type> 586, 604

oct, manipulator 752, 758
oct, member enumerationN

ios 683
ofstream 653, 774
ofstream::ofstream 767-771

nocreate, member enumeration ofstream::open 767, 773
ios 694 ofstream::~ofstream 767, 772

noreplace, member enumeration open, member function
ios 694 filebuf 629, 638

norm, related function fstream 646, 652
Complex 21, 43 fstreambase 653, 663

not_empty ifstream 666, 672
exception 74, 93, 116, 120, 142, 164, 168, 245, ofstream 767, 773

248, 269, 273, 297, 301, 432, 447, 467, openmode, member enumeration
471, 490, 509, 513, 532, 545, 548, 576, ios 673, 694
589, 592, 620 openprot, member data

not_empty, member enumeration filebuf 639
WCExcept 74 openprot, member function

not_unique filebuf 628
exception 75, 129, 176, 478, 519 operator !, member function

not_unique, member enumeration ios 674, 696
WCExcept 74 String 886, 894

num, related function operator !=, related function

932

Index

Complex 21, 44 WCValSListIter<Type> 408, 421
String 887, 895 operator +, member function

operator (), member function Complex 20, 47
String 886, 896-897 operator +, related function
WCIsvConstDListIter<Type> 319, 328 Complex 20-21, 48
WCIsvConstSListIter<Type> 319, 328 String 887, 898
WCIsvDListIter<Type> 336, 347 operator +=, member function
WCIsvSListIter<Type> 336, 347 Complex 20, 49
WCPtrConstDListIter<Type> 355, 364 String 886, 899
WCPtrConstSListIter<Type> 355, 364 WCIsvConstDListIter<Type> 319, 330
WCPtrDListIter<Type> 372, 383 WCIsvConstSListIter<Type> 319, 330
WCPtrHashDictIter<Key,Value> 186, 192 WCIsvDListIter<Type> 336, 349
WCPtrHashSetIter<Type> 208, 217 WCIsvSListIter<Type> 336, 349
WCPtrHashTableIter<Type> 208, 217 WCPtrConstDListIter<Type> 355, 366
WCPtrSListIter<Type> 372, 383 WCPtrConstSListIter<Type> 355, 366
WCValConstDListIter<Type> 391, 400 WCPtrDListIter<Type> 372, 385
WCValConstSListIter<Type> 391, 400 WCPtrSListIter<Type> 372, 385
WCValDListIter<Type> 408, 420 WCValConstDListIter<Type> 391, 402
WCValHashDictIter<Key,Value> 197, 203 WCValConstSListIter<Type> 391, 402
WCValHashSetIter<Type> 221, 230 WCValDListIter<Type> 408, 422
WCValHashTableIter<Type> 221, 230 WCValSListIter<Type> 408, 422
WCValSListIter<Type> 408, 420 operator -, member function

operator *, related function Complex 20, 50
Complex 21, 45 operator -, related function

operator *=, member function Complex 21, 51
Complex 20, 46 operator --, member function

operator ++, member function WCIsvConstDListIter<Type> 319, 331
WCIsvConstDListIter<Type> 319, 329 WCIsvConstSListIter<Type> 319, 331
WCIsvConstSListIter<Type> 319, 329 WCIsvDListIter<Type> 335-336, 350
WCIsvDListIter<Type> 336, 348 WCIsvSListIter<Type> 335-336, 350
WCIsvSListIter<Type> 336, 348 WCPtrConstDListIter<Type> 355, 367
WCPtrConstDListIter<Type> 355, 365 WCPtrConstSListIter<Type> 355, 367
WCPtrConstSListIter<Type> 355, 365 WCPtrDListIter<Type> 371-372, 386
WCPtrDListIter<Type> 372, 384 WCPtrSListIter<Type> 371-372, 386
WCPtrHashDictIter<Key,Value> 186, 193 WCValConstDListIter<Type> 391, 403
WCPtrHashSetIter<Type> 208, 218 WCValConstSListIter<Type> 391, 403
WCPtrHashTableIter<Type> 208, 218 WCValDListIter<Type> 407-408, 423
WCPtrSListIter<Type> 372, 384 WCValSListIter<Type> 407-408, 423
WCValConstDListIter<Type> 391, 401 operator -=, member function
WCValConstSListIter<Type> 391, 401 Complex 20, 52
WCValDListIter<Type> 408, 421 WCIsvConstDListIter<Type> 319, 332
WCValHashDictIter<Key,Value> 197, 204 WCIsvConstSListIter<Type> 319, 332
WCValHashSetIter<Type> 221, 231 WCIsvDListIter<Type> 335-336, 351
WCValHashTableIter<Type> 221, 231 WCIsvSListIter<Type> 335-336, 351

933

Index

WCPtrConstDListIter<Type> 355, 368 WCValOrderedVector<Type> 586, 606
WCPtrConstSListIter<Type> 355, 368 WCValSkipList<Type> 505, 522
WCPtrDListIter<Type> 371-372, 387 WCValSkipListDict<Key,Value> 486, 501
WCPtrSListIter<Type> 371-372, 387 WCValSkipListSet<Type> 505, 522
WCValConstDListIter<Type> 391, 404 WCValSList<Type> 292, 314
WCValConstSListIter<Type> 391, 404 WCValSortedVector<Type> 586, 606
WCValDListIter<Type> 407-408, 424 WCValVector<Type> 616, 624
WCValSListIter<Type> 407-408, 424 operator ==, member function

operator /, related function WCIsvDList<Type> 241, 263
Complex 21, 53 WCIsvSList<Type> 241, 263

operator /=, member function WCPtrDList<Type> 265, 287
Complex 20, 54 WCPtrHashDict<Key,Value> 89, 108

operator <, related function WCPtrHashSet<Type> 112, 133
String 887, 900 WCPtrHashTable<Type> 112, 133

operator <<, member function WCPtrOrderedVector<Type> 542, 564
ostream 775, 777-779, 781-784 WCPtrSkipList<Type> 463, 482

operator <<, related function WCPtrSkipListDict<Key,Value> 443, 460
Complex 20, 55 WCPtrSkipListSet<Type> 463, 482
String 887, 901 WCPtrSList<Type> 265, 287

operator <=, related function WCPtrSortedVector<Type> 542, 564
String 887, 902 WCPtrVector<Type> 572, 582

operator =, member function WCValDList<Type> 292, 315
Complex 20, 56 WCValHashDict<Key,Value> 138, 156
iostream 710, 715-716 WCValHashSet<Type> 160, 180
istream 718, 733-734 WCValHashTable<Type> 160, 180
ostream 775, 785-786 WCValOrderedVector<Type> 586, 607
String 886, 903 WCValSkipList<Type> 505, 523
WCIsvDList<Type> 240, 262 WCValSkipListDict<Key,Value> 486, 502
WCIsvSList<Type> 240, 262 WCValSkipListSet<Type> 505, 523
WCPtrDList<Type> 265, 286 WCValSList<Type> 292, 315
WCPtrHashDict<Key,Value> 89, 107 WCValSortedVector<Type> 586, 607
WCPtrHashSet<Type> 112, 132 WCValVector<Type> 616, 625
WCPtrHashTable<Type> 112, 132 operator ==, related function
WCPtrOrderedVector<Type> 542, 563 Complex 21, 57
WCPtrSkipList<Type> 463, 481 String 887, 904
WCPtrSkipListDict<Key,Value> 443, 459 operator >, related function
WCPtrSkipListSet<Type> 463, 481 String 887, 905
WCPtrSList<Type> 265, 286 operator >=, related function
WCPtrSortedVector<Type> 542, 563 String 887, 906
WCPtrVector<Type> 572, 581 operator >>, member function
WCValDList<Type> 292, 314 istream 718, 735-740
WCValHashDict<Key,Value> 138, 155 operator >>, related function
WCValHashSet<Type> 160, 179 Complex 20, 58
WCValHashTable<Type> 160, 179 String 887, 907

934

Index

operator [], member function exception 74, 90, 92, 103, 105, 107, 110, 113,
String 886, 908 115, 117, 119, 129, 132, 136, 139, 141,
WCPtrHashDict<Key,Value> 89, 105-106 151, 153, 155, 158, 161, 163, 165, 167,
WCPtrOrderedVector<Type> 542, 562 176, 179, 183, 268, 272, 274, 284, 286,
WCPtrSkipListDict<Key,Value> 443, 457-458 296, 300, 302, 312, 314, 437, 444, 446,
WCPtrSortedVector<Type> 542, 562 455, 457, 459, 464, 466, 468, 470, 478,
WCPtrVector<Type> 572, 580 481, 487, 489, 497, 499, 501, 506, 508,
WCValHashDict<Key,Value> 138, 153-154 510, 512, 519, 522, 537, 544, 547, 549,
WCValOrderedVector<Type> 586, 605 557-558, 563, 565, 571, 575, 580-581,
WCValSkipListDict<Key,Value> 486, 583, 588, 591, 593, 600-601, 606, 608,

