
Alpha 21264/EV67
Microprocessor Hardware
Reference Manual

Order Number: DS–0028C–TE

This manual is directly derived from the internal 21264/EV67 Specifications, Revi-
sion 1.5. You can access this hardware reference manual in PDF format from the
following site:

ftp://ftp.compaq.com/pub/products/alphaCPUdocs

Revision/Update Information: This is a revised document. It supercedes
the Alpha 21264A Microprocessor
Hardware Reference Manual
(DS–0028B–TE).
Compaq Computer Corporation
Shrewsbury, Massachusetts

March 2002

The information in this publication is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL
ERRORS OR OMISSIONS CONTAINED HEREIN, NOR FOR INCIDENTAL OR CONSEQUENTIAL DAM-
AGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. THIS
INFORMATION IS PROVIDED “AS IS” AND COMPAQ COMPUTER CORPORATION DISCLAIMS ANY
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY AND EXPRESSLY DISCLAIMS THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, GOOD TITLE AND AGAINST
INFRINGEMENT.

This publication contains information protected by copyright. No part of this publication may be photocopied or
reproduced in any form without prior written consent from Compaq Computer Corporation.

© Compaq Computer Corporation 2002.
All rights reserved. Printed in the U.S.A.

Alpha 21264/EV67 Hardware Reference Manual

COMPAQ, the Compaq logo, the Digital logo, and VAX Registered in United States Patent and Trademark Office.

Pentium is a registered trademark of Intel Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective compa-
nies.

Table of Contents

Preface

1 Introduction

1.1 The Architecture . 1–1
1.1.1 Addressing . 1–2
1.1.2 Integer Data Types. 1–2
1.1.3 Floating-Point Data Types . 1–2
1.2 21264/EV67 Microprocessor Features . 1–3

2 Internal Architecture

2.1 21264/EV67 Microarchitecture . 2–1
2.1.1 Instruction Fetch, Issue, and Retire Unit . 2–2
2.1.1.1 Virtual Program Counter Logic . 2–2
2.1.1.2 Branch Predictor . 2–3
2.1.1.3 Instruction-Stream Translation Buffer . 2–5
2.1.1.4 Instruction Fetch Logic . 2–6
2.1.1.5 Register Rename Maps . 2–6
2.1.1.6 Integer Issue Queue . 2–6
2.1.1.7 Floating-Point Issue Queue . 2–7
2.1.1.8 Exception and Interrupt Logic . 2–8
2.1.1.9 Retire Logic . 2–8
2.1.2 Integer Execution Unit . 2–8
2.1.3 Floating-Point Execution Unit . 2–10
2.1.4 External Cache and System Interface Unit . 2–11
2.1.4.1 Victim Address File and Victim Data File . 2–11
2.1.4.2 I/O Write Buffer . 2–11
2.1.4.3 Probe Queue. 2–11
2.1.4.4 Duplicate Dcache Tag Array . 2–11
2.1.5 Onchip Caches. 2–11
2.1.5.1 Instruction Cache . 2–11
2.1.5.2 Data Cache . 2–12
2.1.6 Memory Reference Unit . 2–12
2.1.6.1 Load Queue . 2–13
2.1.6.2 Store Queue . 2–13
2.1.6.3 Miss Address File . 2–13
2.1.6.4 Dstream Translation Buffer . 2–13
2.1.7 SROM Interface . 2–13
2.2 Pipeline Organization . 2–13
2.2.1 Pipeline Aborts . 2–16
2.3 Instruction Issue Rules . 2–16
Alpha 21264/EV67 Hardware Reference Manual iii

2.3.1 Instruction Group Definitions . 2–17
2.3.2 Ebox Slotting . 2–18
2.3.3 Instruction Latencies . 2–20
2.4 Instruction Retire Rules . 2–21
2.4.1 Floating-Point Divide/Square Root Early Retire . 2–22
2.5 Retire of Operate Instructions into R31/F31 . 2–22
2.6 Load Instructions to R31 and F31 . 2–23
2.6.1 Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU, HW_LDL Instructions 2–23
2.6.2 Prefetch with Modify Intent: LDS Instruction . 2–23
2.6.3 Prefetch, Evict Next: LDQ and HW_LDQ Instructions . 2–24
2.6.4 Prefetch with the LDx_L / STx_C Instruction Sequence . 2–24
2.7 Special Cases of Alpha Instruction Execution . 2–24
2.7.1 Load Hit Speculation . 2–24
2.7.2 Floating-Point Store Instructions . 2–26
2.7.3 CMOV Instruction . 2–26
2.8 Memory and I/O Address Space Instructions . 2–27
2.8.1 Memory Address Space Load Instructions . 2–27
2.8.2 I/O Address Space Load Instructions. 2–28
2.8.3 Memory Address Space Store Instructions . 2–29
2.8.4 I/O Address Space Store Instructions . 2–29
2.9 MAF Memory Address Space Merging Rules . 2–30
2.10 Instruction Ordering . 2–30
2.11 Replay Traps . 2–31
2.11.1 Mbox Order Traps . 2–31
2.11.1.1 Load-Load Order Trap . 2–32
2.11.1.2 Store-Load Order Trap . 2–32
2.11.2 Other Mbox Replay Traps . 2–32
2.12 I/O Write Buffer and the WMB Instruction . 2–32
2.12.1 Memory Barrier (MB/WMB/TB Fill Flow) . 2–32
2.12.1.1 MB Instruction Processing . 2–33
2.12.1.2 WMB Instruction Processing . 2–34
2.12.1.3 TB Fill Flow . 2–34
2.13 Performance Measurement Support—Performance Counters . 2–36
2.14 Floating-Point Control Register . 2–36
2.15 AMASK and IMPLVER Instruction Values . 2–38
2.15.1 AMASK. 2–38
2.15.2 IMPLVER . 2–38
2.16 Design Examples . 2–39

3 Hardware Interface

3.1 21264/EV67 Microprocessor Logic Symbol . 3–1
3.2 21264/EV67 Signal Names and Functions . 3–3
3.3 Pin Assignments . 3–8
3.4 Mechanical Specifications . 3–17
3.5 21264/EV67 Packaging . 3–18

4 Cache and External Interfaces

4.1 Introduction to the External Interfaces. 4–1
4.1.1 System Interface . 4–3
4.1.1.1 Commands and Addresses. 4–4
4.1.2 Second-Level Cache (Bcache) Interface . 4–4
4.2 Physical Address Considerations . 4–4
4.3 Bcache Structure . 4–7
4.3.1 Bcache Interface Signals . 4–7
iv Alpha 21264/EV67 Hardware Reference Manual

4.3.2 System Duplicate Tag Stores. 4–7
4.4 Victim Data Buffer . 4–8
4.5 Cache Coherency . 4–8
4.5.1 Cache Coherency Basics . 4–8
4.5.2 Cache Block States . 4–9
4.5.3 Cache Block State Transitions . 4–10
4.5.4 Using SysDc Commands . 4–11
4.5.5 Dcache States and Duplicate Tags . 4–13
4.6 Lock Mechanism . 4–14
4.6.1 In-Order Processing of LDx_L/STx_C Instructions . 4–15
4.6.2 Internal Eviction of LDx_L Blocks. 4–15
4.6.3 Liveness and Fairness . 4–15
4.6.4 Managing Speculative Store Issues with Multiprocessor Systems 4–16
4.7 System Port . 4–16
4.7.1 System Port Pins . 4–17
4.7.2 Programming the System Interface Clocks . 4–18
4.7.3 21264/EV67-to-System Commands. 4–19
4.7.3.1 Bank Interleave on Cache Block Boundary Mode . 4–19
4.7.3.2 Page Hit Mode . 4–20
4.7.4 21264/EV67-to-System Commands Descriptions . 4–21
4.7.5 ProbeResponse Commands (Command[4:0] = 00001) . 4–24
4.7.6 SysAck and 21264/EV67-to-System Commands Flow Control 4–25
4.7.7 System-to-21264/EV67 Commands. 4–26
4.7.7.1 Probe Commands (Four Cycles) . 4–26
4.7.7.2 Data Transfer Commands (Two Cycles). 4–28
4.7.8 Data Movement In and Out of the 21264/EV67 . 4–30
4.7.8.1 21264/EV67 Clock Basics. 4–30
4.7.8.2 Fast Data Mode . 4–31
4.7.8.3 Fast Data Disable Mode . 4–33
4.7.8.4 SysDataInValid_L and SysDataOutValid_L . 4–34
4.7.8.5 SysFillValid_L . 4–35
4.7.8.6 Data Wrapping . 4–36
4.7.9 Nonexistent Memory Processing . 4–38
4.7.10 Ordering of System Port Transactions . 4–40
4.7.10.1 21264/EV67 Commands and System Probes . 4–40
4.7.10.2 System Probes and SysDc Commands . 4–42
4.8 Bcache Port . 4–42
4.8.1 Bcache Port Pins . 4–43
4.8.2 Bcache Clocking . 4–44
4.8.2.1 Setting the Period of the Cache Clock . 4–45
4.8.3 Bcache Transactions . 4–47
4.8.3.1 Bcache Data Read and Tag Read Transactions . 4–47
4.8.3.2 Bcache Data Write Transactions . 4–48
4.8.3.3 Bubbles on the Bcache Data Bus . 4–49
4.8.4 Pin Descriptions . 4–51
4.8.4.1 BcAdd_H[23:4] . 4–51
4.8.4.2 Bcache Control Pins . 4–52
4.8.4.3 BcDataInClk_H and BcTagInClk_H . 4–53
4.8.5 Bcache Banking . 4–54
4.8.6 Disabling the Bcache for Debugging . 4–54
4.9 Interrupts . 4–54

5 Internal Processor Registers

5.1 Ebox IPRs . 5–3
5.1.1 Cycle Counter Register – CC. 5–3
5.1.2 Cycle Counter Control Register – CC_CTL . 5–3
Alpha 21264/EV67 Hardware Reference Manual v

5.1.3 Virtual Address Register – VA . 5–4
5.1.4 Virtual Address Control Register – VA_CTL . 5–4
5.1.5 Virtual Address Format Register – VA_FORM. 5–5
5.2 Ibox IPRs. 5–6
5.2.1 ITB Tag Array Write Register – ITB_TAG . 5–6
5.2.2 ITB PTE Array Write Register – ITB_PTE . 5–6
5.2.3 ITB Invalidate All Process (ASM=0) Register – ITB_IAP . 5–7
5.2.4 ITB Invalidate All Register – ITB_IA. 5–7
5.2.5 ITB Invalidate Single Register – ITB_IS. 5–7
5.2.6 ProfileMe PC Register – PMPC . 5–8
5.2.7 Exception Address Register – EXC_ADDR . 5–8
5.2.8 Instruction Virtual Address Format Register — IVA_FORM. 5–9
5.2.9 Interrupt Enable and Current Processor Mode Register – IER_CM. 5–9
5.2.10 Software Interrupt Request Register – SIRR . 5–10
5.2.11 Interrupt Summary Register – ISUM . 5–11
5.2.12 Hardware Interrupt Clear Register – HW_INT_CLR . 5–12
5.2.13 Exception Summary Register – EXC_SUM . 5–13
5.2.14 PAL Base Register – PAL_BASE . 5–15
5.2.15 Ibox Control Register – I_CTL . 5–15
5.2.16 Ibox Status Register – I_STAT. 5–18
5.2.17 Icache Flush Register – IC_FLUSH . 5–21
5.2.18 Icache Flush ASM Register – IC_FLUSH_ASM . 5–21
5.2.19 Clear Virtual-to-Physical Map Register – CLR_MAP . 5–21
5.2.20 Sleep Mode Register – SLEEP . 5–21
5.2.21 Process Context Register – PCTX. 5–21
5.2.22 Performance Counter Control Register – PCTR_CTL . 5–23
5.3 Mbox IPRs. 5–25
5.3.1 DTB Tag Array Write Registers 0 and 1 – DTB_TAG0, DTB_TAG1 5–25
5.3.2 DTB PTE Array Write Registers 0 and 1 – DTB_PTE0, DTB_PTE1 5–26
5.3.3 DTB Alternate Processor Mode Register – DTB_ALTMODE. 5–26
5.3.4 Dstream TB Invalidate All Process (ASM=0) Register – DTB_IAP 5–27
5.3.5 Dstream TB Invalidate All Register – DTB_IA . 5–27
5.3.6 Dstream TB Invalidate Single Registers 0 and 1 – DTB_IS0,1 5–27
5.3.7 Dstream TB Address Space Number Registers 0 and 1 – DTB_ASN0,1 5–28
5.3.8 Memory Management Status Register – MM_STAT . 5–28
5.3.9 Mbox Control Register – M_CTL . 5–29
5.3.10 Dcache Control Register – DC_CTL . 5–30
5.3.11 Dcache Status Register – DC_STAT . 5–31
5.4 Cbox CSRs and IPRs . 5–32
5.4.1 Cbox Data Register – C_DATA . 5–33
5.4.2 Cbox Shift Register – C_SHFT . 5–33
5.4.3 Cbox WRITE_ONCE Chain Description . 5–33
5.4.4 Cbox WRITE_MANY Chain Description . 5–38
5.4.5 Cbox Read Register (IPR) Description . 5–41

6 Privileged Architecture Library Code

6.1 PALcode Description . 6–1
6.2 PALmode Environment . 6–2
6.3 Required PALcode Function Codes . 6–3
6.4 Opcodes Reserved for PALcode. 6–3
6.4.1 HW_LD Instruction . 6–3
6.4.2 HW_ST Instruction . 6–4
6.4.3 HW_RET Instruction . 6–5
6.4.4 HW_MFPR and HW_MTPR Instructions . 6–6
6.5 Internal Processor Register Access Mechanisms . 6–7
6.5.1 IPR Scoreboard Bits. 6–8
vi Alpha 21264/EV67 Hardware Reference Manual

6.5.2 Hardware Structure of Explicitly Written IPRs . 6–8
6.5.3 Hardware Structure of Implicitly Written IPRs . 6–9
6.5.4 IPR Access Ordering . 6–9
6.5.5 Correct Ordering of Explicit Writers Followed by Implicit Readers. 6–10
6.5.6 Correct Ordering of Explicit Readers Followed by Implicit Writers. 6–11
6.6 PALshadow Registers . 6–11
6.7 PALcode Emulation of the FPCR . 6–11
6.7.1 Status Flags . 6–12
6.7.2 MF_FPCR . 6–12
6.7.3 MT_FPCR . 6–12
6.8 PALcode Entry Points . 6–12
6.8.1 CALL_PAL Entry Points . 6–12
6.8.2 PALcode Exception Entry Points . 6–13
6.9 Translation Buffer (TB) Fill Flows . 6–14
6.9.1 DTB Fill . 6–14
6.9.2 ITB Fill . 6–16
6.10 Performance Counter Support . 6–17
6.10.1 General Precautions . 6–18
6.10.2 Aggregate Mode Programming Guidelines . 6–18
6.10.2.1 Aggregate Mode Precautions . 6–18
6.10.2.2 Operation . 6–19
6.10.2.3 Aggregate Counting Mode Description . 6–20
6.10.2.3.1 Cycle counting . 6–20
6.10.2.3.2 Retired instructions cycles . 6–20
6.10.2.3.3 Bcache miss or long latency probes cycles . 6–20
6.10.2.3.4 Mbox replay traps cycles . 6–20
6.10.2.4 Counter Modes for Aggregate Mode. 6–20
6.10.3 ProfileMe Mode Programming Guidelines . 6–20
6.10.3.1 ProfileMe Mode Precautions . 6–20
6.10.3.2 Operation . 6–21
6.10.3.3 ProfileMe Counting Mode Description . 6–23
6.10.3.3.1 Cycle counting . 6–23
6.10.3.3.2 Inum retire delay cycles . 6–23
6.10.3.3.3 Retired instructions cycles . 6–23
6.10.3.3.4 Bcache miss or long latency probes cycles . 6–23
6.10.3.3.5 Mbox replay traps cycles . 6–23
6.10.3.4 Counter Modes for ProfileMe Mode . 6–24

7 Initialization and Configuration

7.1 Power-Up Reset Flow and the Reset_L and DCOK_H Pins . 7–1
7.1.1 Power Sequencing and Reset State for Signal Pins . 7–3
7.1.2 Clock Forwarding and System Clock Ratio Configuration . 7–4
7.1.3 PLL Ramp Up. 7–6
7.1.4 BiST and SROM Load and the TestStat_H Pin . 7–6
7.1.5 Clock Forward Reset and System Interface Initialization . 7–7
7.2 Fault Reset Flow . 7–8
7.3 Energy Star Certification and Sleep Mode Flow . 7–9
7.4 Warm Reset Flow . 7–11
7.5 Array Initialization . 7–12
7.6 Initialization Mode Processing . 7–12
7.7 External Interface Initialization . 7–14
7.8 Internal Processor Register Power-Up Reset State . 7–14
7.9 IEEE 1149.1 Test Port Reset . 7–16
7.10 Reset State Machine . 7–16
7.11 Phase-Lock Loop (PLL) Functional Description . 7–19
7.11.1 Differential Reference Clocks. 7–19
Alpha 21264/EV67 Hardware Reference Manual vii

7.11.2 PLL Output Clocks . 7–19
7.11.2.1 GCLK . 7–19
7.11.2.2 Differential 21264/EV67 Clocks . 7–19
7.11.2.3 Nominal Operating Frequency . 7–19
7.11.2.4 Power-Up/Reset Clocking . 7–20

8 Error Detection and Error Handling

8.1 Data Error Correction Code. 8–2
8.2 Icache Data or Tag Parity Error. 8–2
8.3 Dcache Tag Parity Error . 8–2
8.4 Dcache Data Single-Bit Correctable ECC Error . 8–3
8.4.1 Load Instruction . 8–3
8.4.2 Store Instruction (Quadword or Smaller) . 8–4
8.4.3 Dcache Victim Extracts . 8–4
8.5 Dcache Store Second Error . 8–4
8.6 Dcache Duplicate Tag Parity Error . 8–4
8.7 Bcache Tag Parity Error . 8–5
8.8 Bcache Data Single-Bit Correctable ECC Error . 8–5
8.8.1 Icache Fill from Bcache . 8–5
8.8.2 Dcache Fill from Bcache . 8–6
8.8.3 Bcache Victim Read. 8–6
8.8.3.1 Bcache Victim Read During a Dcache/Bcache Miss . 8–6
8.8.3.2 Bcache Victim Read During an ECB Instruction . 8–7
8.9 Memory/System Port Single-Bit Data Correctable ECC Error. 8–7
8.9.1 Icache Fill from Memory. 8–7
8.9.2 Dcache Fill from Memory . 8–7
8.10 Bcache Data Single-Bit Correctable ECC Error on a Probe . 8–8
8.11 Double-Bit Fill Errors . 8–9
8.12 Error Case Summary. 8–9

9 Electrical Data

9.1 Electrical Characteristics . 9–1
9.2 DC Characteristics . 9–2
9.3 Power Supply Sequencing and Avoiding Potential Failure Mechanisms 9–5
9.4 AC Characteristics. 9–6

10 Thermal Management

10.1 Operating Temperature . 10–1
10.2 Heat Sink Specifications . 10–3
10.3 Thermal Design Considerations . 10–7

11 Testability and Diagnostics

11.1 Test Pins . 11–1
11.2 SROM/Serial Diagnostic Terminal Port . 11–2
11.2.1 SROM Load Operation. 11–2
11.2.2 Serial Terminal Port . 11–2
11.3 IEEE 1149.1 Port. 11–3
11.4 TestStat_H Pin . 11–4
11.5 Power-Up Self-Test and Initialization . 11–5
11.5.1 Built-in Self-Test . 11–5
viii Alpha 21264/EV67 Hardware Reference Manual

11.5.2 SROM Initialization. 11–5
11.5.2.1 Serial Instruction Cache Load Operation . 11–6
11.6 Notes on IEEE 1149.1 Operation and Compliance . 11–7

A Alpha Instruction Set

A.1 Alpha Instruction Summary . A–1
A.2 Reserved Opcodes . A–8
A.2.1 Opcodes Reserved for Compaq. A–8
A.2.2 Opcodes Reserved for PALcode . A–9
A.3 IEEE Floating-Point Instructions . A–9
A.4 VAX Floating-Point Instructions. A–11
A.5 Independent Floating-Point Instructions . A–11
A.6 Opcode Summary . A–12
A.7 Required PALcode Function Codes . A–13
A.8 IEEE Floating-Point Conformance . A–14

B 21264/EV67 Boundary-Scan Register

B.1 Boundary-Scan Register . B–1
B.1.1 BSDL Description of the Alpha 21264/EV67 Boundary-Scan Register B–1

C Serial Icache Load Predecode Values

D PALcode Restrictions and Guidelines

D.1 Restriction 1 : Reset Sequence Required by Retire Logic and Mapper D–1
D.2 Restriction 2 : No Multiple Writers to IPRs in Same Scoreboard Group D–8
D.3 Restriction 4 : No Writers and Readers to IPRs in Same Scoreboard Group D–8
D.4 Guideline 6 : Avoid Consecutive Read-Modify-Write-Read-Modify-Write D–9
D.5 Restriction 7 : Replay Trap, Interrupt Code Sequence, and STF/ITOF D–9
D.6 Restriction 9 : PALmode Istream Address Ranges . D–10
D.7 Restriction 10: Duplicate IPR Mode Bits . D–10
D.8 Restriction 11: Ibox IPR Update Synchronization . D–11
D.9 Restriction 12: MFPR of Implicitly-Written IPRs EXC_ADDR, IVA_FORM, and EXC_SUM D–11
D.10 Restriction 13 : DTB Fill Flow Collision . D–11
D.11 Restriction 14 : HW_RET . D–11
D.12 Guideline 16 : JSR-BAD VA . D–12
D.13 Restriction 17: MTPR to DTB_TAG0/DTB_PTE0/DTB_TAG1/DTB_PTE1 D–12
D.14 Restriction 18: No FP Operates, FP Conditional Branches, FTOI, or STF in Same Fetch Block as

HW_MTPR . D–12
D.15 Restriction 19: HW_RET/STALL After Updating the FPCR by way of MT_FPCR in PALmode D–12
D.16 Guideline 20 : I_CTL[SBE] Stream Buffer Enable . D–12
D.17 Restriction 21: HW_RET/STALL After HW_MTPR ASN0/ASN1. D–12
D.18 Restriction 22: HW_RET/STALL After HW_MTPR IS0/IS1. D–13
D.19 Restriction 23: HW_ST/P/CONDITIONAL Does Not Clear the Lock Flag. D–13
D.20 Restriction 24: HW_RET/STALL After HW_MTPR IC_FLUSH, IC_FLUSH_ASM, CLEAR_MAP

. D–14
D.21 Restriction 25: HW_MTPR ITB_IA After Reset . D–14
D.22 Guideline 26: Conditional Branches in PALcode . D–14
D.23 Restriction 27: Reset of ‘Force-Fail Lock Flag’ State in PALcode . D–15
D.24 Restriction 28: Enforce Ordering Between IPRs Implicitly Written by Loads and Subsequent Loads

. D–15
D.25 Guideline 29 : JSR, JMP, RET, and JSR_COR in PALcode. D–15
Alpha 21264/EV67 Hardware Reference Manual ix

D.26 Restriction 30 : HW_MTPR and HW_MFPR to the Cbox CSR . D–15
D.27 Restriction 31 : I_CTL[VA_48] Update . D–17
D.28 Restriction 32 : PCTR_CTL Update . D–17
D.29 Restriction 33 : HW_LD Physical/Lock Use. D–18
D.30 Restriction 34 : Writing Multiple ITB Entries in the Same PALcode Flow D–18
D.31 Guideline 35 : HW_INT_CLR Update . D–18
D.32 Restriction 36 : Updating I_CTL[SDE]. D–18
D.33 Restriction 37 : Updating VA_CTL[VA_48] . D–18
D.34 Restriction 38 : Updating PCTR_CTL . D–18
D.35 Guideline 39: Writing Multiple DTB Entries in the Same PAL Flow. D–19
D.36 Restriction 40: Scrubbing a Single-Bit Error . D–19
D.37 Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the Same Fetch Block D–21
D.38 Restriction 42: Updating VA_CTL, CC_CTL, or CC IPRs . D–21
D.39 Restriction 43: No Trappable Instructions Along with HW_MTPR. D–21
D.40 Restriction 44: Not Applicable to the 21264/EV67 . D–21
D.41 Restriction 45: No HW_JMP or JMP Instructions in PALcode . D–21
D.42 Restriction 46: Avoiding Live locks in Speculative Load CRD Handlers D–22
D.43 Restriction 47: Cache Eviction for Single-Bit Cache Errors . D–22
D.44 Restriction 48: MB Bracketing of Dcache Writes to Force Bad Data ECC and Force Bad Tag Parity

. D–24

E 21264/EV67-to-Bcache Pin Interconnections

E.1 Forwarding Clock Pin Groupings. E–1
E.2 Late-Write Non-Bursting SSRAMs . E–2
E.3 Dual-Data Rate SSRAMs . E–3

Glossary

Index
x Alpha 21264/EV67 Hardware Reference Manual

Figures

2–1 21264/EV67 Block Diagram . 2–3
2–2 Branch Predictor . 2–4
2–3 Local Predictor . 2–4
2–4 Global Predictor. 2–5
2–5 Choice Predictor . 2–5
2–6 Integer Execution Unit—Clusters 0 and 1 . 2–9
2–7 Floating-Point Execution Units . 2–10
2–8 Pipeline Organization . 2–14
2–9 Pipeline Timing for Integer Load Instructions . 2–25
2–10 Pipeline Timing for Floating-Point Load Instructions . 2–26
2–11 Floating-Point Control Register . 2–36
2–12 Typical Uniprocessor Configuration . 2–39
2–13 Typical Multiprocessor Configuration . 2–40
3–1 21264/EV67 Microprocessor Logic Symbol . 3–2
3–2 Package Dimensions. 3–17
3–3 21264/EV67 Top View (Pin Down) . 3–18
3–4 21264/EV67 Bottom View (Pin Up) . 3–19
4–1 21264/EV67 System and Bcache Interfaces. 4–3
4–2 21264/EV67 Bcache Interface Signals . 4–7
4–3 Cache Subset Hierarchy . 4–9
4–4 System Interface Signals. 4–17
4–5 Fast Transfer Timing Example . 4–32
4–6 SysFillValid_L Timing . 4–36
5–1 Cycle Counter Register . 5–3
5–2 Cycle Counter Control Register. 5–3
5–3 Virtual Address Register . 5–4
5–4 Virtual Address Control Register . 5–4
5–5 Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 0) . 5–5
5–6 Virtual Address Format Register (VA_48 = 1, VA_FORM_32 = 0) . 5–6
5–7 Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 1) . 5–6
5–8 ITB Tag Array Write Register . 5–6
5–9 ITB PTE Array Write Register . 5–7
5–10 ITB Invalidate Single Register . 5–7
5–11 ProfileMe PC Register. 5–8
5–12 Exception Address Register . 5–8
5–13 Instruction Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 0) 5–9
5–14 Instruction Virtual Address Format Register (VA_48 = 1, VA_FORM_32 = 0) 5–9
5–15 Instruction Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 1) 5–9
5–16 Interrupt Enable and Current Processor Mode Register . 5–10
5–17 Software Interrupt Request Register . 5–11
5–18 Interrupt Summary Register . 5–11
5–19 Hardware Interrupt Clear Register . 5–12
5–20 Exception Summary Register . 5–14
5–21 PAL Base Register . 5–15
5–22 Ibox Control Register. 5–16
5–23 Ibox Status Register . 5–19
5–24 Process Context Register . 5–22
5–25 Performance Counter Control Register . 5–23
5–26 DTB Tag Array Write Registers 0 and 1 . 5–25
5–27 DTB PTE Array Write Registers 0 and 1 . 5–26
5–28 DTB Alternate Processor Mode Register . 5–26
5–29 Dstream Translation Buffer Invalidate Single Registers . 5–27
5–30 Dstream Translation Buffer Address Space Number Registers 0 and 1 5–28
5–31 Memory Management Status Register . 5–28
5–32 Mbox Control Register. 5–29
5–33 Dcache Control Register . 5–31
Alpha 21264/EV67 Hardware Reference Manual xi

5–34 Dcache Status Register. 5–32
5–35 Cbox Data Register . 5–33
5–36 Cbox Shift Register . 5–33
5–37 WRITE_MANY Chain Write Transaction Example . 5–39
6–1 HW_LD Instruction Format . 6–4
6–2 HW_ST Instruction Format . 6–4
6–3 HW_RET Instruction Format . 6–6
6–4 HW_MFPR and HW_MTPR Instructions Format . 6–6
6–5 Single-Miss DTB Instructions Flow Example. 6–14
6–6 ITB Miss Instructions Flow Example . 6–16
7–1 Power-Up Timing Sequence . 7–3
7–2 Fault Reset Sequence of Operation . 7–9
7–3 Sleep Mode Sequence of Operation . 7–11
7–4 Example for Initializing Bcache . 7–13
7–5 21264/EV67 Reset State Machine State Diagram . 7–17
10–1 Type 1 Heat Sink . 10–4
10–2 Type 2 Heat Sink . 10–5
10–3 Type 3 Heat Sink . 10–6
11–1 TAP Controller State Machine . 11–4
11–2 TestStat_H Pin Timing During Power-Up Built-In Self-Test (BiST) 11–5
11–3 TestStat_H Pin Timing During Built-In Self-Initialization (BiSI) . 11–5
11–4 SROM Content Map . 11–6
xii Alpha 21264/EV67 Hardware Reference Manual

Tables

1–1 Integer Data Types . 1–2
2–1 Pipeline Abort Delay (GCLK Cycles). 2–16
2–2 Instruction Name, Pipeline, and Types . 2–17
2–3 Instruction Group Definitions and Pipeline Unit . 2–18
2–4 Instruction Class Latency in Cycles. 2–20
2–5 Minimum Retire Latencies for Instruction Classes . 2–21
2–6 Instructions Retired Without Execution . 2–23
2–7 Rules for I/O Address Space Load Instruction Data Merging . 2–28
2–8 Rules for I/O Address Space Store Instruction Data Merging . 2–29
2–9 MAF Merging Rules. 2–30
2–10 Memory Reference Ordering . 2–31
2–11 I/O Reference Ordering . 2–31
2–12 TB Fill Flow Example Sequence 1 . 2–34
2–13 TB Fill Flow Example Sequence 2 . 2–35
2–14 Floating-Point Control Register Fields. 2–36
2–15 21264/EV67 AMASK Values . 2–38
2–16 AMASK Bit Assignments . 2–38
3–1 Signal Pin Types Definitions . 3–3
3–2 21264/EV67 Signal Descriptions . 3–3
3–3 21264/EV67 Signal Descriptions by Function . 3–6
3–4 Pin List Sorted by Signal Name. 3–8
3–5 Pin List Sorted by PGA Location . 3–12
3–6 Ground and Power (VSS and VDD) Pin List . 3–16
4–1 Translation of Internal References to External Interface Reference 4–5
4–2 21264/EV67-Supported Cache Block States . 4–9
4–3 Cache Block State Transitions . 4–10
4–4 System Responses to 21264/EV67 Commands . 4–10
4–5 System Responses to 21264/EV67 Commands and 21264/EV67 Reactions. 4–11
4–6 System Port Pins . 4–17
4–7 Programming Values for System Interface Clocks . 4–18
4–8 Program Values for Data-Sample/Drive CSRs . 4–18
4–9 Forwarded Clocks and Frame Clock Ratio . 4–19
4–10 Bank Interleave on Cache Block Boundary Mode of Operation . 4–19
4–11 Page Hit Mode of Operation . 4–20
4–12 21264/EV67-to-System Command Fields Definitions . 4–20
4–13 Maximum Physical Address for Short Bus Format . 4–21
4–14 21264/EV67-to-System Commands Descriptions . 4–21
4–15 Programming INVAL_TO_DIRTY_ENABLE[1:0]. 4–23
4–16 Programming SET_DIRTY_ENABLE[2:0] . 4–24
4–17 21264/EV67 ProbeResponse Command . 4–24
4–18 ProbeResponse Fields Descriptions . 4–25
4–19 System-to-21264/EV67 Probe Commands . 4–26
4–20 System-to-21264/EV67 Probe Commands Fields Descriptions . 4–27
4–21 Data Movement Selection by Probe[4:3] . 4–27
4–22 Next Cache Block State Selection by Probe[2:0] . 4–27
4–23 Data Transfer Command Format . 4–28
4–24 SysDc[4:0] Field Description . 4–29
4–25 SYSCLK Cycles Between SysAddOut and SysData. 4–32
4–26 Cbox CSR SYSDC_DELAY[4:0] Examples . 4–33
4–27 Four Timing Examples . 4–34
4–28 Data Wrapping Rules . 4–36
4–29 System Wrap and Deliver Data . 4–37
4–30 Wrap Interleave Order. 4–37
4–31 Wrap Order for Double-Pumped Data Transfers. 4–38
4–32 21264/EV67 Commands with NXM Addresses and System Response 4–39
4–33 21264/EV67 Response to System Probe and In-Flight Command Interaction 4–41
Alpha 21264/EV67 Hardware Reference Manual xiii

4–34 Rules for System Control of Cache Status Update Order . 4–42
4–35 Range of Maximum Bcache Clock Ratios . 4–43
4–36 Bcache Port Pins . 4–43
4–37 BC_CPU_CLK_DELAY[1:0] Values . 4–45
4–38 BC_CLK_DELAY[1:0] Values . 4–45
4–39 Program Values to Set the Cache Clock Period (Single-Data) . 4–46
4–40 Program Values to Set the Cache Clock Period (Dual-Data Rate) . 4–46
4–41 Data-Sample/Drive Cbox CSRs . 4–47
4–42 Programming the Bcache to Support Each Size of the Bcache . 4–51
4–43 Programming the Bcache Control Pins . 4–52
4–44 Control Pin Assertion for RAM_TYPE A . 4–52
4–45 Control Pin Assertion for RAM_TYPE B . 4–52
4–46 Control Pin Assertion for RAM_TYPE C . 4–53
4–47 Control Pin Assertion for RAM_TYPE D . 4–53
5–1 Internal Processor Registers . 5–1
5–2 Cycle Counter Control Register Fields Description . 5–4
5–3 Virtual Address Control Register Fields Description . 5–5
5–4 ProfileMe PC Fields Description . 5–8
5–5 IER_CM Register Fields Description . 5–10
5–6 Software Interrupt Request Register Fields Description . 5–11
5–7 Interrupt Summary Register Fields Description. 5–12
5–8 Hardware Interrupt Clear Register Fields Description . 5–13
5–9 Exception Summary Register Fields Description . 5–14
5–10 PAL Base Register Fields Description . 5–15
5–11 Ibox Control Register Fields Description . 5–16
5–12 Ibox Status Register Fields Description . 5–19
5–13 IPR Index Bits and Register Fields . 5–21
5–14 Process Context Register Fields Description . 5–22
5–15 Performance Counter Control Register Fields Description . 5–24
5–16 Performance Counter Control Register Input Select Fields. 5–25
5–17 DTB Alternate Processor Mode Register Fields Description. 5–27
5–18 Memory Management Status Register Fields Description . 5–28
5–19 Mbox Control Register Fields Description . 5–30
5–20 Dcache Control Register Fields Description . 5–31
5–21 Dcache Status Register Fields Description . 5–32
5–22 Cbox Data Register Fields Description . 5–33
5–23 Cbox Shift Register Fields Description . 5–33
5–24 Cbox WRITE_ONCE Chain Order . 5–34
5–25 Cbox WRITE_MANY Chain Order . 5–39
5–26 Cbox Read IPR Fields Description . 5–41
6–1 Required PALcode Function Codes . 6–3
6–2 Opcodes Reserved for PALcode. 6–3
6–3 HW_LD Instruction Fields Descriptions . 6–4
6–4 HW_ST Instruction Fields Descriptions . 6–5
6–5 HW_RET Instruction Fields Descriptions . 6–6
6–6 HW_MFPR and HW_MTPR Instructions Fields Descriptions . 6–7
6–7 Paired Instruction Fetch Order . 6–9
6–8 PALcode Exception Entry Locations . 6–13
6–9 IPRs Used for Performance Counter Support . 6–18
6–10 Aggregate Mode Returned IPR Contents . 6–19
6–11 Aggregate Mode Performance Counter IPR Input Select Fields . 6–20
6–12 CMOV Decomposed . 6–21
6–13 ProfileMe Mode Returned IPR Contents . 6–22
6–14 ProfileMe Mode PCTR_CTL Input Select Fields . 6–24
7–1 21264/EV67 Reset State Machine Major Operations . 7–1
7–2 Signal Pin Reset State . 7–3
7–3 Pin Signal Names and Initialization State . 7–5
7–4 Power-Up Flow Signals and Their Constraints . 7–7
7–5 Effect on IPRs After Fault Reset . 7–8
xiv Alpha 21264/EV67 Hardware Reference Manual

7–6 Effect on IPRs After Transition Through Sleep Mode . 7–10
7–7 Signals and Constraints for the Sleep Mode Sequence . 7–11
7–8 Effect on IPRs After Warm Reset . 7–11
7–9 WRITE_MANY Chain CSR Values for Bcache Initialization . 7–12
7–10 Internal Processor Registers at Power-Up Reset State . 7–14
7–11 21264/EV67 Reset State Machine State Descriptions . 7–17
7–12 Differential Reference Clock Frequencies in Full-Speed Lock . 7–20
8–1 21264/EV67 Error Detection Mechanisms . 8–1
8–2 64-Bit Data and Check Bit ECC Code. 8–2
8–3 Error Case Summary. 8–9
9–1 Maximum Electrical Ratings . 9–1
9–2 Signal Types . 9–2
9–3 VDD (I_DC_POWER) . 9–3
9–4 Input DC Reference Pin (I_DC_REF) . 9–3
9–5 Input Differential Amplifier Receiver (I_DA). 9–3
9–6 Input Differential Amplifier Clock Receiver (I_DA_CLK) . 9–3
9–7 Pin Type: Open-Drain Output Driver (O_OD) . 9–4
9–8 Bidirectional, Differential Amplifier Receiver, Open-Drain Output Driver (B_DA_OD) 9–4
9–9 Pin Type: Open-Drain Driver for Test Pins (O_OD_TP) . 9–4
9–10 Bidirectional, Differential Amplifier Receiver, Push-Pull Output Driver (B_DA_PP) 9–4
9–11 Push-Pull Output Driver (O_PP) . 9–5
9–12 Push-Pull Output Clock Driver (O_PP_CLK). 9–5
9–13 AC Specifications . 9–7
10–1 Operating Temperature at Heat Sink Center (Tc) . 10–1
10–2 qca at Various Airflows for 21264/EV67 . 10–2
10–3 Maximum Ta for 21264/EV67 @ 600 MHz and @ 2.0 V with Various Airflows 10–2
10–4 Maximum Ta for 21264/EV67 @ 667 MHz and @ 2.0 V with Various Airflows 10–2
10–5 Maximum Ta for 21264/EV67 @ 700 MHz and @ 2.0 V with Various Airflows 10–2
10–6 Maximum Ta for 21264/EV67 @ 733 MHz and @ 2.0 V with Various Airflows 10–2
10–7 Maximum Ta for 21264/EV67 @ 750 MHz and @ 2.0 V with Various Airflows 10–3
10–8 Maximum Ta for 21264/EV67 @ 833 MHz and @ 2.0 V with Various Airflows 10–3
11–1 Dedicated Test Port Pins. 11–1
11–2 IEEE 1149.1 Instructions and Opcodes . 11–3
11–3 Icache Bit Fields in an SROM Line . 11–7
A–1 Instruction Format and Opcode Notation . A–1
A–2 Architecture Instructions . A–2
A–3 Opcodes Reserved for Compaq . A–8
A–4 Opcodes Reserved for PALcode. A–9
A–5 IEEE Floating-Point Instruction Function Codes . A–9
A–6 VAX Floating-Point Instruction Function Codes . A–11
A–7 Independent Floating-Point Instruction Function Codes . A–12
A–8 Opcode Summary . A–12
A–9 Key to Opcode Summary Used in Table A–8 . A–13
A–10 Required PALcode Function Codes . A–13
A–11 Exceptional Input and Output Conditions . A–15
E–1 Bcache Forwarding Clock Pin Groupings . E–1
E–2 Late-Write Non-Bursting SSRAMs Data Pin Usage . E–2
E–3 Late-Write Non-Bursting SSRAMs Tag Pin Usage . E–2
E–4 Dual-Data Rate SSRAM Data Pin Usage . E–3
E–5 Dual-Data Rate SSRAM Tag Pin Usage . E–4
Alpha 21264/EV67 Hardware Reference Manual xv

V67

e

ter-
, and

-
n

d

regis-

ure

a-

han-

sues.

nt.

res.

n of
Preface

Audience

This manual is for system designers and programmers who use the Alpha 21264/E
microprocessor (referred to as the21264/EV67).