499-500 614, 619, 623-624, 626
WCValSortedVector<Type> 586, 605 out_of_memory, member enumeration
WCValVector<Type> 616, 623 WCExcept 74

operator char const *, member function out_waiting, member function
String 886, 910 streambuf 813, 829

operator char, member function overflow, member function
String 886, 909 filebuf 629, 640

operator void *, member function stdiobuf 804-805
ios 674, 697 streambuf 813, 830

opfx, member function strstreambuf 868, 872
ostream 774, 787

osfx, member function
ostream 774, 788

ostream 673, 710, 767, 798 P
ostream output 15
ostream::flush 774, 776
ostream::operator << 775, 777-779, 781-784

pbackfail, member functionostream::operator = 775, 785-786
filebuf 629, 641ostream::opfx 774, 787
streambuf 813, 831ostream::osfx 774, 788

pbase, member functionostream::ostream 774, 789-791
streambuf 813, 832ostream::put 774, 793

pbump, member functionostream::seekp 774-775, 794-795
streambuf 813, 833ostream::tellp 775, 796

pcount, member functionostream::write 775, 797
ostrstream 798, 802ostream::~ostream 774, 792

peek, member functionostrstream 774, 862
istream 718, 741ostrstream::ostrstream 798-800

pointerostrstream::pcount 798, 802
lists 235ostrstream::str 798, 803

polar, related functionostrstream::~ostrstream 798, 801
Complex 21, 59out, member enumeration

pop, member functionios 694
WCStack<Type,FType> 528, 536out_of_memory 379, 382, 416, 419

935

Index

pow, related function WCPtrHashDict<Key,Value> 89, 109
Complex 21, 60 WCPtrHashSet<Type> 112, 134

pptr, member function WCPtrHashTable<Type> 112, 134
streambuf 813, 834 WCPtrOrderedVector<Type> 541, 566

precision, member function WCPtrSkipList<Type> 463, 483
ios 674, 698 WCPtrSkipListDict<Key,Value> 443, 461

predefined objects 11 WCPtrSkipListSet<Type> 463, 483
prepend, member function WCPtrSortedVector<Type> 541, 566

WCPtrOrderedVector<Type> 542, 565 WCValHashDict<Key,Value> 138, 157
WCPtrSortedVector<Type> 542, 565 WCValHashSet<Type> 160, 181
WCValOrderedVector<Type> 586, 608 WCValHashTable<Type> 160, 181
WCValSortedVector<Type> 586, 608 WCValOrderedVector<Type> 586, 609

push, member function WCValSkipList<Type> 505, 524
WCStack<Type,FType> 528, 537 WCValSkipListDict<Key,Value> 486, 503

put area 811 WCValSkipListSet<Type> 505, 524
put pointer 834 WCValSortedVector<Type> 586, 609
put, member function removeAll, member function

ostream 774, 793 WCPtrHashSet<Type> 112, 135
put_at, member function WCPtrHashTable<Type> 112, 135

String 886, 911 WCPtrOrderedVector<Type> 541, 567
putback, member function WCPtrSkipList<Type> 463, 484

istream 718, 742 WCPtrSkipListSet<Type> 463, 484
pword, member function WCPtrSortedVector<Type> 541, 567

ios 674, 699 WCValHashSet<Type> 160, 182
WCValHashTable<Type> 160, 182
WCValOrderedVector<Type> 586, 610
WCValSkipList<Type> 505, 525
WCValSkipListSet<Type> 505, 525R
WCValSortedVector<Type> 586, 610

removeAt, member function
WCPtrOrderedVector<Type> 541, 568

rdbuf, member function WCPtrSortedVector<Type> 541, 568
fstreambase 653, 664 WCValOrderedVector<Type> 586, 611
ios 673, 700 WCValSortedVector<Type> 586, 611
strstreambase 862-863 removeFirst, member function

rdstate, member function WCPtrOrderedVector<Type> 541, 569
ios 673, 701 WCPtrSortedVector<Type> 541, 569

read, member function WCValOrderedVector<Type> 586, 612
istream 718, 743 WCValSortedVector<Type> 586, 612

real, member function removeLast, member function
Complex 20, 61 WCPtrOrderedVector<Type> 541, 570

real, related function WCPtrSortedVector<Type> 541, 570
Complex 21, 62 WCValOrderedVector<Type> 586, 613

remove, member function WCValSortedVector<Type> 586, 613

936

Index

reserve area 811 exception 75, 540, 543, 546, 549, 557-558,
reset, member function 565, 580, 584, 587, 590, 593, 600-601,

WCIsvConstDListIter<Type> 318-319, 608, 623
333-334 resize_required, member enumeration

WCIsvConstSListIter<Type> 318-319, WCExcept 74
333-334 right, member enumeration

WCIsvDListIter<Type> 335, 352-353 ios 683
WCIsvSListIter<Type> 335, 352-353
WCPtrConstDListIter<Type> 354-355,

369-370
WCPtrConstSListIter<Type> 354-355, S

369-370
WCPtrDListIter<Type> 371, 388-389
WCPtrHashDictIter<Key,Value> 186, 194-195

sbumpc, member functionWCPtrHashSetIter<Type> 208, 219-220
streambuf 813, 835WCPtrHashTableIter<Type> 208, 219-220

scientific, member enumerationWCPtrSListIter<Type> 371, 388-389
ios 683WCValConstDListIter<Type> 390-391,

seekdir, member enumeration405-406
ios 673, 702WCValConstSListIter<Type> 390-391,

seekg, member function405-406
istream 718, 744-745WCValDListIter<Type> 407, 425-426

seekoff, member functionWCValHashDictIter<Key,Value> 197,
filebuf 629, 642205-206
streambuf 814, 836WCValHashSetIter<Type> 221, 232-233
strstreambuf 868, 873WCValHashTableIter<Type> 221, 232-233

seekp, member functionWCValSListIter<Type> 407, 425-426
ostream 774-775, 794-795resetiosflags, manipulator 752, 759

seekpos, member functionresize, member function
streambuf 814, 837WCPtrHashDict<Key,Value> 89, 110

setb, member functionWCPtrHashSet<Type> 112, 136
streambuf 813, 838WCPtrHashTable<Type> 112, 136

setbase, manipulator 752, 760WCPtrOrderedVector<Type> 541, 571
setbuf, member functionWCPtrSortedVector<Type> 541, 571

filebuf 629, 643WCPtrVector<Type> 572, 583
fstreambase 653, 665WCValHashDict<Key,Value> 138, 158
streambuf 814, 839WCValHashSet<Type> 160, 183
strstreambuf 868, 874WCValHashTable<Type> 160, 183

setf, member functionWCValOrderedVector<Type> 586, 614
ios 674, 703WCValSortedVector<Type> 586, 614

setfill, manipulator 752, 761WCValVector<Type> 616, 626
setg, member functionresize_required

streambuf 813, 840
setiosflags, manipulator 752, 762

937

Index

setp, member function stdiobuf::~stdiobuf 804, 808
streambuf 813, 841 stossc, member function

setprecision, manipulator 752, 763 streambuf 813, 850
setstate, member function str, member function

ios 673, 704 ostrstream 798, 803
setw, manipulator 752, 764 strstream 857-858
setwidth, manipulator 752, 765 strstreambuf 867, 875
sgetc, member function streambuf 628, 804, 867

streambuf 813, 842 streambuf::allocate 813, 815
sgetchar, member function streambuf::base 813, 816

streambuf 813, 843 streambuf::blen 813, 817
sgetn, member function streambuf::dbp 813, 818

streambuf 813, 844 streambuf::do_sgetn 813, 819
showbase, member enumeration streambuf::do_sputn 813, 820

ios 683 streambuf::doallocate 813, 821
showpoint, member enumeration streambuf::eback 813, 822

ios 683 streambuf::ebuf 813, 823
showpos, member enumeration streambuf::egptr 813, 824

ios 683 streambuf::epptr 813, 825
sin, related function streambuf::gbump 813, 826

Complex 21, 63 streambuf::gptr 813, 827
sinh, related function streambuf::in_avail 813, 828

Complex 21, 64 streambuf::out_waiting 813, 829
skipws, member enumeration streambuf::overflow 813, 830

ios 683 streambuf::pbackfail 813, 831
snextc, member function streambuf::pbase 813, 832

streambuf 813, 845 streambuf::pbump 813, 833
speekc, member function streambuf::pptr 813, 834

streambuf 813, 846 streambuf::sbumpc 813, 835
sputbackc, member function streambuf::seekoff 814, 836

streambuf 813, 847 streambuf::seekpos 814, 837
sputc, member function streambuf::setb 813, 838

streambuf 813, 848 streambuf::setbuf 814, 839
sputn, member function streambuf::setg 813, 840

streambuf 813, 849 streambuf::setp 813, 841
sqrt, related function streambuf::sgetc 813, 842

Complex 21, 65 streambuf::sgetchar 813, 843
stdio, member enumeration streambuf::sgetn 813, 844

ios 683 streambuf::snextc 813, 845
stdiobuf 811 streambuf::speekc 813, 846
stdiobuf::overflow 804-805 streambuf::sputbackc 813, 847
stdiobuf::stdiobuf 804, 806-807 streambuf::sputc 813, 848
stdiobuf::sync 804, 809 streambuf::sputn 813, 849
stdiobuf::underflow 804, 810 streambuf::stossc 813, 850