Content

This manual contains the following chapters and appendixes:

Chapter 1, Introduction, introduces the 21264/EV67 and provides an overview of th
Alpha architecture.

Chapter 2, Internal Architecture, describes the major hardware functions and the in
nal chip architecture. It describes performance measurement facilities, coding rules
design examples.

Chapter 3, Hardware Interface,lists and describes the internal hardware interface sig
nals, and provides mechanical data and packaging information, including signal pi
lists.

Chapter 4, Cache and External Interfaces, describes the external bus functions an
transactions, lists bus commands, and describes the clock functions.

Chapter 5, Internal Processor Registers, lists and describes the internal processor
ter set.

Chapter 6, Privileged Architecture Library Code, describes the privileged architect
library code (PALcode).

Chapter 7, Initialization and Configuration, describes the initialization and configur
tion sequence.

Chapter 8, Error Detection and Error Handling, describes error detection and error
dling.

Chapter 9, Electrical Data, provides electrical data and describes signal integrity is

Chapter 10, Thermal Management, provides information about thermal manageme

Chapter 11, Testability and Diagnostics, describes chip and system testability featu

Appendix A, Alpha Instruction Set, summarizes the Alpha instruction set.

Appendix B, 21264/EV67 Boundary-Scan Register, presents the BSDL descriptio
the 21264/EV67 boundary-scan register.
Alpha 21264/EV67 Hardware Reference Manual xvii

Appendix C, Serial Icache Load Predecode Values, provides a pointer to the Alpha
Motherboards Software Developer’s Kit (SDK), which contains this information.

Appendix D, PALcode Restrictions and Guidelines, lists restrictions and guidelines
that must be adhered to when generating PALcode.

Appendix E, 21264/EV67-to-Bcache Pin Interconnections, provides the pin interface
between the 21264/EV67 and Bcache SSRAMs.

The Glossary lists and defines terms associated with the 21264/EV67.

An Index is provided at the end of the document.

Documentation Included by Reference

The companion volume to this manual, theAlpha Architecture Reference Manual, Fourth
Edition, can be accessed from the following website:ftp.compaq.com/pub/
products/alphaCPUdocs.
xviii Alpha 21264/EV67 Hardware Reference Manual

s

have

s

e

e

Terminology and Conventions

This section defines the abbreviations, terminology, and other conventions used
throughout this document.

Abbreviations

• Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiple
and have the following values.

For example:

• Register Access

The abbreviations used to indicate the type of access to register fields and bits
the following definitions:

K = 210 (1024)
M = 220 (1,048,576)
G = 230 (1,073,741,824)

2KB = 2 kilobytes = 2 × 210 bytes
4MB = 4 megabytes = 4 × 220 bytes
8GB = 8 gigabytes = 8 × 230 bytes
2K pixels = 2 kilopixels = 2 × 210 pixels
4M pixels = 4 megapixels= 4 × 220 pixels

Abbreviation Meaning

IGN Ignore
Bits and fields specified are ignored on writes.

MBZ Must Be Zero
Software must never place a nonzero value in bits and fields specified as
MBZ. A nonzero read produces an Illegal Operand exception. Also, MBZ
fields are reserved for future use.

RAZ Read As Zero
Bits and fields return a zero when read.

RC Read Clears
Bits and fields are cleared when read. Unless otherwise specified, such bit
cannot be written.

RES Reserved
Bits and fields are reserved by Compaq and should not be used; however,
zeros can be written to reserved fields that cannot be masked.

RO Read Only
The value may be read by software. It is written by hardware. Software writ
operations are ignored.

RO,n Read Only, and takes the valuen at power-on reset.
The value may be read by software. It is written by hardware. Software writ
operations are ignored.
Alpha 21264/EV67 Hardware Reference Manual xix

64.

f

re
y a
its

ee

y

e

y

e
y

• Sign extension

SEXT(x) meansx is sign-extended to the required size.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

The termsalignedandnaturally alignedare interchangeable and refer to data objects
that are powers of two in size. An aligned datum of size 2n is stored in memory at a
byte address that is a multiple of 2n; that is, one that hasn low-order zeros. For ex-
ample, an aligned 64-byte stack frame has a memory address that is a multiple of

A datum of size 2n is unalignedif it is stored in a byte address that is not a multiple o
2n.

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in squa
brackets ([]). Multiple contiguous bits are indicated by a pair of numbers separated b
colon [:]. For example, [9:7,5,2:0] specifies bits 9,8,7,5,2,1, and 0. Similarly, single b
are frequently indicated with square brackets. For example, [27] specifies bit 27. S
also Field Notation.

Caution

Cautions indicate potential damage to equipment or loss of data.

RW Read/Write
Bits and fields can be read and written.

RW,n Read/Write, and takes the valuen at power-on reset.
Bits and fields can be read and written.

W1C Write One to Clear
If read operations are allowed to the register, then the value may be read b
software. If it is a write-only register, then a read operation by software
returns an UNPREDICTABLE result. Software write operations of a 1 caus
the bit to be cleared by hardware. Software write operations of a 0 do not
modify the state of the bit.

W1S Write One to Set
If read operations are allowed to the register, then the value may be read b
software. If it is a write-only register, then a read operation by software
returns an UNPREDICTABLE result. Software write operations of a 1 caus
the bit to be set by hardware. Software write operations of a 0 do not modif
the state of the bit.

WO Write Only
Bits and fields can be written but not read.

WO,n Write Only, and takes the valuen at power-on reset.
Bits and fields can be written but not read.

Abbreviation Meaning
xx Alpha 21264/EV67 Hardware Reference Manual

it

hexa-

lu-

lon
]

at
d to
on.
Data Units

The following data unit terminology is used throughout this manual.

Do Not Care (X)

A capital X represents any valid value.

External

Unless otherwise stated, external means not contained in the chip.

Field Notation

The names of single-bit and multiple-bit fields can be used rather than the actual b
numbers (see Bit Notation). When the field name is used, it is contained in square
brackets ([]). For example,RegisterName[LowByte]specifiesRegisterName[7:0].

Note

Notes emphasize particularly important information.

Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x indi-
cates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A are
decimal (also see Addresses). Otherwise, the base is indicated by a subscript; for
example, 1002 is a binary number.

Ranges and Extents

Rangesare specified by a pair of numbers separated by two periods (..) and are inc
sive. For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extentsare specified by a pair of numbers in square brackets ([]) separated by a co
(:) and are inclusive. Bit fields are often specified as extents. For example, bits [7:3
specifies bits 7, 6, 5, 4, and 3.

Register Figures

The gray areas in register figures indicate reserved or unused bits and fields.

Bit ranges that are coupled with the field name specify the bits of the named field th
are included in the register. The bit range may, but need not necessarily, correspon
the bitExtentin the register. See the explanation above Table 5–1 for more informati

Signal Names

The following examples describe signal-name conventions used in this document.

Term Words Bytes Bits Other

Byte ½ 1 8 —

Word 1 2 16 —

Longword 2 4 32 Dword

Quadword 4 8 64 2 longword
Alpha 21264/EV67 Hardware Reference Manual xxi

e
s,

r-
,

nta-

w-
an
ine

pro-

t to
n
ICT-

ny

ns.

as

of,
nt

ur-

essor
AlphaSignal[n:n] Boldface, mixed-case type denotes signal names that ar
assigned internal and external to the 21264/EV67 (that i
the signal traverses a chip interface pin).

AlphaSignal_x[n:n] When a signal has high and low assertion states, a lowe
case italicx represents the assertion states. For example
SignalName_x[3:0] representsSignalName_H[3:0]and
SignalName_L[3:0].

UNDEFINED

Operations specified as UNDEFINED may vary from moment to moment, impleme
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation.

UNDEFINED operations may halt the processor or cause it to lose information. Ho
ever, UNDEFINED operations must not cause the processor to hang, that is, reach
unhalted state from which there is no transition to a normal state in which the mach
executes instructions.

UNPREDICTABLE

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the
cessor; it continues to execute instructions in its normal manner. Further:

• Results or occurrences specified as UNPREDICTABLE may vary from momen
moment, implementation to implementation, and instruction to instruction withi
implementations. Software can never depend on results specified as UNPRED
ABLE.

• An UNPREDICTABLE result may acquire an arbitrary valuesubject to a few con-
straints. Such a result may be an arbitrary function of the input operands or of a
state information that is accessible to the process in its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptio

• An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
are UNPREDICTABLE results and, in particular, must not constitute a security
hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
the contents of memory locations or registers that are inaccessible to the curre
process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

– Write or modify the contents of memory locations or registers to which the c
rent process in the current access mode does not have access, or

– Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of proc
temporary registers left behind by some previously running process, or on a
sequence of actions of different processes.
xxii Alpha 21264/EV67 Hardware Reference Manual

X

Do not care. A capital X represents any valid value.
Alpha 21264/EV67 Hardware Reference Manual xxiii

he
es-
en-

ar-
ware

ters.
ns.

on
gis-

nd
text
n be

n
e

1
Introduction

This chapter provides a brief introduction to the Alphaarchitecture, Compaq’s RISC
(reduced instruction set computing) architecture designed for high performance. T
chapter then summarizes the specific features of the Alpha 21264/EV67 microproc
sor (hereafter called the 21264/EV67) that implements the Alpha architecture. App
dix A provides a list of Alpha instructions.

The companion volume to this manual, theAlpha Architecture Reference Manual,
Fourth Edition, can be obtained from:ftp.compaq.com/pub/products/
alphaCPUdocs.

1.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed with p
ticular emphasis on speed, multiple instruction issue, multiple processors, and soft
migration from many operating systems.

All registers are 64 bits long and all operations are performed between 64-bit regis
All instructions are 32 bits long. Memory operations are either load or store operatio
All data manipulation is done between registers.

The Alpha architecture supports the following data types:

• 8-, 16-, 32-, and 64-bit integers

• IEEE 32-bit and 64-bit floating-point formats

• VAX architecture 32-bit and 64-bit floating-point formats

In the Alpha architecture, instructions interact with each other only by one instructi
writing to a register or memory location and another instruction reading from that re
ter or memory location. This use of resources makes it easy to build implementations
that issue multiple instructions every CPU cycle.

The 21264/EV67 uses a set of subroutines, called privilegedarchitecture library code
(PALcode), that is specific to a particular Alpha operating system implementation a
hardware platform. These subroutines provide operating system primitives for con
switching, interrupts, exceptions, and memory management. These subroutines ca
invoked by hardware or CALL_PAL instructions. CALL_PAL instructions use the
function field of the instruction to vector to a specified subroutine. PALcode is writte
in standard machine code with some implementation-specific extensions to provid
Alpha 21264/EV67 Hardware Reference Manual Introduction 1–1

The Architecture

mul-
-

s-
oad

V67

resses
ical

A

y.
direct access to low-level hardware functions. PALcode supports optimizations for
tiple operating systems, flexible memory-management implementations, and multi
instruction atomic sequences.

The Alpha architecture performs byte shifting and masking with normal 64-bit, regi
ter-to-register instructions. The 21264/EV67 performs single-byte and single-word l
and store instructions.

1.1.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21264/E
supports a 48-bit or 43-bit virtual address (selectable under IPR control).

Virtual addresses as seen by the program are translated into physical memory add
by the memory-management mechanism. The 21264/EV67 supports a 44-bit phys
address.

1.1.2 Integer Data Types

Alpha architecture supports the four integer data types listed in Table 1–1.

Note: Alpha implementations may impose a significant performance penalty
when accessing operands that are not naturally aligned. Refer to theAlpha
Architecture Handbook, Version 4for details.

1.1.3 Floating-Point Data Types

The 21264/EV67 supports the following floating-point data types:

• Longword integer format in floating-point unit

• Quadword integer format in floating-point unit

• IEEE floating-point formats

– S_floating

– T_floating

• VAX floating-point formats

– F_floating

– G_floating

– D_floating (limited support)

Table 1–1 Integer Data Types

Data Type Description

Byte A byte is 8 contiguous bits that start at an addressable byte boundary.
A byte is an 8-bit value.

Word A word is 2 contiguous bytes that start at an arbitrary byte boundary.
A word is a 16-bit value.

Longword A longword is 4 contiguous bytes that start at an arbitrary byte boundary.
longword is a 32-bit value.

Quadword A quadword is 8 contiguous bytes that start at an arbitrary byte boundar
1–2 Introduction Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microprocessor Features

ed in
r of
ely

iz-

em-

dou-

-
he

ich,
rans-
on
),

ach

g

s.
1.2 21264/EV67 Microprocessor Features

The 21264/EV67 microprocessor is a superscalar pipelined processor. It is packag
a 587-pin PGA carrier and has removable application-specific heat sinks. A numbe
configuration options allow its use in a range of system designs ranging from extrem
simple uniprocessor systems with minimum component count to high-performance
multiprocessor systems with very high cache and memory bandwidth.

The 21264/EV67 can issue four Alpha instructions in a single cycle, thereby minim
ing the average cycles per instruction (CPI). A number of low-latency and/or high-
throughput features in the instruction issue unit and the onchip components of the m
ory subsystem further reduce the average CPI.

The 21264/EV67 and associated PALcode implements IEEE single-precision and
ble-precision, VAX F_floating and G_floating data types, and supports longword
(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is pro
vided by byte-manipulation instructions. Limited hardware support is provided for t
VAX D_floating data type.

Other 21264/EV67 features include:

• The ability to issue up to four instructions during each CPU clock cycle.

• A peak instruction execution rate of four times the CPU clock frequency.

• An onchip, demand-paged memory-management unit with translation buffer, wh
when used with PALcode, can implement a variety of page table structures and t
lation algorithms. The unit consists of a 128-entry, fully-associative data translati
buffer (DTB) and a 128-entry, fully-associative instruction translation buffer (ITB
with each entry able to map a single 8KB page or a group of 8, 64, or 512 8KB
pages. The allocation scheme for the ITB and DTB is round-robin. The size of e
translation buffer entry’s group is specified byhint bits stored in the entry. The
DTB and ITB implement 8-bit address space numbers (ASN), MAX_ASN=255.

• Two onchip, high-throughput pipelined floating-point units, capable of executin
both VAX and IEEE floating-point data types.

• An onchip, 64KB virtually-addressed instruction cache with 8-bit ASNs
(MAX_ASN=255).

• An onchip, virtually-indexed, physically-tagged dual-read-ported,64KB data
cache.

• Supports a 48-bit or 43-bit virtual address (program selectable).

• Supports a 44-bit physical address.

• An onchip I/O write buffer with four 64-byte entries for I/O write transactions.

• An onchip, 8-entry victim data buffer.

• An onchip, 32-entry load queue.

• An onchip, 32-entry store queue.

• An onchip, 8-entry miss address file for cache fill requests and I/O read
transactions.

• An onchip, 8-entry probe queue, holding pending system port probe command
Alpha 21264/EV67 Hardware Reference Manual Introduction 1–3

21264/EV67 Microprocessor Features

g

67,

e

• An onchip, duplicate tag array used to maintain level 2 cache coherency.

• A 64-bit data bus with onchip parity and error correction code (ECC) support.

• Support for an external second-level (Bcache) cache. The size and some timin
parameters of the Bcache are programmable.

• An internal clock generator providing a high-speed clock used by the 21264/EV
and two clocks for use by the CPU module.

• Onchip performance counters to measure and analyze CPU and system perfor-
mance.

• Chip and module level test support, including an instruction cache test interface to
support chip and module level testing.

• A 2.0-V external interface.

Refer to Chapter 9 for 21264/EV67 dc and ac electrical characteristics. Refer to th
Alpha Architecture Handbook, Version 4, Appendix E, for waivers and any other
implementation-dependent information.
1–4 Introduction Alpha 21264/EV67 Hardware Reference Manual

ys-
e

ain

e a

ta-
ec-
2
Internal Architecture

This chapter provides both an overview of the 21264/EV67 microarchitecture and a s
tem designer’s view of the 21264/EV67 implementation of the Alpha architecture. Th
combination of the 21264/EV67 microarchitecture and privileged architecture library
code (PALcode) defines the chip’s implementation of the Alpha architecture. If a cert
piece of hardware seems to be “architecturally incomplete,” the missing functionality is
implemented in PALcode. Chapter 6 provides more information on PALcode.

This chapter describes the major functional hardware units and is not intended to b
detailed hardware description of the chip. It is organized as follows:

• 21264/EV67 microarchitecture

• Pipeline organization

• Instruction issue and retire rules

• Load instructions to R31/F31 (software-directed instruction prefetch)

• Special cases of Alpha instruction execution

• Memory and I/O address space

• Miss address file (MAF) and load-merging rules

• Instruction ordering

• Replay traps

• I/O write buffer and the WMB instruction

• Performance measurement support

• Floating-point control register

• AMASK and IMPLVER instruction values

• Design examples

2.1 21264/EV67 Microarchitecture

The 21264/EV67 microprocessor is a high-performance third-generation implemen
tion of the Compaq Alpha architecture. The 21264/EV67 consists of the following s
tions, as shown in Figure 2–1:

• Instruction fetch, issue, and retire unit (Ibox)

• Integer execution unit (Ebox)
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–1

21264/EV67 Microarchitecture

ons:

-
s, in
logic
• Floating-point execution unit (Fbox)

• Onchip caches (Icache and Dcache)

• Memory reference unit (Mbox)

• External cache and system interface unit (Cbox)

• Pipeline operation sequence

2.1.1 Instruction Fetch, Issue, and Retire Unit

The instruction fetch, issue, and retire unit (Ibox) consists of the following subsecti

• Virtual program counter logic

• Branch predictor

• Instruction-stream translation buffer (ITB)

• Instruction fetch logic

• Register rename maps

• Integer and floating-point issue queues

• Exception and interrupt logic

• Retire logic

2.1.1.1 Virtual Program Counter Logic

The virtual program counter (VPC) logic maintains the virtual addresses for instruc
tions that are in flight. There can be up to 80 instructions, in 20 successive fetch slot
flight between the register rename mappers and the end of the pipeline. The VPC
contains a 20-entry table to store these fetched VPC addresses.
2–2 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microarchitecture

ic-
Figure 2–1 21264/EV67 Block Diagram

2.1.1.2 Branch Predictor

The branch predictor is composed of three units: the local, global, and choice pred
tors. Figure 2–2 shows how the branch predictor generates the predicted branch
address.

INT
UNIT

1
(U1)

Address
ALU 1
(L1)

Address
ALU 0

(L0)

Branch
Predictor

VPC
Queue

INT
UNIT

0
(U0)

Integer Registers 1
(80 Registers)

Integer Registers 0
(80 Registers)

Ebox

FP
ADD
DIV

SQRT

FP
MUL

FP Registers
(72 Registers)

Fbox

Dual-Ported Data Cache

Physical
Address

Mbox
DTB

(Dual-ported, 128-entry)
Load

Queue
Store

Queue
Miss Address

File

Arbiter

Victim
Buffer

IOWB

Duplicate
Tag Store

Probe
Queue

Cache
Data

128

Cache
Index

20

System
Bus

64

System
Address

15

128

CboxFP Issue Queue
(15 Entries)

Integer Issue Queue
(20 Entries)

Ibox

Decode and
Rename Registers

Retire
Unit

ITB

Predecode

Fetch Unit

Next Address

Virtual Address Four
Instructions

Instruction Cache

128

Physical
Address

Data

Data

FM-05642-AI4
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–3

21264/EV67 Microarchitecture

.
l

e-
as
is

satu-

al

tory
2
he

cur-
Figure 2–2 Branch Predictor

Local Predictor

The local predictor uses a 2-level table that holds the history of individual branches
The 2-level table design approaches the prediction accuracy of a larger single-leve
table while requiring fewer total bits of storage. Figure 2–3 shows how the local pr
dictor generates a prediction. Bits [11:2] of the VPC of the current branch are used
the index to a 1K entry table in which each entry is a 10-bit value. This 10-bit value
used as the index to a 1K entry table of 3-bit saturating counters. The value of the
rating counter determines the predication, taken/not-taken, of the current branch.

Figure 2–3 Local Predictor

Global Predictor

The global predictor is indexed by a global history of all recent branches. The glob
predictor correlates the localhistory of the current branchwith all recent branches. Fig-
ure 2–4 shows how the global predictor generates a prediction. The global path his
is comprised of the taken/not-taken state of the 12 most-recent branches. These 1
states are used to form an index into a 4K entry table of 2-bit saturating counters. T
value of the saturating counter determines the predication, taken/not-taken, of the
rent branch.

Local
Predictor

Global
Predictor

Choice
Predictor

Predicted
Branch
Address

FM-05810.AI4

Local
History
Table

1K x 10

FM-05811.AI4

Local
Predictor

1K x 3
+/-

10
Index

VPC[11:2]

Local Branch Prediction

1

3

10

3

2–4 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microarchitecture

ses
oice

ting
tputs

r
la-
64,

for
Figure 2–4 Global Predictor

Choice Predictor

The choice predictor monitors the history of the local and global predictors and choo
the best of the two predictors for a particular branch. Figure 2–5 shows how the ch
predictor generates its choice of the result of the local or global prediction. The 12-bit
global path history (see Figure 2–4) is used to index a 4K entry table of 2-bit satura
counters. The value of the saturating counter determines the choice between the ou
of the local and global predictors.

Figure 2–5 Choice Predictor

2.1.1.3 Instruction-Stream Translation Buffer

The Ibox includes a 128-entry, fully-associative instruction-stream translation buffe
(ITB) that is used to store recently used instruction-stream (Istream) address trans
tions and page protection information. Each of the entries in the ITB can map 1, 8,
or 512 contiguous 8KB pages. The allocation scheme is round-robin.

The ITB supports an 8-bit ASN and contains an ASM bit. TheIcache is virtually
addressed and contains the access-check information, so the ITB is accessed only
Istream references that miss in the Icache.

Istream transactions to I/O address space are UNDEFINED.

Global
Path

History

FM-05812.AI4

Global
Predictor

4K x 2
+/-

12

Index

Global Branch Prediction

1

2

2

Global
Path

History

FM-05813.AI4

Choice
Predictor

4K x 2

12

Choice Prediction
12

2

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–5

21264/EV67 Microarchitecture

u-
dic-
most

ts
ache
e

, in

ion’s
l

al
the
at

the
truc-
. At
he
ly
tate

cle:
2.1.1.4 Instruction Fetch Logic

The instruction prefetcher (predecode) reads an octaword, containing up to four nat
rally aligned instructions per cycle, from the Icache. Branch prediction and line pre
tion bits accompany the four instructions. The branch prediction scheme operates
efficiently whenonly one branch instruction is contained among the four fetched
instructions. The line prediction scheme attempts to predict the Icache line that the
branch predictor will generate, and is described in Section 2.2.

An entry from the subroutine return prediction stack, together with set prediction bi
for use by the Icache stream controller, are fetched along with the octaword. The Ic
stream controller generates fetch requests for additional Icache lines and stores th
Istream data in the Icache. There is no separate buffer tohold Istream requests.

2.1.1.5 Register Rename Maps

The instruction prefetcher forwards instructions to the integer and floating-point regis-
ter rename maps. The rename maps perform the two functions listed here:

• Eliminate register write-after-read (WAR) and write-after-write (WAW) data
dependencies while preserving true read-after-write (RAW) data dependencies
order to allow instructions to be dynamically rescheduled.

• Provide a means of speculatively executing instructions before the control flow
previous to those instructions is resolved. Both exceptions and branch
mispredictions represent deviations from the control flow predicted by the
instruction prefetcher.

The map logic translates each instruction’s operand register specifiers from thevirtual
register numbers in the instruction to thephysicalregister numbers that hold the corre-
sponding architecturally-correct values. The map logic also renames each instruct
destination register specifier from the virtual number in the instruction to a physica
register number chosen from a list offreephysical registers, and updates the register
maps.

The map logic can process four instructions per cycle. It does not return the physic
register, which holds the old value of an instruction’s virtual destination register, to
free list until the instruction has been retired, indicating that the control flow up to th
instruction has been resolved.

If a branch mispredict or exception occurs, the map logic backs up the contents of
integer and floating-point register rename maps to the state associated with the ins
tion that triggered the condition, and the prefetcher restarts at the appropriate VPC
most, 20 valid fetch slots containing up to 80 instructions can be in flight between t
register maps and the end of the machine’s pipeline, where the control flow is final
resolved. The map logic is capable of backing up the contents of the maps to the s
associated with any of these 80 instructions in a single cycle.

The register rename logic places instructions into an integer or floating-point issue
queue, from which they are later issued to functional units for execution.

2.1.1.6 Integer Issue Queue

The 20-entry integer issue queue (IQ), associated with the integer execution units
(Ebox), issues the following types of instructions at a maximum rate of four per cy
2–6 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microarchitecture

rs. A
by the
lus-

sters.
e 20
rs or
or

and

the
n
er
tion
ster,

the
gli-

ol-

ltiply
h of
ster
ch
• Integer operate

• Integer conditional branch

• Unconditional branch – both displacement and memory format

• Integer and floating-point load and store

• PAL-reserved instructions: HW_MTPR, HW_MFPR, HW_LD, HW_ST,
HW_RET

• Integer-to-floating-point (ITOFx) and floating-point-to-integer (FTOIx)

Each queue entry asserts four request signals—one for each of the Ebox subcluste
queue entry asserts a request when it contains an instruction that can be executed
subcluster, if the instruction’s operand register values are available within the subc
ter.

There are two arbiters—one for the upper subclusters and one for the lower subclu
(Subclusters are described in Section 2.1.2.) Each arbiter picks two of the possibl
requesters for service each cycle. A given instruction only requests upper subcluste
lower subclusters, but because many instructions can only be executed in one type
another this is not too limiting.

For example, load and store instructions can only go to lower subclusters and shift
instructions can only go to upper subclusters. Other instructions, such as addition
logic operations, can execute in either upper or lower subclusters and are statically
assigned before being placed in the IQ.

The IQ arbiters choose between simultaneous requesters of a subcluster based on
age of the request—older requests are given priority over newer requests. If a give
instruction requests both lower subclusters, and no older instruction requests a low
subcluster, then the arbiter assigns subcluster L0 to the instruction. If a given instruc
requests both upper subclusters, and no older instruction requests an upper subclu
then the arbiter assigns subcluster U1 to the instruction. This asymmetry between
upper and lower subcluster arbiters is a circuit implementation optimization with ne
gible overall performance effect.

2.1.1.7 Floating-Point Issue Queue

The 15-entry floating-point issue queue (FQ) associated with the Fbox issues the f
lowing instruction types:

• Floating-point operates

• Floating-point conditional branches

• Floating-point stores

• Floating-point register to integer register transfers (FTOIx)

Each queue entry has three request lines—one for the add pipeline, one for the mu
pipeline, and one for the two store pipelines. There are three arbiters—one for eac
the add, multiply, and store pipelines. The add and multiply arbiters pick one reque
per cycle, while the store pipeline arbiter picks two requesters per cycle, one for ea
store pipeline.
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–7

21264/EV67 Microarchitecture

ge of
store
e

r
reg-
r.
ry in
e

tions

ied

n

th-
the

te.

nd

ted
80-
ig-
The FQ arbiters pick between simultaneous requesters of a pipeline based on the a
the request—older requests are given priority over newer requests. Floating-point
instructions and FTOIx instructions in even-numbered queue entries arbitrate for on
store port. Floating-point store instructions and FTOIx instructions in odd-numbered
queue entries arbitrate for the second store port.

Floating-point store instructions and FTOIx instructions are queued in both the intege
and floating-point queues. They wait in the floating-point queue until their operand
ister values are available. They subsequently request service from the store arbite
Upon being issued from the floating-point queue, they signal the corresponding ent
the integer queue to request service. Upon being issued from the integer queue, th
operation is completed.

2.1.1.8 Exception and Interrupt Logic

There are two types of exceptions: faults and synchronous traps. Arithmetic excep
are precise and are reported as synchronous traps.

The four sources of interrupts are listed as follows:

• Level-sensitive hardware interrupts sourced by theIRQ_H[5:0] pins

• Edge-sensitive hardware interrupts generated by the serial line receive pin,
performance counter overflows, and hardware corrected read errors

• Software interrupts sourced by the software interrupt request (SIRR) register

• Asynchronous system traps (ASTs)

Interrupt sources can be individually masked. In addition, AST interrupts are qualif
by the current processor mode.

2.1.1.9 Retire Logic

The Ibox fetches instructions in program order, executes them out of order, and the
retires them in order. The Ibox retire logic maintains thearchitectural state of the
machine by retiring an instruction only if all previous instructions have executed wi
out generating exceptions or branch mispredictions. Retiring an instruction commits
machine to any changes the instruction may have made to the software-visible sta
The three software-visible states are listed as follows:

• Integer and floating-point registers

• Memory

• Internal processor registers (including control/status registers and translation
buffers)

The retire logic can sustain a maximum retire rate of eight instructions per cycle, a
can retire up to as many as 11 instructions in a single cycle.

2.1.2 Integer Execution Unit

The integer execution unit (Ebox) is a 4-path integer execution unit that is implemen
as two functional-unit “clusters” labeled 0 and 1. Each cluster contains a copy of an
entry, physical-register file and two “subclusters”, named upper (U) and lower (L). F
ure 2–6 shows the integer execution unit. In the figure,iop_wr is the cross-cluster bus
for moving integer result values between clusters.
2–8 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microarchitecture

clus-
ster

s the

fol-
Figure 2–6 Integer Execution Unit—Clusters 0 and 1

Most instructions have 1-cycle latency for consumers that execute within the same
ter. Also, there is another 1-cycle delay associated with producing a value in one clu
and consuming the value in the other cluster. The instruction issue queue minimize
performance effect of this cross-cluster delay. The Ebox contains the following
resources:

• Four 64-bit adders that are used to calculate results for integer add instructions
(located in U0, U1, L0, and L1)

• The adders in the lower subclusters that are used to generate theeffective virtual
address for load and store instructions (located in L0 and L1)

• Four logic units

• Two barrel shifters and associated byte logic (located in U0 and U1)

• Two sets of conditional branch logic (located in U0 and U1)

• Two copies of an 80-entry register file

• One pipelined multiplier (located in U1) with 7-cycle latency for all integer multiply
operations

• One fully-pipelined unit (located in U0), with 3-cycle latency, that executes the
lowing instructions:

– CTLZ, CTPOP, CTTZ

– PERR, MINxxx, MAXxxx, UNPKxx, PKxx

L0

Register

U0

Load/Store Data

L1

Register

U1

Load/Store Data

iop_wr

iop_wr

eff_VA eff_VA

iop_wr

iop_wr

FM-05643.AI4
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–9

21264/EV67 Microarchitecture

lpha
ers,

al
rts.
hin a

s

X
g-

t.

ing-
ot
The Ebox has 80 register-file entries that contain storage for the values of the 31 A
integer registers (the value of R31 is not stored), the values of 8 PALshadow regist
and 41 results written by instructions that have not yet been retired.

Ignoring cross-cluster delay, the two copies of the Ebox register file contain identic
values. Each copy of the Ebox register file contains four read ports and six write po
The four read ports are used to source operands to each of the two subclusters wit
cluster. The six write ports are used as follows:

• Two write ports are used to write results generated within the cluster.

• Two write ports are used to write results generated by the other cluster.

• Two write ports are used to write results from load instructions. These two port
are also used for FTOIx instructions.

2.1.3 Floating-Point Execution Unit

The floating-point execution unit (Fbox) has two paths. The Fbox executes both VA
and IEEE floating-point instructions. It support IEEE S_floating-point and T_floatin
point data types and all rounding modes. It also supports VAX F_floating-point and
G_floating-point data types, and provides limited support for D_floating-point forma
The basic structure of the floating-point execution unit is shown in Figure 2–7.

Figure 2–7 Floating-Point Execution Units

The Fbox contains the following resources:

• 72-entry physical register file

• Fully-pipelined multiplier with 4-cycle latency

• Fully-pipelined adder with 4-cycle latency

• Nonpipelined divide unit associated with the adder pipeline

• Nonpipelined square root unit associated with the adder pipeline

The 72 Fbox register file entries contain storage for the values of the 31 Alpha float
point registers (F31 is not stored) and 41 values written by instructions that have n
been retired.

LK98-0004A

FP Mul

Reg

FP Add

FP Div

SQRT

Floating-Point
Execution Units
2–10 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microarchitecture

are
used
ated

c-

ys-

robe

and
bes.

wing
The Fbox register file contains six reads ports and four write ports. Four read ports
used to source operands to the add and multiply pipelines, and two read ports are
to source data for store instructions. Two write ports are used to write results gener
by the add and multiply pipelines, and two write ports are used to write results from
floating-point load instructions.

2.1.4 External Cache and System Interface Unit

The interface for thesystem and external cache (Cbox) controls the Bcache and system
ports. It contains the following structures:

• Victim address file (VAF)

• Victim data file (VDF)

• I/O write buffer (IOWB)

• Probe queue (PQ)

• Duplicate Dcache tag (DTAG)

2.1.4.1 Victim Address File and Victim Data File

The victim address file (VAF) and victim data file (VDF) together form an 8-entry vi
tim buffer used for holding:

• Dcache blocks to be written to the Bcache

• Istream cacheblocks from memory to be written to the Bcache

• Bcache blocks to be written to memory

• Cache blocks sent to the system in response to probe commands

2.1.4.2 I/O Write Buffer

The I/O write buffer (IOWB) consists of four 64-byte entries and associated address
and control logic used for buffering I/O write data between the store queue and the s
tem port.

2.1.4.3 Probe Queue

The probe queue (PQ) is an 8-entry queue that holds pending system port cache p
commands and addresses.

2.1.4.4 Duplicate Dcache Tag Array

The duplicate Dcache tag (DTAG) array holds a duplicate copy of the Dcache tags
is used by the Cbox when processing Dcache fills, Icache fills, and system port pro

2.1.5 Onchip Caches

The 21264/EV67 contains two onchip primary-level caches.