938

Index

streambuf::streambuf 813, 851-852 strstreambuf 811
streambuf::sync 814, 854 strstreambuf::alloc_size_increment 867, 869
streambuf::unbuffered 813, 855 strstreambuf::doallocate 867, 870
streambuf::underflow 814, 856 strstreambuf::freeze 867, 871
streambuf::~streambuf 813, 853 strstreambuf::overflow 868, 872
streamoff 9 strstreambuf::seekoff 868, 873
streampos 9 strstreambuf::setbuf 868, 874
String related functions strstreambuf::str 867, 875

operator != 887, 895 strstreambuf::strstreambuf 867, 876-879
operator + 887, 898 strstreambuf::sync 868, 882
operator < 887, 900 strstreambuf::underflow 868, 883
operator << 887, 901 strstreambuf::~strstreambuf 867, 881
operator <= 887, 902 sync, member function
operator == 887, 904 filebuf 629, 644
operator > 887, 905 istream 718, 746
operator >= 887, 906 stdiobuf 804, 809
operator >> 887, 907 streambuf 814, 854
valid 887, 919 strstreambuf 868, 882

String::alloc_mult_size 886, 888 sync_with_stdio, member function
String::get_at 886, 889 ios 674, 705
String::index 886, 890
String::length 886, 891
String::lower 886, 892
String::match 886, 893 T
String::operator ! 886, 894
String::operator () 886, 896-897
String::operator += 886, 899

tan, related functionString::operator = 886, 903
Complex 22, 66String::operator [] 886, 908

tanh, related functionString::operator char 886, 909
Complex 22, 67String::operator char const * 886, 910

tellg, member functionString::put_at 886, 911
istream 718, 747String::String 886, 912-916

tellp, member functionString::upper 886, 918
ostream 775, 796String::valid 886, 920

text, member enumerationString::~String 886, 917
ios 694strstream 710, 862

tie, member functionstrstream::str 857-858
ios 673, 706strstream::strstream 857, 859-860

top, member functionstrstream::~strstream 857, 861
WCStack<Type,FType> 528, 538strstreambase 748, 798, 857

trunc, member enumerationstrstreambase::rdbuf 862-863
ios 694strstreambase::strstreambase 862, 864-865

truncate, member enumerationstrstreambase::~strstreambase 862, 866

939

Index

ios 694

V

U
valid, member function

String 886, 920
valid, related functionunbuffered, member function

String 887, 919streambuf 813, 855
valueundef_item 191, 196, 202, 207, 216, 229, 327,

lists 235345, 363, 381, 399, 418
value, member functionexception 80

WCPtrHashDictIter<Key,Value> 186, 196undef_item, member enumeration
WCValHashDictIter<Key,Value> 197, 207WCIterExcept 80

undef_iter
exception 80, 190, 192-193, 201, 203-204,

215, 217-218, 228, 230-231, 326,
W328-332, 343-344, 346-351, 362,

364-368, 379-380, 382-387, 398,
400-404, 416-417, 419-424

undef_iter, member enumeration wc_state, member enumeration
WCIterExcept 80 WCExcept 70, 74

underflow, member function WCDLink 288
filebuf 629, 645 WCDLink::WCDLink 237-238
stdiobuf 804, 810 WCDLink::~WCDLink 237, 239
streambuf 814, 856 WCExcept::all_fine 74
strstreambuf 868, 883 WCExcept::check_all 74

undex_iter WCExcept::check_none 74
exception 185, 317 WCExcept::empty_container 74

unformatted input 13 WCExcept::exceptions 70, 73
unformatted output 15 WCExcept::index_range 74
unitbuf, member enumeration WCExcept::not_empty 74

ios 683 WCExcept::not_unique 74
unsetf, member function WCExcept::out_of_memory 74

ios 674, 707 WCExcept::resize_required 74
upper, member function WCExcept::wc_state 70, 74

String 886, 918 WCExcept::WCExcept 70-71
uppercase, member enumeration WCExcept::zero_buckets 74

ios 683 WCExcept::~WCExcept 70, 72
WCIsvConstDListIter, member function

WCIsvConstDListIter<Type> 323-324
WCIsvConstSListIter<Type> 323-324

WCIsvConstDListIter<Type>::append 318

940

Index

WCIsvConstDListIter<Type>::container 318, 326 WCIsvConstSListIter<Type>::WCIsvConstSListIt
WCIsvConstDListIter<Type>::current 318, 327 er 320-321
WCIsvConstDListIter<Type>::insert 318 WCIsvConstSListIter<Type>::WCIsvConstSListIt
WCIsvConstDListIter<Type>::operator () 319, er<Type> 318

328 WCIsvConstSListIter<Type>::~WCIsvConstDLis
WCIsvConstDListIter<Type>::operator ++ 319, tIter 325

329 WCIsvConstSListIter<Type>::~WCIsvConstSList
WCIsvConstDListIter<Type>::operator += 319, Iter 322

330 WCIsvConstSListIter<Type>::~WCIsvConstSList
WCIsvConstDListIter<Type>::operator -- 319, Iter<Type> 318

331 WCIsvDList, member function
WCIsvConstDListIter<Type>::operator -= 319, WCIsvDList<Type> 240, 244, 246-248

332 WCIsvSList<Type> 240, 244, 246-248
WCIsvConstDListIter<Type>::reset 318-319, WCIsvDList<Type>::append 241, 249

333-334 WCIsvDList<Type>::clear 241, 250
WCIsvConstDListIter<Type>::WCIsvConstDListI WCIsvDList<Type>::clearAndDestroy 241, 251

ter 323-324 WCIsvDList<Type>::contains 241, 252
WCIsvConstDListIter<Type>::WCIsvConstSListI WCIsvDList<Type>::entries 241, 253

ter 320-321 WCIsvDList<Type>::find 241, 254
WCIsvConstDListIter<Type>::~WCIsvConstDLis WCIsvDList<Type>::findLast 241, 255

tIter 325 WCIsvDList<Type>::forAll 241, 256
WCIsvConstDListIter<Type>::~WCIsvConstSLis WCIsvDList<Type>::get 241, 257

tIter 322 WCIsvDList<Type>::index 241, 258-259
WCIsvConstSListIter, member function WCIsvDList<Type>::insert 241, 260

WCIsvConstDListIter<Type> 320-321 WCIsvDList<Type>::isEmpty 241, 261
WCIsvConstSListIter<Type> 320-321 WCIsvDList<Type>::operator = 240, 262

WCIsvConstSListIter<Type>::append 318 WCIsvDList<Type>::operator == 241, 263
WCIsvConstSListIter<Type>::container 318, 326 WCIsvDList<Type>::WCIsvDList 240, 244,
WCIsvConstSListIter<Type>::current 318, 327 246-248
WCIsvConstSListIter<Type>::insert 318 WCIsvDList<Type>::WCIsvSList 240, 243, 245
WCIsvConstSListIter<Type>::operator () 319, WCIsvDListIter, member function

328 WCIsvDListIter<Type> 340-341
WCIsvConstSListIter<Type>::operator ++ 319, WCIsvSListIter<Type> 340-341

329 WCIsvDListIter<Type>::append 335, 343
WCIsvConstSListIter<Type>::operator += 319, WCIsvDListIter<Type>::container 335, 344

330 WCIsvDListIter<Type>::current 335, 345
WCIsvConstSListIter<Type>::operator -- 319, WCIsvDListIter<Type>::insert 335-336, 346

331 WCIsvDListIter<Type>::operator () 336, 347
WCIsvConstSListIter<Type>::operator -= 319, WCIsvDListIter<Type>::operator ++ 336, 348

332 WCIsvDListIter<Type>::operator += 336, 349
WCIsvConstSListIter<Type>::reset 318-319, WCIsvDListIter<Type>::operator -- 335-336, 350

333-334 WCIsvDListIter<Type>::operator -= 335-336,
WCIsvConstSListIter<Type>::WCIsvConstDListI 351

ter 323-324 WCIsvDListIter<Type>::reset 335, 352-353

941

Index

WCIsvDListIter<Type>::WCIsvDListIter WCIsvSListIter<Type>::WCIsvDListIter
340-341 340-341

WCIsvDListIter<Type>::WCIsvSListIter WCIsvSListIter<Type>::WCIsvSListIter 337-338
337-338 WCIsvSListIter<Type>::WCIsvSListIter<Type>

WCIsvDListIter<Type>::~WCIsvDListIter 342 335
WCIsvDListIter<Type>::~WCIsvSListIter 339 WCIsvSListIter<Type>::~WCIsvDListIter 342
WCIsvSList, member function WCIsvSListIter<Type>::~WCIsvSListIter 339

WCIsvDList<Type> 240, 243, 245 WCIsvSListIter<Type>::~WCIsvSListIter<Type>
WCIsvSList<Type> 240, 243, 245 335

WCIsvSList<Type>::append 241, 249 wciter_state, member enumeration
WCIsvSList<Type>::clear 241, 250 WCIterExcept 76, 80
WCIsvSList<Type>::clearAndDestroy 241, 251 WCIterExcept::all_fine 80
WCIsvSList<Type>::contains 241, 252 WCIterExcept::check_all 80
WCIsvSList<Type>::entries 241, 253 WCIterExcept::check_none 80
WCIsvSList<Type>::find 241, 254 WCIterExcept::exceptions 76, 79
WCIsvSList<Type>::findLast 241, 255 WCIterExcept::iter_range 80
WCIsvSList<Type>::forAll 241, 256 WCIterExcept::undef_item 80
WCIsvSList<Type>::get 241, 257 WCIterExcept::undef_iter 80
WCIsvSList<Type>::index 241, 258-259 WCIterExcept::wciter_state 76, 80
WCIsvSList<Type>::insert 241, 260 WCIterExcept::WCIterExcept 76-77
WCIsvSList<Type>::isEmpty 241, 261 WCIterExcept::~WCIterExcept 76, 78
WCIsvSList<Type>::operator = 240, 262 WCListExcept
WCIsvSList<Type>::operator == 241, 263 class 70
WCIsvSList<Type>::WCIsvDList 240, 244, WCPtrConstDListIter, member function