2.1.5.1 Instruction Cache

The instruction cache (Icache) is a64KB virtual-addressed, 2-way set-predict cache.
Set prediction is used to approximate the performance of a 2-set cache without slo
the cache access time. Each Icache block contains:

• 16 Alpha instructions (64 bytes)
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–11

21264/EV67 Microarchitecture

and

ch

ally

ow
vir-
row

e,

s in

y
ruc-
• Virtual tag bits [47:15]

• 8-bit address space number (ASN) field

• 1-bit address space match (ASM) bit

• 1-bit PALcode bit to indicate physical addressing

• Valid bit

• Data and tag parity bits

• Four access-check bits for the following modes: kernel, executive, supervisor,
user (KESU)

• Additional predecoded information to assist with instruction processing and fet
control

2.1.5.2 Data Cache

The data cache (Dcache) is a 64KB, 2-way set-associative, virtually indexed, physic
tagged, write-back, read/write allocate cache with 64-byte blocks. Duringeach cycle
the Dcache can perform one of the following transactions:

• Two quadword (or shorter) read transactions to arbitrary addresses

• Two quadword write transactions to the same aligned octaword

• Two non-overlapping less-than-quadword writes to the same aligned quadword

• One sequential read and write transaction from and to the same aligned octaword

Each Dcache block contains:

• 64 data bytes and associated quadword ECC bits

• Physical tag bits

• Valid, dirty, shared, and modified bits

• Tag parity bit calculated across the tag, dirty, shared, and modified bits

• One bit to control round-robin set allocation (one bit per two cache blocks)

The Dcache contains two sets, each with 512 rows containing 64-byte blocks per r
(that is, 32K bytes of data per set). The 21264/EV67 requires two additional bits of
tual address beyond the bits that specify an 8KB page, in order to specify a Dcache
index. A given virtual address might be found in four unique locations in the Dcach
depending on the virtual-to-physical translation for those two bits. The 21264/EV67
prevents this aliasing by keeping only one of the four possible translated addresse
the cache at any time.

2.1.6 Memory Reference Unit

The memory reference unit (Mbox) controls the Dcache and ensures architecturall
correct behavior for load and store instructions. The Mbox contains the following st
tures:

• Load queue (LQ)

• Store queue (SQ)
2–12 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Pipeline Organization

and
box,

have
d the
rder
are
the
he.

ding

ed
ntries
s

c-
llow-
• Miss address file (MAF)

• Dstream translation buffer (DTB)

2.1.6.1 Load Queue

The load queue (LQ) is a reorder buffer for load instructions. It contains 32 entries
maintains the state associated with load instructions that have been issued to the M
but for which results have not been delivered to the processor and the instructions
retired. The Mbox assigns load instructions to LQ slots based on the order in which
they were fetched from the Icache, then places them into the LQ after they are issued by
the IQ. The LQ helps ensure correctAlpha memory reference behavior.

2.1.6.2 Store Queue

The store queue (SQ) is a reorder buffer and graduation unit forstore instructions. It
contains 32 entries and maintains the state associated with store instructions that
been issued to the Mbox, but for which data has not been written to the Dcache an
instruction retired. The Mbox assigns store instructions to SQ slots based on the o
in which they were fetched from the Icache and places them into the SQ after they
issued by the IQ. The SQ holds data associated with store instructions issued from
IQ until they are retired, at which point the store can be allowed to update the Dcac
The SQ also helps ensure correct Alpha memory reference behavior.

2.1.6.3 Miss Address File

The 8-entry miss address file (MAF) holds physical addresses associated with pen
Icache and Dcache fill requests and pending I/O space read transactions.

2.1.6.4 Dstream Translation Buffer

The Mbox includes a 128-entry, fully associative Dstream translation buffer (DTB) us
to store Dstream address translations and page protection information. Each of the e
in the DTB can map 1, 8, 64, or 512 contiguous 8KB pages. The allocation scheme i
round-robin. The DTB supports an 8-bit ASN and contains an ASM bit.

2.1.7 SROM Interface

The serial read-only memory (SROM) interface provides the initialization data load
path from a system SROM to theIcache. Refer to Chapter 7 for more information.

2.2 Pipeline Organization

The 7-stage pipeline provides an optimized environment for executing Alpha instru
tions. The pipeline stages (0 to 6) are shown in Figure 2–8 and described in the fo
ing paragraphs.
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–13

Pipeline Organization

tar-

tables
e
ited
e

will
taken

lied
ipe-

e is
Figure 2–8 Pipeline Organization

Stage 0 — Instruction Fetch

The branch predictor uses a branch history algorithm to predict a branch instruction
get address.

Up to four aligned instructions are fetched from theIcache, in program order. The
branch prediction tables are also accessed in this cycle. The branch predictor uses
and a branch history algorithm to predict a branch instruction target address for on
branch or memory format JSR instruction per cycle. Therefore, the prefetcher is lim
to fetching through one branch per cycle. If there is more than one branch within th
fetch line, and the branch predictor predicts that the first branch will not be taken, it
predict through subsequent branches at the rate of one per cycle, until it predicts a
branch or predicts through the last branch in the fetch line.

The Icache array also contains a line prediction field, the contents of which are app
to the Icache in the next cycle. The purpose of the line predictor is to remove the p
line bubble which would otherwise be created when the branch predictor predicts a
branch to be taken. In effect, the line predictor attempts to predict the Icache linewhich
the branch predictor will generate. On fills, the line predictor value at each fetch lin
initialized with the index of the next sequential fetch line, and later retrained by the
branch predictor if necessary.

Stage 1 — Instruction Slot

The Ibox maps four instructions per cycle from the 64KB 2-way set-predict Icache.
Instructions are mapped in order, executed dynamically, but are retired in order.

Branch
Predictor

Instruction
Cache
(64KB)
(2-Set)

Integer
Register
Rename

Map

Floating-
Point

Register
Rename

Map

Integer
Issue

Queue
(20)

Integer
Register

File

Floating-
Point
Issue

Queue
(15)

Floating-
Point

Register
File

ALU
Shifter

ALU Shifter
Multiplier

ALU
Address

Address
ALU

Floating-Point
Add, Divide,

and Square Root

Floating-Point
Multiply

64KB
Data

Cache

Bus
Interface

Unit

System
Bus
(64 Bits)

Cache
Bus
(128 Bits)

Physical
Address
(44 Bits)

Four
Instructions

FM-05575.AI4

0 21 3 4 5 6
2–14 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Pipeline Organization

tes to
h
x

at
)
et
be

pipe-
ssed.
f the
o
set

the
or

h all
ge
s
t
s

d

ach

me
re

ing-

le.

Nor-
or
In the slot stage, the branch predictor compares the next Icache index that it genera
the index that was generated by the line predictor. If there is a mismatch, the branc
predictor wins—the instructions fetched during that cycle are aborted, and the inde
predicted by the branch predictor is applied to theIcache during the next cycle. Line
mispredictions result in one pipeline bubble.

The line predictor takes precedence over the branch predictor during memory form
calls or jumps. If the line predictor was trained with a true (as opposed to predicted
memory format call or jump target, then its contents take precedence over the targ
hint field associated with these instructions. This allows dynamic calls or jumps to
correctly predicted.

The instruction fetcher produces the full VPC address during the fetch stage of the
line. The Icache produces the tags for both Icache sets 0 and 1 each time it is acce
That enables the fetcher to separate set mispredictions from true Icache misses. I
access was caused by a set misprediction, the instruction fetcher aborts the last tw
fetched slots and refetches the slot in the next cycle. It also retrains the appropriate
prediction bits.

The instruction data is transferred from the Icache to theinteger and floating-point reg-
ister map hardware during this stage. When the integer instruction is fetched from
Icache and slotted into the IQ, the slot logic determines whether the instruction is f
the upper or lower subclusters. The slot logic makes the decision based on the
resources needed by the (up to four) integer instructions in the fetch block. Althoug
four instructions need not be issued simultaneously, distributing their resource usa
improves instruction loading across the units. For example, if a fetch block contain
two instructions that can be placed in either cluster followed by two instructions tha
must execute in the lower cluster, the slot logic would designate that combination a
EELL and slot them as UULL. Slot combinations are described in Section 2.3.2 an
Table 2–3.

Stage 2 — Map

Instructions are sent from the Icache to the integer and floating-point register maps dur-
ing the slot stage and register renaming is performed during the map stage. Also, e
instruction is assigned a unique 8-bit number, called aninum, which is used to identify
the instruction and its program order with respect to other instructions during the ti
that it is in flight. Instructions are considered to be in flight between the time they a
mapped and the time they are retired.

Mapped instructions and their associated inums are placed in the integer and float
point queues by the end of the map stage.

Stage 3 — Issue

The 20-entry integer issue queue (IQ) issues instructions at the rate of four per cyc
The 15-entry floating-point issue queue (FQ) issues floating-point operate instructions,
conditional branch instructions, and store instructions, at the rate of two per cycle.
mally, instructions are deleted from the IQ or FQ two cycles after they are issued. F
example, if an instruction is issued in cyclen, it remains in the FQ or IQ in cyclen+1
but does not request service, and is deleted in cyclen+2.
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–15

Instruction Issue Rules

float-

r-

the
lts

y
.

are
Stage 4 — Register Read

Instructions issued from the issue queues read their operands from the integer and
ing-point register files and receive bypass data.

Stage 5 — Execute

The Ebox and Fbox pipelines begin execution.

Stage 6 — Dcache Access

Memory reference instructions access the Dcache and data translation buffers. No
mally load instructions access the tag and data arrays while storeinstructions only
access the tag arrays. Store data is written to the store queue where it is held until
store instruction is retired. Most integer operate instructions write their register resu
in this cycle.

2.2.1 Pipeline Aborts

The abort penalty as given is measured from the cycle after the fetch stage of the
instruction which triggers the abort to the fetch stage of the new target, ignoring an
Ibox pipeline stalls or queuing delay that the triggering instruction might experience
Table 2–1 lists the timing associated with each common source of pipeline abort.

2.3 Instruction Issue Rules

This section defines instruction classes, the functional unit pipelines to which they
issued, and their associated latencies.

Table 2–1 Pipeline Abort Delay (GCLK Cycles)

Abort Condition
Penalty
(Cycles) Comments

Branch misprediction 7 Integer or floating-point conditional branch
misprediction.

JSR misprediction 8 Memory format JSR or HW_RET.

Mbox order trap 14 Load-load order or store-load order.

Other Mbox replay traps 13 —

DTB miss 13 —

ITB miss 7 —

Integer arithmetic trap 12 —

Floating-point arithmetic
trap

13+latency Add latency of instruction. See Section 2.3.3 for
instruction latencies.
2–16 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Instruction Issue Rules
2.3.1 Instruction Group Definitions

Table 2–2 lists the instruction class, the pipeline assignments, and the instructions
included in the class.

Table 2–2 Instruction Name, Pipeline, and Types

Class
Name Pipeline Instruction Type

ild L0, L1 All integer load instructions

fld L0, L1 All floating-point load instructions

ist L0, L1 All integer store instructions

fst FST0, FST1, L0, L1 All floating-point store instructions

lda L0, L1, U0, U1 LDA, LDAH

mem_misc L1 WH64, ECB, WMB

rpcc L1 RPCC

rx L1 RS, RC

mxpr L0, L1
(depends on IPR)

HW_MTPR, HW_MFPR

icbr U0, U1 Integer conditional branch instructions

jsr L0 BR, BSR, JMP, CALL, RET, COR, HW_RET,
CALL_PAL

iadd L0, U0, L1, U1 Instructions with opcode 1016, except CMPBGE

ilog L0, U0, L1, U1 AND, BIC, BIS, ORNOT, XOR, EQV, CMPBGE

ishf U0, U1 Instructions with opcode 1216

cmov L0, U0, L1, U1 Integer CMOV — either cluster

imul U1 Integer multiply instructions

imisc U0 CTLZ, CTPOP, CTTZ, PERR, MINxxx, MAXxxx, PKxx,
UNPKxx

fcbr FA Floating-point conditional branch instructions

fadd FA All floating-point operate instructions except multiply,
divide, square root, and conditional move instructions

fmul FM Floating-point multiply instruction

fcmov1 FA Floating-point CMOV—first half

fcmov2 FA Floating-point CMOV— second half

fdiv FA Floating-point divide instruction

fsqrt FA Floating-point square root instruction

nop None TRAP, EXCB, UNOP - LDQ_U R31, 0(Rx)
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–17

Instruction Issue Rules

tage
2–3
2.3.2 Ebox Slotting

Instructions that are issued from the IQ, and could execute in either upper or lower
Ebox subclusters, are slotted to one pair or the other during the pipeline mapping s
based on the instruction mixture in the fetch line. The codes that are used in Table
are as follows:

• U—The instruction only executes in an upper subcluster.

• L—The instruction only executes in a lower subcluster.

• E—The instruction could execute in either an upper or lower subcluster.

Table 2–3 defines the slotting rules. The table fieldInstruction Class 3, 2, 1 and 0iden-
tifies each instruction’s location in the fetch line by the value of bits [3:2] in its PC.

ftoi FST0, FST1, L0, L1 FTOIS, FTOIT

itof L0, L1 ITOFS, ITOFF, ITOFT

mx_fpcr FM Instructions that move data from the floating-point
control register

Table 2–3 Instruction Group Definitions and Pipeline Unit

Instruction Class
3 2 1 0

Slotting
3 2 1 0

Instruction Class
3 2 1 0

Slotting
3 2 1 0

E E E E U L U L L L L L L L L L

E E E L U L U L L L L U L L L U

E E E U U L L U L L U E L L U U

E E L E U L L U L L U L L L U L

E E L L U U L L L L U U L L U U

E E L U U L L U L U E E L U L U

E E U E U L U L L U E L L U U L

E E U L U L U L L U E U L U L U

E E U U L L U U L U L E L U L U

E L E E U L U L L U L L L U L L

E L E L U L U L L U L U L U L U

E L E U U L L U L U U E L U U L

E L L E U L L U L U U L L U U L

E L L L U L L L L U U U L U U U

E L L U U L L U U E E E U L U L

E L U E U L U L U E E L U L U L

E L U L U L U L U E E U U L L U

Table 2–2 Instruction Name, Pipeline, and Types (Continued)

Class
Name Pipeline Instruction Type
2–18 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Instruction Issue Rules
E L U U L L U U U E L E U L L U

E U E E L U L U U E L L U U L L

E U E L L U U L U E L U U L L U

E U E U L U L U U E U E U L U L

E U L E L U L U U E U L U L U L

E U L L U U L L U E U U U L U U

E U L U L U L U U L E E U L U L

E U U E L U U L U L E L U L U L

E U U L L U U L U L E U U L L U

E U U U L U U U U L L E U L L U

L E E E L U L U U L L L U L LL

L E E L L U U L U L L U U L L U

L E E U L U L U U L U E U L U L

L E L E L U L U U L U L U L U L

L E L L L U L L U L U U U L U U

L E L U L U L U U U E E U U L L

L E U E L U U L U U E L U U L L

L E U L L U U L U U E U U U L U

L E U U L L U U U U L E U U L L

L L E E L L U U U U L L U U L L

L L E L L L U L U U L U U U L U

L L E U L L U U U U U E U U U L

L L L E L L L U U U U L U U U L

— — U U U U U U U U

Table 2–3 Instruction Group Definitions and Pipeline Unit (Continued)

Instruction Class
3 2 1 0

Slotting
3 2 1 0

Instruction Class
3 2 1 0

Slotting
3 2 1 0
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–19

Instruction Issue Rules

ail-
ns
nc-

load

f

if
2.3.3 Instruction Latencies

After an instruction is placed in the IQ or FQ, its issue point is determined by the av
ability of its register operands, functional unit(s), and relationship to other instructio
in the queue. There are register producer-consumer dependencies and dynamic fu
tional unit availability dependencies thataffect instruction issue. The mapper removes
register producer-producer dependencies.

The latency to produce a register result is generally fixed. The one exception is for
instructions that miss the Dcache. Table 2–4 lists the latency, in cycles, for each
instruction class.

Table 2–4 Instruction Class Latency in Cycles

Class Latency Comments

ild 3
13+

Dcache hit.
Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency i
Bcache latency is greater than 6 cycles.

fld 4
14+

Dcache hit.
Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency
Bcache latency is greater than 6 cycles.

lda 1 Possible 1-cycle Ebox cross-cluster delay.

mem_misc — Does not produce register value.

ist — Does not produce register value.

fst — Does not produce register value.

rpcc 1 Possible 1-cycle cross-cluster delay.

rx 1 —

mxpr 1 or 3 HW_MFPR: Ebox IPRs = 1.
Ibox and Mbox IPRs = 3.

HW_MTPR does not produce a register value.

icbr — Conditional branch. Does not produce register value.

ubr 3 Unconditional branch. Does not produce register value.

jsr 3 —

iadd 1 Possible 1-cycle Ebox cross-cluster delay.

ilog 1 Possible 1-cycle Ebox cross-cluster delay.

ishf 1 Possible 1-cycle Ebox cross-cluster delay.

cmov1 1 Only consumer is cmov2. Possible 1-cycle Ebox cross-cluster delay.

cmov2 1 Possible 1-cycle Ebox cross-cluster delay.

imul 7 Possible 1-cycle Ebox cross-cluster delay.

imisc 3 Possible 1-cycle Ebox cross-cluster delay.

fcbr — Does not produce register value.
2–20 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Instruction Retire Rules

ns

d

d

2.4 Instruction Retire Rules

An instruction is retired when it has been executed to completion, and all previous
instructions have been retired. The execution pipeline stage in which an instruction
becomes eligible to be retired depends upon the instruction’s class.

Table 2–5 gives the minimum retire latencies (assuming that all previous instructio
have been retired) for various classes of instructions.

fadd 4
6

Consumer other than fst or ftoi.
Consumer fst or ftoi.
Measured from when an fadd is issued from the FQ to when an fst or ftoi is issue
from the IQ.

fmul 4
6

Consumer other than fst or ftoi.
Consumer fst or ftoi.
Measured from when an fmul is issued from the FQ to when an fst or ftoi is issue
from the IQ.

fcmov1 4 Only consumer is fcmov2.

fcmov2 4
6

Consumer other than fst.
Consumer fst or ftoi.
Measured from when an fcmov2 is issued from the FQ to when an fst or ftoi is
issued from the IQ.

fdiv 12
9
15
12

Single precision - latency to consumer of result value.
Single precision - latency to using divider again.
Double precision - latency to consumer of result value.
Double precision - latency to using divider again.

fsqrt 18
15
33
30

Single precision - latency to consumer of result value.
Single precision - latency to using unit again.
Double precision - latency to consumer of result value.
Double precision - latency to using unit again.

ftoi 3 —

itof 4 —

nop — Does not produce register value.

Table 2–5 Minimum Retire Latencies for Instruction Classes

Instruction Class Retire Stage Comments

Integer conditional branch 7 —

Integer multiply 7/13 Latency is 13 cycles for the MUL/V instruction.

Integer operate 7 —

Memory 10 —

Floating-point add 11 —

Floating-point multiply 11 —

Table 2–4 Instruction Class Latency in Cycles (Continued)

Class Latency Comments
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–21

Retire of Operate Instructions into R31/F31

ns
r-
with
ing

has

from
py a
The

le

t

2.4.1 Floating-Point Divide/Square Root Early Retire

The floating-point divider and square root unit can detect that, for many combinatio
of source operand values, no exception can be generated. Instructions with these ope
ands can be retired before the result is generated. When detected, they are retired
the same latency as the FP add class. Early retirement is not possible for the follow
instruction/operand/architecture state conditions:

• Instruction is not a DIV or SQRT.

• SQRT source operand is negative.

• Divide operand exponent_a is 0.

• Either operand is NaN or INF.

• Divide operand exponent_b is 0.

• Trapping mode is /I (inexact).

• INE status bit is 0.

Early retirement is also not possible for divide instructions if the resulting exponent
any of the following characteristics (EXP is the result exponent):

• DIVT, DIVG: (EXP >= 3FF16) OR (EXP <= 216)

• DIVS, DIVF: (EXP >= 7F16) OR (EXP <= 38216)

2.5 Retire of Operate Instructions into R31/F31

Many instructions that have R31 or F31 as their destination are retired immediately
upon decode (stage 3). These instructions do not produce a result and are removed
the pipeline as well. They do not occupy a slot in the issue queues and do not occu
functional unit. Table 2–6 lists these instructions and some of their characteristics.
instruction type in Table 2–6 is from Table C-6 in Appendix C of theAlpha Architecture
Handbook, Version 4.

Floating-point DIV/SQRT 11 + latency Add latency of unit reuse for the instruction indicated in Tab
2–4. For example, latency for a single-precision fdiv would be
11 plus 9 from Table 2–4. Latency is 11 if hardware detects tha
no exception is possible (see Section 2.4.1).

Floating-point conditional
branch

11 Branch instruction mispredict is reported in stage 7.

BSR/JSR 10 JSR instruction mispredict is reported in stage 8.

Table 2–5 Minimum Retire Latencies for Instruction Classes (Continued)

Instruction Class Retire Stage Comments
2–22 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Load Instructions to R31 and F31

hes
a

t be

ions.

sed

its
block
2.6 Load Instructions to R31 and F31

This section describes how the 21264/EV67 processes software-directed prefetch trans-
actions and load instructions with a destination of R31 and F31.

Prefetches allocate a MAF entry. How the MAF entry is allocated is what distinguis
the type of prefetch. A normal prefetch is equivalent to a normal load MAF (that is,
MAF entry that puts the block into the Dcache in a readable state). A prefetch with
modify intent is equivalent to a normal store MAF (that is, a MAF entry that puts the
block into the Dcache in a writeable state). A prefetch, evict next, is equivalent to a nor-
mal load MAF, with the additional behavior described in Section 2.6.3, below.

A prefetch is not performed if the prefetch hits in the Dcache (as if it were a normal
load).

Load operations to R31 and F31 may generate exceptions. These exceptions mus
dismissed by PALcode.

The following sections describe the operational prefetch behavior of these instruct

2.6.1 Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU, HW_LDL Instructions

The 21264/EV67 processes these instructions as normal cache line prefetches. If the
load instruction hits the Dcache, the instruction is dismissed, otherwise the addres
cache block is allocated into the Dcache.

The HW_LDL instruction construct equates to the HW_LD instruction with the LEN
field clear. See Table 6–3.

2.6.2 Prefetch with Modify Intent: LDS Instruction

The 21264/EV67 processes an LDS instruction, with F31 as the destination, as a
prefetch with modify intent transaction (ReadBlkMod command). If the transaction h
a dirty Dcache block, the instruction is dismissed. Otherwise, the addressed cache
is allocated into the Dcache for write access, with its dirty and modified bits set.

Table 2–6 Instructions Retired Without Execution

Instruction Type Notes

INTA, INTL, INTM, INTS All with R31 as destination.

FLTI, FLTL, FLTV All with F31 as destination. MT_FPCR is not included
because it has no destination—it is never removed from the
pipeline.

LDQ_U All with R31 as destination.

MISC TRAPB and EXCB are always removed. Others are never
removed.

FLTS All (SQRT, ITOF) with F31 as destination.
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–23

Special Cases of Alpha Instruction Execution

d-
ssed
ft

or
own

t dis-

e
same
h

-

ular
sses

e 2–
2.6.3 Prefetch, Evict Next: LDQ and HW_LDQ Instructions

The 21264/EV67 processes this instruction like a normal prefetch transaction (Rea
BlkSpec command), with one exception—if the load misses the Dcache, the addre
cache block is allocated into the Dcache, but the Dcache set allocation pointer is le
pointing to this block. The next miss to the same Dcache line will evict the block. F
example, this instruction might be used when software is reading an array that is kn
to fit in the offchip Bcache, but will not fit into the onchip Dcache. In this case, the
instruction ensures that the hardware provides the desired prefetch function withou
placing useful cache blocks stored in the other set within the Dcache.

The HW_LDQ instruction construct equates to the HW_LD instruction with the LEN
field set. See Table 6–3.

2.6.4 Prefetch with the LDx_L / STx_C Instruction Sequence

A prefetch within a dynamic 80-instruction window of a LDx_L instruction can caus
the subsequent STx_C to incorrectly succeed when all three references are to the
64-byte cache block. Within that 80-instruction window, the proximity of the prefetc
to the LDx_L instruction directlyaffects thepossibility of the incorrect behavior. Fur-
ther, if the prefetch issues before the LDx_L, the error cannot occur, and if the prefetch
issues after the LDx_L, the error can only occur when another processor is simulta
neously acquiring the same lock.

2.7 Special Cases of Alpha Instruction Execution

This section describes the mechanisms that the 21264/EV67 uses to process irreg
instructions in the Alpha instruction set, and cases in which the 21264/EV67 proce
instructions in a non-intuitive way.

2.7.1 Load Hit Speculation

The latency of integer load instructions that hit in the Dcache is three cycles. Figur
9 shows the pipeline timing for these integer load instructions. In Figure 2–9:

Symbol Meaning

Q Issue queue

R Register file read

E Execute

D Dcache access

B Data bus active
2–24 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Special Cases of Alpha Instruction Execution

load
IQ

d
the
the

orted

ecu-
ns
for
oth
in in

ger
ad

es a
ed
eger
e
n a

ative
s.

Fig-
10:
Figure 2–9 Pipeline Timing for Integer Load Instructions

There are two cycles in which the IQ may speculatively issue instructions that use
data before Dcache hit information is known. Any instructions that are issued by the
within this 2-cycle speculative window are kept in the IQ with their requests inhibite
until the load instruction’s hit condition is known, even if they are not dependent on
load operation. If the load instruction hits, then these instructions are removed from
queue. If the load instruction misses, then the execution of these instructions is ab
and the instructions are allowed to request service again.

For example, in Figure 2–9, instruction 1 and instruction 2 are issued within the sp
lative window of the load instruction. If the load instruction hits, then both instructio
will be deleted from the queue by the start of cycle 7—one cycle later than normal
instruction 1 and at the normal time for instruction 2. If the load instruction misses, b
instructions are aborted from the execution pipelines and may request service aga
cycle 6.

IQ-issued instructions are aborted if issued within the speculative window of an inte
load instruction that missed in the Dcache, even if they are not dependent on the lo
data. However, if software misses are likely, the 21264/EV67 can still benefit from
scheduling the instruction stream for Dcache miss latency. The 21264/EV67 includ
saturating counter that is incremented when load instructions hit and is decrement
when load instructions miss. When the upper bit of the counter equals zero, the int
load latency is increased to five cycles and the speculative window is removed. Th
counter is 4 bits wide and is incremented by 1 on a hit and is decremented by two o
miss.

Since load instructions to R31 do not produce a result, they do not create a specul
window when they execute and, therefore, never waste IQ-issue cycles if they mis

Floating-point load instructions that hit in the Dcache have a latency of four cycles.
ure 2–10 shows the pipeline timing for floating-point load instructions. In Figure 2–

Symbol Meaning

Q Issue queue

R Register file read

E Execute

D Dcache access

B Data bus active

1Cycle Number

ILD

Instruction 1

Instruction 2

2 3 4 5 6 7 8

Q R E D B

Q R

Q

Hit

FM-05814.AI4
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–25

Special Cases of Alpha Instruction Execution

oint
suc-

s,
e
y

FQ
ts
ore
on’s

by
s
oint

the
sed
are
Figure 2–10 Pipeline Timing for Floating-Point Load Instructions

The speculative window for floating-point load instructions is one cycle wide.
FQ-issued instructions that are issued within the speculative window of a floating-p
load instruction that has missed, are only aborted if they depend on the load being
cessful.

For example, in Figure 2–10 instruction 1 is issued in the speculative window of the
load instruction.

If instruction 1 is not a user of the data returned by the load instruction, then it is
removed from the queue at its normal time (at the start of cycle 7).

If instruction 1 is dependent on the load instruction data and the load instruction hit
instruction 1 is removed from the queue one cycle later (at the start of cycle 8). If th
load instruction misses, then instruction 1 is aborted from the Fbox pipeline and ma
request service again in cycle 7.

2.7.2 Floating-Point Store Instructions

Floating-point store instructions are duplicated and loaded into both the IQ and the
from the mapper. Each IQ entry contains a control bit, fpWait, that when set preven
that entry from asserting its requests. This bit is initially set for each floating-point st
instruction that enters the IQ, unless it was the target of a replay trap. The instructi
FQ clone is issued when its Ra register is about to become clean, resulting in its IQ
clone’s fpWait bit being cleared and allowing the IQ clone to issue and be executed
the Mbox. This mechanism ensures that floating-point store instructions are alway
issued to the Mbox, along with the associated data, without requiring the floating-p
register dirty bits to be available within the IQ.

2.7.3 CMOV Instruction

For the 21264/EV67, the Alpha CMOV instruction has three operands, and so presents
a special case. The required operation is to move either the value in register Rb or
value from the old physical destination register into the new destination register, ba
upon the value in Ra. Since neither the mapper nor the Ebox and Fbox data paths
otherwise required to handle three operand instructions, the CMOV instruction is
decomposed by the Ibox pipeline into two 2-operand instructions:

The Alpha architecture instruction CMOV Ra, Rb⇒ Rc

Becomes the 21264/EV67 instructions CMOV1 Ra, oldRc⇒ newRc1

CMOV2 newRc1, Rb⇒ newRc2

1Cycle Number

FLD

Instruction 1

Instruction 2

2 3 4 5 6 7 8

Q R E D B

Q R

Q

Hit

FM-05815.AI4
2–26 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Memory and I/O Address Space Instructions

t in
ical

e in

ruc-

c-
tains

nct

nd I/

ace
mory

rate

a
ally
a-

nd
The first instruction, CMOV1, tests the value of Ra and records the result of this tes
a 65th bit of its destination register, newRc1. It also copies the value of the old phys
destination register, oldRc, to newRc1.

The second instruction, CMOV2, then copies either the value in newRc1 or the valu
Rb into a second physical destination register, newRc2, based on the CMOVpredicate
bit stored in newRc1.

In summary, the original CMOV instruction is decomposed into two dependent inst
tions that each use a physical register from the free list.

To further simplify this operation, the two component instructions of a CMOV instru
tion are driven through the mappers in successive cycles. Hence, if a fetch line con
n CMOV instructions, it takesn+1 cycles to run that fetch line through the mappers.

For example, the following fetch line:

ADD CMOVx SUB CMOVy

Results in the following three map cycles:

ADD CMOVx1

CMOVx2 SUB CMOVy1

CMOVy2

The Ebox executes integer CMOV instructions as two distinct 1-cycle latency opera-
tions. The Fbox add pipeline executes floating-point CMOV instructions as two disti
4-cycle latency operations.

2.8 Memory and I/O Address Space Instructions

This section provides an overview of the way the 21264/EV67 processes memory a
O address space instructions.

The 21264/EV67 supports, and internally recognizes, a 44-bit physical address sp
that is divided equally between memory address space and I/O address space. Me
address space resides in the lower half of the physical address space (PA[43]=0)
and I/O address space resides in the upper half of the physical address space
(PA[43]=1).

The IQ can issue any combination of load and store instructions to the Mbox at the
of two per cycle. The two lower Ebox subclusters, L0 and L1, generate the
48-bit effective virtual address for these instructions.

An instruction is defined to benewerthan another instruction if it follows that instruc-
tion in program order and isolder if it precedes that instruction in program order.

2.8.1 Memory Address Space Load Instructions

The Mbox begins execution of a load instruction by translating its virtual address to
physical address using the DTB and by accessing the Dcache. The Dcache is virtu
indexed, allowing these two operations to be done in parallel. The Mbox puts inform
tion about the load instruction, including its physical address, destination register, a
data format, into the LQ.
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–27

Memory and I/O Address Space Instructions

d
t in
for

s
dress

e

ces
ed
ne

nd-
ows

the

to

ord

ord

on

w.
I/O
If the requested physical location is found in the Dcache (a hit), the data is formatte
and written into the appropriate integer or floating-point register. If the location is no
the Dcache (a miss), the physical address is placed in the miss address file (MAF)
processing by the Cbox. The MAF performs a merging function in which a new mis
address is compared to miss addresses already held in the MAF. If the new miss ad
points to the same Dcache block as a miss address in the MAF, then the new miss
address is discarded.

When Dcache fill data is returned to the Dcache by the Cbox, the Mbox satisfies th
requesting load instructions in the LQ.

2.8.2 I/O Address Space Load Instructions

Because I/O space load instructions may have sideeffects, they cannot be performed
speculatively. When the Mbox receives an I/O space load instruction, the Mbox pla
the load instruction in the LQ, where it is held until it retires. The Mbox replays retir
I/O space load instructions from the LQ to the MAF in program order, at a rate of o
per GCLK cycle.

The Mbox allocates a new MAF entry to an I/O load instruction and increases I/O ba
width by attempting to merge I/O load instructions in a merge register. Table 2–7 sh
the rules for merging data. The columns represent the load instructions replayed to
MAF while the rows represent the size of the load in the merge register.

In summary, Table 2–7 shows some of the following rules:

• Byte/word load instructions and different size load instructions are not allowed
merge.

• A stream of ascending non-overlapping, but not necessarily consecutive, longw
load instructions are allowed to merge into naturally aligned 32-byte blocks.

• A stream of ascending non-overlapping, but not necessarily consecutive, quadw
load instructions are allowed to merge into naturally aligned 64-byte blocks.

• Merging of quadwords can be limited to naturally-aligned 32-byte blocks based
the Cbox WRITE_ONCE chain 32_BYTE_IO field.

• Issued MB, WMB, and I/O load instructions close the I/O register merge windo
To minimize latency, the merge window is also closed when a timer detects no
store instruction activity for 1024 cycles.

After the Mbox I/O register has closed its merge window, the Cbox sends I/O read
requests offchip in the order that they were received from the Mbox.

Table 2–7 Rules for I/O Address Space Load Instruction Data Merging

Merge Register/
Replayed Instruction Load Byte/Word Load Longword Load Quadword

Byte/Word No merge No merge No merge

Longword No merge Merge up to 32 bytes No merge

Quadword No merge No merge Merge up to 64 bytes
2–28 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Memory and I/O Address Space Instructions

o a
a-

lts of

ss
n a
.

e
hese

m

evict

.

r load

the

am
tore

able
esent
tore
2.8.3 Memory Address Space Store Instructions

The Mbox begins execution of a store instruction by translating its virtual address t
physical address using the DTB and by probing the Dcache. The Mbox puts inform
tion about the store instruction, including its physical address, its data and the resu
the Dcache probe, into the store queue (SQ).

If the Mbox does not find the addressed location in the Dcache, it places the addre
into the MAF for processing by the Cbox. If the Mbox finds the addressed location i
Dcache block that is not dirty, then it places a ChangeToDirty request into the MAF

A store instruction can write its data into the Dcache when it is retired, and when th
Dcache block containing its address is dirty and not shared. SQ entries that meet t
two conditions can be placed into thewritable state. These SQ entries are placed into
thewritable state in program order at a maximum rate of two entries per cycle. The
Mbox transferswritable store queue entry data from the SQ to the Dcache in progra
order at a maximum rate of two entries per cycle. Dcache lines associated withwritable
store queue entries are locked by the Mbox. System port probe commands cannot
these blocks until their associated writable SQ entries have been transferred into the
Dcache. This restriction assists in STx_C instruction and Dcache ECC processing

SQ entry data that has not been transferred to the Dcache may source data to newe
instructions. The Mbox compares the virtual Dcache index bits of incoming load
instructions to queued SQ entries, and sources the data from the SQ,bypassing the
Dcache, when necessary.

2.8.4 I/O Address Space Store Instructions

The Mbox begins processing I/O space store instructions, like memory space store
instructions, by translating the virtual address and placing the state associated with
store instruction into the SQ.

The Mbox replays retired I/O space store entries from the SQ to the IOWB in progr
order at a rate of one per GCLK cycle. The Mbox never allows queued I/O space s
instructions to source data to subsequent load instructions.

The Cbox maximizes I/O bandwidth when it allocates a new IOWB entry to an I/O
store instruction by attempting to merge I/O store instructions in a merge register. T
2–8 shows the rules for I/O space store instruction data merging. The columns repr
the load instructions replayed to the IOWB while the rows represent the size of the s
in the merge register.

Table 2–8 shows some of the following rules:

Table 2–8 Rules for I/O Address Space Store Instruction Data Merging

Merge Register/
Replayed Instruction

Store
Byte/Word Store Longword Store Quadword

Byte/Word No merge No merge No merge

Longword No merge Merge up to 32 bytes No merge

Quadword No merge No merge Merge up to 64 bytes
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–29

MAF Memory Address Space Merging Rules

ord

ord

on

w.
I/O

ace

erg-
lists
tu-

s,
of
• Byte/word store instructions and different sizestore instructions are not allowed to
merge.

• A stream of ascending non-overlapping, but not necessarily consecutive, longw
store instructions are allowed to merge into naturally aligned 32-byte blocks.

• A stream of ascending non-overlapping, but not necessarily consecutive, quadw
store instructions are allowed to merge into naturally aligned 64-byte blocks.

• Merging of quadwords can be limited to naturally-aligned 32-byte blocks based
the Cbox WRITE_ONCE chain 32_BYTE_IO field.

• Issued MB, WMB, and I/O load instructions close the I/O register merge windo
To minimize latency, the merge window is also closed when a timer detects no
store instruction activity for 1024 cycles.

After the IOWB merge register has closed its merge window, the Cbox sends I/O sp
store requests offchip in the order that they were received from the Mbox.

2.9 MAF Memory Address Space Merging Rules

Because all memory transactions are to 64-byte blocks, efficiency is improved by m
ing several small data transactions into a single larger data transaction. Table 2–9
the rules the 21264/EV67 uses when merging memory transactions into 64-byte na
rally aligned data block transactions. Rows represent the merged instruction in the
MAF and columns represent the new issued transaction.

In summary, Table 2–9 shows that only like instruction types, with the exception of
load instructions merging with store instructions, are merged.

2.10 Instruction Ordering

In the absence of explicit instruction ordering, such as with MB or WMB instruction
the 21264/EV67 maintains a default instruction ordering relationship between pairs
load and store instructions.

Table 2–9 MAF Merging Rules

MAF/New LDx STx STx_C WH64 ECB Istream

LDx Merge — — — — —

STx Merge Merge — — — —

STx_C — — Merge — — —

WH64 — — — Merge — —

ECB — — — — Merge —

Istream — — — — — Merge
2–30 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Replay Traps

–11

ue to
n is

box

mory
The 21264/EV67 maintains the default memory data instruction ordering as shown in
Table 2–10 (assume address X and address Y are different).

The 21264/EV67 maintains the default I/O instruction ordering as shown in Table 2
(assume address X and address Y are different).

2.11 Replay Traps

There are some situations in which a load or store instruction cannot be executed d
a condition that occurs after that instruction issues from the IQ or FQ. The instructio
aborted (along with all newer instructions) and restarted from the fetch stage of the
pipeline. This mechanism is called a replay trap.

2.11.1 Mbox Order Traps

Load and store instructions may be issued from the IQ in a different order than they
were fetched from the Icache, while the architecture dictates that Dstream memory
transactions to the same physical bytes must be completed in order. Usually, the M
manages the memory reference stream by itself to achieve architecturally correct
behavior, but the two cases in which the Mbox uses replay traps to manage the me
stream areload-loadandstore-loadorder traps.

Table 2–10 Memory Reference Ordering

First Instruction in Pair Second Instruction In Pair Reference Order

Load memory to address X Load memory to address X Maintained (litmus test 1)

Load memory to address X Load memory to address Y Not maintained

Store memory to address X Store memory to address X Maintained

Store memory to address X Store memory to address Y Maintained

Load memory to address X Store memory to address X Maintained

Load memory to address X Store memory to address Y Not maintained

Store memory to address X Load memory to address X Maintained

Store memory to address X Load memory to address Y Not maintained

Table 2–11 I/O Reference Ordering

First Instruction in Pair Second Instruction in Pair Reference Order

Load I/O to address X Load I/O to address X Maintained

Load I/O to address X Load I/O to address Y Maintained

Store I/O to address X Store I/O to address X Maintained

Store I/O to address X Store I/O to address Y Maintained

Load I/O to address X Store I/O to address X Maintained

Load I/O to address X Store I/O to address Y Not maintained

Store I/O to address X Load I/O to address X Maintained

Store I/O to address X Load I/O to address Y Not maintained
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–31

I/O Write Buffer and the WMB Instruction

ns in
kes
tar-
ns

uc-

dress
in
y

an
the
m

t
ping

nis-
be

, or

eue,

ever,
ion.

the
c-
2.11.1.1 Load-Load Order Trap

The Mbox ensures that load instructions thatread the same physical byte(s) ultimately
issue in correct order by using theload-loadorder trap. The Mbox compares the
address of each load instruction, as it is issued, to the address of all load instructio
the load queue. If the Mbox finds a newer load instruction in the load queue, it invo
a load-loadorder trap on the newer instruction. This is a replay trap that aborts the
get of the trap and all newer instructions from the machine and refetches instructio
starting at the target of the trap.

2.11.1.2 Store-Load Order Trap

The Mbox ensures that a load instruction ultimately issues after an older store instr
tion that writes some portion of its memory operand by using thestore-loadorder trap.
The Mbox compares the address of each store instruction, as it is issued, to the ad
of all load instructions in the load queue. If the Mbox finds a newer load instruction
the load queue, it invokes astore-loadorder trap on the load instruction. This is a repla
trap. It functions like theload-loadorder trap.

The Ibox contains extra hardware to reduce the frequency of thestore-loadtrap. There
is a 1-bit by 1024-entry VPC-indexed table in the Ibox called the stWait table. When
Icache instruction is fetched, the associated stWait table entry is fetched along with
Icache instruction. The stWait table produces 1 bit for each instruction accessed fro
the Icache. When a load instruction gets astore-loadorder replay trap, its associated bi
in the stWait table is set during the cycle that the load is refetched. Hence, the trap
load instruction’s stWait bit will be set the next time it is fetched.

The IQ will not issue load instructions whose stWait bit is set while there are older u
sued store instructions in the queue. A load instruction whose stWait bit is set can
issued the cycle immediately after the last older store instruction is issued from the
queue. All the bits in the stWait table are unconditionally cleared every 16384 cycles
every 65536 cycles if I_CTL[ST_WAIT_64K] is set.

2.11.2 Other Mbox Replay Traps

The Mbox also uses replay traps to control the flow of the load queue and store qu
and to ensure that there are never multiple outstanding misses to different physical
addresses that map to the same Dcache or Bcache line. Unlike the order traps, how
these replay traps are invoked on the incoming instruction that triggered the condit

2.12 I/O Write Buffer and the WMB Instruction

The I/O write buffer (IOWB) consists of four 64-byte entries with the associated
address and control logic used to buffer I/O write data between thestore queue (SQ)
and the system port.

2.12.1 Memory Barrier (MB/WMB/TB Fill Flow)

The Cbox CSR SYSBUS_MB_ENABLE bit determines if MB instructions produce
external system port transactions. When the SYSBUS_MB_ENABLE bit equals 0,
Cbox CSR MB_CNT[3:0] field contains the number of pending uncommitted transa
tions. The counter will increment for each of the following commands:

• RdBlk, RdBlkMod, RdBlkI
2–32 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

I/O Write Buffer and the WMB Instruction

nds
om-

y that
itted

e pro-

lls
on-
E

d
e

s-

ty

try

s-
• RdBlkSpec (valid), RdBlkModSpec (valid), RdBlkSpecI (valid)

• RdBlkVic, RdBlkModVic, RdBlkVicI

• CleanToDirty, SharedToDirty, STChangeToDirty, InvalToDirty

• FetchBlk, FetchBlkSpec (valid), Evict

• RdByte, RdLw, RdQw, WrByte, WrLW, WrQW

The counter is decremented with the C (commit) bit in the Probe and SysDc comma
(see Section 4.7.7). Systems can assert the C bit in the SysDc fill response to the c
mands that originally incremented the counter, or attached to the last probe seen b
command when it reached the system serialization point. If the number of uncomm
transactions reaches 15 (saturating the counter), the Cbox will stall MAF and IOWB
processing until at least one of the pending transactions has been committed. Prob
cessing is not interrupted by the state of this counter.

2.12.1.1 MB Instruction Processing

When an MB instruction is fetched in the predicted instruction execution path, it sta
in the map stage of the pipeline. This also stalls all instructions after the MB, and c
trol of instruction flow is based upon the value in Cbox CSR SYSBUS_MB_ENABL
as follows:

• If Cbox CSR SYSBUS_MB_ENABLE is clear, the Cbox waits until the IQ is
empty and then performs the following actions:

a. Sends all pending MAF and IOWB entries to the system port.

b. Monitors Cbox CSR MB_CNT[3:0], a 4-bit counter of outstanding committe
events. When the counter decrements from one to zero, the Cbox marks th
youngest probe queue entry.

c. Waits until the MAF contains no more Dstreamreferences and the SQ, LQ, and
IOWB are empty.

When all of the above have occurred and a probe response has been sent to the sy
tem for the marked probe queue entry, instruction execution continues with the
instruction after the MB.

• If Cbox CSR SYSBUS_MB_ENABLE is set, the Cbox waits until the IQ is emp
and then performs the following actions:

a. Sends all pending MAF and IOWB entries to the system port

b. Sends the MB command to the system port

c. Waits until the MB command is acknowledged, then marks the youngest en
in the probe queue

d. Waits until the MAF contains no more Dstreamreferences and the SQ, LQ, and
IOWB are empty

When all of the above have occurred and a probe response has been sent to the sy
tem for the marked probe queue entry, instruction execution continues with the
instruction after the MB.
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–33

I/O Write Buffer and the WMB Instruction

n
y

ere

WB

d
e

queue

y in

queue

the

subse-

hould
Because the MB instruction is executed speculatively, MB processing can begi
and the original MB can be killed. In the internal acknowledge case, the MB ma
have already been sent to the system interface, and the system is still expected to
respond to the MB.

2.12.1.2 WMB Instruction Processing

Write memory barrier (WMB) instructions are issued into the Mbox store-queue, wh
they wait until they are retired and all prior store instructions become writable. The
Mbox then stalls the writable pointer and informs the Cbox. The Cbox closes the IO
merge register and responds in one of the following two ways:

• If Cbox CSR SYSBUS_MB_ENABLE is clear, the Cbox performs the following
actions:

a. Stalls further MAF and IOWB processing.

b. Monitors Cbox CSR MB_CNT[3:0], a 4-bit counter of outstanding committe
events. When the counter decrements from one to zero, the Cbox marks th
youngest probe queue entry.

c. When a probe response has been sent to the system for the marked probe
entry, the Cbox considers the WMB to be satisfied.

• If Cbox CSR SYSBUS_MB_ENABLE is set, the Cbox performs the following
actions:

a. Stalls further MAF and IOWB processing.

b. Sends the MB command to the system port.

c. Waits until the MB command is acknowledged by the system with a SysDc
MBDone command, then sends acknowledge and marks the youngest entr
the probe queue.

d. When a probe response has been sent to the system for the marked probe
entry, the Cbox considers the WMB to be satisfied.

2.12.1.3 TB Fill Flow

Load instructions (HW_LDs) to a virtual page table entry (VPTE) are processed by
21264/EV67 to avoid litmus test problems associated with the ordering of memory
transactions from another processor against loading of a page table entry and the
quent virtual-mode load from this processor.

Consider the sequence shown in Table 2–12. The data could be in the Bcache. Pj s
fetch datai if it is using PTEi.

Table 2–12 TB Fill Flow Example Sequence 1

Pi Pj

Write Datai Load/Store datai

MB <TB miss>

Write PTEi Load-PTE
<write TB>
Load/Store (restart)
2–34 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

I/O Write Buffer and the WMB Instruction

ld be

me
or

ata-
ill
[4]

e
is

y
rd bit

ve
g-

to

t

.

x
pro-
/

es),
the

y

Also consider the related sequence shown in Table 2–13. In this case, the data cou
cached in the Bcache; Pj should fetch datai if it is using PTEi.

The 21264/EV67 processes Dstream loads to the PTE by injecting, in hardware, so
memory barrier processing between the PTE transaction and any subsequent load
store instruction. This is accomplished by the following mechanism:

1. The integer queue issues a HW_LD instruction with VPTE.

2. The integer queue issues a HW_MTPR instruction with a DTB_PTE0, that is d
dependent on the HW_LD instruction with a VPTE, and is required in order to f
the DTBs. The HW_MTPR instruction, when queued, sets IPR scoreboard bits
and [0].

3. When a HW_MTPR instruction with a DTB_PTE0 is issued, the Ibox signals th
Cbox indicating that a HW_LD instruction with a VPTE has been processed. Th
causes the Cbox to begin processing the MB instruction. The Ibox prevents an
subsequent memory operations being issued by not clearing the IPR scoreboa
[0]. IPR scoreboard bit [0] is one of the scoreboard bits associated with the
HW_MTPR instruction with DTB_PTE0.

4. When the Cbox completes processing the MB instruction (using one of the abo
sequences, depending upon the state of SYSBUS_MB_ENABLE), the Cbox si
nals the Ibox to clear IPR scoreboard bit [0].

The 21264/EV67 uses a similar mechanism to process Istream TB misses and fills
the PTE for the Istream.

1. The integer queue issues a HW_LD instruction with VPTE.

2. The IQ issues a HW_MTPR instruction with an ITB_PTE that is data-dependen
upon the HW_LD instruction with VPTE. This is required in order to fill the ITB.
The HW_MTPR instruction, when queued, sets IPR scoreboard bits [4] and [0]

3. The Cbox issues a HW_MTPR instruction for the ITB_PTE and signals the Ibo
that a HW_LD/VPTE instruction has been processed, causing the Cbox to start
cessing the MB instruction. The Mbox stalls Ibox fetching from when the HW_LD
VPTE instruction finishes until the probe queue is drained.

4. When the 21264/EV67 is finished (SYS_MB selects one of the above sequenc
the Cbox directs the Ibox to clear IPR scoreboard bit [0]. Also, the Mbox directs
Ibox to start prefetching.

Inserting MB instruction processing within the TB fill flow is only required for multi-
processor systems. Uniprocessor systems can disable MB instruction processing b
deasserting Ibox CSR I_CTL[TB_MB_EN].

Table 2–13 TB Fill Flow Example Sequence 2

Pi Pj

Write Datai Istream read datai

MB <TB miss>

Write PTEi Load-PTE
<write TB>
Istream read (restart) - will miss the Icache
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–35

Performance Measurement Support—Performance Counters

-

ling
cu-

is

the
2.13 Performance Measurement Support—Performance Counters

The 21264/EV67 provides hardware support for two methods of obtaining program
performance feedback information. The two methods do not require program modifica
tion. The first method offers similar capabilities to earlier microprocessor performance
counters. The second method supports the new ProfileMe way of statistically samp
individual instructions during program execution to develop a model of program exe
tion. Both methods use the same hardware registers.

See Section 6.10 for information about counter control.

2.14 Floating-Point Control Register

The floating-point control register (FPCR) is shown in Figure 2–11.

Figure 2–11 Floating-Point Control Register

The floating-point control register fields are described in Table 2–14.

Table 2–14 Floating-Point Control Register Fields

Name Extent Type Description

SUM [63] RW Summary bit. Records bit-wise OR of FPCR exception bits.The summary bit
not directly modified by writes to bit 63 of the FPCR, but is indirectly modified
by changes to FPCR bits 57–52.

INED [62] RW Inexact Disable. If this bit is set and a floating-point instruction that enables
trapping on inexact results generates an inexact value, the result is placed in
destination register and the trap is suppressed.

63 62 61 60 59 4958 4857 4756 55 54 53 52 51 50 0

SUM

INED

UNFD

UNDZ

DYN

IOV

INE

UNF

OVF

DZE

INV

OVFD

DZED

INVD

DNZ LK99-0050A
2–36 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Floating-Point Control Register

li-

er.

E

lt

t

-

s

r

UNFD [61] RW Underflow Disable. The 21264/EV67 hardware cannot generate IEEE comp
ant denormal results. UNFD is used in conjunction with UNDZ as follows:

UNDZ [60] RW Underflow to zero. When UNDZ is set together with UNFD, underflow traps
are disabled and the 21264/EV67 places a true zero in the destination regist
See UNFD, above.

DYN [59:58] RW Dynamic rounding mode. Indicates the rounding mode to be used by an IEE
floating-point instruction when the instruction specifies dynamic rounding
mode:

IOV [57] RW Integer overflow. A CVTGQ, CVTTQ, or CVTQL overflowed the destination
precision.

INE [56] RW Inexact result. A floating-point arithmetic or conversion operation gave a resu
that differed from the mathematically exact result.

UNF [55] RW Underflow. A floating-point arithmetic or conversion operation gave a result
that underflowed the destination exponent.

OVF [54] RW Overflow. A floating-point arithmetic or conversion operation gave a result tha
overflowed the destination exponent.

DZE [53] RW Divide by zero. An attempt was made to perform a floating-point divide with a
divisor of zero.

INV [52] RW Invalid operation. An attempt was made to perform a floating-point arithmetic
operation and one or more of its operand values were illegal.

OVFD [51] RW Overflow disable. If this bit is set and a floating-point arithmetic operation gen
erates an overflow condition, then the appropriate IEEE nontrapping result is
placed in the destination register and the trap is suppressed.

DZED [50] RW Division by zero disable. If this bit is set and a floating-point divide by zero is
detected, the appropriate IEEE nontrapping result is placed in the destination
register and the trap is suppressed.

INVD [49] RW Invalid operation disable. If this bit is set and a floating-point operate generate
an invalid operation condition and 21264/EV67 is capable of producing the
correct IEEE nontrapping result, that result is placed in the destination registe
and the trap is suppressed.

Table 2–14 Floating-Point Control Register Fields (Continued)

Name Extent Type Description

UNFD UNDZ Result

0 X Underflow trap.

1 0 Trap to supply a possible denormal result.

1 1 Underflow trap suppressed. Destination is written
with a true zero (+0.0).

Bits Meaning

00 Chopped

01 Minus infinity

10 Normal

11 Plus infinity
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–37

AMASK and IMPLVER Instruction Values

ns

e

S,

as
2.15 AMASK and IMPLVER Instruction Values

The AMASK and IMPLVER instructions return the supported architecture extensio
and processor type , respectively.

2.15.1 AMASK

The 21264/EV67 returns the AMASK instruction values provided in Table 2–15. Th
I_CTL register reports the 21264/EV67 pass level (see I_CTL[CHIP_ID], Section
5.2.15).

The AMASK bit definitions provided in Table 2–15 are defined in Table 2–16.

2.15.2 IMPLVER

For the 21264/EV67, the IMPLVER instruction returns the value 2.

DNZ [48] RW Denormal operands to zero. If this bit is set, treat all Denormal operands as a
signed zero value with the same sign as the Denormal operand.

Reserved [47:0]1 — —

1 Alpha architecture FPCR bit 47 (DNOD) is not implemented by the 21264/EV67.

Table 2–15 21264/EV67 AMASK Values

21264/EV67 Pass Level AMASK Feature Mask Value

See I_CTL[CHIP_ID], Table 5–11 30716

Table 2–16 AMASK Bit Assignments

Bit Meaning

0 Support for the byte/word extension (BWX)
The instructions that comprise the BWX extension are LDBU, LDWU, SEXTB,
SEXTW, STB, and STW.

1 Support for the square-root and floating-point convert extension (FIX)
The instructions that comprise the FIX extension are FTOIS, FTOIT, ITOFF, ITOF
ITOFT, SQRTF, SQRTG, SQRTS, and SQRTT.

2 Support for the count extension (CIX)
The instructions that comprise the CIX extension are CTLZ, CTPOP, and CTTZ.

8 Support for the multimedia extension (MVI)
The instructions that comprise the MVI extension are MAXSB8, MAXSW4,
MAXUB8, MAXUW4, MINSB8, MINSW4, MINUB8, MINUW4, PERR, PKLB,
PKWB, UNPKBL, and UNPKBW.

9 Support for precise arithmetic trap reporting in hardware. The trap PC is the same
the instruction PC after the trapping instruction is executed.

Table 2–14 Floating-Point Control Register Fields (Continued)

Name Extent Type Description
2–38 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Design Examples

ssor
ns.

sys-

-level
he
er
2.16 Design Examples

The 21264/EV67 can be designed into many different uniprocessor and multiproce
system configurations. Figures 2–12 and 2–13 illustrate two possible configuratio
These configurations employ additional system/memory controller chipsets.

Figure 2–12 shows a typical uniprocessor system with a second-level cache. This
tem configuration could be used in standalone or networked workstations.

Figure 2–12 Typical Uniprocessor Configuration

Figure 2–13 shows a typical multiprocessor system, each processor with a second
cache. Each interface controller must employ a duplicate tag store to maintain cac
coherency. This system configuration could be used in a networked database serv
application.

21264

Tag
Address

Out

Address
Address

In

Data

Data

L2 Cache

Tag
Store

Data
Store

21272 Core
Logic Chipset

Data Slice
Chips

Control
Chips

Host PCI
Bridge Chip

Duplicate
Tag Store
(Optional)

DRAM
Arrays

Address

Data

64-bit PCI Bus
FM-05573-EV67
Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2–39

Design Examples
Figure 2–13 Typical Multiprocessor Configuration

64-bit PCI Bus

64-bit PCI Bus

21264

L2
Cache

21264

L2
Cache

21272 Core
Logic Chipset

Control
Chip

Data Slice
Chips

Host PCI
Bridge Chip

Host PCI
Bridge Chip

DRAM
Arrays

Address

Data

DRAM
Arrays

Address

Data

FM-05574-EV67
2–40 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

nfor-

ws:
3
Hardware Interface

This chapter contains the 21264/EV67 microprocessor logic symbol and provides i
mation about signal names, their function, and their location. This chapter also
describes the mechanical specifications of the 21264/EV67. It is organized as follo

• The 21264/EV67 logic symbol

• The 21264/EV67 signal names and functions

• Lists of the signal pins, sorted by name and PGA location

• The specifications for the 21264/EV67 mechanical package

• The top and bottom views of the 21264/EV67 pinouts

3.1 21264/EV67 Microprocessor Logic Symbol

Figure 3–1 show the logic symbol for the 21264/EV67 chip.
Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3–1

21264/EV67 Microprocessor Logic Symbol
Figure 3–1 21264/EV67 Microprocessor Logic Symbol

21264

System Interface Bcache Interface

SysAddIn_L[14:0]

SysAddInClk_L

SysAddOut_L[14:0]

SysAddOutClk_L

SysVref

SysData_L[63:0]

SysCheck_L[7:0]

SysDataInClk_H[7:0]

SysDataOutClk_L[7:0]

SysDataInValid_L

SysDataOutValid_L

SysFillValid_L

BcAdd_H[23:4]

BcData_H[127:0]

BcCheck_H[15:0]

BcDataInClk_H[7:0]

BcDataOutClk_[3:0]

BcDataOE_L

BcDataWr_L

BcTag_H[42:20]

BcTagInClk_H

BcTagOutClk_x

BcVref

BcTagDirty_H

BcTagParity_H

BcTagShared_H

BcTagValid_H

BcTagOE_L

BcTagWr_L

BcLoad_L

x

ClocksClkIn_x

FrameClk_x

EV6Clk_x

PLL_VDD

Miscellaneous

IRQ_H[5:0]

ClkFwdRst_H

SromData_H

Tms_H

Trst_L

Tck_H

Tdi_H

PllBypass_H

MiscVref

Reset_L

DCOK_H

SromClk_H

SromOE_L

TestStat_H

Tdo_H

LK99-0051A

3.3 V
3–2 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Signal Names and Functions

rip-

ray

nal
3.2 21264/EV67 Signal Names and Functions

Table 3–1 defines the 21264/EV67 signal types referred to in this section.

Table 3–2 lists all signal pins in alphabetic order and provides a full functional desc
tion of the pins. Table 3–4 lists the signal pins and their corresponding pin grid array
(PGA) locations in alphabetic order for the signal type. Table 3–5 lists the pin grid ar
locations in alphabetical order.

Table 3–1 Signal Pin Types Definitions

Signal Type Definition

Inputs

I_DC_REF Input DC reference pin

I_DA Input differential amplifier receiver

I_DA_CLK Input clock pin

Outputs

O_OD Open drain output driver

O_OD_TP Open drain driver for test pins

O_PP Push/pull output driver

O_PP_CLK Push/pull output clock driver

Bidirectional

B_DA_OD Bidirectional differential amplifier receiver with open drain output

B_DA_PP Bidirectional differential amplifier receiver with push/pull output

Other

Spare Reserved to Compaq1

1 All Spare connections are Reserved to Compaq to maintain compatibility between
passes of the chip. Designers should not use these pins.

NoConnect No connection — Do not connect to these pins for any revision of the
21264/EV67. These pins must float.

Table 3–2 21264/EV67 Signal Descriptions

Signal Type Count Description

BcAdd_H[23:4] O_PP 20 These signals provide the index to the Bcache.

BcCheck_H[15:0] B_DA_PP 16 ECC check bits forBcData_H[127:0].

BcData_H[127:0] B_DA_PP 128 Bcache data signals.

BcDataInClk_H[7:0] I_DA 8 Bcache data input clocks. These clocks are used with high
speed SDRAMs, such as DDRs, that provide a clock-out with
data-output pins to optimize Bcache read bandwidths. The
21264/EV67 internally synchronizes the data to its logic with
clock forward receive circuits similar to the system interface.

BcDataOE_L O_PP 1 Bcache data output enable. The 21264/EV67 asserts this sig
during Bcache read operations.
Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3–3

21264/EV67 Signal Names and Functions

f-

al

/
-

k

e

64/

g-

e

d-

of
BcDataOutClk_H[3:0]
BcDataOutClk_L[3:0]

O_PP 8 Bcache data output clocks. These free-running clocks are di
ferential copies of the Bcache clock and are derived from the
21264/EV67 GCLK. Their period is a multiple of the GCLK
and is fixed for all operations. They can be configured so that
their rising edge lagsBcAdd_H[23:4] by 0 to 2 GCLK cycles.
The 21264/EV67 synchronizes tag output information with
these clocks.

BcDataWr_L O_PP 1 Bcache data write enable. The 21264/EV67 asserts this sign
when writing data to the Bcache data arrays.

BcLoad_L O_PP 1 Bcache burst enable.

BcTag_H[42:20] B_DA_PP 23 Bcache tag bits.

BcTagDirty_H B_DA_PP 1 Tag dirty state bit. During cache write operations, the 21264
EV67 will assert this signal if the Bcache data has been modi
fied.

BcTagInClk_H I_DA 1 Bcache tag input clock. The 21264/EV67 uses this input cloc
to latch the tag information on Bcache read operations. This
clock is used with high-speed SDRAMs, such as DDRs, that
provide a clock-out with data-output pins to optimize Bcache
read bandwidths. The 21264/EV67 internally synchronizes th
data to its logic with clock forward receive circuits similar to
the system interface.

BcTagOE_L O_PP 1 Bcache tag output enable. This signal is asserted by the 212
EV67 for Bcache read operations.

BcTagOutClk_H
BcTagOutClk_L

O_PP 2 Bcache tag output clock. These clocks “echo” the clock-for-
wardedBcDataOutClk_x[3:0] clocks.

BcTagParity_H B_DA_PP 1 Tag parity state bit.

BcTagShared_H B_DA_PP 1 Tag shared state bit. The 21264/EV67 will write a 1 on this si
nal line if another agent has a copy of the cache line.

BcTagValid_H B_DA_PP 1 Tag valid state bit. If set, this line indicates that the cache lin
is valid.

BcTagWr_L O_PP 1 Tag RAM write enable. The 21264/EV67 asserts this signal
when writing a tag to the Bcache tag arrays.

BcVref I_DC_REF 1 Bcache tag reference voltage.

ClkFwdRst_H I_DA 1 Systems assert this synchronous signal to wake up a powere
down 21264/EV67. TheClkFwdRst_H signal is clocked into
a 21264/EV67 register by the capturedFrameClk_x signals.
Systems must ensure that the timing of this signal meets
21264/EV67 requirements (see Section 4.7.2).

ClkIn_H
ClkIn_L

I_DA_CLK 2 Differential input signals provided by the system.

DCOK_H I_DA 1 dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After that,DCOK_H is asserted.

EV6Clk_H
EV6Clk_L

O_PP_CLK 2 Provides an external test point to measure phase alignment
the PLL.

Table 3–2 21264/EV67 Signal Descriptions (Continued)

Signal Type Count Description
3–4 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Signal Names and Functions

-

.

-

to

.

4/

m

FrameClk_H
FrameClk_L

I_DA_CLK 2 A skew-controlled differential 50% duty cycle copy of the sys
tem clock. It is used by the 21264/EV67 as a reference, or
framing, clock.

IRQ_H[5:0] I_DA 6 These six interrupt signal lines may be asserted by the system
The response of the 21264/EV67 is determined by the system
software.

MiscVref I_DC_REF 1 Voltage reference for the miscellaneous pins
(see Table 3–3).

PllBypass_H I_DA 1 When asserted, this signal will cause the two input clocks
(ClkIn_ x) to be applied to the 21264/EV67 internal circuits,
instead of the 21264/EV67 global clock (GCLK).

PLL_VDD 3.3 V 1 3.3-V dedicated power supply for the 21264/EV67 PLL.

Reset_L I_DA 1 System reset. This signal protects the 21264/EV67 from dam
age during initial power-up. It must be asserted until
DCOK_H is asserted. After that, it is deasserted and the
21264/EV67 begins its reset sequence.

SromClk_H O_OD_TP 1 Serial ROM clock. Supplies the clock that causes the SROM
advance to the next bit. The cycle time for this clock is 256
times the cycle time of the GCLK (internal 21264/EV67
clock).

SromData_H I_DA 1 Serial ROM data. Input data line from the SROM.

SromOE_L O_OD_TP 1 Serial ROM enable. Supplies the output enable to the SROM

SysAddIn_L[14:0] I_DA 15 Time-multiplexed command/address/ID/Ack from system to
the 21264/EV67.

SysAddInClk_L I_DA 1 Single-ended forwarded clock from system for
SysAddIn_L[14:0] andSysFillValid_L .

SysAddOut_L[14:0] O_OD 15 Time-multiplexed command/address/ID/mask from the 2126
EV67 to the system bus.

SysAddOutClk_L O_OD 1 Single-ended forwarded clock output for
SysAddOut_L[14:0].

SysCheck_L[7:0] B_DA_OD 8 Quadword ECC check bits forSysData_L[63:0].

SysData_L[63:0] B_DA_OD 64 Data bus for memory and I/O data.

SysDataInClk_H[7:0] I_DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDataInValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers to
the 21264/EV67.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV67-generated clocks for clock for-
warded output system data.

SysDataOutValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers fro
the 21264/EV67.

SysFillValid_L I_DA 1 When asserted, this bit indicates validation for the cache fill
delivered in the previous system SysDc command.

Table 3–2 21264/EV67 Signal Descriptions (Continued)

Signal Type Count Description
Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3–5

21264/EV67 Signal Names and Functions

nd

c-

g

Table 3–3 lists signals by function and provides an abbreviated description.

SysVref I_DC_REF 1 System interface reference voltage.

Tck_H I_DA 1 IEEE 1149.1 test clock.

Tdi_H I_DA 1 IEEE 1149.1 test data-in signal.

Tdo_H O_OD_TP 1 IEEE 1149.1 test data-out signal.

TestStat_H O_OD_TP 1 Test status pin. System reset drives the test status pin low.
TheTestStat_Hpin is forced high at the start of the Icache
BiST. If the Icache BiST passes, the pin is deasserted at the e
of the BiST operation; otherwise, it remains high.
The 21264/EV67 generates a timeout reset signal if an instru
tion is not retired within one billion cycles.
The 21264/EV67 signals the timeout reset event by outputtin
a 256 GCLK cycle wide pulse onTestStat_H.

Tms_H I_DA 1 IEEE 1149.1 test mode select signal.

Trst_L I_DA 1 IEEE 1149.1 test access port (TAP) reset signal.

Table 3–3 21264/EV67 Signal Descriptions by Function

Signal Type Count Description

BcVref Domain

BcAdd_H[23:4] O_PP 20 Bcache index.

BcCheck_H[15:0] B_DA_PP 16 ECC check bits forBcData_H[127:0].

BcData_H[127:0] B_DA_PP 128 Bcache data.

BcDataInClk_H[7:0] I_DA 8 Bcache data input clocks.

BcDataOE_L O_PP 1 Bcache data output enable.

BcDataOutClk_H[3:0]
BcDataOutClk_L[3:0]

O_PP 8 Bcache data output clocks.

BcDataWr_L O_PP 1 Bcache data write enable.

BcLoad_L O_PP 1 Bcache burst enable.

BcTag_H[42:20] B_DA_PP 23 Bcache tag bits.

BcTagDirty_H B_DA_PP 1 Tag dirty state bit.

BcTagInClk_H I_DA 1 Bcache tag input clock.

BcTagOE_L O_PP 1 Bcache tag output enable.

BcTagOutClk_H
BcTagOutClk_L

O_PP 2 Bcache tag output clocks.

BcTagParity_H B_DA_PP 1 Tag parity state bit.

BcTagShared_H B_DA_PP 1 Tag shared state bit.

BcTagValid_H B_DA_PP 1 Tag valid state bit.

BcTagWr_L O_PP 1 Tag RAM write enable.

Table 3–2 21264/EV67 Signal Descriptions (Continued)

Signal Type Count Description
3–6 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Signal Names and Functions

t of

r

ed-

m.
BcVref I_DC_REF 1 Tag data input reference voltage.

SysVref Domain

SysAddIn_L[14:0] I_DA 15 Time-multiplexed SysAddIn, system-to-21264/EV67.

SysAddInClk_L I_DA 1 Single-ended forwarded clock from system for
SysAddIn_L[14:0] andSysFillValid_L .

SysAddOut_L[14:0] O_OD 15 Time-multiplexed SysAddOut, 21264/EV67-to-system.

SysAddOutClk_L O_OD 1 Single-ended forwarded-clock.

SysCheck_L[7:0] B_DA_OD 8 Quadword ECC check bits forSysData_L[63:0].

SysData_L[63:0] B_DA_OD 64 Data bus for memory and I/O data.

SysDataInClk_H[7:0] I_DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDataInValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers to
the 21264/EV67.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV67-generated clocks for clock for-
warded output system data.

SysDataOutValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers
from the 21264/EV67.

SysFillValid_L I_DA 1 Validation for fill given in previous SysDC command.

SysVref I_DC_REF 1 System interface reference voltage.

Clocks and PLL

ClkIn_H
ClkIn_L

I_DA_CLK 2 Differential input signals provided by the system.

EV6Clk_H
EV6Clk_L

O_PP_CLK 2 Provides an external test point to measure phase alignmen
the PLL.

FrameClk_H
FrameClk_L

I_DA_CLK 2 A skew-controlled differential 50% duty cycle copy of the
system clock. It is used by the 21264/EV67 as a reference, o
framing, clock.

PLL_VDD 3.3 V 1 3.3-V dedicated power supply for the 21264/EV67 PLL.

MiscVref Domain

ClkFwdRst_H I_DA 1 Systems assert this synchronous signal to wake up a power
down 21264/EV67. TheClkFwdRst_H signal is clocked into
a 21264/EV67 register by the capturedFrameClk_x signals.

DCOK_H I_DA 1 dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After that,DCOK_H is asserted.

IRQ_H[5:0] I_DA 6 These six interrupt signal lines may be asserted by the syste

MiscVref I_DC_REF 1 Reference voltage for miscellaneous pins.

PllBypass_H I_DA 1 When asserted, this signal will cause the input clocks
(ClkIn_ x) to be applied to the 21264/EV67 internal circuits,
instead of the 21264/EV67’s global clock (GCLK).

Table 3–3 21264/EV67 Signal Descriptions by Function (Continued)

Signal Type Count Description
Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3–7

Pin Assignments

here

-

3.3 Pin Assignments

The 21264/EV67 package has 587 pins aligned in a pin grid array (PGA) design. T
are 380 functional signal pins, 1 dedicated 3.3-V pin for the PLL, 112 groundVSSpins,
and 94VDD pins. Table 3–4 lists the signal pins and their corresponding pin grid array
(PGA) locations in alphabetical order for the signal type. Table 3–5 lists the pin grid
array locations in alphabetical order

Reset_L I_DA 1 System reset. This signal protects the 21264/EV67 from dam
age during initial power-up. It must be asserted until
DCOK_H is asserted. After that, it is deasserted and the
21264/EV67 begins its reset sequence.

SromClk_H O_OD_TP 1 Serial ROM clock.

SromData_H I_DA 1 Serial ROM data.

SromOE_L O_OD_TP 1 Serial ROM enable.

Tck_H I_DA 1 IEEE 1149.1 test clock.

Tdi_H I_DA 1 IEEE 1149.1 test data-in signal.

Tdo_H O_OD_TP 1 IEEE 1149.1 test data-out signal.

TestStat_H O_OD_TP 1 Test status pin.

Tms_H I_DA 1 IEEE 1149.1 test mode select signal.

Trst_L I_DA 1 IEEE 1149.1 test access port (TAP) reset signal.