246-248 WCPtrConstDListIter<Type> 359-360
WCIsvSList<Type>::WCIsvSList 240, 243, 245 WCPtrConstSListIter<Type> 359-360
WCIsvSList<Type>::WCIsvSList<Type> WCPtrConstDListIter<Type>::append 354

240-241 WCPtrConstDListIter<Type>::container 354, 362
WCIsvSList<Type>::~WCIsvSList<Type> WCPtrConstDListIter<Type>::current 354, 363

240-241 WCPtrConstDListIter<Type>::insert 354
WCIsvSListIter, member function WCPtrConstDListIter<Type>::operator () 355,

WCIsvDListIter<Type> 337-338 364
WCIsvSListIter<Type> 337-338 WCPtrConstDListIter<Type>::operator ++ 355,

WCIsvSListIter<Type>::append 335, 343 365
WCIsvSListIter<Type>::container 335, 344 WCPtrConstDListIter<Type>::operator += 355,
WCIsvSListIter<Type>::current 335, 345 366
WCIsvSListIter<Type>::insert 335-336, 346 WCPtrConstDListIter<Type>::operator -- 355,
WCIsvSListIter<Type>::operator () 336, 347 367
WCIsvSListIter<Type>::operator ++ 336, 348 WCPtrConstDListIter<Type>::operator -= 355,
WCIsvSListIter<Type>::operator += 336, 349 368
WCIsvSListIter<Type>::operator -- 335-336, 350 WCPtrConstDListIter<Type>::reset 354-355,
WCIsvSListIter<Type>::operator -= 335-336, 369-370

351 WCPtrConstDListIter<Type>::WCPtrConstDListI
WCIsvSListIter<Type>::reset 335, 352-353 ter 359-360

942

Index

WCPtrConstDListIter<Type>::WCPtrConstSListIt WCPtrDList<Type>::entries 264, 278
er 356-357 WCPtrDList<Type>::find 264, 279

WCPtrConstDListIter<Type>::~WCPtrConstDLis WCPtrDList<Type>::findLast 264, 280
tIter 361 WCPtrDList<Type>::forAll 264, 281

WCPtrConstDListIter<Type>::~WCPtrConstSList WCPtrDList<Type>::get 264, 282
Iter 358 WCPtrDList<Type>::index 264, 283

WCPtrConstSListIter, member function WCPtrDList<Type>::insert 264, 284
WCPtrConstDListIter<Type> 356-357 WCPtrDList<Type>::isEmpty 264, 285
WCPtrConstSListIter<Type> 356-357 WCPtrDList<Type>::operator = 265, 286

WCPtrConstSListIter<Type>::append 354 WCPtrDList<Type>::operator == 265, 287
WCPtrConstSListIter<Type>::container 354, 362 WCPtrDList<Type>::WCPtrDList 268, 270-273
WCPtrConstSListIter<Type>::current 354, 363 WCPtrDList<Type>::WCPtrSList 266-267, 269
WCPtrConstSListIter<Type>::insert 354 WCPtrDListIter, member function
WCPtrConstSListIter<Type>::operator () 355, WCPtrDListIter<Type> 376-377

364 WCPtrSListIter<Type> 376-377
WCPtrConstSListIter<Type>::operator ++ 355, WCPtrDListIter<Type>::append 371, 379

365 WCPtrDListIter<Type>::container 371, 380
WCPtrConstSListIter<Type>::operator += 355, WCPtrDListIter<Type>::current 371, 381

366 WCPtrDListIter<Type>::insert 371-372, 382
WCPtrConstSListIter<Type>::operator -- 355, WCPtrDListIter<Type>::operator () 372, 383

367 WCPtrDListIter<Type>::operator ++ 372, 384
WCPtrConstSListIter<Type>::operator -= 355, WCPtrDListIter<Type>::operator += 372, 385

368 WCPtrDListIter<Type>::operator -- 371-372, 386
WCPtrConstSListIter<Type>::reset 354-355, WCPtrDListIter<Type>::operator -= 371-372,

369-370 387
WCPtrConstSListIter<Type>::WCPtrConstDListIt WCPtrDListIter<Type>::reset 371, 388-389

er 359-360 WCPtrDListIter<Type>::WCPtrDListIter
WCPtrConstSListIter<Type>::WCPtrConstSListIt 376-377

er 356-357 WCPtrDListIter<Type>::WCPtrSListIter 373-374
WCPtrConstSListIter<Type>::WCPtrConstSListIt WCPtrDListIter<Type>::~WCPtrDListIter 378

er<Type> 354 WCPtrDListIter<Type>::~WCPtrSListIter 375
WCPtrConstSListIter<Type>::~WCPtrConstDList WCPtrHashDict, member function

Iter 361 WCPtrHashDict<Key,Value> 89
WCPtrConstSListIter<Type>::~WCPtrConstSList WCPtrHashDict<Key,Value>::bitHash 89, 94

Iter 358 WCPtrHashDict<Key,Value>::buckets 89, 95
WCPtrConstSListIter<Type>::~WCPtrConstSList WCPtrHashDict<Key,Value>::clear 89, 96

Iter<Type> 354 WCPtrHashDict<Key,Value>::clearAndDestroy
WCPtrDList, member function 89, 97

WCPtrDList<Type> 268, 270-273 WCPtrHashDict<Key,Value>::contains 89, 98
WCPtrSList<Type> 268, 270-273 WCPtrHashDict<Key,Value>::entries 89, 99

WCPtrDList<Type>::append 264, 274 WCPtrHashDict<Key,Value>::find 89, 100
WCPtrDList<Type>::clear 264, 275 WCPtrHashDict<Key,Value>::findKeyAndValue
WCPtrDList<Type>::clearAndDestroy 264, 276 89, 101
WCPtrDList<Type>::contains 264, 277 WCPtrHashDict<Key,Value>::forall 89, 102

943

Index

WCPtrHashDict<Key,Value>::insert 89, 103 WCPtrHashSet<Type>::clearAndDestroy 112,
WCPtrHashDict<Key,Value>::isEmpty 89, 104 124
WCPtrHashDict<Key,Value>::operator = 89, 107 WCPtrHashSet<Type>::contains 112, 125
WCPtrHashDict<Key,Value>::operator == 89, WCPtrHashSet<Type>::entries 112, 126

108 WCPtrHashSet<Type>::find 112, 127
WCPtrHashDict<Key,Value>::operator [] 89, WCPtrHashSet<Type>::forall 112, 128

105-106 WCPtrHashSet<Type>::insert 112, 129
WCPtrHashDict<Key,Value>::remove 89, 109 WCPtrHashSet<Type>::isEmpty 112, 130
WCPtrHashDict<Key,Value>::resize 89, 110 WCPtrHashSet<Type>::occurrencesOf 112, 131
WCPtrHashDict<Key,Value>::WCPtrHashDict WCPtrHashSet<Type>::operator = 112, 132

89 WCPtrHashSet<Type>::operator == 112, 133
WCPtrHashDict<Key,Value>::WCPtrHashDict< WCPtrHashSet<Type>::remove 112, 134

Key,Value> 90-92 WCPtrHashSet<Type>::removeAll 112, 135
WCPtrHashDict<Key,Value>::~WCPtrHashDict WCPtrHashSet<Type>::resize 112, 136

89 WCPtrHashSet<Type>::WCPtrHashSet 112
WCPtrHashDict<Key,Value>::~WCPtrHashDict< WCPtrHashSet<Type>::WCPtrHashTable 112

Key,Value> 93 WCPtrHashSet<Type>::~WCPtrHashSet 112
WCPtrHashDictIter, member function WCPtrHashSet<Type>::~WCPtrHashTable 112

WCPtrHashDictIter<Key,Value> 187-188 WCPtrHashSetIter, member function
WCPtrHashDictIter<Key,Value>::container 186, WCPtrHashSetIter<Type> 209-210

190 WCPtrHashTableIter<Type> 209-210
WCPtrHashDictIter<Key,Value>::key 186, 191 WCPtrHashSetIter<Type>::container 208, 215
WCPtrHashDictIter<Key,Value>::operator () WCPtrHashSetIter<Type>::current 208, 216

186, 192 WCPtrHashSetIter<Type>::operator () 208, 217
WCPtrHashDictIter<Key,Value>::operator ++ WCPtrHashSetIter<Type>::operator ++ 208, 218

186, 193 WCPtrHashSetIter<Type>::reset 208, 219-220
WCPtrHashDictIter<Key,Value>::reset 186, WCPtrHashSetIter<Type>::WCPtrHashSetIter

194-195 209-210
WCPtrHashDictIter<Key,Value>::value 186, 196 WCPtrHashSetIter<Type>::WCPtrHashSetIter<T
WCPtrHashDictIter<Key,Value>::WCPtrHashDic ype> 208

tIter 187-188 WCPtrHashSetIter<Type>::WCPtrHashTableIter
WCPtrHashDictIter<Key,Value>::WCPtrHashDic 212-213

tIter<Key,Value> 186 WCPtrHashSetIter<Type>::~WCPtrHashSetIter
WCPtrHashDictIter<Key,Value>::~WCPtrHashDi 211

ctIter 189 WCPtrHashSetIter<Type>::~WCPtrHashSetIter<
WCPtrHashDictIter<Key,Value>::~WCPtrHashDi Type> 208

ctIter<Key,Value> 186 WCPtrHashSetIter<Type>::~WCPtrHashTableIter
WCPtrHashSet, member function 214

WCPtrHashSet<Type> 112 WCPtrHashTable, member function
WCPtrHashTable<Type> 112 WCPtrHashSet<Type> 112

WCPtrHashSet<Type>::bitHash 112, 121 WCPtrHashTable<Type> 112
WCPtrHashSet<Type>::buckets 112, 122 WCPtrHashTable<Type>::bitHash 112, 121
WCPtrHashSet<Type>::clear 112, 123 WCPtrHashTable<Type>::buckets 112, 122

WCPtrHashTable<Type>::clear 112, 123

944

Index

WCPtrHashTable<Type>::clearAndDestroy 112, WCPtrSortedVector<Type> 541
124 WCPtrOrderedVector<Type>::append 542, 549

WCPtrHashTable<Type>::contains 112, 125 WCPtrOrderedVector<Type>::clear 541, 550
WCPtrHashTable<Type>::entries 112, 126 WCPtrOrderedVector<Type>::clearAndDestroy
WCPtrHashTable<Type>::find 112, 127 541, 551
WCPtrHashTable<Type>::forall 112, 128 WCPtrOrderedVector<Type>::contains 541, 552
WCPtrHashTable<Type>::insert 112, 129 WCPtrOrderedVector<Type>::entries 541, 553
WCPtrHashTable<Type>::isEmpty 112, 130 WCPtrOrderedVector<Type>::find 541, 554
WCPtrHashTable<Type>::occurrencesOf 112, WCPtrOrderedVector<Type>::first 541, 555

131 WCPtrOrderedVector<Type>::index 541, 556
WCPtrHashTable<Type>::operator = 112, 132 WCPtrOrderedVector<Type>::insert 541, 557
WCPtrHashTable<Type>::operator == 112, 133 WCPtrOrderedVector<Type>::insertAt 542, 558
WCPtrHashTable<Type>::remove 112, 134 WCPtrOrderedVector<Type>::isEmpty 541, 559
WCPtrHashTable<Type>::removeAll 112, 135 WCPtrOrderedVector<Type>::last 541, 560
WCPtrHashTable<Type>::resize 112, 136 WCPtrOrderedVector<Type>::occurrencesOf
WCPtrHashTable<Type>::WCPtrHashSet 112 541, 561
WCPtrHashTable<Type>::WCPtrHashTable 112 WCPtrOrderedVector<Type>::operator = 542,
WCPtrHashTable<Type>::WCPtrHashTable<Typ 563

e> 113-115, 117-119 WCPtrOrderedVector<Type>::operator == 542,
WCPtrHashTable<Type>::~WCPtrHashSet 112 564
WCPtrHashTable<Type>::~WCPtrHashTable WCPtrOrderedVector<Type>::operator [] 542,

112 562
WCPtrHashTable<Type>::~WCPtrHashTable<Ty WCPtrOrderedVector<Type>::prepend 542, 565

pe> 116, 120 WCPtrOrderedVector<Type>::remove 541, 566
WCPtrHashTableIter, member function WCPtrOrderedVector<Type>::removeAll 541,

WCPtrHashSetIter<Type> 212-213 567
WCPtrHashTableIter<Type> 212-213 WCPtrOrderedVector<Type>::removeAt 541,

WCPtrHashTableIter<Type>::container 208, 215 568
WCPtrHashTableIter<Type>::current 208, 216 WCPtrOrderedVector<Type>::removeFirst 541,
WCPtrHashTableIter<Type>::operator () 208, 569

217 WCPtrOrderedVector<Type>::removeLast 541,
WCPtrHashTableIter<Type>::operator ++ 208, 570

218 WCPtrOrderedVector<Type>::resize 541, 571
WCPtrHashTableIter<Type>::reset 208, 219-220 WCPtrOrderedVector<Type>::WCPtrOrderedVec
WCPtrHashTableIter<Type>::WCPtrHashSetIter tor 541

209-210 WCPtrOrderedVector<Type>::WCPtrSortedVecto
WCPtrHashTableIter<Type>::WCPtrHashTableIt r 541

er 212-213 WCPtrOrderedVector<Type>::~WCPtrOrderedVe
WCPtrHashTableIter<Type>::~WCPtrHashSetIter ctor 541

211 WCPtrOrderedVector<Type>::~WCPtrSortedVect
WCPtrHashTableIter<Type>::~WCPtrHashTableI or 541

ter 214 WCPtrSkipList, member function
WCPtrOrderedVector, member function WCPtrSkipList<Type> 462-463

WCPtrOrderedVector<Type> 541 WCPtrSkipListSet<Type> 462-463

945

Index

WCPtrSkipList<Type>::clear 463, 472 WCPtrSkipListDict<Key,Value>::remove 443,
WCPtrSkipList<Type>::clearAndDestroy 463, 461

473 WCPtrSkipListDict<Key,Value>::WCPtrSkipList
WCPtrSkipList<Type>::contains 463, 474 Dict 442-443
WCPtrSkipList<Type>::entries 463, 475 WCPtrSkipListDict<Key,Value>::WCPtrSkipList
WCPtrSkipList<Type>::find 463, 476 Dict<Key,Value> 444-446
WCPtrSkipList<Type>::forall 463, 477 WCPtrSkipListDict<Key,Value>::~WCPtrSkipLis
WCPtrSkipList<Type>::insert 463, 478 tDict 443
WCPtrSkipList<Type>::isEmpty 463, 479 WCPtrSkipListDict<Key,Value>::~WCPtrSkipLis
WCPtrSkipList<Type>::occurrencesOf 463, 480 tDict<Key,Value> 447
WCPtrSkipList<Type>::operator = 463, 481 WCPtrSkipListSet, member function
WCPtrSkipList<Type>::operator == 463, 482 WCPtrSkipList<Type> 463
WCPtrSkipList<Type>::remove 463, 483 WCPtrSkipListSet<Type> 463
WCPtrSkipList<Type>::removeAll 463, 484 WCPtrSkipListSet<Type>::clear 463, 472
WCPtrSkipList<Type>::WCPtrSkipList 462-463 WCPtrSkipListSet<Type>::clearAndDestroy 463,
WCPtrSkipList<Type>::WCPtrSkipList<Type> 473

464-466, 468-470 WCPtrSkipListSet<Type>::contains 463, 474
WCPtrSkipList<Type>::WCPtrSkipListSet 463 WCPtrSkipListSet<Type>::entries 463, 475
WCPtrSkipList<Type>::~WCPtrSkipList 463 WCPtrSkipListSet<Type>::find 463, 476
WCPtrSkipList<Type>::~WCPtrSkipList<Type> WCPtrSkipListSet<Type>::forall 463, 477

467, 471 WCPtrSkipListSet<Type>::insert 463, 478
WCPtrSkipList<Type>::~WCPtrSkipListSet 463 WCPtrSkipListSet<Type>::isEmpty 463, 479
WCPtrSkipListDict, member function WCPtrSkipListSet<Type>::occurrencesOf 463,

WCPtrSkipListDict<Key,Value> 442-443 480
WCPtrSkipListDict<Key,Value>::clear 443, 448 WCPtrSkipListSet<Type>::operator = 463, 481
WCPtrSkipListDict<Key,Value>::clearAndDestro WCPtrSkipListSet<Type>::operator == 463, 482

y 443, 449 WCPtrSkipListSet<Type>::remove 463, 483
WCPtrSkipListDict<Key,Value>::contains 443, WCPtrSkipListSet<Type>::removeAll 463, 484

450 WCPtrSkipListSet<Type>::WCPtrSkipList
WCPtrSkipListDict<Key,Value>::entries 443, 462-463

451 WCPtrSkipListSet<Type>::WCPtrSkipListSet
WCPtrSkipListDict<Key,Value>::find 443, 452 463
WCPtrSkipListDict<Key,Value>::findKeyAndVal WCPtrSkipListSet<Type>::~WCPtrSkipList 463

ue 443, 453 WCPtrSkipListSet<Type>::~WCPtrSkipListSet
WCPtrSkipListDict<Key,Value>::forall 443, 454 463
WCPtrSkipListDict<Key,Value>::insert 443, 455 WCPtrSList, member function
WCPtrSkipListDict<Key,Value>::isEmpty 443, WCPtrDList<Type> 266-267, 269

456 WCPtrSList<Type> 266-267, 269
WCPtrSkipListDict<Key,Value>::operator = 443, WCPtrSList<Type>::append 264, 274

459 WCPtrSList<Type>::clear 264, 275
WCPtrSkipListDict<Key,Value>::operator == WCPtrSList<Type>::clearAndDestroy 264, 276

443, 460 WCPtrSList<Type>::contains 264, 277
WCPtrSkipListDict<Key,Value>::operator [] WCPtrSList<Type>::entries 264, 278