Table 3–4 Pin List Sorted by Signal Name

Signal Name PGA Location Signal Name PGA Location Signal Name PGALocation

BcAdd_H_10 B30 BcAdd_H_11 D30 BcAdd_H_12 C31

BcAdd_H_13 H28 BcAdd_H_14 G29 BcAdd_H_15 A33

BcAdd_H_16 E31 BcAdd_H_17 D32 BcAdd_H_18 B34

BcAdd_H_19 A35 BcAdd_H_20 B36 BcAdd_H_21 H30

BcAdd_H_22 C35 BcAdd_H_23 E33 BcAdd_H_4 B28

BcAdd_H_5 E27 BcAdd_H_6 A29 BcAdd_H_7 G27

BcAdd_H_8 C29 BcAdd_H_9 F28 BcCheck_H_0 F2

BcCheck_H_1 AB4 BcCheck_H_10 AW1 BcCheck_H_11 BD10

BcCheck_H_12 E45 BcCheck_H_13 AC45 BcCheck_H_14 AT44

BcCheck_H_15 BB36 BcCheck_H_2 AT2 BcCheck_H_3 BC11

BcCheck_H_4 M38 BcCheck_H_5 AB42 BcCheck_H_6 AU43

BcCheck_H_7 BC37 BcCheck_H_8 M8 BcCheck_H_9 AA3

BcData_H_0 B10 BcData_H_1 D10 BcData_H_10 L3

BcData_H_100 D42 BcData_H_101 D44 BcData_H_102 H40

BcData_H_103 H42 BcData_H_104 G45 BcData_H_105 L43

Table 3–3 21264/EV67 Signal Descriptions by Function (Continued)

Signal Type Count Description
3–8 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

Pin Assignments
BcData_H_106 L45 BcData_H_107 N45 BcData_H_108 T44

BcData_H_109 U45 BcData_H_11 M2 BcData_H_110 W45

BcData_H_111 AA43 BcData_H_112 AC43 BcData_H_113 AD44

BcData_H_114 AE41 BcData_H_115 AG45 BcData_H_116 AK44

BcData_H_117 AL43 BcData_H_118 AM42 BcData_H_119 AR45

BcData_H_12 T2 BcData_H_120 AP40 BcData_H_121 BA45

BcData_H_122 AV42 BcData_H_123 BB44 BcData_H_124 BB42

BcData_H_125 BC41 BcData_H_126 BA37 BcData_H_127 BD40

BcData_H_13 U1 BcData_H_14 V2 BcData_H_15 Y4

BcData_H_16 AC1 BcData_H_17 AD2 BcData_H_18 AE3

BcData_H_19 AG1 BcData_H_2 A5 BcData_H_20 AK2

BcData_H_21 AL3 BcData_H_22 AR1 BcData_H_23 AP2

BcData_H_24 AY2 BcData_H_25 BB2 BcData_H_26 AW5

BcData_H_27 BB4 BcData_H_28 BB8 BcData_H_29 BE5

BcData_H_3 C5 BcData_H_30 BB10 BcData_H_31 BE7

BcData_H_32 G33 BcData_H_33 C37 BcData_H_34 B40

BcData_H_35 C41 BcData_H_36 C43 BcData_H_37 E43

BcData_H_38 G41 BcData_H_39 F44 BcData_H_4 C3

BcData_H_40 K44 BcData_H_41 N41 BcData_H_42 M44

BcData_H_43 P42 BcData_H_44 U43 BcData_H_45 V44

BcData_H_46 Y42 BcData_H_47 AB44 BcData_H_48 AD42

BcData_H_49 AE43 BcData_H_5 E3 BcData_H_50 AF42

BcData_H_51 AJ45 BcData_H_52 AK42 BcData_H_53 AN45

BcData_H_54 AP44 BcData_H_55 AN41 BcData_H_56 AW45

BcData_H_57 AU41 BcData_H_58 AY44 BcData_H_59 BA43

BcData_H_6 H6 BcData_H_60 BC43 BcData_H_61 BD42

BcData_H_62 BB38 BcData_H_63 BE41 BcData_H_64 C11

BcData_H_65 A7 BcData_H_66 C9 BcData_H_67 B6

BcData_H_68 B4 BcData_H_69 D4 BcData_H_7 E1

BcData_H_70 G5 BcData_H_71 D2 BcData_H_72 H4

BcData_H_73 G1 BcData_H_74 N5 BcData_H_75 L1

BcData_H_76 N1 BcData_H_77 U3 BcData_H_78 W5

BcData_H_79 W1 BcData_H_8 J3 BcData_H_80 AB2

BcData_H_81 AC3 BcData_H_82 AD4 BcData_H_83 AF4

BcData_H_84 AJ3 BcData_H_85 AK4 BcData_H_86 AN1

BcData_H_87 AM4 BcData_H_88 AU5 BcData_H_89 BA1

Table 3–4 Pin List Sorted by Signal Name (Continued)

Signal Name PGA Location Signal Name PGA Location Signal Name PGALocation
Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3–9

Pin Assignments
BcData_H_9 K2 BcData_H_90 BA3 BcData_H_91 BC3

BcData_H_92 BD6 BcData_H_93 BA9 BcData_H_94 BC9

BcData_H_95 AY12 BcData_H_96 A39 BcData_H_97 D36

BcData_H_98 A41 BcData_H_99 B42 BcDataInClk_H_0 E7

BcDataInClk_H_1 R3 BcDataInClk_H_2 AH2 BcDataInClk_H_3 BC5

BcDataInClk_H_4 F38 BcDataInClk_H_5 U39 BcDataInClk_H_6 AH44

BcDataInClk_H_7 AY40 BcDataOE_L A27 BcDataOutClk_H_0 J5

BcDataOutClk_H_1 AU3 BcDataOutClk_H_2 J43 BcDataOutClk_H_3 AR43

BcDataOutClk_L_0 K4 BcDataOutClk_L_1 AV4 BcDataOutClk_L_2 K42

BcDataOutClk_L_3 AT42 BcDataWr_L D26 BcLoad_L F26

BcTag_H_20 E13 BcTag_H_21 H16 BcTag_H_22 A11

BcTag_H_23 B12 BcTag_H_24 D14 BcTag_H_25 E15

BcTag_H_26 A13 BcTag_H_27 G17 BcTag_H_28 C15

BcTag_H_29 H18 BcTag_H_30 D16 BcTag_H_31 B16

BcTag_H_32 C17 BcTag_H_33 A17 BcTag_H_34 E19

BcTag_H_35 B18 BcTag_H_36 A19 BcTag_H_37 F20

BcTag_H_38 D20 BcTag_H_39 E21 BcTag_H_40 C21

BcTag_H_41 D22 BcTag_H_42 H22 BcTagDirty_H C23

BcTagInClk_H G19 BcTagOE_L H24 BcTagOutClk_H C25

BcTagOutClk_L D24 BcTagParity_H B22 BcTagShared_H G23

BcTagValid_H B24 BcTagWr_L E25 BcVref F18

ClkFwdRst_H BE11 ClkIn_H AM8 ClkIn_L AN7

DCOK_H AY18 EV6Clk_H AM6 EV6Clk_L AL7

FrameClk_H AV16 FrameClk_L AW15 IRQ_H_0 BA15

IRQ_H_1 BE13 IRQ_H_2 AW17 IRQ_H_3 AV18

IRQ_H_4 BC15 IRQ_H_5 BB16 MiscVref AV22

NoConnect BB14 NoConnect BD2 PLL_VDD AV8

PllBypass_H BD12 Reset_L BD16 Spare AJ1

Spare V38 Spare AT4 Spare BE9

Spare F8 Spare BD4 Spare AJ43

Spare AR3 Spare T4 Spare E39

Spare BA39 Spare BC21 SromClk_H AW19

SromData_H BC17 SromOE_L BE17 SysAddIn_L_0 BD30

SysAddIn_L_1 BC29 SysAddIn_L_10 BB24 SysAddIn_L_11 AV24

SysAddIn_L_12 BD24 SysAddIn_L_13 BE23 SysAddIn_L_14 AW23

SysAddIn_L_2 AY28 SysAddIn_L_3 BE29 SysAddIn_L_4 AW27

Table 3–4 Pin List Sorted by Signal Name (Continued)

Signal Name PGA Location Signal Name PGA Location Signal Name PGALocation
3–10 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

Pin Assignments
SysAddIn_L_5 BA27 SysAddIn_L_6 BD28 SysAddIn_L_7 BE27

SysAddIn_L_8 AY26 SysAddIn_L_9 BC25 SysAddInClk_L BB26

SysAddOut_L_0 AW33 SysAddOut_L_1 BE39 SysAddOut_L_10 BE33

SysAddOut_L_11 AW29 SysAddOut_L_12 BC31 SysAddOut_L_13 AV28

SysAddOut_L_14 BB30 SysAddOut_L_2 BD36 SysAddOut_L_3 BC35

SysAddOut_L_4 BA33 SysAddOut_L_5 AY32 SysAddOut_L_6 BE35

SysAddOut_L_7 AV30 SysAddOut_L_8 BB32 SysAddOut_L_9 BA31

SysAddOutClk_L BD34 SysCheck_L_0 L7 SysCheck_L_1 AA5

SysCheck_L_2 AK8 SysCheck_L_3 BA13 SysCheck_L_4 L39

SysCheck_L_5 AA41 SysCheck_L_6 AM40 SysCheck_L_7 AY34

SysData_L_0 F14 SysData_L_1 G13 SysData_L_10 P6

SysData_L_11 T8 SysData_L_12 V8 SysData_L_13 V6

SysData_L_14 W7 SysData_L_15 Y6 SysData_L_16 AB8

SysData_L_17 AC7 SysData_L_18 AD8 SysData_L_19 AE5

SysData_L_2 F12 SysData_L_20 AH6 SysData_L_21 AH8

SysData_L_22 AJ7 SysData_L_23 AL5 SysData_L_24 AP8

SysData_L_25 AR7 SysData_L_26 AT8 SysData_L_27 AV6

SysData_L_28 AV10 SysData_L_29 AW11 SysData_L_3 H12

SysData_L_30 AV12 SysData_L_31 AW13 SysData_L_32 F32

SysData_L_33 F34 SysData_L_34 H34 SysData_L_35 G35

SysData_L_36 F40 SysData_L_37 G39 SysData_L_38 K38

SysData_L_39 J41 SysData_L_4 H10 SysData_L_40 M40

SysData_L_41 N39 SysData_L_42 P40 SysData_L_43 T38

SysData_L_44 V40 SysData_L_45 W41 SysData_L_46 W39

SysData_L_47 Y40 SysData_L_48 AB38 SysData_L_49 AC39

SysData_L_5 G7 SysData_L_50 AD38 SysData_L_51 AF40

SysData_L_52 AH38 SysData_L_53 AJ39 SysData_L_54 AL41

SysData_L_55 AK38 SysData_L_56 AN39 SysData_L_57 AP38

SysData_L_58 AR39 SysData_L_59 AT38 SysData_L_6 F6

SysData_L_60 AY38 SysData_L_61 AV36 SysData_L_62 AW35

SysData_L_63 AV34 SysData_L_7 K8 SysData_L_8 M6

SysData_L_9 N7 SysDataInClk_H_0 D8 SysDataInClk_H_1 P4

SysDataInClk_H_2 AF6 SysDataInClk_H_3 AY6 SysDataInClk_H_4 E37

SysDataInClk_H_5 R43 SysDataInClk_H_6 AG41 SysDataInClk_H_7 AV40

SysDataInValid_L BD22 SysDataOutClk_L_0 G11 SysDataOutClk_L_1 U7

SysDataOutClk_L_2 AG7 SysDataOutClk_L_3 AY8 SysDataOutClk_L_4 H36

Table 3–4 Pin List Sorted by Signal Name (Continued)

Signal Name PGA Location Signal Name PGA Location Signal Name PGALocation
Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3–11

Pin Assignments
SysDataOutClk_L_5 R41 SysDataOutClk_L_6 AH40 SysDataOutClk_L_7 AW39

SysDataOutValid_L BB22 SysFillValid_L BC23 SysVref BA25

Tck_H BE19 Tdi_H BA21 Tdo_H BB20

TestStat_H BA19 Tms_H BD18 Trst_L AY20

Table 3–5 Pin List Sorted by PGA Location

PGA Location Signal Name PGA Location Signal Name PGA Location Signal Name

A11 BcTag_H_22 A13 BcTag_H_26 A17 BcTag_H_33

A19 BcTag_H_36 A27 BcDataOE_L A29 BcAdd_H_6

A33 BcAdd_H_15 A35 BcAdd_H_19 A39 BcData_H_96

A41 BcData_H_98 A5 BcData_H_2 A7 BcData_H_65

AA3 BcCheck_H_9 AA41 SysCheck_L_5 AA43 BcData_H_111

AA5 SysCheck_L_1 AB2 BcData_H_80 AB38 SysData_L_48

AB4 BcCheck_H_1 AB42 BcCheck_H_5 AB44 BcData_H_47

AB8 SysData_L_16 AC1 BcData_H_16 AC3 BcData_H_81

AC39 SysData_L_49 AC43 BcData_H_112 AC45 BcCheck_H_13

AC7 SysData_L_17 AD2 BcData_H_17 AD38 SysData_L_50

AD4 BcData_H_82 AD42 BcData_H_48 AD44 BcData_H_113

AD8 SysData_L_18 AE3 BcData_H_18 AE41 BcData_H_114

AE43 BcData_H_49 AE5 SysData_L_19 AF4 BcData_H_83

AF40 SysData_L_51 AF42 BcData_H_50 AF6 SysDataInClk_H_2

AG1 BcData_H_19 AG41 SysDataInClk_H_6 AG45 BcData_H_115

AG7 SysDataOutClk_L_2 AH2 BcDataInClk_H_2 AH38 SysData_L_52

AH40 SysDataOutClk_L_6 AH44 BcDataInClk_H_6 AH6 SysData_L_20

AH8 SysData_L_21 AJ1 Spare AJ3 BcData_H_84

AJ39 SysData_L_53 AJ43 Spare AJ45 BcData_H_51

AJ7 SysData_L_22 AK2 BcData_H_20 AK38 SysData_L_55

AK4 BcData_H_85 AK42 BcData_H_52 AK44 BcData_H_116

AK8 SysCheck_L_2 AL3 BcData_H_21 AL41 SysData_L_54

AL43 BcData_H_117 AL5 SysData_L_23 AL7 EV6Clk_L

AM4 BcData_H_87 AM40 SysCheck_L_6 AM42 BcData_H_118

AM6 EV6Clk_H AM8 ClkIn_H AN1 BcData_H_86

AN39 SysData_L_56 AN41 BcData_H_55 AN45 BcData_H_53

AN7 ClkIn_L AP2 BcData_H_23 AP38 SysData_L_57

AP40 BcData_H_120 AP44 BcData_H_54 AP8 SysData_L_24

Table 3–4 Pin List Sorted by Signal Name (Continued)

Signal Name PGA Location Signal Name PGA Location Signal Name PGALocation
3–12 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

Pin Assignments
AR1 BcData_H_22 AR3 Spare AR39 SysData_L_58

AR43 BcDataOutClk_H_3 AR45 BcData_H_119 AR7 SysData_L_25

AT2 BcCheck_H_2 AT38 SysData_L_59 AT4 Spare

AT42 BcDataOutClk_L_3 AT44 BcCheck_H_14 AT8 SysData_L_26

AU3 BcDataOutClk_H_1 AU41 BcData_H_57 AU43 BcCheck_H_6

AU5 BcData_H_88 AV10 SysData_L_28 AV12 SysData_L_30

AV16 FrameClk_H AV18 IRQ_H_3 AV22 MiscVref

AV24 SysAddIn_L_11 AV28 SysAddOut_L_13 AV30 SysAddOut_L_7

AV34 SysData_L_63 AV36 SysData_L_61 AV4 BcDataOutClk_L_1

AV40 SysDataInClk_H_7 AV42 BcData_H_122 AV6 SysData_L_27

AV8 PLL_VDD AW1 BcCheck_H_10 AW11 SysData_L_29

AW13 SysData_L_31 AW15 FrameClk_L AW17 IRQ_H_2

AW19 SromClk_H AW23 SysAddIn_L_14 AW27 SysAddIn_L_4

AW29 SysAddOut_L_11 AW33 SysAddOut_L_0 AW35 SysData_L_62

AW39 SysDataOutClk_L_7 AW45 BcData_H_56 AW5 BcData_H_26

AY12 BcData_H_95 AY18 DCOK_H AY2 BcData_H_24

AY20 Trst_L AY26 SysAddIn_L_8 AY28 SysAddIn_L_2

AY32 SysAddOut_L_5 AY34 SysCheck_L_7 AY38 SysData_L_60

AY40 BcDataInClk_H_7 AY44 BcData_H_58 AY6 SysDataInClk_H_3

AY8 SysDataOutClk_L_3 B10 BcData_H_0 B12 BcTag_H_23

B16 BcTag_H_31 B18 BcTag_H_35 B22 BcTagParity_H

B24 BcTagValid_H B28 BcAdd_H_4 B30 BcAdd_H_10

B34 BcAdd_H_18 B36 BcAdd_H_20 B4 BcData_H_68

B40 BcData_H_34 B42 BcData_H_99 B6 BcData_H_67

BA1 BcData_H_89 BA13 SysCheck_L_3 BA15 IRQ_H_0

BA19 TestStat_H BA21 Tdi_H BA25 SysVref

BA27 SysAddIn_L_5 BA3 BcData_H_90 BA31 SysAddOut_L_9

BA33 SysAddOut_L_4 BA37 BcData_H_126 BA39 Spare

BA43 BcData_H_59 BA45 BcData_H_121 BA9 BcData_H_93

BB10 BcData_H_30 BB14 NoConnect BB16 IRQ_H_5

BB2 BcData_H_25 BB20 Tdo_H BB22 SysDataOutValid_L

BB24 SysAddIn_L_10 BB26 SysAddInClk_L BB30 SysAddOut_L_14

BB32 SysAddOut_L_8 BB36 BcCheck_H_15 BB38 BcData_H_62

BB4 BcData_H_27 BB42 BcData_H_124 BB44 BcData_H_123

BB8 BcData_H_28 BC11 BcCheck_H_3 BC15 IRQ_H_4

BC17 SromData_H BC21 Spare BC23 SysFillValid_L

Table 3–5 Pin List Sorted by PGA Location (Continued)

PGA Location Signal Name PGA Location Signal Name PGA Location Signal Name
Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3–13

Pin Assignments
BC25 SysAddIn_L_9 BC29 SysAddIn_L_1 BC3 BcData_H_91

BC31 SysAddOut_L_12 BC35 SysAddOut_L_3 BC37 BcCheck_H_7

BC41 BcData_H_125 BC43 BcData_H_60 BC5 BcDataInClk_H_3

BC9 BcData_H_94 BD10 BcCheck_H_11 BD12 PllBypass_H

BD16 Reset_L BD18 Tms_H BD2 NoConnect

BD22 SysDataInValid_L BD24 SysAddIn_L_12 BD28 SysAddIn_L_6

BD30 SysAddIn_L_0 BD34 SysAddOutClk_L BD36 SysAddOut_L_2

BD4 Spare BD40 BcData_H_127 BD42 BcData_H_61

BD6 BcData_H_92 BE11 ClkFwdRst_H BE13 IRQ_H_1

BE17 SromOE_L BE19 Tck_H BE23 SysAddIn_L_13

BE27 SysAddIn_L_7 BE29 SysAddIn_L_3 BE33 SysAddOut_L_10

BE35 SysAddOut_L_6 BE39 SysAddOut_L_1 BE41 BcData_H_63

BE5 BcData_H_29 BE7 BcData_H_31 BE9 Spare

C11 BcData_H_64 C15 BcTag_H_28 C17 BcTag_H_32

C21 BcTag_H_40 C23 BcTagDirty_H C25 BcTagOutClk_H

C29 BcAdd_H_8 C3 BcData_H_4 C31 BcAdd_H_12

C35 BcAdd_H_22 C37 BcData_H_33 C41 BcData_H_35

C43 BcData_H_36 C5 BcData_H_3 C9 BcData_H_66

D10 BcData_H_1 D14 BcTag_H_24 D16 BcTag_H_30

D2 BcData_H_71 D20 BcTag_H_38 D22 BcTag_H_41

D24 BcTagOutClk_L D26 BcDataWr_L D30 BcAdd_H_11

D32 BcAdd_H_17 D36 BcData_H_97 D4 BcData_H_69

D42 BcData_H_100 D44 BcData_H_101 D8 SysDataInClk_H_0

E1 BcData_H_7 E13 BcTag_H_20 E15 BcTag_H_25

E19 BcTag_H_34 E21 BcTag_H_39 E25 BcTagWr_L

E27 BcAdd_H_5 E3 BcData_H_5 E31 BcAdd_H_16

E33 BcAdd_H_23 E37 SysDataInClk_H_4 E39 Spare

E43 BcData_H_37 E45 BcCheck_H_12 E7 BcDataInClk_H_0

F12 SysData_L_2 F14 SysData_L_0 F18 BcVref

F2 BcCheck_H_0 F20 BcTag_H_37 F26 BcLoad_L

F28 BcAdd_H_9 F32 SysData_L_32 F34 SysData_L_33

F38 BcDataInClk_H_4 F40 SysData_L_36 F44 BcData_H_39

F6 SysData_L_6 F8 Spare G1 BcData_H_73

G11 SysDataOutClk_L_0 G13 SysData_L_1 G17 BcTag_H_27

G19 BcTagInClk_H G23 BcTagShared_H G27 BcAdd_H_7

G29 BcAdd_H_14 G33 BcData_H_32 G35 SysData_L_35

Table 3–5 Pin List Sorted by PGA Location (Continued)

PGA Location Signal Name PGA Location Signal Name PGA Location Signal Name
3–14 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

Pin Assignments
G39 SysData_L_37 G41 BcData_H_38 G45 BcData_H_104

G5 BcData_H_70 G7 SysData_L_5 H10 SysData_L_4

H12 SysData_L_3 H16 BcTag_H_21 H18 BcTag_H_29

H22 BcTag_H_42 H24 BcTagOE_L H28 BcAdd_H_13

H30 BcAdd_H_21 H34 SysData_L_34 H36 SysDataOutClk_L_4

H4 BcData_H_72 H40 BcData_H_102 H42 BcData_H_103

H6 BcData_H_6 J3 BcData_H_8 J41 SysData_L_39

J43 BcDataOutClk_H_2 J5 BcDataOutClk_H_0 K2 BcData_H_9

K38 SysData_L_38 K4 BcDataOutClk_L_0 K42 BcDataOutClk_L_2

K44 BcData_H_40 K8 SysData_L_7 L1 BcData_H_75

L3 BcData_H_10 L39 SysCheck_L_4 L43 BcData_H_105

L45 BcData_H_106 L7 SysCheck_L_0 M2 BcData_H_11

M38 BcCheck_H_4 M40 SysData_L_40 M44 BcData_H_42

M6 SysData_L_8 M8 BcCheck_H_8 N1 BcData_H_76

N39 SysData_L_41 N41 BcData_H_41 N45 BcData_H_107

N5 BcData_H_74 N7 SysData_L_9 P4 SysDataInClk_H_1

P40 SysData_L_42 P42 BcData_H_43 P6 SysData_L_10

R3 BcDataInClk_H_1 R41 SysDataOutClk_L_5 R43 SysDataInClk_H_5

T2 BcData_H_12 T38 SysData_L_43 T4 Spare

T44 BcData_H_108 T8 SysData_L_11 U1 BcData_H_13

U3 BcData_H_77 U39 BcDataInClk_H_5 U43 BcData_H_44

U45 BcData_H_109 U7 SysDataOutClk_L_1 V2 BcData_H_14

V38 Spare V40 SysData_L_44 V44 BcData_H_45

V6 SysData_L_13 V8 SysData_L_12 W1 BcData_H_79

W39 SysData_L_46 W41 SysData_L_45 W45 BcData_H_110

W5 BcData_H_78 W7 SysData_L_14 Y4 BcData_H_15

Y40 SysData_L_47 Y42 BcData_H_46 Y6 SysData_L_15

Table 3–5 Pin List Sorted by PGA Location (Continued)

PGA Location Signal Name PGA Location Signal Name PGA Location Signal Name
Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3–15

Pin Assignments
Table 3–6 lists the 21264/EV67 ground and power (VSSandVDD, respectively) pin
list.

Table 3–6 Ground and Power (VSS and VDD) Pin List

Signal PGA Location

VSS A15 A21 A25 A3 A31 A37 A43 A9 AA1 AA39

AA45 AA7 AC41 AC5 AE1 AE39 AE45 AE7 AG3 AG39

AG43 AG5 AJ41 AJ5 AL1 AL39 AL45 AN3 AN43 AN5

AR41 AR5 AU1 AU39 AU45 AU7 AW21 AW25 AW3 AW31

AW37 AW41 AW43 AW7 AW9 AY14 BA11 BA17 BA23 BA29

BA35 BA41 BA5 BA7 BC1 BC13 BC19 BC27 BC33 BC39

BC45 BC7 BE15 BE21 BE25 BE3 BE31 BE37 BE43 C1

C13 C19 C27 C33 C39 C45 C7 DS8 E11 E17

E23 E29 E35 E41 E5 E9 G15 G21 G25 G3

G31 G37 G43 G9 J1 J39 J45 J7 L41 L5

N3 N43 R1 R39 R45 R5 R7 T42 U41 U5

W3 W43 — — — — — — — —

VDD A23 AB40 AB6 AD40 AD6 AF2 AF38 AF44 AF8 AH4

AH42 AK40 AK6 AM2 AM38 AM44 AP4 AP42 AP6 AT40

AT6 AV14 AV2 AV20 AV26 AV32 AV38 AV44 AY10 AY16

AY22 AY24 AY30 AY36 AY4 AY42 B14 B2 B20 B26

B32 B38 B44 B8 BB12 BB18 BB28 BB34 BB40 BB6

BD14 BD20 BD26 BD32 BD38 BD44 BD8 D12 D18 D28

D34 D40 D6 F10 F16 F22 F24 F30 F36 F4

F42 H14 H2 H20 H26 H32 H38 H44 K40 K6

M4 M42 P2 P38 P44 P8 T40 T6 V4 V42

Y2 Y38 Y44 Y8 — — — — — —
3–16 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

Mechanical Specifications

at
3.4 Mechanical Specifications

This section shows the 21264/EV67 mechanical package dimensions without a he
sink. For heat sink information and dimensions, refer to Chapter 10.

Figure 3–2 shows the package physical dimensions without a heat sink.

Figure 3–2 Package Dimensions

1/4-20 Stud (2x)

Standoff (4x)

Lid

FM-05662.AI4

2.54 mm (.100 in) Typ

587x 1.40 mm (.055 in) Typ

1.27 mm (.050 in) Typ

27.94 mm
(1.100 in)

27.94 mm
(1.100 in)

59.94 mm (2.360 in) Typ

29.62 mm
(1.180 in) Typ

25.40 mm
(1.000 in) Typ

53.85 mm
(2.120 in) Typ

1.27 mm (.050 in) Typ

4.32 mm (.170 in) Typ

1.377 mm (.055 in) Typ

.13 mm
(.005 in) R

7.62 mm (.300 in) Typ

1.905 mm (.075 in) Typ

29.62 mm
(1.180 in) Typ

BC
BB

BA
AY

AW
AV

AU
AT

AR
AP

AN
AM

AL
AK

AJ
AH

AG
AF

AE
AD

AC
AB

AA
Y

W
V

U
T

R
P

N
M

L
K

J
H

G
F

E
D

C
B

A

45434139373533312927252321191715131109070503

04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

BC

01

02

BE
BD

B

Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3–17

21264/EV67 Packaging
3.5 21264/EV67 Packaging

Figure 3–3 shows the 21264/EV67 pinout from the top view with pins facing down.

Figure 3–3 21264/EV67 Top View (Pin Down)

FM-05644-EV6 7

BC
BB

BA
AY

AW
AV

AU
AT

AR
AP

AN
AM

AL
AK

AJ
AH

AG
AF

AE
AD

AC
AB

AA
Y

W
V

U
T

R
P

N
M

L
K

J
H

G
F

E
D

C
B

A

01030507091113151719212325272931333537394143

42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 08 06 04 02

21264/ EV67
Top View

(PinDown)

BC

45

44

BE
BD

B

3–18 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Packaging

.
Figure 3–4 shows the 21264/EV67 pinout from the bottom view with pins facing up

Figure 3–4 21264/EV67 Bottom View (Pin Up)

FM-05645-EV6 7

BC
BB

BA
AY

AW
AV

AU
AT

AR
AP

AN
AM

AL
AK

AJ
AH

AG
AF

AE
AD

AC
AB

AA
Y

W
V

U
T

R
P

N
M

L
K

J
H

G
F

E
D

C
B

A

45434139373533312927252321191715131109070503

04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

21264/ EV67
Bottom View

(PinUp)

BC

01

02

BE
BD

B

Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3–19

g
ache
4
Cache and External Interfaces

This chapter describes the 21264/EV67 cache and external interface,which includes the
second-level cache (Bcache) interface and thesystem interface. It also describes locks,
interrupt signals, and ECC/parity generation. It is organized as follows:

• Introduction to the external interfaces

• Physical address considerations

• Bcache structure

• Victim data buffer

• Cache coherency

• Lock mechanism

• System port

• Bcache port

• Interrupts

Chapter 3 lists and defines all 21264/EV67 hardware interface signalpins. Chapter 9
describes the 21264/EV67 hardware interface electrical requirements.

4.1 Introduction to the External Interfaces

A 21264/EV67-based system can be divided into three major sections:

• 21264/EV67 microprocessor

• Second-level Bcache

• System interface logic

– Optional duplicate tag store
– Optional lock register
– Optional victim buffers

The 21264/EV67 external interface is flexible and mandates few design rules, allowin
a wide range of prospective systems. The external interface is composed of the Bc
interface and the system interface.

• Input clocks must have the same frequency as their corresponding output clock. For
example, the frequency ofSysAddInClk_L must be the same as
SysAddOutClk_L.
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–1

Introduction to the External Interfaces

-
• The Bcache interface includes a 128-bit bidirectional data bus, a 20-bit unidirec
tional address bus, and several control signals.

– TheBcDataOutClk_x[3:0] clocks are free-running and are derived from the
internal GCLK. The period ofBcDataOutClk_x[3:0] is a programmable mul-
tiple of GCLK.

– The Bcache turns theBcDataOutClk_x[3:0] clocks around and returns them
to the 21264/EV67 asBcDataInClk_H[7:0] . Likewise,BcTagOutClk_x
returns asBcTagInClk_H .

– The Bcache interface supports a 64-byte block size.

• The system interface includes a 64-bit bidirectional data bus, two 15-bit
unidirectional address buses, and several control signals.

– TheSysAddOutClk_L clock is free-running and is derived from the internal
GCLK. The period ofSysAddOutClk_L is a programmable multiple of
GCLK.

– TheSysAddInClk_L clock is a turned-around copy ofSysAddOutClk_L.

Figure 4–1 shows a simplified view of the external interface. The function and purpose
of each signal is described in Chapter 3.
4–2 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Introduction to the External Interfaces

ht
ins.
Figure 4–1 21264/EV67 System and Bcache Interfaces

4.1.1 System Interface

This section introduces the system (external) bus interface. The system interface is
made up of two unidirectional 15-bit address buses, 64 bidirectional data lines, eig
bidirectional check bits, two single-ended unidirectional clocks, and a few control p
The 15-bit address buses provide time-shared address/command/ID in two or four
GCLK cycles. The Cbox controls the system interface.

BcData_H[127:0]

BcAdd_H[23:4]

BcCheck_H[15:0]

BcDataInClk_H[7:0]
BcDataOutClk_ x[3:0]

BcDataOE_L

BcDataWr_L

21264

SysAddOut_L[14:0]

SysAddInClk_L

SysAddIn_L[14:0]

SysAddOutClk_L

SysVref

FM-05818B-EV67

SysDataInClk_H[7:0]

SysCheck_L[7:0]

SysData_L[63:0]

SysDataOutClk_L[7:0]

SysDataInValid_L

SysFillValid_L

SysDataOutValid_L

BcTag_H[42:20]

BcTagInClk_H

BcTagOutClk_ x

BcVref

BcTagParity_H

BcTagWr_L

BcTagOE_L

BcTagValid_H

BcTagDir ty_H

BcTagShared_H

BcLoad_L

Data Tag Status System

IRQ_H[5:0]

[23:4] [23:6] [23:6]
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–3

Physical Address Considerations

1264/
the
entry

ssed

l
4-

nd
ress

,
lti-

the
phys-
lly.

fixed
d-
hys-
uced

e

r-
d
ibed
4.1.1.1 Commands and Addresses

The system sends probe and data movement commands to the 21264/EV67. The 2
EV67 can hold up to eight probe commands from the system. The system controls
number of outstanding probe commands and must ensure that the 21264/EV67 8-
probe queue does not overflow.

The Cbox contains an 8-entry miss buffer (MAF) and an 8-entry victim buffer (VAF).

A miss occurs when the 21264/EV67 probes the Bcache but does not find the addre
block. The 21264/EV67 can queue eight cache misses to the system in its MAF.

4.1.2 Second-Level Cache (Bcache) Interface

The 21264/EV67 Cbox provides control signals and an interface for a second-leve
cache, the Bcache. The 21264/EV67 supports a Bcache from 1MB to 16MB, with 6
byte blocks. A 128-bit data bus is used for transfers between the21264/EV67 and the
Bcache. The Bcache must be comprised of synchronous static RAMs (SSRAMs) a
must contain either one, two, or three internal registers. All Bcache control and add
pins are clocked synchronously on Bcache cycle boundaries. The Bcache clock rate
varies as a multiple of the CPU clock cycle in half-cycle increments from 1.5 to 4.0
and in full-cycle increments of 5, 6, 7, and 8 times the CPU clock cycle. The 1.5 mu
ple is only available in dual-data mode.

4.2 Physical Address Considerations

The 21264/EV67 supports a 44-bit physical address space that is divided equally
between memory space and I/O space. Memory space resides in the lower half of
physical address space (PA[43] = 0) and I/O space resides in the upper half of the
ical address space (PA[43] = 1). The 21264/EV67 recognizes these spaces interna

The 21264/EV67-generated external references to memory space are always of a
64-byte size, though the internal access granularity is byte, word, longword, or qua
word. All 21264/EV67-generated external references to memory or I/O space are p
ical addresses that are either successfully translated from a virtual address or prod
by PALcode. Speculative execution may cause a reference tononexistent memory. Sys-
tems must check the range of all addresses and report nonexistent addresses to th
21264/EV67.

Table 4–1 describes the translation of internal references to external interface refe
ences. The first column lists the instructions used by the programmer, including loa
(LDx) and store (STx) instructions of several sizes. The column headings are descr
here:

• DcHit (block was found in the Dcache)

• DcW (block was found in a writable state in the Dcache)

• BcHit (block was found in the Bcache)

• BcW (block was found in a writable state in the Bcache)

• Status and Action (status at end of instruction and action performed by the21264/
EV67)
4–4 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Physical Address Considerations

ed
pace
Prefetches (LDL, LDF, LDG, LDT, LDBU, LDWU) to R31 use the LDx flow, and
prefetch with modify intent (LDS) uses the STx flow. If the prefetch target is address
to I/O space, the upper address bit is cleared, converting the address to memory s
(PA[42:6]). Notes follow the table.

Table 4–1 Translation of Internal References to External Interface Reference

Instruction DcHit DcW BcHit BcW Status and Action

LDx Memory 1 X X X Dcache hit, done.

LDx Memory 0 X 1 X Bcache hit, done.

LDx Memory 0 X 0 X Miss, generate RdBlk command.

LDx I/O X X X X RdBytes, RdLWs, or RdQWs based on size.

Istream Memory 1 X X X Dcache hit, Istream serviced from Dcache.

Istream Memory 0 X 1 X Bcache hit, Istream serviced from Bcache.

Istream Memory 0 X 0 X Miss, generate RdBlkI command.

STx Memory 1 1 X X Store Dcache hit and writable, done.

STx Memory 1 0 X X Store hit and not writable, set dirty flow (note 1).

STx Memory 0 X 1 1 Store Bcache hit and writable, done.

STx Memory 0 X 1 0 Store hit and not writable, set-dirty flow (note 1).

STx Memory 0 X 0 X Miss, generate RdBlkMod command.

STx I/O X X X X WrBytes, WrLWs, or WrQWs based on size.

STx_C Memory 0 X X X Fail STx_C.

STx_C Memory 1 0 X X STx_C hit and not writable, set dirty flow (note 1).

STx_C I/O X X X X Always succeed and WrQws or WrLws are generated,
based on the size.

WH64 Memory 1 1 X X Hit, done.

WH64 Memory 1 0 X X WH64 hit not writable, set dirty flow (note 1).

WH64 Memory 0 X 1 1 WH64 hit dirty, done.

WH64 Memory 0 X 1 0 WH64 hit not writable, set dirty flow (note 1).

WH64 Memory 0 X 0 X Miss, generate InvalToDirty command (note 2).

WH64 I/O X X X X NOP the instruction. WH64 isUNDEFINED for I/O
space.

ECB Memory X X X X Generate evict command (note 3).

ECB I/O X X X X NOP the instruction. ECB instruction is UNDEFINED
for I/O space.

MB/WMB
TB Fill Flows

X X X X Generate MB command (note 4). See Section 2.12.1.
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–5

Physical Address Considerations

the
d sta-
r-

C
for

-
nvi-
ert
.

vict
at is

,
vict

d a

to
dicat-

k

ut

s-

be

proto-
refer
ys-
/

Table 4–1 notes:

1. Set Dirty Flow: Based on the Cbox CSR SET_DIRTY_ENABLE[2:0], SetDirty
requests can be either internally acknowledged (called a SetModify) or sent to
system environment for processing. When externally acknowledged, the share
tus information for the cache block is also broadcast. The commands sent exte
nally are SharedToDirty or CleanToDirty. Based on the Cbox CSR
ENABLE_STC_COMMAND[0], the external system can be informed of a STx_
generating a SetDirty using the STCChangeToDirty command. See Table 4–16
more information.

2. InvalToDirty: Based on the Cbox CSR INVAL_TO_DIRTY_ENABLE[1:0], Inval
ToDirty requests can be either internally acknowledged or sent to the system e
ronment as InvalToDirty commands. This Cbox CSR provides the ability to conv
WH64 instructions to RdModx operations. See Table 4–15 for more information

3. Evict: There are two aspects to the commands that are generated by an ECB
instruction: first, those commands that are generated to notify the system of an e
being performed; second, those commands that are generated by any victim th
created by servicing the ECB.

– If Cbox CSR ENABLE_EVICT[0] is clear, no command is issued by the
21264/EV67 on the external interface to notify the system of an evict being
performed. If Cbox CSRENABLE_EVICT[0] is set, the 21264/EV67 issues an
Evict command on the system interface only if a Bcache index match to the
ECB address is found in the 21264/EV67 cache system.

Note that whenever ENABLE_EVICT[0] is true (in the write-many chain),
BC_CLEAN_VICTIM must also be true (in the write-once chain). Otherwise
the 21264/EV67 could respond miss to a probe, rather than hit, before an E
command has been sent off chip, but after the Evict command has remove
(clean) block from the internal caches and the Bcache. That behavior might
cause systems that maintain an external duplicate copy of the Bcache tags
become confused, because the system could receive the probe response in
ing the miss before it receives the Evict command.

– The 21264/EV67 can issue the commands CleanVictimBlk and WrVictimBl
for a victim that is created by an ECB. CleanVictimBlk is issued only if Cbox
CSR BC_CLEAN_VICTIM is set and there is a Bcache index match valid b
not dirty in the 21264/EV67cachesystem. WrVictimBlk is issued for any
Bcache match of the ECB address that is dirty in the 21264/EV67 cache sy
tem.