443, 457-458 WCPtrSList<Type>::find 264, 279

946

Index

WCPtrSList<Type>::findLast 264, 280 WCPtrSortedVector<Type>::find 541, 554
WCPtrSList<Type>::forAll 264, 281 WCPtrSortedVector<Type>::first 541, 555
WCPtrSList<Type>::get 264, 282 WCPtrSortedVector<Type>::index 541, 556
WCPtrSList<Type>::index 264, 283 WCPtrSortedVector<Type>::insert 541, 557
WCPtrSList<Type>::insert 264, 284 WCPtrSortedVector<Type>::insertAt 542, 558
WCPtrSList<Type>::isEmpty 264, 285 WCPtrSortedVector<Type>::isEmpty 541, 559
WCPtrSList<Type>::operator = 265, 286 WCPtrSortedVector<Type>::last 541, 560
WCPtrSList<Type>::operator == 265, 287 WCPtrSortedVector<Type>::occurrencesOf 541,
WCPtrSList<Type>::WCPtrDList 268, 270-273 561
WCPtrSList<Type>::WCPtrSList 266-267, 269 WCPtrSortedVector<Type>::operator = 542, 563
WCPtrSList<Type>::WCPtrSList<Type> 264 WCPtrSortedVector<Type>::operator == 542,
WCPtrSList<Type>::~WCPtrSList<Type> 264 564
WCPtrSListItemSize WCPtrSortedVector<Type>::operator [] 542, 562

macro 431, 531 WCPtrSortedVector<Type>::prepend 542, 565
WCPtrSListIter, member function WCPtrSortedVector<Type>::remove 541, 566

WCPtrDListIter<Type> 373-374 WCPtrSortedVector<Type>::removeAll 541, 567
WCPtrSListIter<Type> 373-374 WCPtrSortedVector<Type>::removeAt 541, 568

WCPtrSListIter<Type>::append 371, 379 WCPtrSortedVector<Type>::removeFirst 541,
WCPtrSListIter<Type>::container 371, 380 569
WCPtrSListIter<Type>::current 371, 381 WCPtrSortedVector<Type>::removeLast 541,
WCPtrSListIter<Type>::insert 371-372, 382 570
WCPtrSListIter<Type>::operator () 372, 383 WCPtrSortedVector<Type>::resize 541, 571
WCPtrSListIter<Type>::operator ++ 372, 384 WCPtrSortedVector<Type>::WCPtrOrderedVecto
WCPtrSListIter<Type>::operator += 372, 385 r 541
WCPtrSListIter<Type>::operator -- 371-372, 386 WCPtrSortedVector<Type>::WCPtrSortedVector
WCPtrSListIter<Type>::operator -= 371-372, 387 541
WCPtrSListIter<Type>::reset 371, 388-389 WCPtrSortedVector<Type>::WCPtrSortedVector
WCPtrSListIter<Type>::WCPtrDListIter 376-377 <Type> 543-544, 546-547
WCPtrSListIter<Type>::WCPtrSListIter 373-374 WCPtrSortedVector<Type>::~WCPtrOrderedVect
WCPtrSListIter<Type>::WCPtrSListIter<Type> or 541

371 WCPtrSortedVector<Type>::~WCPtrSortedVecto
WCPtrSListIter<Type>::~WCPtrDListIter 378 r 541
WCPtrSListIter<Type>::~WCPtrSListIter 375 WCPtrSortedVector<Type>::~WCPtrSortedVecto
WCPtrSListIter<Type>::~WCPtrSListIter<Type> r<Type> 545, 548

371 WCPtrVector<Type>::clear 572, 577
WCPtrSortedVector, member function WCPtrVector<Type>::clearAndDestroy 572, 578

WCPtrOrderedVector<Type> 541 WCPtrVector<Type>::length 572, 579
WCPtrSortedVector<Type> 541 WCPtrVector<Type>::operator = 572, 581

WCPtrSortedVector<Type>::append 542, 549 WCPtrVector<Type>::operator == 572, 582
WCPtrSortedVector<Type>::clear 541, 550 WCPtrVector<Type>::operator [] 572, 580
WCPtrSortedVector<Type>::clearAndDestroy WCPtrVector<Type>::resize 572, 583

541, 551 WCPtrVector<Type>::WCPtrVector<Type>
WCPtrSortedVector<Type>::contains 541, 552 572-575
WCPtrSortedVector<Type>::entries 541, 553

947

Index

WCPtrVector<Type>::~WCPtrVector<Type> WCValConstDListIter<Type>::reset 390-391,
572, 576 405-406

WCQueue<Type,FType>::clear 428, 433 WCValConstDListIter<Type>::WCValConstDLis
WCQueue<Type,FType>::entries 428, 434 tIter 395-396
WCQueue<Type,FType>::first 428, 435 WCValConstDListIter<Type>::WCValConstSList
WCQueue<Type,FType>::get 428, 436 Iter 392-393
WCQueue<Type,FType>::insert 428, 437 WCValConstDListIter<Type>::~WCValConstDLi
WCQueue<Type,FType>::isEmpty 428, 438 stIter 397
WCQueue<Type,FType>::last 428, 439 WCValConstDListIter<Type>::~WCValConstSLi
WCQueue<Type,FType>::WCQueue<Type,FTyp stIter 394

e> 428, 430-431 WCValConstSListIter, member function
WCQueue<Type,FType>::~WCQueue<Type,FTy WCValConstDListIter<Type> 392-393

pe> 428, 432 WCValConstSListIter<Type> 392-393
WCSLink 237 WCValConstSListIter<Type>::append 390
WCSLink::WCSLink 288-289 WCValConstSListIter<Type>::container 390, 398
WCSLink::~WCSLink 288, 290 WCValConstSListIter<Type>::current 390, 399
WCStack<Type,FType>::clear 528, 533 WCValConstSListIter<Type>::insert 390
WCStack<Type,FType>::entries 528, 534 WCValConstSListIter<Type>::operator () 391,
WCStack<Type,FType>::isEmpty 528, 535 400
WCStack<Type,FType>::pop 528, 536 WCValConstSListIter<Type>::operator ++ 391,
WCStack<Type,FType>::push 528, 537 401
WCStack<Type,FType>::top 528, 538 WCValConstSListIter<Type>::operator += 391,
WCStack<Type,FType>::WCStack<Type,FType> 402

528, 530-531 WCValConstSListIter<Type>::operator -- 391,
WCStack<Type,FType>::~WCStack<Type,FType 403

> 528, 532 WCValConstSListIter<Type>::operator -= 391,
WCValConstDListIter, member function 404

WCValConstDListIter<Type> 395-396 WCValConstSListIter<Type>::reset 390-391,
WCValConstSListIter<Type> 395-396 405-406

WCValConstDListIter<Type>::append 390 WCValConstSListIter<Type>::WCValConstDList
WCValConstDListIter<Type>::container 390, Iter 395-396

398 WCValConstSListIter<Type>::WCValConstSList
WCValConstDListIter<Type>::current 390, 399 Iter 392-393
WCValConstDListIter<Type>::insert 390 WCValConstSListIter<Type>::WCValConstSList
WCValConstDListIter<Type>::operator () 391, Iter<Type> 390

400 WCValConstSListIter<Type>::~WCValConstDLi
WCValConstDListIter<Type>::operator ++ 391, stIter 397

401 WCValConstSListIter<Type>::~WCValConstSLi
WCValConstDListIter<Type>::operator += 391, stIter 394

402 WCValConstSListIter<Type>::~WCValConstSLi
WCValConstDListIter<Type>::operator -- 391, stIter<Type> 390

403 WCValDList, member function
WCValConstDListIter<Type>::operator -= 391, WCValDList<Type> 296, 298-301

404 WCValSList<Type> 296, 298-301

948

Index

WCValDList<Type>::append 291, 302 WCValHashDict<Key,Value>::contains 138, 146
WCValDList<Type>::clear 291, 303 WCValHashDict<Key,Value>::entries 138, 147
WCValDList<Type>::clearAndDestroy 291, 304 WCValHashDict<Key,Value>::find 138, 148
WCValDList<Type>::contains 291, 305 WCValHashDict<Key,Value>::findKeyAndValue
WCValDList<Type>::entries 292, 306 138, 149
WCValDList<Type>::find 292, 307 WCValHashDict<Key,Value>::forall 138, 150
WCValDList<Type>::findLast 292, 308 WCValHashDict<Key,Value>::insert 138, 151
WCValDList<Type>::forAll 292, 309 WCValHashDict<Key,Value>::isEmpty 138, 152
WCValDList<Type>::get 292, 310 WCValHashDict<Key,Value>::operator = 138,
WCValDList<Type>::index 292, 311 155
WCValDList<Type>::insert 292, 312 WCValHashDict<Key,Value>::operator == 138,
WCValDList<Type>::isEmpty 292, 313 156
WCValDList<Type>::operator = 292, 314 WCValHashDict<Key,Value>::operator [] 138,
WCValDList<Type>::operator == 292, 315 153-154
WCValDList<Type>::WCValDList 296, 298-301 WCValHashDict<Key,Value>::remove 138, 157
WCValDList<Type>::WCValSList 294-295, 297 WCValHashDict<Key,Value>::resize 138, 158
WCValDListItemSize WCValHashDict<Key,Value>::WCValHashDict

macro 271, 299 138
WCValDListIter, member function WCValHashDict<Key,Value>::WCValHashDict<

WCValDListIter<Type> 413-414 Key,Value> 139-141
WCValSListIter<Type> 413-414 WCValHashDict<Key,Value>::~WCValHashDict

WCValDListIter<Type>::append 407, 416 138
WCValDListIter<Type>::container 407, 417 WCValHashDict<Key,Value>::~WCValHashDict
WCValDListIter<Type>::current 407, 418 <Key,Value> 142
WCValDListIter<Type>::insert 407-408, 419 WCValHashDictIter, member function
WCValDListIter<Type>::operator () 408, 420 WCValHashDictIter<Key,Value> 198-199
WCValDListIter<Type>::operator ++ 408, 421 WCValHashDictIter<Key,Value>::container 197,
WCValDListIter<Type>::operator += 408, 422 201
WCValDListIter<Type>::operator -- 407-408, WCValHashDictIter<Key,Value>::key 197, 202

423 WCValHashDictIter<Key,Value>::operator ()
WCValDListIter<Type>::operator -= 407-408, 197, 203

424 WCValHashDictIter<Key,Value>::operator ++
WCValDListIter<Type>::reset 407, 425-426 197, 204
WCValDListIter<Type>::WCValDListIter WCValHashDictIter<Key,Value>::reset 197,

413-414 205-206
WCValDListIter<Type>::WCValSListIter WCValHashDictIter<Key,Value>::value 197,

410-411 207
WCValDListIter<Type>::~WCValDListIter 415 WCValHashDictIter<Key,Value>::WCValHashDi
WCValDListIter<Type>::~WCValSListIter 412 ctIter 198-199
WCValHashDict, member function WCValHashDictIter<Key,Value>::WCValHashDi

WCValHashDict<Key,Value> 138 ctIter<Key,Value> 197
WCValHashDict<Key,Value>::bitHash 138, 143 WCValHashDictIter<Key,Value>::~WCValHash
WCValHashDict<Key,Value>::buckets 138, 144 DictIter 200
WCValHashDict<Key,Value>::clear 138, 145

949

Index

WCValHashDictIter<Key,Value>::~WCValHash WCValHashTable, member function
DictIter<Key,Value> 197 WCValHashSet<Type> 160

WCValHashSet, member function WCValHashTable<Type> 160
WCValHashSet<Type> 160 WCValHashTable<Type>::bitHash 160, 169
WCValHashTable<Type> 160 WCValHashTable<Type>::buckets 160, 170

WCValHashSet<Type>::bitHash 160, 169 WCValHashTable<Type>::clear 160, 171
WCValHashSet<Type>::buckets 160, 170 WCValHashTable<Type>::contains 160, 172
WCValHashSet<Type>::clear 160, 171 WCValHashTable<Type>::entries 160, 173
WCValHashSet<Type>::contains 160, 172 WCValHashTable<Type>::find 160, 174
WCValHashSet<Type>::entries 160, 173 WCValHashTable<Type>::forall 160, 175
WCValHashSet<Type>::find 160, 174 WCValHashTable<Type>::insert 160, 176
WCValHashSet<Type>::forall 160, 175 WCValHashTable<Type>::isEmpty 160, 177
WCValHashSet<Type>::insert 160, 176 WCValHashTable<Type>::occurrencesOf 160,
WCValHashSet<Type>::isEmpty 160, 177 178
WCValHashSet<Type>::occurrencesOf 160, 178 WCValHashTable<Type>::operator = 160, 179
WCValHashSet<Type>::operator = 160, 179 WCValHashTable<Type>::operator == 160, 180
WCValHashSet<Type>::operator == 160, 180 WCValHashTable<Type>::remove 160, 181
WCValHashSet<Type>::remove 160, 181 WCValHashTable<Type>::removeAll 160, 182
WCValHashSet<Type>::removeAll 160, 182 WCValHashTable<Type>::resize 160, 183
WCValHashSet<Type>::resize 160, 183 WCValHashTable<Type>::WCValHashSet 160
WCValHashSet<Type>::WCValHashSet 160 WCValHashTable<Type>::WCValHashTable
WCValHashSet<Type>::WCValHashTable 160 160
WCValHashSet<Type>::~WCValHashSet 160 WCValHashTable<Type>::WCValHashTable<Ty
WCValHashSet<Type>::~WCValHashTable 160 pe> 161-163, 165-167
WCValHashSetIter, member function WCValHashTable<Type>::~WCValHashSet 160

WCValHashSetIter<Type> 222-223 WCValHashTable<Type>::~WCValHashTable
WCValHashTableIter<Type> 222-223 160

WCValHashSetIter<Type>::container 221, 228 WCValHashTable<Type>::~WCValHashTable<T
WCValHashSetIter<Type>::current 221, 229 ype> 164, 168
WCValHashSetIter<Type>::operator () 221, 230 WCValHashTableIter, member function
WCValHashSetIter<Type>::operator ++ 221, 231 WCValHashSetIter<Type> 225-226
WCValHashSetIter<Type>::reset 221, 232-233 WCValHashTableIter<Type> 225-226
WCValHashSetIter<Type>::WCValHashSetIter WCValHashTableIter<Type>::container 221, 228

222-223 WCValHashTableIter<Type>::current 221, 229
WCValHashSetIter<Type>::WCValHashSetIter< WCValHashTableIter<Type>::operator () 221,

Type> 221 230
WCValHashSetIter<Type>::WCValHashTableIter WCValHashTableIter<Type>::operator ++ 221,

225-226 231
WCValHashSetIter<Type>::~WCValHashSetIter WCValHashTableIter<Type>::reset 221, 232-233

224 WCValHashTableIter<Type>::WCValHashSetIter
WCValHashSetIter<Type>::~WCValHashSetIter 222-223

<Type> 221 WCValHashTableIter<Type>::WCValHashTableI
WCValHashSetIter<Type>::~WCValHashTableIt ter 225-226

er 227

950

Index

WCValHashTableIter<Type>::~WCValHashSetIt WCValOrderedVector<Type>::~WCValSortedVe
er 224 ctor 585

WCValHashTableIter<Type>::~WCValHashTabl WCValSkipList, member function
eIter 227 WCValSkipList<Type> 505

WCValOrderedVector, member function WCValSkipListSet<Type> 505
WCValOrderedVector<Type> 585 WCValSkipList<Type>::clear 505, 514
WCValSortedVector<Type> 585 WCValSkipList<Type>::contains 505, 515

WCValOrderedVector<Type>::append 586, 593 WCValSkipList<Type>::entries 505, 516
WCValOrderedVector<Type>::clear 585, 594 WCValSkipList<Type>::find 505, 517
WCValOrderedVector<Type>::contains 585, 595 WCValSkipList<Type>::forall 505, 518
WCValOrderedVector<Type>::entries 585, 596 WCValSkipList<Type>::insert 505, 519
WCValOrderedVector<Type>::find 585, 597 WCValSkipList<Type>::isEmpty 505, 520
WCValOrderedVector<Type>::first 586, 598 WCValSkipList<Type>::occurrencesOf 505, 521
WCValOrderedVector<Type>::index 586, 599 WCValSkipList<Type>::operator = 505, 522
WCValOrderedVector<Type>::insert 586, 600 WCValSkipList<Type>::operator == 505, 523
WCValOrderedVector<Type>::insertAt 586, 601 WCValSkipList<Type>::remove 505, 524
WCValOrderedVector<Type>::isEmpty 586, 602 WCValSkipList<Type>::removeAll 505, 525
WCValOrderedVector<Type>::last 586, 603 WCValSkipList<Type>::WCValSkipList 505
WCValOrderedVector<Type>::occurrencesOf WCValSkipList<Type>::WCValSkipList<Type>

586, 604 506-508, 510-512
WCValOrderedVector<Type>::operator = 586, WCValSkipList<Type>::WCValSkipListSet 505

606 WCValSkipList<Type>::~WCValSkipList 505
WCValOrderedVector<Type>::operator == 586, WCValSkipList<Type>::~WCValSkipList<Type>

607 509, 513
WCValOrderedVector<Type>::operator [] 586, WCValSkipList<Type>::~WCValSkipListSet

605 505
WCValOrderedVector<Type>::prepend 586, 608 WCValSkipListDict, member function
WCValOrderedVector<Type>::remove 586, 609 WCValSkipListDict<Key,Value> 486
WCValOrderedVector<Type>::removeAll 586, WCValSkipListDict<Key,Value>::clear 486, 491

610 WCValSkipListDict<Key,Value>::contains 486,
WCValOrderedVector<Type>::removeAt 586, 492

611 WCValSkipListDict<Key,Value>::entries 486,
WCValOrderedVector<Type>::removeFirst 586, 493

612 WCValSkipListDict<Key,Value>::find 486, 494
WCValOrderedVector<Type>::removeLast 586, WCValSkipListDict<Key,Value>::findKeyAndVa

613 lue 486, 495
WCValOrderedVector<Type>::resize 586, 614 WCValSkipListDict<Key,Value>::forall 486, 496
WCValOrderedVector<Type>::WCValOrderedVe WCValSkipListDict<Key,Value>::insert 486,

ctor 585 497
WCValOrderedVector<Type>::WCValSortedVect WCValSkipListDict<Key,Value>::isEmpty 486,

or 585 498
WCValOrderedVector<Type>::~WCValOrdered WCValSkipListDict<Key,Value>::operator =

Vector 585 486, 501

951

Index

WCValSkipListDict<Key,Value>::operator == WCValSList<Type>::entries 292, 306
486, 502 WCValSList<Type>::find 292, 307

WCValSkipListDict<Key,Value>::operator [] WCValSList<Type>::findLast 292, 308
486, 499-500 WCValSList<Type>::forAll 292, 309

WCValSkipListDict<Key,Value>::remove 486, WCValSList<Type>::get 292, 310
503 WCValSList<Type>::index 292, 311