4. MB: Based on the Cbox CSR SYSBUS_MB_ENABLE, the MB command can
sent to the pins.

Each of these CSRs is programmed appropriately, based on the cache coherence
col used by the system environment. For example, uniprocessor systems would p
to internally acknowledge most of these transactions. In contrast, multiprocessor s
tems may require notification and control of any change in cache state. The 21264
EV67 and the external system must cooperate to maintain cache coherence. Section 4.5
explains the 21264/EV67 part of the cache coherency protocol.
4–6 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Structure

l

8-
che.

st

ies as
ll-
ly

cate

ms
4.3 Bcache Structure

The 21264/EV67 Cbox provides control signals and an interface for a second-leve
cache (Bcache).

The 21264/EV67 supports a Bcache from 1MB to 16MB, with 64-byte blocks. A 12
bit bidirectional data bus is used for transfers between the 21264/EV67 and the Bca
The Bcache is fully synchronous and the synchronous static RAMs (SSRAMs) mu
contain either one, two, or three internal registers. All Bcache control and address pins
are clocked synchronously on Bcache cycle boundaries. The Bcache clock rate var
a multiple of the CPU clock cycle in half-cycle increments from 1.5 to 4.0, and in fu
cycle increments of 5, 6, 7, and 8 times the CPU clock cycle. The 1.5 multiple is on
available in dual-data mode.

4.3.1 Bcache Interface Signals

Figure 4–2 shows the 21264/EV67 system interface signals.

Figure 4–2 21264/EV67 Bcache Interface Signals

4.3.2 System Duplicate Tag Stores

The 21264/EV67 provides Bcache state support for systems with and without dupli
tag stores, and will take different actions on this basis. The system sets the Cbox CSR
DUP_TAG_ENA[0], indicating that it has a duplicate tag store for the Bcache. Syste
using the DUP_TAG_ENA[0] bit must also use the Cbox CSR
BC_CLEAN_VICTIM[0] bit to avoid deadlock situations.

Systems using a Bcache duplicate tag store canaccelerate system performance by:

21264

BcData_H[127:0]

FM-05650-EV67

BcCheck_H[15:0]

BcDataInClk_H[7:0]

BcDataOutClk_[3:0]x

BcDataOE_L

BcDataWr_L

BcAdd_H[23:4]

BcTag_H[42:20]

BcTagInClk_H

BcTagOutClk_ x

BcVref

BcTagDirty_H

BcTagParity_H

BcTagShared_H

BcTagValid_H

BcTagOE_L

BcTagWr_L

BcLoad_L
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–7

Victim Data Buffer

he
ate
ate a

nd

the
)
til

his

e-

are

cy
• Issuing probes and SysDc fill commands to the 21264/EV67 out-of-order with
respect to their order at the system serialization point

• Filtering out all probe misses from the 21264/EV67 cache system

If a probe misses in the 21264/EV67 cache system (Bcache miss and VAF miss), t
21264/EV67 stalls probe processing with the expectation that a SysDc fill will alloc
this block. Because of this, in duplicate tag mode, the 21264/EV67 can never gener
probe miss response.

When Cbox CSR DUP_TAG_ENA[0] equals 0, the 21264/EV67 delivers a miss
response for probes that do not hit in its cache system.

4.4 Victim Data Buffer

The 21264/EV67 has eight victim data buffers (VDBs). They have the following prop-
erties:

• The VDBs are used for both victims (fills that are replacing dirty cache blocks) a
for system probes that require data movement. The CleanVictimBlk command
(optional) assigns and uses a VDB.

• Each VDB has two valid bits that indicate the buffer is valid for a victim or valid
for a probe or valid for both a victim and a probe. Probe commands that match
address of a victim address file (VAF) entry with an asserted probe-valid bit (P
will stall the 21264/EV67 probe queue. No ProbeResponses will be returned un
the P bit is clear.

• The release victim buffer (RVB)bit, when asserted, causes the victim valid bit, on
the victim data buffer (VDB) specified in the ID field, to be cleared. The RVB bit
will also clear the IOWB when systems move data on I/O write transactions. In t
case, ID[3] equals one.

• The release probe buffer (RPB) bit, when asserted (with a WriteData or Releas
Buffer SysDc command), clears the P bit in the victim buffer entry specified in the
ID field.

• Read data commands and victim write commands use IDs 0-7, while IDs 8-11
used to address the four I/O write buffers.

4.5 Cache Coherency

This section describes the basics and protocols of the 21264/EV67 cache coheren
scheme.

4.5.1 Cache Coherency Basics

The 21264/EV67 systems maintain the cache hierarchy shown in Figure 4–3.
4–8 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Cache Coherency

ache

e is

n

ime.
her

er-
te

lds
Figure 4–3 Cache Subset Hierarchy

The following tasks must be performed to maintain cache coherency:

• Istream data from memory spaces may be cached in the Icache and Bcache. Ic
coherence is not maintained by hardware—it must be maintained by software using
the CALL_PAL IMB instruction.

• The 21264/EV67 maintains the Dcache as a subset of the Bcache. The Dcach
set-associative but is kept a subset of the larger externally implemented direct-
mapped Bcache.

• System logic must help the 21264/EV67 to keep the Bcache coherent with mai
memory and other caches in the system.

• The 21264/EV67 requires the system to allow only one change to a block at a t
This means that if the 21264/EV67 gains the bus to read or write a block, no ot
node on the bus should be allowed to access that block until the data has been
moved.

• The 21264/EV67 provides hardware mechanisms to support several cache coh
ency protocols. The protocols can be separated into two classes: write invalida
cache coherency protocol and flush cache coherency protocol.

4.5.2 Cache Block States

Table 4–2 lists the cache block states supported by the 21264/EV67.

Table 4–2 21264/EV67-Supported Cache Block States (Sheet 1 of 2)

State Name Description

Invalid The 21264/EV67 does not have a copy of the block.

Clean This 21264/EV67 holds a read-only copy of the block, and no other agent in the system ho
a copy. Upon eviction, the block is not written to memory.

System
Main Memory

Icache

Bcache

Dcache

FM-05824.AI4
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–9

Cache Coherency

e
m-
ck.
ts the

er the

sys-

s

but

ansac-

n

s

.

us.

.

s.
4.5.3 Cache Block State Transitions

Cache block state transitions arereflected by21264/EV67-generated commands to th
system. Cache block state transitions can also be caused by system-generated co
mands to the 21264/EV67 (probes). Probes control the next state for the cache blo
The next state can be based on the previous state of the cache block. Table 4–3 lis
next state for the cache block.

The cache state transitions caused by 21264/EV67-generated commands are und
full control of the system environment using the SysDc (system data control) com-
mands. Table 4–4 lists these commands.

Clean/Shared This 21264/EV67 holds a read-only copy of the block, and at least one other agent in the
tem may hold a copy of the block. Upon eviction, the block is not written to memory.

Dirty This 21264/EV67 holds a read-write copy of the block, and must write it to memory after it i
evicted from the cache. No other agent in the system holds a copy of the block.

Dirty/Shared This 21264/EV67 holds a read-only copy of the dirty block, which may be shared with
another agent. The block must be written back to memory when it is evicted.

Table 4–3 Cache Block State Transitions

Next State Action Based on Probe Hit

No change Do not update cache state. Useful for DMA transactions that sample data
do not want to update tag state.

Clean Independent of previous state, update next state to Clean.

Clean/Shared Independent of previous state, update next state to Clean/Shared. This tr
tion is useful for systems that update memory on probe hits.

T1:
Clean⇒ Clean/Shared
Dirty ⇒ Dirty/Shared

Based on the dirty bit, make the block clean or dirty shared. This transactio
is useful for systems that do not update memory on probe hits.

T3:
Clean⇒ Clean/Shared
Dirty ⇒ Invalid
Dirty/Shared⇒ Clean/Shared

If the block is Clean or Dirty/Shared, change to Clean/Shared. If the block i
Dirty, change to Invalid. This transaction is useful for systems that use the
Dirty/Shared state as an exclusive state.

Table 4–4 System Responses to 21264/EV67 Commands

Response Type 21264/EV67 Action

SysDc ReadData Fill block with the associated data and update tag with clean cache status

SysDc ReadDataDirty Fill block with the associated data and update tag with dirty cache status.

SysDc ReadDataShared Fill block with the associated data and update tag with shared cache stat

SysDc ReadDataShared/Dirty Fill block with the associated data and update tag with dirty/shared status

SysDc ReadDataError Fill block with all-ones reference pattern and update tag with invalid statu

SysDc ChangeToDirtySuccess Unconditionally update block with dirty cache status.

SysDc ChangeToDirtyFail Do not update cache status and fail any associated STx_C instructions.

Table 4–2 21264/EV67-Supported Cache Block States (Sheet 2 of 2)

State Name Description
4–10 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Cache Coherency

-

.

s all
264/

C-

ave

67

ore

V67
ck
k

4.5.4 Using SysDc Commands

Note the following:

• The conventional response for RdBlk commands is SysDc ReadData or ReadD
ataShared.

• The conventional response for a RdBlkMod command is SysDc ReadDataDirty

• The conventional response for ChangeToDirty commands is
ChangeToDirtySuccess or ChangeToDirtyFail.

However, the system environment is not limited to these responses. Table 4–5 show
21264/EV67 commands, system responses, and the 21264/EV67 reaction. The 21
EV67 commands are described in the following list:

• Rdx commands are generated by load or Istream references.

• RdBlkModx commands are generated by store references.

• The ChxToDirty command group includes CleanToDirty, SharedToDirty, and ST
ChangeToDirty commands, which are generated by store references that hit in the
21264/EV67 cache system.

• InvalToDirty commands are generated by WH64 instructions that miss in the
21264/EV67 cache system.

• FetchBlk and FetchBlkSpec are noncached references to memory space that h
missed in the 21264/EV67 cache system.

• Rdiox commands are noncached references to I/O address space.

• Evict and STCChangeToDirty commands are generated by ECB and STx_C
instructions, respectively.

Table 4–5 shows the system responses to 21264/EV67 commands and 21264/EV
reactions.

Table 4–5 System Responses to 21264/EV67 Commands and 21264/EV67 Reactions

21264/EV67
CMD SysDc 21264/EV67 Action

Rdx ReadData
ReadDataShared

This is a normal fill. The cache block is filled and marked clean or
shared based on SysDc.

Rdx ReadDataShared/Dirty The cache block is filled and marked dirty/shared. Succeeding st
commands cannot update the block without external reference.

Rdx ReadDataDirty The cache block is filled and marked dirty.

Rdx ReadDataError The cache block access was to NXM address space. The 21264/E
delivers an all-ones pattern to any load command and evicts the blo
from the cache (with associated victim processing). The cache bloc
is marked invalid.

Rdx ChangeToDirtySuccess
ChangeToDirtyFail

Both SysDc responses are illegal for read commands.
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–11

Cache Coherency

e

-
m-

ock

4/
,
d
k
he

s
nd

xTo-

ble.
e.

e

e
by

c-
RdBlkModx ReadData
ReadDataShared
ReadDataShared/Dirty

The cache block is filled and marked with a nonwritable status. If th
store instruction that generated the RdBlkModx command is still
active (not killed), the 21264/EV67 will retry the instruction, generat
ing the appropriate ChangeToDirty command. Succeeding store co
mands cannot update the block without external reference.

RdBlkModx ReadDataDirty The 21264/EV67 performs a normal fill response, and the cache bl
becomes writable.

RdBlkModx ChangeToDirtySuccess
ChangeToDirtyFail

Both SysDc responses are illegal for read/modify commands.

RdBlkModx ReadDataError The cache block command was to NXM address space. The 2126
EV67 delivers an all-ones pattern to any dependent load command
forces a fail action on any pending store commands to this block, an
any store to this block is not retried. The Cbox evicts the cache bloc
from the cache system (with associated victim processing). The cac
block is marked invalid.

ChxToDirty ReadData
ReadDataShared
ReadDataShared/Dirty

The original data in the Dcache is replaced with the filled data. The
block is not writable, so the 21264/EV67 will retry the store instruc-
tion and generate another ChxToDirty class command. To avoid a
potential livelock situation, the STC_ENABLE CSR bit must be set.
Any STx_C instruction to this block is forced to fail. In addition, a
Shared/Dirty response causes the 21264/EV67 to generate a victim
for this block upon eviction.

ChxToDirty ReadDataDirty The data in the Dcache is replaced with the filled data. The block i
writable, so the store instruction that generated the original comma
can update this block. Any STx_C instruction to this block is forced
to fail. In addition, the 21264/EV67 generates a victim for this block
upon eviction.

ChxToDirty ReadDataError Impossible situation. The block must be cached to generate a Ch
Dirty command. Caching the block is not possible because all NXM
fills are filled noncached.

ChToDirty ChangeToDirtySuccess Normal response. ChangeToDirtySuccess makes the block writa
The 21264/EV67 retries the store instruction and updates the Dcach
Any STx_C instruction associated with this block is allowed to suc-
ceed.

ChxToDirty ChangeToDirtyFail The MAF entry is retired. Any STx_C instruction associated with th
block is forced to fail. If a STx instruction generated this block, the
21264/EV67 retries and generates either a RdBlkModx (because th
reference that failed the ChangeToDirty also invalidated the cache
way of an invalidating probe) or another ChxToDirty command.

InvalToDirty ReadData
ReadDataShared
ReadDataShared/Dirty

The block is not writable, so the 21264/EV67 will retry the WH64
instruction and generate a ChxToDirty command.

InvalToDirty ReadDataError The 21264/EV67 doesn’t send InvalToDirty commands offchip spe
ulatively. This NXM condition is a hard error. Systems should per-
form a machine check.

InvalToDirty ReadDataDirty
ChangeToDirtySuccess

The block is writable. Done.

Table 4–5 System Responses to 21264/EV67 Commands and 21264/EV67 Reactions (Continued)

21264/EV67
CMD SysDc 21264/EV67 Action
4–12 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Cache Coherency

ty
ic-

-
ress
trol

ta

d to
be

wo

r-

ting

ron-

y
ng

he

264/
ns

V67
he
The 21264/EV67 sends a WrVictimBlk command to the system when it evicts a Dir
or Dirty/Shared cache block. The 21264/EV67 may be configured to send a CleanV
timBlk to the system (by way of the Cbox CSR BC_CLEAN_VICTIM[0]) when evict
ing a clean or shared block. Both commands allocate buffers in the VAF (victim add
file). This buffer is a coherent part of the 21264/EV67 cache system. Write data con
and deallocation of the VAF can be directly controlled by using the SysDc WriteDa
and ReleaseBuffer commands.

4.5.5 Dcache States and Duplicate Tags

Each Dcache block contains an extra state bit (modified bit), beyond those require
support the cache protocol. If set, this bit indicates that the associated block should
written to the Bcache when it is evicted from the Dcache. The modified bit is set in t
cases:

1. When a block is filled into the Dcache from memory its modified bit is set, ensu
ing that it also gets written back into the Bcache at some future time.

2. When the processor writes to a dirty Dcache block the modified bit is set, indica
it should be written to the Bcache when evicted.

The contents of the modified bit are functionally invisible to the external cache envi
ment, but knowledge of the bits function is useful to programmers optimizing the
scheduling of the Bcache data bus.

The Cbox contains a duplicate copy of the Dcache tagarray. In contrast to the Dcache
tag array (DTAG), which is virtually indexed, the Cbox copy of the Dcache tag arra
(CTAG) is physically-indexed. The Cbox uses the CTAG array entries in the followi
situations.

InvalToDirty ChangeToDirtyFail Illegal. InvalToDirty instructions must provide a cache block.

Fetchx
Rdiox

ReadData
ReadDataShared
ReadDataShared/Dirty
ReadDataDirty

The 21264/EV67 delivers the data block, independent of its
status, to waiting load instructions and does not cache the block in t
21264/EV67 cache system.

Fetchx ReadDataError The cache block address was to an NXM address space. The 21
EV67 delivers the all-ones patterns to any dependent load instructio
and does not cache the block in the 21264/EV67 cache system.

Rdiox ReadDataError The cache block access was to NXM address space. The 21264/E
delivers an all-ones pattern to any load command and does not cac
the block in the 21264/EV67 cache system.

Evict ChangeToDirtyFail Retiring the MAF entry is the only legal response.

STCChangeTo
Dirty

ReadDataX
ChangeToDirtyFail

All fill and ChangeToDirtyFail responses will fail the STx_C require-
ments.

STCChangeTo
Dirty

ChangeToDirtySuccess The STx_C instruction succeeds.

MB MBDone Acknowledgment for MB.

Table 4–5 System Responses to 21264/EV67 Commands and 21264/EV67 Reactions (Continued)

21264/EV67
CMD SysDc 21264/EV67 Action
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–13

Lock Mechanism

find
lly-
rit-
cks
but
eep

find
it

the
ress

ort

ld in
r

nents

or
and.

f its
wise,

he
che

ict

t use

fair-

uc-
_C

n

1. When the Mbox requests a Dcache fill, the Cbox uses the CTAG array entry to
if the Dcache already contains the requested physical address in another virtua
indexed Dcache line. If it does, the Cbox invalidates that cache line after first w
ing the data back to the Bcache if it was in the modified state. The Cbox also che
to see if the Dcache contains an address different from the requested address,
maps to the same Bcache line. If it does, the Dcache line is evicted in order to k
the Dcache a subset of the Bcache.

2. When the Ibox requests an Icache fill, the Cbox uses the CTAG array entries to
if the Dcache contains the requested physical address in the modified state. If
does, the Cbox forces the line to be written back to the Bcache before servicing
Icache fill request. The Cbox also checks to see if the Dcache contains an add
different from the requested address butwhich maps to the same Bcache line. In
this case the Istream request will miss the Bcache, and the Cbox will
service the request by launching a noncached Fetch command to the system p
and will not put the Istream block into the Bcache. This mechanism allows the
21264/EV67 to use a cache resident lock flag for LDx_L/STx_C instructions.

3. The Cbox uses the CTAG array entries to find whether probe addresses are he
the Dcache without interrupting load/store instruction processing in the processo
core.

4.6 Lock Mechanism

The 21264/EV67 does not contain a dedicated lock register, nor are system compo
required to do so.

When a load-lock (LDx_L) instruction executes, data is accessed from the Dcache
Bcache. If there is a cache miss, data is accessed from memory with a RdBlk comm
Its associated cache line is filled into the Dcache in the clean state, if it is not already
there.

When the store-conditional (STx_C) instruction executes, it is allowed to succeed i
associated cache line is still present in the Dcache and can be made writable; other
it fails.

This algorithm is successful because another agent in the system writing to the cac
line between the load-lock and the store-conditional cache line would make the ca
line invalid. This mechanism’s coherence is based on the following four items:

1. LDx_L instructions are processed in-order in relation to the associated STx_C.

2. Once a block is locked by way of an LDx_L instruction, no internal agent can ev
the block from the Dcache as a side-effect of its processing.

3. Any external agent that intends to update the contents of the stored block mus
an invalidating probe command to inform the 21264/EV67.

4. The system is the only agent with sufficient information to manage the tasks of
ness and liveness. However, to enable these tasks, the 21264/EV67 only generates
external commands for nonspeculative STx_C instructions, and once given a s
cess indication from the system, must faithfully update the Dcache with the STx
value.

The system is entirely responsible for item number three. The 21264/EV67 plays a
active role in items one, two, and four.
4–14 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Lock Mechanism

are

.

of

7

, the

ns
ne.
the
by
p

-
that
fer-

the

) is
able
alf of

-

4.6.1 In-Order Processing of LDx_L/STx_C Instructions

The 21264/EV67 uses the stWait logic in the IQ to ensure that LDx_L/STx_C pairs
issued in order. The stWait logic treats an Ldx_L instruction like Stx instructions.
STx_C instructions are always loaded into the IQ with their associate stWait bit set
Thus, a STx_C instruction is not issued until the older LDx_L is out of the IQ.

4.6.2 Internal Eviction of LDx_L Blocks

The 21264/EV67 prevents the eviction of cache blocks in the Dcache due to either
the followingreferences:

• Istream referenceswith a Bcache index that matches the Dcache block and a
Bcache tag that mismatches the Dcache block.

To avoid evictions of LDx_L blocks, Istream references that match theindex of a
block in the Dcache are converted to noncachedreferences.

• Ldx or Stx references with a Dcache index that matches the block.

In the Alpha architecture, Dstream references between aLDx_L/STx_C pair force
the value of the STx_C success flag to be UNPREDICTABLE. The 21264/EV6
forces all STx_C instructions that interrupt an LDx_L/STx_C pair to fail in pro-
gram order.

There should be no Dstream references between LDx_L/STx_C pairs; however
out-of-order nature of the 21264/EV67 can introduce Dstream references between
LDx_L/STx_C pairs. To prevent load or store instructions older than the LDx_L
from evicting the LDx_L cache block, the Mbox invokes a replay trap on the
incoming load or store instruction, which also aborts the LDx_L. These instructio
are issued in program order in the next iteration of the trap retry down the pipeli
To prevent newer load or store instructions from evicting the locked cache line,
Ibox ensures that a STx_C is issued before any newer load or store instruction
placing the STx_C into the IQ and stalling all subsequent instructions in the ma
stage of the pipe until the IQ is empty.

Branch instructions between the LDx_L/STx_C pair may be mispredicted, intro
ducing load and store instructions that evict the locked cache block. To prevent
from happening, there is a bit in the instruction fetcher that is set for a LDx_L re
ence and cleared on any other memoryreference. Whenthis bit is set, the branch
predictor predicts all branches to fall through.

4.6.3 Liveness and Fairness

To prevent a livelock condition, the 21264/EV67 processes the STx_C as follows:

1. If a STx_C misses the Dcache, then no system port transaction is started and
STx_C fails.

2. If a STx_C hits a block that is not dirty, then a ChangeToDirty (Shared or Clean
launched after the STx_C retires and all older store queue entries are in the writ
state. This ensures that once the ChangeToDirty command is launched on beh
the STx_C, the STx_C will be executed to completion if the ChangeToDirty com
mand succeeds.
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–15

System Port

d the

ffect
by
/

ve

de.

de,
and

-

r or

ys-
are
If the ChangeToDirty command succeeds, the STx_C enters the writable state, an
Mbox locks the Dcache line. The Mbox does not release the Dcache line until the
STx_C data is transferred to the Dcache.This ensures that no other agent, by way of a
probe, can take the block before the STx_C can update the locked block.

4.6.4 Managing Speculative Store Issues with Multiprocessor Systems

The 21264/EV67 provides two mechanisms to manage an inherent potential side e
of speculative execution with multiprocessor systems — a livelock condition caused
a speculative store that misses in one processor affecting the execution of a LDx_L
STx_C pair in another processor. The potential livelock condition in multiprocessor
systems can be effectively controlled by placing processors in a conservative mode,
where speculative store MAFs are blocked. The 21264/EV67 manages conservati
mode with the Mbox IPR, M_CTL[SMC], described in Table 5–19.

• M_CTL[SMC] can be set to place the 21264/EV67 in full-time conservative mo

• M_CTL[SMC] can be set to place the 21264/EV67 in periodic conservative mo
timed by two counters: an 8-bit primary counter that tracks branch mispredicts
conditional branch retires, and a backup counter that places the 21264/EV67 in
conservative mode for a period of 16K cycles every 2 million cycles.

The 8-bit counter is enabled by placing M_CTL[SMC] in periodic conservative
mode. The backup counter takeseffect whenever the 8-bit counter is enabled. Fur
ther, the backup counter can be reset to 0 by clearing a previously set
M_CTL[SMC], allowing synchronization between processors.

4.7 System Port

The system port is the 21264/EV67’s connection to either a memory or I/O controlle
to a shared multiprocessor system controller. System port interfacesignals are shown in
Figure 4–4.

The system port supports transactions between the 21264/EV67 and the system. S
tems must receive and drive signals that are asserted low. Transaction commands
communicated on signal linesSysAddOut_L[14:0] (21264/EV67-to-system) and
SysAddIn_L[14:0] (system-to-21264/EV67). Transaction data is transferred on abidi-
rectional data bus over pinsSysData_L[63:0]with ECC on pinsSysCheck_L[7:0].
4–16 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

ip-
Figure 4–4 System Interface Signals

4.7.1 System Port Pins

Table 3–1 defines the 21264/EV67 signal types referred to in this section. Table 4–6
lists the system port pin groups along with their type, number, and functional descr
tion.

Table 4–6 System Port Pins

Pin Name Type Count Description

IRQ_H[5:0] I_DA 6 These six interrupt signal lines may be asserted by the sys-
tem.

SysAddIn_L[14:0] I_DA 15 Time-multiplexed SysAddIn, system-to-21264/EV67.

SysAddInClk_L I_DA 1 Single-ended forwarded clock from system for
SysAddIn_L[14:0] andSysFillValid_L .

SysAddOut_L[14:0] O_OD 15 Time-multiplexed SysAddOut, 21264/EV67-to-system.

SysAddOutClk_L O_OD 1 Single-ended forwarded clock.

SysVref I_DC_REF 1 System interface reference voltage.

SysCheck_L[7:0] B_DA_OD 8 Quadword ECC check bits forSysData_L[63:0].

SysData_L[63:0] B_DA_OD 64 Data bus for memory and I/O data.

SysDataInClk_H[7:0] I_DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDataInValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers to
the 21264/EV67.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV67-generated clocks for clock for-
warded output system data.

SysDataOutValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers
from the 21264/EV67.

SysFillValid_L I_DA 1 Validation for fill given in previous SysDc command.

21264

SysAddIn_L[14:0]

FM-05652-EV67

SysAddInClk_L

SysAddOut_L[14:0]

SysAddOutClk_L

SysVref

SysData_L[63:0]

SysCheck_L[7:0]

SysDataInClk_H[7:0]

SysDataOutClk_L[7:0]

SysDataInValid_L

SysDataOutValid_L

SysFillValid_L

IRQ_H[5:0]
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–17

System Port

s,
ers

ks.

t the
se

w-

ge

dge
4.7.2 Programming the System Interface Clocks

The system forwarded clocks are free running and derived from the 21264/EV67
GCLK. The period of the system forwarded clocks is controlled by three Cbox CSR
based on the bit-rate ratio (similar to the Bcache bit-rate ratio) except that all transf
are dual-data.

• SYS_CLK_LD_VECTOR[15:0]

• SYS_BPHASE_LD_VECTOR[3:0]

• SYS_FDBK_EN[7:0]

Table 4–7 lists the programming values used to program the system interface cloc

In addition to programming of the clock CSRs, the data-sample/drive Cbox CSRs a
pads have to be set appropriately. Table 4–8 shows the programmed values for the
system CSRs. In Table 4–8, each system forwarded clock is the inversion of the lo
assertion signal at the corresponding pin.

Table 4–7 Programming Values for System Interface Clocks

System Transfer SYS_CLK_LD_VECTOR 1

1 These are hexadecimal values.

SYS_BPHASE_LD_VECTOR 1 SYS_FDBK_EN 1

1.5X-DD 9249 5 02

2.0X-DD 3333 0 01

2.5X-DD 8C63 5 02

3.0X-DD 71C7 0 10

3.5X-DD C387 A 04

4.0X-DD 0F0F 0 01

5.0X-DD 7C1F 0 40

6.0X-DD F03F 0 10

7.0X-DD C07F 0 04

8.0X-DD 00FF 0 01

Table 4–8 Program Values for Data-Sample/Drive CSRs

CBOX CSR Description

SYS_DDM_FALL_EN[0] Enables the update of 21264/EV67 system outputs based on the falling ed
of the system forwarded clock. (Always asserted)

SYS_DDM_RISE_EN[0] Enables the update of 21264/EV67 system outputs based on the rising e
of the system forwarded clock. (Always asserted)

SYS_DDM_RD_FALL_EN[0] Enables the sampling of incoming data on the falling edge of the incoming
forwarded clock. (Always asserted)
4–18 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

set

. The
n
e

–10
it to

nd-

)

Table 4–9 lists the program values for CSR SYS_FRAME_LD_VECTOR[4:0] that
the ratio between the forwarded clocks and the frame clock.

4.7.3 21264/EV67-to-System Commands

This section describes the 21264/EV67-to-system commands format and operation
command, address, ID, and mask bits are transmitted in four consecutive cycles o
SysAddOut_L[14:0]. The 21264/EV67 sends the command information in one of th
two following modes as selected by the Cbox CSR bit.

• Bank interleave on cache block boundary mode—SYSBUS_FORMAT[0] = 0

• Page hit mode—SYSBUS_FORMAT[0] = 1

The physical address (PA) bits arrangements for the two modes is shown in Tables 4
and 4–11. The purpose of the two modes is to give the system the PA bits that allow
select the memory bank and drive the RAS address as soon as possible.

4.7.3.1 Bank Interleave on Cache Block Boundary Mode

Table 4–10 shows the command format for the bank interleave on cache block bou
ary mode of operation (21264/EV67-to-system).

SYS_DDM_RD_RISE_EN[0] Enables the sampling of incoming data on the rising edge of the incoming
forwarded clock. (Always asserted)

SYS_DDMF_ENABLE Enables the falling edge of the system forwarded clock. (Always asserted

SYS_DDMR_ENABLE Enables the rising edge of the system forwarded clock. (Always asserted)

Table 4–9 Forwarded Clocks and Frame Clock Ratio

Clock Ratio Transfer Mode Value 1

1 These are hexadecimal values.

1:1 All 00

2:1 3.0X, 3.5X, 8.0X 1E

2:1 1.5X, 2.0X, 2.5X 4.0X, 5.0X, 6.0X 7.0X 1F

4:1 8X 15

4:1 1.5X, 4.0X, 5.0X, 6.0X, 7.0X 0B

4:1 3.0X, 3.5X 14

4:1 2.0X, 2.5X 0A

Table 4–10 Bank Interleave on Cache Block Boundary Mode of Operation

SysAddOut_L[14:2] SysAddOut_L[1] SysAddOut_L[0]

Cycle 1 M1 Command[4:0] PA[34:28] PA[36] PA[38]

Table 4–8 Program Values for Data-Sample/Drive CSRs (Continued)

CBOX CSR Description
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–19

System Port

).

of 8
nd/

tem-

ble is
arli-

tes

in
ates
4.7.3.2 Page Hit Mode

Table 4–11 shows the command format for page hit mode (21264/EV67-to-system

Table 4–12 describes the field definitions for Tables 4–10 and 4–11.

Cycle 2 PA[27:22], PA[12:6] PA[35] PA[37]

Cycle 3 M2 Mask[7:0] CH ID[2:0] PA[40] PA[42]

Cycle 4 RV PA[21:13], PA[5:3] PA[39] PA[41]

Table 4–11 Page Hit Mode of Operation

SysAddOut_L[14:2] SysAddOut_L[1] SysAddOut_L[0]

Cycle 1 M1 Command[4:0] PA[31:25] PA[32] PA[33]

Cycle 2 PA[24:12] PA[11] PA[34]

Cycle 3 M2 Mask[7:0] CH ID[2:0] PA[35] PA[37]

Cycle 4 RV PA[34:32], PA[11:3] PA[36] PA[38]

Table 4–12 21264/EV67-to-System Command Fields Definitions

SysAddOut Field Definition

M1 When set, reports a miss to the system for the oldest probe.
When clear, has no meaning.

Command[4:0] The 5-bit command field is defined in Table 4–14.

SysAddOut[1:0] This field is needed for systems with greater than 32GB of memory, up to a maximum
Terabyte (8TB). Cost-focused systems can tie these bits high and use a 13-bit comma
address field.

M2 When set, reports that the oldest probe has missed in cache. Also, this bit is set for sys
to-21264/EV67 probe commands that hit but have no data movement (see the CH bit,
below).
When clear, has no meaning.
M1 and M2 are not asserted simultaneously. Reporting probe results as soon as possi
critical to high-speed operation, so when a result is known the 21264/EV67 uses the e
est opportunity to send an M signal to the system. M bit assertion can occur either in a
valid command or a NZNOP.

ID[2:0] The ID number for the MAF, VDB, or WIOB associated with the command.

RV If set, validates this command.
In speculative read mode (optional), RV = 1 validates the command and RV = 0 indica
a NOP.
For all nonspeculative commands RV = 1.

Mask[7:0] The byte, LW, or QW mask field for the corresponding I/O commands.

CH The cache hit bit is asserted, along with M2, when probes with no data movement hit
the Dcache or Bcache. This response can be generated by a probe that explicitly indic
no data movement or a ReadIfDirty command that hits on a valid but clean or shared
block.

Table 4–10 Bank Interleave on Cache Block Boundary Mode of Operation (Continued)

SysAddOut_L[14:2] SysAddOut_L[1] SysAddOut_L[0]
4–20 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

fig-
de

lues
al

any
and

by

r

tem
che
System designers can minimize pin count for systems with a small memory by con
uring both the bank interleave on cache block boundary mode and the page hit mo
formats into ashort busformat. The pinSysAddOut_L[1] and/orSysAddOut_L[0]
are not used (selected by Cbox CSR SYS_BUS_SIZE[1:0]). Table 4–13 lists the va
for SYSBUS_FORMAT and SYS_BUS_SIZE[1:0] and shows the maximum physic
memory size.

Because addresses above the maximum PA are not visible to the external system,
memory transaction generated to addresses above the maximum PA are detected
converted to transactions to NXM (nonexistent memory) and processed internally
the 21264/EV67.

4.7.4 21264/EV67-to-System Commands Descriptions

Table 4–14 describes the 21264/EV67-to-system commands.

Table 4–13 Maximum Physical Address for Short Bus Format

SYSBUS_
FORMAT

SYSBUS_
SIZE[1:0] Maximum PA Comment

0 00 42 Bank interleave + full address

0 01 36 Bank interleave +SysAddOut_L[0] unused

0 10 Illegal Illegal combination

0 11 34 Bank interleave + bothSysAddOut_L[1:0] are used for I/O

1 00 38 Page hit mode + full address

1 01 36 Page hit mode +SysAddOut_L[0] unused

1 10 Illegal Illegal combination

1 11 34 Page hit mode + bothSysAddOut_L[1:0] are unused

Table 4–14 21264/EV67-to-System Commands Descriptions

Command
Command

[4:0] Function

NOP 00000 The 21264/EV67 drives this command on idle cycles during reset. Afte
the clock forward reset period, the first NZNOP is generated and this
command is no longer generated.

ProbeResponse 00001 Returns probe status and ID number of the VDB entry holding the
requested cache block.

NZNOP 00010 This nonzero NOP helps to parse the command packet.

VDBFlushRequest 00011 VDB flush request. The 21264/EV67 sends this command to the sys
when an internally generated transaction Bcache index matches a Bca
victim or probe in the VDB. The system should flush VDB entries
associated with all probe and WrVictimBlk transactions that occurred
before this command.

MB1 00111 Indicates an MB was issued, optional when Cbox CSR
SYSBUS_MB_ENA[0] is set.

ReadBlk 10000 Memory read.
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–21

System Port

).

or
ReadBlkMod 10001 Memory read with modify intent.

ReadBlkI 10010 Memory read for Istream.

FetchBlk 10011 Noncached memory read.

ReadBlkSpec2 10100 Speculative memory read (optional).

ReadBlkModSpec2 10101 Speculative memory read with modify intent (optional).

ReadBlkSpecI2 10110 Memory read for Istream (optional).

FetchBlkSpec2 10111 Speculative memory noncached ReadBlk (optional).

ReadBlkVic3 11000 Memory read with a victim (optional).

ReadBlkModVic3 11001 Memory read with modify intent, with a victim (optional).

ReadBlkVicI3 11010 Memory read for Istream with a victim (optional).

WrVictimBlk 00100 Write-back of dirty block.

CleanVictimBlk 00101 Address of a clean victim (optional).

Evict4 00110 Invalidate evicted block at the given Bcache index (optional).

ReadBytes 01000 I/O read, byte mask.

ReadLWs 01001 I/O read, longword mask.

ReadQWs 01010 I/O read, quadword mask.

WrBytes 01100 I/O write, byte mask.

WrLWs 01101 I/O write, longword mask.

WrQWs 01110 I/O write, quadword mask.

CleanToDirty6 11100 Sets a block dirty that was previously clean (optional for duplicate tags

SharedToDirty6 11101 Sets a block dirty that was previously shared (optional for multiprocess
systems).

STCChangeToDirty6 11110 Sets a block dirty that was previously clean or shared for a STx_C
instruction (optional for multiprocessor systems).

InvalToDirtyVic3,5 11011 Invalid to dirty with a victim (optional).

InvalToDirty5 11111 WH64 Acts like a ReadBlkMod without the fill cycles (optional).

Table 4–14 21264/EV67-to-System Commands Descriptions (Continued)

Command
Command

[4:0] Function
4–22 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

ting

la-

ombi-
x,

ns

k

-

d

x

is
c-

t

Table 4–14 footnotes:

1. Systems can optionally enable MB instructions to the external system by asser
Cbox CSR SYSBUS_MB_ENABLE. This mode is described in Section 2.12.1.

2. To minimize load-to-use memory latency, systems can optionally enable specu
tive transactions to memory space by asserting the Cbox CSR
SPEC_READ_ENABLE[0]. If the Cbox system command queue is empty, a
bypass between the Bcache interface and the system interface is enabled (in c
nation with this mode). When the next new transaction is delivered by the Mbo
the Cbox starts MAF memory references to the system interface before the results
of Bcache hit is known. The RV bit is deasserted on a Bcache hit, or in
BC_RDVICTIM[0] mode (see footnote 3, below), and for Bcache miss transactio
that generate a victim (clean or dirty). Otherwise, the RV bit is asserted.