WCValSkipListDict<Key,Value>::WCValSkipLis WCValSList<Type>::insert 292, 312
tDict 486 WCValSList<Type>::isEmpty 292, 313

WCValSkipListDict<Key,Value>::WCValSkipLis WCValSList<Type>::operator = 292, 314
tDict<Key,Value> 487-489 WCValSList<Type>::operator == 292, 315

WCValSkipListDict<Key,Value>::~WCValSkipL WCValSList<Type>::WCValDList 296, 298-301
istDict 486 WCValSList<Type>::WCValSList 294-295, 297

WCValSkipListDict<Key,Value>::~WCValSkipL WCValSList<Type>::WCValSList<Type> 291
istDict<Key,Value> 490 WCValSList<Type>::~WCValSList<Type> 291

WCValSkipListSet, member function WCValSListItemSize
WCValSkipList<Type> 505 macro 267, 295, 431, 531
WCValSkipListSet<Type> 505 WCValSListIter, member function

WCValSkipListSet<Type>::clear 505, 514 WCValDListIter<Type> 410-411
WCValSkipListSet<Type>::contains 505, 515 WCValSListIter<Type> 410-411
WCValSkipListSet<Type>::entries 505, 516 WCValSListIter<Type>::append 407, 416
WCValSkipListSet<Type>::find 505, 517 WCValSListIter<Type>::container 407, 417
WCValSkipListSet<Type>::forall 505, 518 WCValSListIter<Type>::current 407, 418
WCValSkipListSet<Type>::insert 505, 519 WCValSListIter<Type>::insert 407-408, 419
WCValSkipListSet<Type>::isEmpty 505, 520 WCValSListIter<Type>::operator () 408, 420
WCValSkipListSet<Type>::occurrencesOf 505, WCValSListIter<Type>::operator ++ 408, 421

521 WCValSListIter<Type>::operator += 408, 422
WCValSkipListSet<Type>::operator = 505, 522 WCValSListIter<Type>::operator -- 407-408,
WCValSkipListSet<Type>::operator == 505, 523 423
WCValSkipListSet<Type>::remove 505, 524 WCValSListIter<Type>::operator -= 407-408,
WCValSkipListSet<Type>::removeAll 505, 525 424
WCValSkipListSet<Type>::WCValSkipList 505 WCValSListIter<Type>::reset 407, 425-426
WCValSkipListSet<Type>::WCValSkipListSet WCValSListIter<Type>::WCValDListIter

505 413-414
WCValSkipListSet<Type>::~WCValSkipList WCValSListIter<Type>::WCValSListIter

505 410-411
WCValSkipListSet<Type>::~WCValSkipListSet WCValSListIter<Type>::WCValSListIter<Type>

505 407
WCValSList, member function WCValSListIter<Type>::~WCValDListIter 415

WCValDList<Type> 294-295, 297 WCValSListIter<Type>::~WCValSListIter 412
WCValSList<Type> 294-295, 297 WCValSListIter<Type>::~WCValSListIter<Type

WCValSList<Type>::append 291, 302 > 407
WCValSList<Type>::clear 291, 303 WCValSortedVector, member function
WCValSList<Type>::clearAndDestroy 291, 304 WCValOrderedVector<Type> 585
WCValSList<Type>::contains 291, 305 WCValSortedVector<Type> 585

952

Index

WCValSortedVector<Type>::append 586, 593 WCValVector<Type>::operator [] 616, 623
WCValSortedVector<Type>::clear 585, 594 WCValVector<Type>::resize 616, 626
WCValSortedVector<Type>::contains 585, 595 WCValVector<Type>::WCValVector<Type>
WCValSortedVector<Type>::entries 585, 596 615, 617-619
WCValSortedVector<Type>::find 585, 597 WCValVector<Type>::~WCValVector<Type>
WCValSortedVector<Type>::first 586, 598 615, 620
WCValSortedVector<Type>::index 586, 599 width, member function
WCValSortedVector<Type>::insert 586, 600 ios 674, 708
WCValSortedVector<Type>::insertAt 586, 601 write, member function
WCValSortedVector<Type>::isEmpty 586, 602 ostream 775, 797
WCValSortedVector<Type>::last 586, 603 ws, manipulator 752, 766
WCValSortedVector<Type>::occurrencesOf 586,

604
WCValSortedVector<Type>::operator = 586, 606
WCValSortedVector<Type>::operator == 586, X

607
WCValSortedVector<Type>::operator [] 586,

605
xalloc, member functionWCValSortedVector<Type>::prepend 586, 608

ios 674, 709WCValSortedVector<Type>::remove 586, 609
WCValSortedVector<Type>::removeAll 586,

610
WCValSortedVector<Type>::removeAt 586, 611

ZWCValSortedVector<Type>::removeFirst 586,
612

WCValSortedVector<Type>::removeLast 586,
613 zero_buckets

WCValSortedVector<Type>::resize 586, 614 exception 75, 110, 136, 158, 183
WCValSortedVector<Type>::WCValOrderedVect zero_buckets, member enumeration

or 585 WCExcept 74
WCValSortedVector<Type>::WCValSortedVecto

r 585
WCValSortedVector<Type>::WCValSortedVecto

r<Type> 587-588, 590-591 ~
WCValSortedVector<Type>::~WCValOrderedVe

ctor 585
WCValSortedVector<Type>::~WCValSortedVect

or 585 ~WCIsvConstDListIter, member function
WCValSortedVector<Type>::~WCValSortedVect WCIsvConstDListIter<Type> 325

or<Type> 589, 592 WCIsvConstSListIter<Type> 325
WCValVector<Type>::clear 616, 621 ~WCIsvConstSListIter, member function
WCValVector<Type>::length 616, 622 WCIsvConstDListIter<Type> 322
WCValVector<Type>::operator = 616, 624 WCIsvConstSListIter<Type> 322
WCValVector<Type>::operator == 616, 625 ~WCIsvDListIter, member function

953

Index

WCIsvDListIter<Type> 342 ~WCPtrSortedVector, member function
WCIsvSListIter<Type> 342 WCPtrOrderedVector<Type> 541

~WCIsvSListIter, member function WCPtrSortedVector<Type> 541
WCIsvDListIter<Type> 339 ~WCValConstDListIter, member function
WCIsvSListIter<Type> 339 WCValConstDListIter<Type> 397

~WCPtrConstDListIter, member function WCValConstSListIter<Type> 397
WCPtrConstDListIter<Type> 361 ~WCValConstSListIter, member function
WCPtrConstSListIter<Type> 361 WCValConstDListIter<Type> 394

~WCPtrConstSListIter, member function WCValConstSListIter<Type> 394
WCPtrConstDListIter<Type> 358 ~WCValDListIter, member function
WCPtrConstSListIter<Type> 358 WCValDListIter<Type> 415

~WCPtrDListIter, member function WCValSListIter<Type> 415
WCPtrDListIter<Type> 378 ~WCValHashDict, member function
WCPtrSListIter<Type> 378 WCValHashDict<Key,Value> 138

~WCPtrHashDict, member function ~WCValHashDictIter, member function
WCPtrHashDict<Key,Value> 89 WCValHashDictIter<Key,Value> 200

~WCPtrHashDictIter, member function ~WCValHashSet, member function
WCPtrHashDictIter<Key,Value> 189 WCValHashSet<Type> 160

~WCPtrHashSet, member function WCValHashTable<Type> 160
WCPtrHashSet<Type> 112 ~WCValHashSetIter, member function
WCPtrHashTable<Type> 112 WCValHashSetIter<Type> 224

~WCPtrHashSetIter, member function WCValHashTableIter<Type> 224
WCPtrHashSetIter<Type> 211 ~WCValHashTable, member function
WCPtrHashTableIter<Type> 211 WCValHashSet<Type> 160

~WCPtrHashTable, member function WCValHashTable<Type> 160
WCPtrHashSet<Type> 112 ~WCValHashTableIter, member function
WCPtrHashTable<Type> 112 WCValHashSetIter<Type> 227

~WCPtrHashTableIter, member function WCValHashTableIter<Type> 227
WCPtrHashSetIter<Type> 214 ~WCValOrderedVector, member function
WCPtrHashTableIter<Type> 214 WCValOrderedVector<Type> 585

~WCPtrOrderedVector, member function WCValSortedVector<Type> 585
WCPtrOrderedVector<Type> 541 ~WCValSkipList, member function
WCPtrSortedVector<Type> 541 WCValSkipList<Type> 505

~WCPtrSkipList, member function WCValSkipListSet<Type> 505
WCPtrSkipList<Type> 463 ~WCValSkipListDict, member function
WCPtrSkipListSet<Type> 463 WCValSkipListDict<Key,Value> 486

~WCPtrSkipListDict, member function ~WCValSkipListSet, member function
WCPtrSkipListDict<Key,Value> 443 WCValSkipList<Type> 505

~WCPtrSkipListSet, member function WCValSkipListSet<Type> 505
WCPtrSkipList<Type> 463 ~WCValSListIter, member function
WCPtrSkipListSet<Type> 463 WCValDListIter<Type> 412

~WCPtrSListIter, member function WCValSListIter<Type> 412
WCPtrDListIter<Type> 375 ~WCValSortedVector, member function
WCPtrSListIter<Type> 375 WCValOrderedVector<Type> 585

954

Index

WCValSortedVector<Type> 585

955