3. Systems can optionally enable RdBlkVic, RdBlkModVic, and InvalToDirtyVic
commands using Cbox CSR BC_RDVICTIM[0]. In this mode of operation
RdBlkxVic command cycles are always followed immediately by the WrVictimBl
commands. Also, when CleanVictimBlk commands are enabled, they
immediately follow RdBlkVic, RdBlkModVic, and InvalToDirtyVic commands.

4. Systems can optionally enable Evict commands by asserting the Cbox CSR
ENABLE_EVICT. In this mode, all ECB instructions will generate an Evict com
mand, and in combination with BC_RDVICTIM[0] mode, the WriteVictim or
CleanVictim (when Cbox CSR BC_CLEAN_VICTIM[0] is asserted) is associate
with the Evict command is atomically sent after the Evict command.

5. Optionally, systems can enable InvalToDirty commands by programming Cbox
CSR INVAL_TO_DIRTY_ENABLE[1:0]. Table 4–15 shows how to program
INVAL_TO_DIRTY_ENABLE[1:0].

6. Optionally, systems can enable CleanToDirty or SharedToDirty commands by
using Cbox CSR SET_DIRTY_ENABLE[2:0]. These three bits control the Cbo
action upon a block that was hit in the Dcache with a status of dirty/shared, clean/
shared, or clean respectively.

Table 4–15 Programming INVAL_TO_DIRTY_ENABLE[1:0]

INVAL_TO_DIRTY_ENABLE[1:0] Cbox Action

X0 WH64 instructions are converted to RdModx commands at the interface.
Beyond this point, no other agent sees the WH64 instruction. This mode
useful for microprocessors that do not want to support InvalToDirty transa
tions.

01 WH64 instructions are enabled, but they are acknowledged within the
21264/EV67.

11 WH64 instructions are enabled, and generate InvalToDirty transactions a
the 21264/EV67 pins.
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–23

System Port

iti-

dis-
and

, the
iti-

r on
e-
Prob-

).

nd

ds
Systems that require an explicit indication of ChangeToDirty status changes in
ated by STx_C instructions can assert Cbox CSR STC_ENABLE[0]. When this
register field = 000, CleanToDirty and SharedToDirty commands are used. The
tinction between a ChangeToDirty command generated by a STx_C instruction
one generated by a STx instruction is important to systems that want to service
ChangeToDirty commands with dirty data from a source processor. In this case
distinction between a locked exclusive instruction and a normal instruction is cr
cal to avoid livelock for a LDx_L/STx_C sequence.

4.7.5 ProbeResponse Commands (Command[4:0] = 00001)

The 21264/EV67 responds to system probes that did not miss with a 4-cycle transfe
SysAddOut_L[14:0]. As shown in Table 4–14, the Command[4:0] field for a ProbeR
sponse command equals 00001. Table 4–17 shows the format of the 21264/EV67
eResponse command.

Table 4–16 Programming SET_DIRTY_ENABLE[2:0]

SET_DIRTY_ENABLE
[2,0] (DS,CS,C) Cbox Action

000 Everything acknowledged internally (uniprocessor).

001 Only clean blocks generate external acknowledge (CleanToDirty commands only

010 Only clean/shared blocks generate external acknowledge (SharedToDirty comma
only).

011 Clean and clean/shared blocks generate external acknowledge.

100 Only dirty/shared blocks generate external acknowledge (SharedToDirty comman
only).

101 Only dirty/shared and clean blocks generate external acknowledge.

110 Only dirty/shared and clean/shared blocks generate external acknowledge.

111 All transactions generate external acknowledge.

Table 4–17 21264/EV67 ProbeResponse Command

SysAddOut_L[14:2] SysAddOut_L[1] SysAddOut_L[0]

Cycle 1 0 00001 Status[1:0] DM VS VDB
[2:0]

X X

Cycle 2 0 MS MAF
[2:0]

X X

Cycle 3 0 X X X

Cycle 4 X X X
4–24 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

cache
e

4/
e
e

time
he

i-

-

ng

lso

4.
Table 4–18 describes the ProbeResponse command fields.

The system uses the SysDc signal lines to retrieve data for probes that requested a
block from the 21264/EV67. See Section 4.7.7.2 for more information about 2-cycl
data transfer commands. Probes that respond with M1, M2, or CH=1 will not be
reported to the system in a probe response command.

4.7.6 SysAck and 21264/EV67-to-System Commands Flow Control

Controlling the flow of 21264/EV67-to-system commands is a joint task of the 2126
EV67 and the system. The flow is controlled using the A bit, which is asserted by th
system, and the Cbox CSR SYSBUS_ACK_LIMIT[4:0] counter. The counter has th
following properties:

• The 21264/EV67 increments its command-outstanding counter when it sends a
command to the system. The 21264/EV67 decrements the counter by one each
the A bit (SysAddIn_L[14]) is asserted in a system-to-21264/EV67 command. T
A bit is transmitted during cycle four of a probe mode command or during cycle
two of a SysDc command.

• The 21264/EV67 stops sending new commands when the counter hits the max
mum count specified by Cbox CSR SYSBUS_ACK_LIMIT[4:0]. When this
counter is programmed to zero, the CMD_ACK count is ignored (unlimited com
mands are allowed in-flight).

• Because RdBlkxVic and WrVictimBlk commands are atomic when the CSR
BC_RDVICTIM[0] is set, the 21264/EV67 does not send a RdBlkxVic command if
the SYSBUS_ACK_LIMIT[4:0] is equal to one less than the maximum outstandi
count. The limit cannot be programmed with a value of one when RdBlkxVic com-
mands are enabled unless the Cbox CSR RDVIC_ACK_INHIBIT command is a
asserted (see Table 5–24).

Table 4–18 ProbeResponse Fields Descriptions

ProbeResponse Field Description

Command[4:0] The value 00001 identifies the command as a ProbeResponse.

DM Indicates that data movement should occur (copy of probe valid bit). See Section 4.

VS Write victim sent bit.

VDB[2:0] ID number of the VDB entry containing the requested cache block. This field is valid
when either the DM bit or the VS bit equals 1.

MS MAF address sent.

MAF[2:0] This field indicates the SharedToDirty, CleanToDirty, or
STCChangetoDirty MAF entry that matched the full probe address.

Status[1:0] Result of probe:
Status[1:0] Probe state

00 HitClean
01 HitShared
10 HitDirty
11 HitSharedDirty
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–25

System Port

and.

ide

of
box

x
d

ds to

7.7.2

com-

e
ank
• There is no mechanism for the system to reject a 21264/EV67-to-system comm
ProbeResponse, VDBFlushReq, NOP, NZNOP, and RdBlkxSpec (with a clear RV
bit) commands do not require a response from the system. Systems must prov
adequate resources for responses to all probes sent to the 21264/EV67.

• Systems that program the Cbox CSR BC_RDVICTIM[0] to immediately follow
victim write transactions with read transactions and allocate combined resources
for the pair, may find it useful to increment the SYSBUS_ACK_LIMIT[4:0]
counter only once for the pair. These systems may assert Cbox CSR
RDVIC_ACK_INHIBIT, which does not increment the
SYSBUS_ACK_LIMIT[4:0] count for RdBlkVic, RdBlkModVic, and RdBlkVicI
commands.

• Systems that maintain victim data buffers may find it useful to limit the number
outstanding WrVictimBlk commands. This can be accomplished by using the C
CSR SYSBUS_VIC_LIMIT[2:0]. When the number of outstanding WrVictim
commands or CleanVictim commands reaches this programmed limit, the Cbo
stops generating victim commands on the system port. Because victim and rea
commands are atomic when BC_RDVICTIM[0] = 1, the RdBlkxVic commands are
stalled when the victim limit is reached. Programming the
SYSBUS_VIC_LIMIT[2:0] to zero disables this limit.

4.7.7 System-to-21264/EV67 Commands

The system can send either probes (4-cycle) or data movement (2-cycle) comman
the 21264/EV67. Signal pinSysAddIn_L[14] in the first command cycle indicates the
type of command being sent (1 = probe, 0 = data transfer). Sections 4.7.7.1 and 4.
describe the formats of the two types of commands.

4.7.7.1 Probe Commands (Four Cycles)

Probes are always 4-cycle commands that contain a field to indicate a valid SysDc
mand. The format of the 4-cycle command is shown below.

Note: TheSysAddIn_L[1:0] signal lines are optional and are used for memory
designs greater than 32GB. The position of the address bits matches th
selected format of the SysAddOut bus. The example below shows the b
interleave format.

Table 4–19 shows the format of the system-to-21264/EV67 probe commands.

Table 4–19 System-to-21264/EV67 Probe Commands

SysAddIn_L[14:2] SysAddIn_L[1] SysAddIn_L[0]

Cycle 1 1 Probe[4:0] PA[34:28] PA[36] PA[38]

Cycle 2 PA[27:22], PA[12:6] PA[35] PA[37]

Cycle 3 0 SysDc[4:0] RVB RPB A ID[3:0] PA[40] PA[42]

Cycle 4 C PA[21:13], PA[5:3] PA[39] PA[41]
4–26 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

ons.

a

d-
Table 4–20 describes the system-to-21264/EV67 probe commands fields descripti

The probe command field Probe[4:0] has two sections, Probe[4:3] and Probe[2:0].

Table 4–21 lists the data movement selected by Probe[4:3].

Table 4–22 lists the next cache block state selected by Probe[2:0].

Table 4–20 System-to-21264/EV67 Probe Commands Fields Descriptions

SysAddIn_L[14:0]
Field Description

Probe[4:0] Probe type and next tag state (see Tables 4–21 and 4–22).

SysDc[4:0] Controls data movement in and out of the 21264/EV67. See Table 4–24 for a list of dat
movement types.

RVB Clears the victim or I/O write buffer (IOWB) valid bit specified in ID[3:0].

RPB Clears probe valid bit specified in ID[2:0].

A Command acknowledge. When set, the 21264/EV67 decrements its command outstan
ing counter (SYSBUS_ACK_LIMIT[4:0]).

ID[3:0] Identifies the victim data buffer (VDB) number or the I/O write buffer (IOWB) number.
Bit [3] is only asserted for the IOWB.

C Commit bit. This bit decrements the uncommitted event counter (MB_CNTR) used for
MB acknowledge.

Table 4–21 Data Movement Selection by Probe[4:3]

Probe[4:3] Data Movement Function

00 NOP

01 Read if hit, supply data to system if block is valid.

10 Read if dirty, supply data to system if block is valid/dirty.

11 Read anyway, supply data to the system at index of probe.

Table 4–22 Next Cache Block State Selection by Probe[2:0]

Probe[2:0] Next Tag State

000 NOP

001 Clean

010 Clean/Shared

011 Transition31: Clean⇒ Clean/Shared
Dirty ⇒ Invalid
Dirty/Shared⇒ Clean/Shared

100 Dirty/Shared
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–27

System Port

The
probes

a

box
or a
. In
past
ac-

con-

the

-

The 21264/EV67 holds pending probe commands in a 8-entry deep probe queue.
system must count the number of probes that have been sent and ensure that the
do not overrun the 21264/EV67 queue. The 21264/EV67 removes probes from the
internal probe queue when the probe response is sent.

The 21264/EV67 expects to hit in cache on a probe response, so it always fetches
cache block from the Bcache on system probes. This can become a performance prob-
lem for systems that do not monitor the Bcache tags, so the 21264/EV67 provides C
CSR PRB_TAG_ONLY[0], which only accesses Bcache tags for system probes. F
Bcache hit, the 21264/EV67 retries the probe reference to get the associated data
this mode, the 21264/EV67 has a cache-hit counter that maintains some history of
cache hits in order to fetch the data with the tag in the cases where streamed trans
tions are being performed to thehost processor.

4.7.7.2 Data Transfer Commands (Two Cycles)

Data transfer commands use a 2-cycle format onSysAddIn_L[14:0]. The SysDc[4:0]
field indicates success or failure for ChangeToDirty and MB commands, and error
ditions as shown in Table 4–24.

The pattern of data is controlled by theSysDataInValid_L andSysDataOutValid_L
signals. These signals are valid each cycle of data transfer, indicating any gaps in
data cycle pattern. TheSysDataInValid_L andSysDataOutValid_L signals are
described in Section 4.7.8.4. Table 4–23 shows the format of the data transfer com
mand.

101 Invalid

110 Transition12: Clean⇒ Clean/Shared
Dirty ⇒ Dirty/Shared

111 Reserved

1 Transition3 is useful in nonduplicate tag systems that want to give writable status to the reader and do
not know if the block is clean or dirty.

2 Transition1 is useful in nonduplicate tag systems that do not update memory on ReadBlk hits to a
dirty block in another processor.

Table 4–23 Data Transfer Command Format

SysAddIn_L[14:2] SysAddIn_L[1] SysAddIn_L[0]

Cycle 1 0 SysDc[4:0] RVB RPB A ID[3:0] X X

Cycle 2 C X X X

Table 4–22 Next Cache Block State Selection by Probe[2:0] (Continued)

Probe[2:0] Next Tag State
4–28 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

the
es-

nt,
ws
elf
-

ing

eadD-

Data

is

is

eld

e

r.

he

r.

he
f

64/
Table 4–24 describes the SysDc[4:0] field.

The A bit in the first cycle indicates that the command is acknowledged. When A = 1,
21264/EV67 decrements its command outstanding counter, but the A bit is not nec
sarily related to the current SysDc command.

Probe commands can combine a SysDc command along with MBDone. In that eve
the probe is considered ahead of the SysDc command. If the SysDc command allo
the 21264/EV67 to retire an instruction before an MB, or allows the 21264/EV67 its
to retire an MB (SysDc is MBDone), that MB will not complete until the probe is exe
cuted.

The system can select the ending cache status for a cache fill operation by specify
the status in one of the following SysDc commands:

ReadData (Clean) ReadDataShared (Clean/Shared)

ReadDataDirty (Dirty) ReadDataShared/Dirty (Shared/Dirty)

The system returns ReadDataShared or ReadData for ReadBlk commands, and R
ataDirty for a ReadMod command. However, other combinations are possible, but
should be used only after a careful study of thesituation.

Table 4–24 SysDc[4:0] Field Description

SysDc[4:0] Command SysDc[4:0] Description

NOP 00000 NOP, SysData is ignored by the 21264/EV67.

ReadDataError 00001 Data is returned for read commands. The system drives the Sys
bus, I/O, or memory NXM.

ChangeToDirtySuccess 00100 No data. SysData is ignored by the 21264/EV67. This command
also used for the InvalToDirty response.

ChangeToDirtyFail 00101 No data. SysData is ignored by the 21264/EV67. This command
also used for the Evict response.

MBDone 00110 Memory barrier operation completed.

ReleaseBuffer 00111 Command to alert the 21264/EV67 that the RVB, RPB, and ID fi
are valid.

ReadData
(System Wrap)

100xx Data returned for read commands. The system drives SysData. Th
system uses SysDc[1:0] to control the wrap order. See Section
4.7.8.6 for a description of the data wrapping scheme.

ReadDataDirty
(System Wrap)

101xx Data is returned for Rdx and RdModx commands. The ending tag
status is dirty. The system uses SysDc[1:0] to define the wrap orde

ReadDataShared
(System Wrap)

110xx Data is returned for read commands. The system drives the data. T
tag is marked shared. The system uses SysDc[1:0] to control the
wrap order.

ReadDataShared/Dirty
(System Wrap)

111xx Data is returned for the RdBlk command. The ending tag status is
Shared/Dirty. The system uses SysDc[1:0] to control the wrap orde

WriteData 010xx Data is sent for 21264/EV67 write commands or system probes. T
21264/EV67 drives during the SysData cycles. The lower two bits o
the command specify the octaword address around which the 212
EV67 wraps the data.
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–29

System Port

in the
,
eight

com-
sys-
e six

ut-
ssor.

7:
CSR

s
are

ent

on

w
data

an

yond
eue

k’s

;

The ChangeToDirtySuccess and ChangeToDirtyFail commands cannot be issued
shadow of SysDc cache fill commands (ReadDataError, ReadData, ReadDataDirty
ReadDataShared, and ReadDataShared/Dirty). Each cache fill command allocates
cycles on the SysData bus. Systems are required to ensure that any future SysDc
mands do not cause conflicts with those eight SysData bus cycles. In addition, the
tem must not issue ChangeToDirtySuccess or ChangeToDirtyFail commands in th
SysAddrIn cycles after any of the ReadDatax commands because doing so will over-
load internal MAF resources in the 21264/EV67.

Because of an internal 21264/EV67 constraint, a minimum memory latency of
4 × BCACHE_CLK_PERIOD is imposed. This latency is measured from A3 of the o
going command (the last cycle) to the delivery of the SysDc command to the proce

4.7.8 Data Movement In and Out of the 21264/EV67

There are two modes of operation for data movement in and out of the 21264/EV6
fast mode and fast mode disable. The data movement mode is selected using Cbox
FAST_MODE_DISABLE[0]. Fast data mode allows movement of data from the
21264/EV67 to bypass protocol and achieve the lowest possible latency for probe’
data, write victim data, and I/O write data. Rules and conditions for the two modes
listed and described in Sections 4.7.8.2 and 4.7.8.3. Before discussing data movem
operation, 21264/EV67 clock basics are described in Section 4.7.8.1.

4.7.8.1 21264/EV67 Clock Basics

The 21264/EV67 uses a clock forwarding technique to achieve very high bandwidth
its pin interfaces. The clock forwarding technique has three main principles:

1. Local point-to-point transfers can be made safely, and at veryhigh bandwidth, if the
sender can provide the receiver with a forward clock (FWD_CLK) to latch the
transmitted data at the receiver.

– TheSysAddOutClk_L andSysDataOutClk_L[7:0] pins provide the forward-
ing clocks for transfers out of the 21264/EV67.

– TheSysAddInClk_L andSysDataInClk_H[7:0] pins provide the forwarding
clocks for transfers into the 21264/EV67.

2. If only one state element was used to capture the transmitted data, and the ske
between the two clock systems was greater then the bit-rate of the transfer, the
valid time of the transmitted data would not be sufficient to safely transfer the
latched data into the receivers clock domain. In order to avoid this problem, the
receiver provides a queue that is manipulated in the transmitter’s time domain.
Using this queue, the data valid window of the transmitted data is extended (to
arbitrary size based on the queue size), and the transfer to the receiver’s clock
domain can be safely made by delaying the unloading of this queue element be
the skew between the two clock domains. The internal clock that unloads this qu
is labelled INT_FWD_CLK. INT_FWD_CLK is timed at both the rising and fall-
ing edges of the external clock, thus appearing to run at twice the external cloc
frequency.

3. The first two points provide the steady state basis for clock forwarded transfers
however, both the sender and receiver must be correctly initialized to enable coher-
ent and predictable transfers.This clock initialization is performed during system
initialization using theClkFwdRst_H andFrameClk_H signals.
4–30 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

iples

, the
into
is

is
ng
-

bus.

ycles)

ut

ted
ycle

-
ata
arts:
If both the sender and the receiver are sampling at the same rate, these three princ
are sufficient to safely make point-to-point transfers using clock forwarding.However,
it is often desirable for systems to align clock-forwarded transactions on a slower
SYSCLK that is the basis of all non-processor system transactions.

The 21264/EV67 supports three ratios for SYSCLK to INT_FWD_CLK:
one-to-one (1-1), two-to-one (2-1), and four-to-one (4-1). Using one of these ratios
21264/EV67 starts transactions on SYSCLK boundaries. This ratio is programmed
the 21264/EV67 using the Cbox CSR SYS_FRAME_LD_VECTOR[4:0]. This ratio
independent of the frequency ofFrameClk_H.

For data movement, the 21264/EV67 reacts to SysDc commands when they are
resolved into the 21264/EV67’s clock domain. This occurs when the 21264/EV67’s
INT_FWD_CLK unloads the SysDc command from the clock forwarding queue. Th
moment is determined by the amount of delay programmed into the clock forwardi
silo (by way of Cbox CSR SYS_RCV_MUX_CNT_PRESET[1:0]). Thus, all the tim
ing relationships are relative to this unload point in time, which will be referred to as
the point the command is perceived by 21264/EV67.

4.7.8.2 Fast Data Mode

The 21264/EV67 is the default driver of the bidirectional SysData bus1. As the 21264/
EV67 is processing WrVictim, ProbeResponse (only the hit case), and IOWB com-
mands to the system, accompanying data is made available at the clock-forwarded

Because there is a bandwidth difference between address (4 cycles) and data (8 c
transfers, the 21264/EV67 tries to fully use fast data mode by delaying the next
SysAddOut write command until a fast data mode slot is available on the SysDataO
bus.

SysDc commands(cache fill or explicit write commands) that collide with the fast data
on the SysData bus have higher priority, and so may interrupt the successful completion
of the fast transfer. Systems are responsible for detecting and replaying all interrup
fast transfers. There are no gaps in a fast transfer and no data wrapping (the first c
contains QW0, addressed by PA[5:3] = 000).

The system must release victim buffers, and probe buffers and IOWB entries by send
ing a SysDc command with the appropriate RVB/RPB bit for both successful fast d
transfers and for transfers that have been replayed. Fast data transfers have two p

1. SysAddOut command with the probe response, WrVictim, or Wr(I/O)

2. Data

1 The SysData bus containsSysData_L[63:0]andSysCheck_L[7:0].
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–31

System Port

he

th a

the
m-

ew

ere

g

The command precedes data by at least one SYSCLK period. Table 4–25 shows t
number of SYSCLK cycles between SysAddOut and SysData for all system clock
ratios (clock forwarded bit times) and system framing clock multiples.

Figure 4–5 show a simple example of a fast transfer. The data rate ratio is 1.5X wi
4:1 SYSCLK to INT_FWD_CLK ratio.

Figure 4–5 Fast Transfer Timing Example

In fast data mode, movement of data into the 21264/EV67 requires turning around
SysData bus that is being actively driven by the 21264/EV67. Given a SysDc fill co
mand (ReadDataError, ReadData, ReadDataShared, ReadDataShared/Dirty, ReadData-
Dirty), the 21264/EV67 responds as follows:

1. Three GCLK cycles after perceiving the SysDc fill command, the 21264/EV67
turns off its drivers, interrupting any ongoing fast data write transactions.

2. The 21264/EV67 drivers stay off until the last piece of fill data is received, or a n
SysDc write command overrides the current SysDc fill command. It is the responsi-
bility of the external system to schedule SysDc fill or write commands so that th
is no conflict on the SysData bus.

3. The 21264/EV67 samples fill data in the GCLK clock domain, 10 +
SYSDC_DELAY GCLK cycles after perceiving the SysDc fill command. The
Cbox CSR SYSDC_DELAY[4:0] provides GCLK granularity for precisely placin
fills into the processor pipeline discussed in Section 2.2.

Table 4–25 SYSCLK Cycles Between SysAddOut and SysData

GCLK/INT_FWD_CLK (Data Rate Ratio)

System framing clock ratio 1.5X 2.0X 2.5X 3.0X 3.5X 4.0X 5.0X 6.0X 7.0X 8.0X

1 4 3 2 2 2 2 1 1 1 1

2 2 2 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1

FM05822B.AI4

SysData_L[63:0]

SYSCLK

ProbeSysAddOut_L[14:0]

SysAddOutClk_L

D0

Response

D1 D2 D3 D4 D5 D6

INT_FWD_CLK

GCLK
4–32 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

he
data
e 4-
f

les,

n-

con-
ing
data

data
7

64/
rs

.
t

Dc
Table 4–26 shows four example configurations and shows their use of the
SYSDC_DELAY[4:0].

System 1 has six GCLKs to every SYSCLK and only sends 4-cycle commands to t
21264/EV67. Thus, a period of three SYSCLKs between the SysDc command and
leaves a period of 15 GCLKs between SysDc and data (SysDc is in the middle of th
cycle command). A SYSDC_DELAY[4:0] of five would align sampling and receipt o
SysData.

System 2 has four GCLKs in every SYSCLK, so leading data by three SYSCLK cyc
and programming the SYSDC_DELAY[4:0] to two, aligns sampling and receiving.

Timing for systems 3 and 4 is derived in a similar manner.

Note: The maximum valid value for SYSDC_DELAY must be less than the mi
imum number of GCLK cycles between two consecutive SYSDC com-
mands to the 21264/EV67.

If a fast data transfer is interrupted and fails to complete, the system must use the
ventional protocol to send a SysDc WriteData command to the 21264/EV67, remov
the desired data buffer. Section 4.7.8.3 describes the timing events for transferring
from the 21264/EV67 to the system.

4.7.8.3 Fast Data Disable Mode

The system controls all data movement to and from the 21264/EV67. Movement of
into and out of the 21264/EV67 is preceded by a SysDc command. The 21264/EV6
drivers are only enabled for the duration of an 8-cycle transfer of data from the 212
EV67 to the system. Systems must ensure that there is no overlap of enabled drive
and that there is adequate settle time on the SysData bus.

Given a SysDc fill command, the 21264/EV67 samples data 10 + SYSDC_DELAY
GCLK cycles after the command is perceived within the 21264/EV67 clock domain
Because there is no linkage with the output driver, fills into the 21264/EV67 are no
affected by the SYS_RCV_MUX_PRESET[1:0] value.

In both modes, given a SysDc write command, the 21264/EV67 looks for the next
SYSCLK edge 8.5 cycles after perceiving the SysDc write command in its clock
domain. Because the SysDc write command must be perceived before its use, Sys
write commands are dependent upon the amount of delay introduced by Cbox CSR
SYS_RCV_MUX_CNT_PRESET[1:0].

Table 4–26 Cbox CSR SYSDC_DELAY[4:0] Examples

System Bit Rate System Framing Clock Ratio 1

1 The system framing clock ratio is the number of INT_FWD_CLK cycles per
SYSCLK cycles.

SYSDC_DELAY

System 1 1.5X 4:1 5 (3 SYSCLK cycles)

System 2 2.0X 2:1 2 (3 SYSCLK cycles)

System 3 2.5X 2:1 0 (2 SYSCLK cycles)

System 4 4X 2:1 6 (2 SYSCLK cycles)
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–33

System Port

l-

t a

om

K
LK

264/
dow.

d one

les
eiv-
re-

three

y
the
Table 4–27 lists information for the four timing examples. In Table 4–27, note the fo
lowing:

• SysDc write commands are not affected by the SYSDC_DELAY parameter.

• The SYS_RCV_MUX_PRESET adds delay at the rate of one INT_FWD_CLK a
time. For example, adding the delay of one bit time to system 1 adds 1.5 GCLK
cycles to the delay and drives the SysDc write command-to-data relationship fr
one to two SYSCLKs.

• For write transfers, the 21264/EV67 drivers are enabled on the preceding GCL
BPHASE, before the start of a write transfer, and disabled on the succeeding GC
BPHASE at the end of the write transfer. The write data is enveloped by the 21
EV67 drivers to guarantee that every data transfer has the same data valid win

The four examples described here assume no skew for the 2.0X and 4.0X cases an
bit time of skew for the 1.5X and 2.5X cases.

For system 1, the distance between SysDc and the first SYSCLK is nine GCLK cyc
but the additional delay of one bit time (1.5 GCLKs) puts the actual delay after perc
ing the SysDc command to 7.5 GCLKS, which misses the 8.5 cycle constraint. The
fore, the 21264/EV67 drives data two SYSCLKs after receiving the SysDc write
command.

For system 2, the distance between SysDc and the second SYSCLK is eight GCLK
cycles, which also misses the 8.5 cycle constraint, so the 21264/EV67 drives data
SYSCLK cycles after receiving the SysDc write command (12 cycles).

The other two cases are derived in a similar manner.

4.7.8.4 SysDataInValid_L and SysDataOutValid_L

The SysDataValid signals (SysDataInValid_L andSysDataOutValid_L) are driven by
the system and control the rate of data delivery to and from the 21264/EV67.

SysDataInValid _L

The SysDataInValid_L signal controls the flow of data into the 21264/EV67, and ma
be used to introduce an arbitrary number of cycles between octaword transfers into
21264/EV67. The rules for usingSysDataInValid_L follow:

Table 4–27 Four Timing Examples

System Bit Rate System Framing Clock Ratio 1

1 The system framing clock ratio is the number of INT_FWD_CLK cycles per
SYSCLK cycles.

Write Data

System 1 1.5X 4:1 2 SYSCLKs

System 2 2.0X 2:1 3 SYSCLKs

System 3 2.5X 2:1 2 SYSCLKs

System 4 4X 2:1 2 SYSCLKs
4–34 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

suc-
ill

r

f

by

d

state
67

e at
e
s-
1. The SysDataInValid_L signal must be asserted for both cycles of a SysDc fill
command, and two quadwords of data must be delivered to the 21264/EV67 in
ceeding bit-clock cycles with the appropriate timing in reference to the SysDc f
command (SYSDC_DELAY + 10 CPU cycles).

2. Any number of bubble cycles can be introduced within the fill by deasserting
SysDataInValid_L between octaword transfers.

3. The transfer of fill data can continue by assertingSysDataInValid_L for at least
two bit-clock cycles, and delivering data SYSDC_DELAY + 10 CPU cycles afte
the assertion ofSysDataInValid_L.

4. The 21264/EV67 must seeSysDataInValid_L asserted for eight data cycles in
order to complete a fill. When the eighth cycle of an assertedSysDataInValid_L is
perceived by the 21264/EV67, the transfer is complete.

5. Systems that do not useSysDataInValid_L may tie the pin to the asserted state.

If SYSDC_DELAY is greater than the bit-time of a transfer, theSysDataInValid_L
signal must be internally pipelined. To enable the correct sampling of
SysDataInValid_L, the 21264/EV67 provides a delay, with Cbox CSR
DATA_VALID_DELAY[1:0], that is equal to SYSDC_DELAY[4:0]/bit-time. For
example, consider system 1 in Table 4–26, which has a SYSDC_DELAY of five
GCLKs. Running at a bit-time of 1.5X, the DATA_VALID_DELAY[1,0] is pro-
grammed with a value of three.

SysDataOutValid_L

Systems that use a ratio of 1:1 for SYSCLK:INT_FWD_CLK may control the flow o
data out of the 21264/EV67 by usingSysDataOutValid_L as follows:

1. TheSysDataOutValid_L pin must be asserted for at least the first cycle of the
SysDc write command that initiates a write transfer.

2. Any number of bubble cycles may be introduced between quadword transfers
deassertingSysDataOutValid_L.

3. The 21264/EV67 must see theSysDataOutValid_L signal asserted for eight data
cycles to complete a write transaction, and when the eighth cycle of an asserte
SysDataOutValid_L is perceived by the 21264/EV67, the transfer is complete.

4.7.8.5 SysFillValid_L

TheSysFillValid_L pin, when asserted, validates the current memory and I/O data
transfer into the 21264/EV67. The system designer may tie this pin to the asserted
(validating all fills), or use it to enable or cancel fills as they progress. The 21264/EV
samplesSysFillValid_L at D1 time (when the 21264/EV67 samples the second data
cycle).
If SysFillValid_L is asserted at D1 time, the fill will continue uninterrupted. If it is not
asserted, the 21264/EV67 cancels the fill, but expects all eight QWs of data to arriv
its system bus before continuing to the next fill. Also, the 21264/EV67 maintains th
state of the MAF, expecting another valid fill to the same MAF entry. Figure 4–6 illu
tratesSysFillValid_L timing.
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–35

System Port

es in

he

he
e cor-
r

uire
f

Figure 4–6 SysFillValid_L Timing

4.7.8.6 Data Wrapping

All data movement between the 21264/EV67 and the system is composed of 64 byt
eight cycles on the data bus. All 64 bytes of memory data are valid. This applies to
memory read transactions, memory write transactions, and system proberead transac-
tions. The wrap order is interleaved. The internal data bus, which delivers data to t
functional units and the Dcache, is 16 bytes wide, and so, no transfers happenuntil two
data cycles occur on the interface.

Table 4–28 lists the rules for data wrapping. I/O read and write addresses on the
SysAddOut bus point to the desired byte, word, LW, or QW, with a combination of
SysAddOut_L[5:3] and the mask field [7:0].

The order in which data is provided to the 21264/EV67 (for a memory or I/O fill) or
moved from the 21264/EV67 (write victims or probe reads) can be determined by t
system. The system chooses to reflect back the same low-order address bits and th
responding octaword found in the SysAddOut field or the system chooses any othe
starting point within the block.

SysDc commands for the ReadData, ReadDataShared, and WriteData groups req
that systems define the position of the first QW by inserting the appropriate value o
SysAddOut_L[5:3] into bits [1:0] of the command field. The recommended starting

Table 4–28 Data Wrapping Rules

Command
Significant Address
Bits

Mask
Type Rules

ReadQW and
WrQW

SysAddOut_L[5:3] QW SysAddOut_L[5:3] contains the exact PA bits of the first
LDQ or STQ to the block. The mask bits point to the valid
QWs merged in ascending order.

ReadLW and
WrLW

SysAddOut_L[5:3] LW SysAddOut_L[5:3] contain the exact PA bits of the first
LDL or STL to the block. The mask bits point to the valid
LWs merged in ascending order within one hexword.

LDByte/Word
and
STByte/Word

SysAddOut_L[5:3] Byte SysAddOut_L[5:3] contain the exact QW PA bits of the
LDByte/Word or STByte/Word instruction. The mask bits
point to the valid byte in the QW.

FM-05823B.FH8

Command Receiver

SysFillValid_L

SysDcSysAddIn_L[14:0]

SysData_L[63:0] D0 D1 D2 D3 D4

T3

Transport Delay on Address
4–36 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

t
the
d.

l of
red

W

point is the QW pointed to by the 21264/EV67; however, some systems may find i
more beneficial to begin the transfer elsewhere. The system must always indicate
starting point to the 21264/EV67. The wrap order for subsequent QWs is interleave

Table 4–29 defines the method for systems to specify wrap and deliver data.

Note 1: Transfers to and from the 21264/EV67 have eight data cycles for a tota
eight quadwords. The starting point is defined by the system. The prefer
starting point is the one pointed to by SysAddOut_L[5:4]. Systems can
insert the SysAddOut_L[5:4] into the SysDc[1:0] field of the command.
See Table 4–30 for the wrap order.

Note 2: LW and byte/word read transfers differ from all other transfers. The system
unloads only four QWs of data into eight data cycles by sending each Q
twice (referred to as double-pumped data transfer). The first QW returned
is determined bySysAddOut_L[4:3]. The system again may elect to
choose its own starting point for the transfer and insert that value into
SysDc[1:0]. See Table 4–31 for the wrap order.

Table 4–30 defines the interleaved scheme for the wrap order.

Table 4–29 System Wrap and Deliver Data

Source/
Destination SysDc[4:2] SysDc[1:0] Size Rules

Memory 100 (ReadData) SysAddOut_L[5:4] Block (64 Bytes) See Note 1

Memory 101(ReadDataDirty) SysAddOut_L[5:4] Block (64 Bytes) See Note 1

Memory 110 (ReadDataShared) SysAddOut_L[5:4] Block (64 Bytes) See Note 1

Memory 111(Read DataShared/Dirty) SysAddOut_L[5:4] Block (64 Bytes) See Note 1

Memory 010 (WriteData) SysAddOut_L[5:4] Block (64 Bytes) See Note 1

I/O 100 (ReadData) SysAddOut_L[5:4] QW (8-64 Bytes) See Note 1

I/O 100 (ReadData) SysAddOut_L[4:3] LW(4-32 Bytes) See Note 2

I/O 100 (ReadData) SysAddOut_L[4:3] Byte/Word See Note 2

I/O 010 (WriteData) SysAddOut_L[5:4] QW (8-64 Bytes) See Note 1

I/O 010 (WriteData) SysAddOut_L[5:4] LW(4-32 Bytes) See Note 1

I/O 010 (WriteData) SysAddOut_L[5:4] Byte/Word See Note 1

Table 4–30 Wrap Interleave Order

PA Bits [5:3] of Transferred QW

First quadword 000 010 100 110

Second quadword 001 011 101 111

Third quadword 010 000 110 100

Fourth quadword 011 001 111 101

Fifth quadword 100 110 000 010
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–37

System Port

M)

-
r lock

-
Error
Table 4–31 defines the wrap order for double-pumped data transfers.

4.7.9 Nonexistent Memory Processing

Like its predecessors, the 21264/EV67 can generate references to nonexistent (NX
memory or I/O space. However, unlike theearlier Alpha microprocessor implementa-
tions, the 21264/EV67 can generate speculativereferences to memory space. To accom
modate the speculative nature of the 21264/EV67, the system must not generate o
error registers because of speculative references. The 21264/EV67 translates all mem-
ory references through the translation lookaside buffer (TLB) and, in some cases, the
21264/EV67 may generate speculative references (instruction execution down mispre
dicted paths) to NXM space. In these cases, the system sends a SysDc ReadData
and the 21264/EV67 does the following:

• Delivers an all-ones pattern to all load instructions to the NXM address

• Force-fails all store instructions to the NXM address (much like a STx_C
failure)

• Invalidates the cache block at the same index by way of an atomic Evict
command

Sixth quadword 101 111 001 011

Seventh quadword 110 100 010 000

Eighth quadword 111 101 011 001

Table 4–31 Wrap Order for Double-Pumped Data Transfers

PA [5:3] of Transferred QW

First quadword x00 x01 x10 x11

Second quadword x00 x01 x10 x11

Third quadword x01 x00 x11 x10

Fourth quadword x01 x00 x11 x10

Fifth quadword x10 x11 x00 x01

Sixth quadword x10 x11 x00 x01

Seventh quadword x11 x10 x01 x00

Eighth quadword x11 x10 x01 x00

Table 4–30 Wrap Interleave Order (Continued)

PA Bits [5:3] of Transferred QW
4–38 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

ropri-

ough
n
to

nd
/
l

ere
si-
ug.

pond
e

-
g
7

in

re
e

n-

-
gs.

is

is
uld

nd
Table 4–32 shows each 21264/EV67 command, with NXM addresses, and the app
ate system response.

Table 4–32 21264/EV67 Commands with NXM Addresses and System Response

21264/EV67
Command NXM
Address System/21264/EV67 Response

ProbeResponse Probe responses for addresses to NXM space are of UNPREDICTABLE status. Alth
the final status of a ReadDataError is Invalid, the 21264/EV67 fills the block Valid/Clea
and uses an atomic Evict command to invalidate the block. Systems that send probes
NXM space to the 21264/EV67 must disregard the probe result.

RdBlk
RdBlkSpec
RdBlkVic

Load references to NXM space can be speculative. In this case, systems should respo
with a SysDc ReadDataError fill that the 21264/EV67 uses to service the original load
Istream command. If the original load command was speculative, the 21264/EV67 wil
remove the load instruction that generated the NXM command, and start processing
instructions down the correctly predicted path. If the command was not speculative, th
must be an error in the operating system mapping of a virtual address to an illegal phy
cal address, and the 21264/EV67 provides an all ones pattern as a signature for this b
The NXM block is not cached in the Dcache or Bcache.

RdBlkI
RdBlkSpecI
RdBlkVicI

Istream references to NXM space can be speculative. In this case, systems should res
with a SysDc ReadDataError fill, which the 21264/EV67 will use to service and execut
the original Istream reference. If the original Istream reference was speculative, the
21264/EV67 will remove the instructions started after the mispredicted instruction that
generated the NXM reference, and start instruction processing down the correctly pre
dicted path. If the reference was not speculative, there must be an error in the operatin
system mapping of a virtual address to an illegal physical address, and the 21264/EV6
provides an all ones pattern as a signature for this bug. The NXM block is not cached
the Bcache, but can be cached in the Icache.

RdBlkMod
RdBlkModSpec
RdBlkModVic

Store instructions to NXM space initiate RdBlkMod commands. Again, speculative sto
instructions are removed. Nonspeculative store instructions are forced to fail, much lik
STx_C instructions that fail. The NXM block is not cached in the Dcache or Bcache.

WrVictimBlk Dirty Victims to NXM space are illegal. Systems should perform a machine check, with
the 21264/EV67 indicating a severe error.

CleanVictimBlk The 21264/EV67 can generate CleanVictimBlk commands to NXM space if the Cbox
CSR BC_CLEAN_VICTIM[0] bit is asserted and a SysDc ReadDataError has been ge
erated. Systems that use clean victims must faithfully deallocate the CleanVictim VAF
entry.

Evict If the Cbox CSR ENABLE_EVICT is asserted, the 21264/EV67 will generate Evict com
mands to NXM space. Systems may use this command to invalidate their duplicate ta
Systems must respond with SysDc ChangeToDirtyFail to retire the NXM MAF entry.

RdBytes
RdLWs
RdQWs

Load instructions to I/O space are not speculative, so an I/O reference to NXM space
an error. Systems must respond with ReadDataError and should generate a machine
check to indicate an operating system error.

WrBytes
WrLWs
WrQWs

Store instructions to I/O space are not speculative, so an I/O reference to NXM space
an error. Systems must respond by deallocating the appropriate IOWB entries, and sho
generate a machine check to indicate an operating system error.

FetchBlk
FetchBlkSpec

Loads to noncached memory in NXM space may be speculative. Systems must respo
with a SysDc ReadDataError to retire the MAF entry.
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–39

System Port

nsac-

ed
1264/

e-

or

re
issu-

l

and

nd

ere

all

rror,
4.7.10 Ordering of System Port Transactions

This section describes ordering of system port transactions. The two classes of tra
tions are listed here:

• 21264/EV67 commands and system probes

• System probes and SysDc transfers

4.7.10.1 21264/EV67 Commands and System Probes

This section describes the interaction of21264/EV67-generated commands andsystem-
generated probes that reference the same cacheblock. Some definitions are presented
here:

• ProbeResponses generated by the 21264/EV67 respond to all system-generat
probe commands. System-generated data transfer commands respond to all 2
EV67-generated data transfer commands.

• The victim address file (VAF) and victim data buffer (VDB) entries each have ind
pendent valid bits for both a victim and a probe.

• Probe results indicate a hit on a VAF/VDB and when a WrVictim command has
been sent to the system. Systems can decide whether to move the buffer once
twice.

• ProbeResponses are issued in the order that the system-generated probes we
received; however, there is no requirement for the system to retain order when
ing release buffer commands.

• Probe processing can stall inside the 21264/EV67 when the probe entry index
matches PA[19:6] of a previous probe entry in the VAF.

• The 21264/EV67 reserves one VAF entry for probe processing, so that VAF-ful
conditions cannot stall the processing of probes at the head of the queue.

Table 4–33 lists all interactions between pending internal 21264/EV67 commands
the Probe[2:0] command field, Next Cache Block State, described in Table 4–22.

Table 4–33 shows the 21264/EV67 response to system probe and in-flight comma
interaction. In the table, note the following:

• ReadBlkVic and ReadBlkModVic commands do not appear in Table 4–33. If th
is interaction between the probe and the victim, it is the same as a WrVictimBlk
command.

CleanToDirty
SharedToDirty
STCChangeToDirty

ChangeToDirty commands to NXM space are impossible in the 21264/EV67 because
NXM references to memory space are atomically filled with an Invalid cache status.

InvalToDirty
InvalToDirtyVic

InvalToDirty commands are not speculative, so InvalToDirty commands to NXM space
indicate an operating system error. Systems should respond with a SysDc ReadDataE
and should generate a machine check to indicate error.

Table 4–32 21264/EV67 Commands with NXM Addresses and System Response (Continued)

21264/EV67
Command NXM
Address System/21264/EV67 Response
4–40 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

The

other
ro-
race
ic-

t
ssor

s
d.
c-
nd,
e

m-

use
• Probes that invalidate locked blocks do not generate a ReadBlkMod command.
21264/EV67 fails the STx_C instruction as defined in theAlpha Architecture
Handbook, Version 4.

• All read commands (RdBlk, RdBlkMod, Fetch, InvalToDirty) do not interact
because the 21264/EV67 does not yet own the block.

Table 4–33 21264/EV67 Response to System Probe and In-Flight Command Interaction

Pending Internal
21264/EV67
Command 21264/EV67 Response to System Probe and In-Flight Command Interaction

ReadBlk
ReadBlkMod
FetchBlk
InvalToDirty
WrVictimBlk

This case assumes that a WrVictimBlk command has been sent to the system and an
agent has performed a load/store instruction to the same address. The 21264/EV67 p
vides VAF hit information with the probe response so that the system can manage the
condition between the WrVictimBlk command from this processor and a possible WrV
timBlk command from the probing processor. This race condition can be managed by
either forcing the completion of the WrVictimBlk command to memory before allowing
the progress by the probing processor, or by killing the WrVictimBlk command in this
processor.

CleanToDirty
SharedToDirty

This case assumes that a SetDirty command has been sent to the system environmen
because of a store instruction that hit in the 21264/EV67 caches and that another proce
has performed a load/store instruction to the same address. The 21264/EV67 provide
MAF hit information so that the system can correctly respond to the Set/Dirty comman
If the next state of the probe was Invalid (the other processor performed a store instru
tion), and the probe reached the system serialization point before the Set/Dirty comma
the system must either fail the Set/Dirty command or provide the updated data from th
other processor.

STCChangeToDirty This case is similar to case 2, except that the initiating instruction for the Set/Dirty co
mand is a STx_C. An address match with an invalidating probe must fail the Set/Dirty
command. Delivering the updated data from the other processor is not an option beca
of the requirements of the LDx_L/STx_C instruction pair.
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–41

Bcache Port

to

it
All
cycle

ms
7

c
),

AF

1

m-
t

ng

F

e

F

g

4.7.10.2 System Probes and SysDc Commands

Ordering of cache transactions at the system serialization point must bereflected in the
21264/EV67 cache system. Table 4–34 shows the rules that a system must follow
control the order of cache status update within the 21264/EV67 cache structures
(including the VAF) at the 21264/EV67 pins.

4.8 Bcache Port

The 21264/EV67 supports a second-level cache (Bcache) with 64-byte blocks. The
Bcache size can be 1MB, 2MB, 4MB, 8MB, or 16MB. The Bcache port has a 144-b
data bus that is used for data transfers between the 21264/EV67 and the Bcache.
Bcache control and address signal lines are clocked synchronously on Bcache clock
boundaries.

Table 4–34 Rules for System Control of Cache Status Update Order

First Second Rule

Probe Probe To control the sequence of cache status updates between probes, syste
can present the probes in order to the 21264/EV67, and the 21264/EV6
will update the appropriate cache state (including the VAF) in order.

Probe SysDc MAF To ensure that a probe updates the internal cache status before a SysD
MAF transaction (including fills and ChangeToDirtySuccess commands
systems must wait for the probe response before presenting the SysDc
MAF command to the 21264/EV67. To ensure that a probe updates a V
entry before a SysDc VAF (release buffer), systems must wait for the
probe response.

Probe SysDc VAF Same as Probe/SysDc MAF, above.

SysDc MAF Probe To ensure that a SysDc MAF command updates the 21264/EV67 cache
system before a probe to the same address, systems must deliver the D
(the second QW of data delivered to the 21264/EV67) before or in the
same cycle as the A3 of the probe (the last cycle of the 4-cycle probe co
mand). This rule also applies to ChangeToDirtySuccess commands tha
have a virtual D0 and D1 transaction.

SysDc MAF SysDc MAF SysDc MAF transactions can be ordered into the 21264/EV67 by orderi
them appropriately at the 21264/EV67 interface.

SysDc MAF SysDc VAF SysDc MAF transactions and SysDc VAF transactions cannot interact
within the 21264/EV67 because the 21264/EV67 does not generate MA
transactions to the same address as existing VAF transactions.

SysDc VAF Probe To ensure that a SysDc VAF invalidates a VAF entry before a probe to th
same address, the SysDc VAF command must precede the first cycle of the
4-cycle probe command.

SysDc VAF SysDc MAF SysDc MAF transactions and SysDc VAF transactions cannot interact
within the 21264/EV67 because the 21264/EV67 does not generate MA
transactions to the same address as existing VAF transactions.

SysDc VAF SysDc VAF SysDc VAF transactions can be ordered into the 21264/EV67 by orderin
them appropriately at the 21264/EV67 interface.
4–42 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

effi-
The Bcache supports the following multiples of the GCLK period: 1.5X (dual-data
mode only), 2X, 2.5X, 3X, 3.5X, 4X, 5X, 6X, 7X, and 8X. However, the 21264/EV67
imposes a maximum Bcache clock period based on the SYSCLK ratio. Table4–35 lists
the range of maximum Bcache clock periods. Section 4.7.8.2 describes fast mode.

The 21264/EV67 provides a range of programmable Cbox CSRs to manipulate the
Bcache port pins so that a variety of industry-standard SSRAMs can communicate
ciently with the 21264/EV67. The following SSRAMs can be used:.

• Nonburst mode Reg/Reg late-write SSRAMs

• Burst mode Reg/Reg late-write dual-data SSRAMs

4.8.1 Bcache Port Pins

Table 3–1 defines the 21264/EV67 signal types referred to in this section. Table 4–36
lists the Bcache port pin groups along with their type, number, reference clock, and
functional description.

Table 4–35 Range of Maximum Bcache Clock Ratios

SYSCLK Ratio
Bcache Clock Ratio with Fast Mode
Enabled

Bcache Clock Ratio with Fast Mode
Disabled

1.5X 4.0X 7.0X

2.0X 4.0X 7.0X

2.5X 5.0X 8.0X

3.0X 6.0X 8.0X

3.5X 7.0X 8.0X

4.0X 7.0X 8.0X

5.0X 8.0X 8.0X

6.0X 8.0X 8.0X

7.0X 8.0X 8.0X

8.0X 8.0X 8.0X

Table 4–36 Bcache Port Pins

Pin Name Type Count Reference Clock Description

BcAdd_H[23:4] O_PP 20 Int_Index_BcClk Bcache index

BcCheck_H[15:0] B_DA_PP 16 Int_Data_BcClk⇒ output
BcDataInClk_H⇒ input

ECC check bits for BcData

BcData_H[127:0] B_DA_PP 128 Int_Data_BcClk⇒ output
BcDataInClk_H⇒ input

Bcache data

BcDataInClk_H[7:0] I_DA 8 NA Bcache data input clocks

BcDataOE_L O_PP 1 Int_Index_BcClk Bcache data output enable/chip
select

BcDataOutClk_H[3:0]
BcDataOutClk_L[3:0]

O_PP 8 NA Bcache data clocks— high and low
version
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–43

Bcache Port

uts,
4.8.2 Bcache Clocking

For clocking, the Bcache port pins can be divided into three groups.

1. The Bcache index pins (address and control) are referenced to Int_Add_BcClk, an
internal version of the Bcache forwarded clock. The index pins are valid for the
whole period of the Int_Add_BcClk. The index pins are:

BcAdd_H[23:4]
BcDataOE_L
BcDataWr_L
BcLoad_L
BcTagOE_L
BcTagWr_L

2. The data pins, when driven as outputs, are referenced to Int_Data_BcClk, another
internal version of the Bcache forwarded clock. The data pins, when used as inp
can be referenced to the incoming Bcache clocks,BcDataInClk_H[7:0] and
BcTagInClk_H . Int_Data_BcClk can be delayed relative to Int_Add_BcClk from
0 to 3 GCLK cycles by using Cbox CSR BC_CPU_CLK_DELAY[1:0]. The data
pins are:

BcCheck_H[15:0]
BcData_H[127:0]
BcTag_H[42:20]
BcTagDirty_H
BcTagParity_H

BcDataWr_L O_PP 1 Int_Index_BcClk Bcache data write enable

BcLoad_L O_PP 1 Int_Index_BcClk Bcache burst enable

BcTag_H[42:20] B_DA_PP 23 Int_Data_BcClk⇒ output
BcTagInClk_H⇒ input

Bcache tag data

BcTagDirty_H B_DA_PP 1 Int_Data_BcClk⇒ output
BcTagInClk_H⇒ input

Bcache tag dirty bit

BcTagInClk_H I_DA 1 NA Tag input data reference clock

BcTagOE_L O_PP 1 Int_Index_BcClk Bcache tag output enable/chip
select

BcTagOutClk_H
BcTagOutClk_L

O_PP 2 NA Bcache tag clock— high and low
versions

BcTagParity_H B_DA_PP 1 Int_Data_BcClk⇒ output
BcTagInClk_H⇒ input

Bcache tag parity bit

BcTagShared_H B_DA_PP 1 Int_Data_BcClk⇒ output
BcTagInClk_H⇒ input

Bcache tag shared bit

BcTagValid_H B_DA_PP 1 Int_Data_BcClk⇒ output
BcTagInClk_H⇒ input

Bcache tag valid bit

BcVref I_DC_REF 1 NA Input reference voltage for tag data

BcTagWr_L O_PP 1 Int_Index_BcClk Bcache data write enable

Table 4–36 Bcache Port Pins (Continued)

Pin Name Type Count Reference Clock Description
4–44 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

e
t

raints
nt of

y

iod
BcTagShared_H
BcTagValid_H

3. The Bcache clock pins (BcDataOutClk_x[3:0] andBcTagOutClk_x) clock the
index and data pins at the SSRAMs. These clocks can be delayed from
Int_Data_BcClk from 0 to 2 GCLK phases (half cycles) using Cbox CSR
BC_CPU_CLK_DELAY[1:0].

Table 4–37 provides the BC_CPU_CLK_DELAY[1:0] values, which is the delay
from BC_ADDRESS to BC_WRITE_DATA (and BC_CLOCK_OUT) in GCLK
cycles.

In the 21264/EV67 topology, the index pins are loaded by all the SSRAMs, while th
clock and data pins see a limit load. This arrangement requires a relatively large amoun
of delay between the index pins and the Bcache clock pins to meet the setup const
at the SSRAMs. The 21264/EV67 Cbox CSRs can provide a programmable amou
delay between the index and clock pins by using Cbox CSRs
BC_CPU_CLK_DELAY[1:0] and BC_CLK_DELAY[1:0].

Table 4–38 provides the BC_CLK_DELAY[1:0] values, which is the delay from
BC_WRITE_DATA to BC_CLOCK_OUT, in GCLK phases.

With BC_CPU_CLK_DELAY[1:0] and BC_CLK_DELAY[1:0], a 500-MHz 21264/
EV67 can provide up to 8 ns (3× 2 + 2) of delay between the index and the outgoing
forwarded clocks. The relative loading difference between the data and the clock is
minimal, so Cbox CSR BC_CLK_DELAY[1:0] alone is sufficient to provide the dela
needed for the setup constraint at the Bcache data register.

4.8.2.1 Setting the Period of the Cache Clock

The free running Bcache clocks are derived from the 21264/EV67 GCLK. The per
of the Bcache clocks is programmed using the following three Cbox CSRs:

1. BC_CLK_LD_VECTOR[15:0]

2. BC_BPHASE_LD_VECTOR[3:0]

Table 4–37 BC_CPU_CLK_DELAY[1:0] Values

BC_CPU_CLK_DELAY[1:0] Value GCLK Cycles of Delay

0 0

1 1

2 2

3 3

Table 4–38 BC_CLK_DELAY[1:0] Values

BC_CLK_DELAY[1:0] Value GCLK Phases

0 Invalid (turns off BC_CLOCK_OUT)

1 0

2 1

3 2
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–45

Bcache Port

he
data.

in-

ted

ses
s an
s.
ing

hat
eriod
3. BC_FDBK_EN[7:0]

To program these three CSRs, the programmer must know the bit-rate of the Bcac
data, and whether only the rising edge or both edges of the clock are used to latch
For example, a 200-MHz late-write SSRAM has a data period of 5 ns. For a 2-ns
GCLK, the READCLK_RATIO must be set to 2.5X. This part is called a 2.5X SD (s
gle-data part).

Table 4–39 shows how the three CSRs are programmed for single-data devices.

With the exception of the 2.5X-SD and 3.5X-SD cases, the clock waveform genera
by the 21264/EV67 for the forwarded clocks has a 50-50 duty cycle. In the 2.5X-SD
case, the 21264/EV67 produces an asymmetric clock that is high for two GCLK pha
and low for three phases. Likewise, for the 3.5X-SD case, the 21264/EV67 produce
asymmetric clock that is high for three GCLK phases and low for four GCLK phase
Also, for both of these cases, the 21264/EV67 will only start transactions on the ris
edge of the GCLK and the Bcache clock. The 1.5X-SD case is not supported.

A dual-data rate (DDR) SSRAM’s data rate is derived in a similar manner, except t
because both edges of the clock are used, the SSRAM clock generated is 2X the p
of the data. This part is called a 2.5X DDR SSRAM.

Table 4–40 shows how the three CSRs are programmed for dual-data devices.

Table 4–39 Program Values to Set the Cache Clock Period (Single-Data)

Bcache Transfer BC_CLK_LD_VECTOR 1

1 These are hexadecimal values.

BC_BPHASE_LD_VECTOR 1 BC_FDBK_EN 1

2.0X-SD 5555 0 01

2.5X-SD 94A5 3 02

3.0X-SD 9249 A 02

3.5X-SD 4C99 C 04

4.0X-SD 3333 0 01

5.0X-SD 8C63 5 02

6.0X-SD 71C7 0 10

7.0X-SD C387 A 04

8.0X-SD 0F0F 0 01

Table 4–40 Program Values to Set the Cache Clock Period (Dual-Data Rate)

Bcache
Transfer BC_CLK_LD_VECTOR 1 BC_BPHASE_LD_VECTOR 1 BC_FDBK_EN 1

1.5X-DD 9249 A 02

2.0X-DD 3333 0 01

2.5X-DD 8C63 5 02

3.0X-DD 71C7 0 10

3.5X-DD C387 A 04
4–46 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

the
o-

, and
con-

rite
ions.

ng a
e
values

the

ris-

the

e

In addition to programming the clock CSRs, the data-sample/drive Cbox CSRs, at
pads, must be set appropriately. Table 4–41 lists these CSRs and provides their pr
grammed value.

4.8.3 Bcache Transactions

The Cbox uses the programmed clock values to start data read, tag read, data write
tag write transactions on the rising edge of a Bcache clock. The Cbox can also be
figured to introduce a programmable number of bubbles when changing between w
and read commands. The following three sections describe these Bcache transact

4.8.3.1 Bcache Data Read and Tag Read Transactions

The 21264/EV67 always reads four pieces of data (64 bytes) from the Bcache duri
data read transaction, and always interrogates the tag array on the first cycle. Onc
started, data read transactions are never cancelled. Assuming that the appropriate

4.0X-DD 0F0F 0 01

5.0X-DD 7C1F 0 40

6.0X-DD F03F 0 10

7.0X-DD C07F 0 04

8.0X-DD 00FF 0 01

1 These are hexadecimal values.

Table 4–41 Data-Sample/Drive Cbox CSRs

CBOX CSR Description

BC_DDM_FALL_EN[0] Enables the update of the 21264/EV67’s Bcache outputs referenced to the
falling edge of the Bcache forwarded clock. Dual-data RAMs assert this
CSR.

BC_TAG_DDM_FALL_EN[0] Enables the update of the 21264/EV67’s Bcache tag outputs referenced to
falling edge of the Bcache forwarded clock. Alway deasserted.

BC_DDM_RISE_EN[0] Enables the update of the 21264/EV67’s Bcache outputs referenced to the
ing edge of the Bcache forwarded clock. Always asserted.

BC_TAG_DDM_RISE_EN[0] Enables the update of the 21264/EV67’s Bcache tag outputs referenced to
rising edge of the Bcache forwarded clock. Always asserted.

BC_DDMF_ENABLE[0] Enables the rising edge of the Bcache forwarded clock. Always asserted.

BC_DDMR_ENABLE[0] Enables the falling edge of the Bcache forwarded clock. Always asserted.

BC_FRM_CLK[0] Forces the 21264/EV67 to only start Bcache transactions on the rising edg
of Bcache clocks that also coincide with the rising edge of GCLK. Must be
asserted for all dual-data parts and single-data parts at 2.5X and 3.5X.

BC_CLKFWD_ENABLE[0] Enables clock forward enable. Always asserted.

Table 4–40 Program Values to Set the Cache Clock Period (Dual-Data Rate) (Continued)

Bcache
Transfer BC_CLK_LD_VECTOR 1 BC_BPHASE_LD_VECTOR 1 BC_FDBK_EN 1
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–47

Bcache Port

ram-
d

pins
SR

cle,

the

),

t
LK

ncy
to the

it to

ition,

7.

CLK

-
arate

d

(64
ring

ppro-
have been programmed for the Bcache clock period, and with satisfactory delay pa
eters for the SSRAM setup/hold Bcache address latch requirements, a Bcache rea
command proceeds through the 21264/EV67 Cbox as follows:

1. When the 21264/EV67 clocks out the first address value on the Bcache index
with the appropriate Int_Add_BcClk value, the Cbox loads the values of Cbox C
BC_LAT_DATA_PATTERN[31:0] and Cbox CSR
BC_LAT_TAG_PATTERN[23:0] into two shift registers, which shift during every
GCLK cycle.

2. The address and control pins are latched into the SSRAMs. During the next cy
the SSRAMs provide data and tag information to the 21264/EV67.

3. Using the returning forwarded clocks (BcDataInClk_H[7:0] , BcTagInClk_H), the
data/tag information is loaded into the 21264/EV67 clock forwarding queue for
Bcache.

4. Based on the value of BC_RCV_MUX_PRESET_CNT[1,0] (the unload pointer
the result of a Bcache write command is loaded into a 21264/EV67 GCLK
(BPHASE) register.

5. The Cbox CSR BC_LAT_DATA_PATTERN[31:0] and
BC_LAT_TAG_PATTERN[23:0] contain the GCLK frequency at which the outpu
of the clock forward FIFO can be consumed by the processor. This provides GC
granularity for the Bcache interface, so that the 21264/EV67 can minimize late
to the Bcache. When the values based on these Cbox CSRs are shifted down
bottom of the shift register, the processor samples the Bcache data and delivers
the consumers of load data in the 21264/EV67 functional units.

For example, when a 2.5X-SD SSRAM has a latency of eight GCLK cycles from
BcAdd_H[23:4] to the output of Bcache FIFO, Cbox CSR
BC_LAT_DATA_PATTERN[31:0] is programmed to 94816 and Cbox CSR
BC_LAT_TAG_PATTERN[23:0] is programmed to 816. The data pattern contains the
placement for four pieces of data and the aggregate rate of the data is 2.5X. In add
bit one of the BC_LAT_DATA_PATTERN is placed at a GCLK latency of six GCLK
cycles, which is the minimum latency supported by the 21264/EV67. The
BC_LAT_TAG_PATTERN contains the placement of the tag data to the 21264/EV6

A shift of one to the left increases the latency of the Bcache transfer to nine GCLK
cycles, and a shift to the right reduces the latency of the Bcache transfer to seven G
cycles.

The Cbox performs isolated tag read transactions in response to system probe com
mands. In addition, when using burst-mode SSRAMs, the Cbox can combine a sep
tag read transaction with the tail end of a dataread transaction, thusoptimizing Bcache
bandwidth. A Bcache tag read transaction proceeds exactly like a Bcache data rea
transaction, except that only the BC_LAT_TAG PATTERN is used to update the tag
shift register.

4.8.3.2 Bcache Data Write Transactions

During a data write transaction, the 21264/EV67 always writes four pieces of data
bytes of data and 8 bytes of ECC) to the Bcache, and always writes the tag array du
the first cycle. Once started, data write operations are never cancelled. Given the a
4–48 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

AM
ro-

lk

R

ite
te-

ks

alid

the
]
rite

the

r

priate programming of the Bcache clock period and delay parameters to satisfy SSR
setup/hold requirements of the Bcache address latch, a Bcache write transaction p
ceeds through the Cbox as follows:

1. The Cbox transmits the index and write control signals during an Int_Adr_BcC
edge.

2. The data is placed on Bcache data, tag, and tag status pins on the appropriate
Int_Data_BcClk edge from 0 to 7 Bcache bit-times later, based on the Cbox CS
BC_LATE_WRITE_NUM[2:0]. The BC_LATE_WRITE_NUM[2:0] supports the
late-write SSRAM, which optimize Bcache data bus bandwidth by minimizing
bubbles between read and write transactions. For example, single-data late-wr
SSRAMs would need this CSR programmed to a value of one, and dual-data la
write SSRAMs would need this CSR programmed to a value of two.

3. The difference between the data delivery (Int_Data_BcClk) and forwarded cloc
out provides the setup for the data at the Bcache data flip-flop.

4. For Bcache writes, the 21264/EV67 drivers are enabled on the GCLK BPHASE
preceding the start of a write transfer, and disabled on the succeeding GCLK
BPHASE at the end of a write transfer. Thus, the write data is enveloped by the
21264/EV67 drivers to guarantee that every data transfer has the same data-v
window.

4.8.3.3 Bubbles on the Bcache Data Bus

When changing between read and write transactions on the bidirectional bus, it is often
necessary to introduce NOP cycles (bubbles) to allow the bus to settle and to drain
Bcache read pipeline. The Cbox provides two CSRS, BC_RD_WR_BUBBLES[5:0
and BC_WR_RD_BUBBLES[3:0], to help control the bubbles between read and w
transactions.

The optimum parameters for these CSRs are determined by formulas that include
following terms:

Term Description

bcfrm Bcache frame clock.
• In dual-data mode, bcfrm is twice the ratio.
• In single-data mode, the value for bcfrm is determined by whethe

the ratio is even or odd:
– When the ratio is even, bcfrm is equal to the ratio.
– When the ratio is odd, bcfrm is twice the ratio.

For example, in single-data mode:

GCLK The processor clock.

Ratio Bcfrm

2 2

2.5 5
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–49

Bcache Port

, a

tag

tag
Ratio The number of GCLK cycles per peak Bcache bandwidth transfer. For example
ratio of 2.5 means the peak Bcache bandwidth is 16 bytes for every 2.5 GCLK
cycles.

rd_wr The minimum spacing required between the read and write indices at the data/
pins, expressed as GCLK cycles.

wr_rd The minimum spacing required between the write and read indices at the data/
pins, expressed as GCLK cycles.

Term Description
4–50 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

s.

e.
le
The Relationship Between Write-to-Read — BC_WR_RD_BUBBLES and wr_rd

The following formulas calculate the relationship between the Cbox CSR
BC_WR_RD_BUBBLES and wr_rd:

wr_rd = (BC_WR_RD_BUBBLES – 1) * bcfrm

or

BC_WR_RD_BUBBLES = ((wr_rd + bcfrm – 1) / bcfrm) + 1

There is never a need to use a value of 0 or 1 for BC_WR_RD_BUBBLES.

If wr_rd = 4*ratio , then value 3 would be the minimum
BC_WR_RD_BUBBLES value whenbcfrm = 2*ratio , and value 5 would be the
minimum BC_WR_RD_BUBBLES value whenbcfrm = ratio .

There is a special case forratio = 2.0 in single-data mode. In this case, the for-
mula is:

wr_rd = (BC_WR_RD_BUBBLES – 2) * bcfrm

The Relationship Between Read-to-Write — BC_RD_WR_BUBBLES and rd_wr

Use the following formula to calculate the value for the Cbox CSR
BC_RD_WR_BUBBLES that produces the minimum rd_wr restriction:

BC_RD_WR_BUBBLES = rd_wr – 6

Note that a value for BC_RD_WR_BUBBLES of zero really means 64 GCLK cycle
In that case, amend the formula. For example, it is impossible to haverd_wr = 6 in
the 1.5x dual-data rate mode case.

4.8.4 Pin Descriptions

This section describes the characteristics of the Bcache interface pins.

4.8.4.1 BcAdd_H[23:4]

TheBcAdd_H[23:4] pins are high drive outputs that provides the index for the Bcach
The 21264/EV67 supports Bcache sizes of 1MB, 2MB, 4MB, 8MB, and 16MB. Tab
4–42 lists the values to be programmed into Cbox CSRs BC_ENABLE[0] and
BC_SIZE[3:0] to support each size of the Bcache.

Table 4–42 Programming the Bcache to Support Each Size of the Bcache

BC_ENABLE[0] BC_SIZE[3:0] Bcache Size

1 0000 1MB

1 0001 2MB

1 0011 4MB

1 0111 8MB

1 1111 16MB
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–51

Bcache Port

67

d

sing
When the Cbox CSR BC_BANK_ENABLE[0] is not set, the unusedBcAdd_H[23:4]
pins are tied to zero. For example, when configured as a 4MB cache, the 21264/EV
never changesBcAdd_H[23:22] from logic zero, and when BC_BANK_ENABLE[0]
is asserted, the 21264/EV67 drives the complement of the MSB index on the next
higherBcAdd_H pin.

4.8.4.2 Bcache Control Pins

The Bcache control pins (BcLoad_L, BcDataWr_L , BcDataOE_L, BcTagWr_L ,
BcTagOE_L) are controlled using Cbox CSRs BC_BURST_MODE_ENABLE[0] an
BC_PENTIUM_MODE[0].

Table 4–43 shows the four combinations of Bcache control pin behavior obtained u
the two CSRs.

Table 4–44 lists the combination of control pin assertion forRAM_TYPE A.

Table 4–45 lists the combination of control pin assertion for RAM_TYPE B.

Table 4–43 Programming the Bcache Control Pins

BC_PENTIUM_MODE BC_BURST_MODE_ENABLE RAM_TYPE

0 0 RAM_TYPE A

0 1 RAM_TYPE B

1 0 Unsupported

1 1 Unsupported

Table 4–44 Control Pin Assertion for RAM_TYPE A

TYPE_A NOP RA0 RA1 RA2 RA3 NOP NOP WA0 WA1 WA2 WA3 NOP

BcLoad_L H H H H H H H H H H H H

BcDataOE_L H L L L L H H L L L L H

BcDataWr_L H H H H H H H L L L L H

BcTagOE_L H L H H H H H L H H H H

BcTagWr_L H H H H H H H L H H H H

Table 4–45 Control Pin Assertion for RAM_TYPE B

TYPE_B NOP RA0 RA1 RA2 RA3 NOP NOP WA0 WA1 WA2 WA3 NOP

BcLoad_L H L H H H H H L H H H H

BcDataOE_L H L L L L H H L L L L H

BcDataWr_L L H H H H L L L L L L L

BcTagOE_L H L H H H H H L H H H H

BcTagWr_L H H H H H H H L H H H H
4–52 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

che

e

vide
ck,

ata

pins
Table 4–46 lists the combination of control pin assertion for RAM_TYPE C.

Table 4–47 lists the combination of control pin assertion for RAM_TYPE D.

Notes:

1. The NOP condition for RAM_TYPE B is consistent with bursting nonPentium
style SSRAMs.

2. In bothRAM_TYPE A and RAM_TYPE B, the pinsBcDataOE_L andBcTagOE_L
function changes from output-enable control to chip-select control.

3. In both RAM_TYPE C and RAM_TYPE D SSRAMs, the pinsBcDataOE_L and
BcTagOE_L function as an asynchronous output enable that envelopes the Bca
read data by providing an extra cycle of output enable.

Using these Cbox CSRs, late-write nonbursting and dual-data rate SSRAMs can b
connected to the 21264/EV67 as described in Appendix E.

4.8.4.3 BcDataInClk_H and BcTagInClk_H

TheBcDataInClk_H[7:0] andBcTagInClk_H pins are used to capture tag data and
data from the Bcache data and tag RAMs respectively. Dual-data rate SSRAMs pro
a clock output with the data output pins to minimize skew between the data and clo
thus allowing maximum bandwidth. The 21264/EV67 internally synchronizes the d
to its GCLK with clock forward receive circuitry similar to that in thesystem interface.
For nonDDR SSRAMs, systems can connect the Bcache data and tag output clock
to the Bcache data and tag input clock pins.

Table 4–46 Control Pin Assertion for RAM_TYPE C

TYPE_C NOP RA0 RA1 RA2 RA3 NOP NOP WA0 WA1 WA2 WA3 NOP

BcLoad_L H H H H H H H H H H H H

BcDataOE_L H H L L L L L H H H H H

BcDataWr_L H H H H H H H L L L L H

BcTagOE_L H L L H H H H H H H H H

BcTagWr_L H H H H H H H L H H H H

Table 4–47 Control Pin Assertion for RAM_TYPE D

TYPE_D NOP RA0 RA1 RA2 RA3 NOP NOP WA0 WA1 WA2 WA3 NOP

BcLoad_L H L H H H H H L H H H H

BcDataOE_L H H L L L L L H H H H H

BcDataWr_L H H H H H H H L L L L H

BcTagOE_L H H L L H H H H H H H H

BcTagWr_L H H H H H H H L H H H H
Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4–53

Interrupts

SR
-

e for
B.

trans-

write

for

st

-
d if

EN
n

indi-
4.8.5 Bcache Banking

Bcache banking is possible by decoding the index MSB (as determined by Cbox C
BC_SIZE[3:0]) and asserting Cbox CSR BC_BANK_ENABLE[0]. To facilitate bank
ing, the 21264/EV67 provides the complement of the MSB bit in the next higher
unused index bit. For example, when configured as an 8MB cache with banking
enabled, the 21264/EV67 drives the inversion of PA[22] onBcAdd_H[23] for use as a
chip enable in a banked configuration. Because there is no higher index bit availabl
16MB caches, this scheme only works for cache sizes of 1MB, 2MB, 4MB, and 8M

Setting BC_RD_RD_BUBBLE to 1 introduces one Bcache clock cycle of delay
between consecutive read transactions, regardless of whether or not they are read
actions to the same bank.

Setting BC_WR_WR_BUBBLE to 1 introduces one Bcache clock cycle of delay
between consecutive write transactions, regardless of whether or not they are write
transactions to the same bank.

Setting BC_SJ_BANK_ENABLE to 1 introduces one Bcache clock cycle of delay
between consecutive read transactions to a different bank (based on the MSB of the
index), even if BC_RD_RD_BUBBLE is set to 0. No additional delay is inserted
between consecutive read transactions to the same bank or between consecutive
transactions.

4.8.6 Disabling the Bcache for Debugging

The Bcache is a required component for a 21264/EV67-based system. However,
debug purposes, the 21264/EV67 can be operated with the Bcache disabled. The
Bcache can be disabled by clearing all of the BC_ENABLE bits in the Cbox
WRITE_MANY CSR. When disabling the Bcache, the following additional steps mu
be taken:

1. The various Bcache control bits in the Cbox WRITE_ONCE chain must be pro
grammed to a valid combination (normally the same settings that would be use
the Bcache were enabled).

2. The Bcache must still be initialized (using BC_INIT mode) during the reset PAL
flow, after which the Bcache should be left disabled.

3. Error Detection and Correction should be disabled by clearing DC_DAT_ERR_
(bit 7 of the DC_CTL IPR), or the following bits in the Cbox WRITE_ONCE chai
must be programmed to the indicated values:

BC_CLK_DELAY[1:0] = 0x1
BC_CPU_CLK_DELAY[1:0] = 0x1
BC_CPU_LATE_WRITE_NUM[1:0] = 0x1
BC_LATE_WRITE_NUM[2:0] = 0x0
BC_LATE_WRITE_UPPER = 0
DUP_TAG_ENABLE = 0

4.9 Interrupts

The system may request interrupts by way of theIRQ_H[5:0] pins. These six interrupt
sources are identical. They may be asynchronous, are level sensitive, and can be
vidually masked by way of the EIE field of the CM_IER IPR. The system designer
determines how these signals are used and selects their relative priority.
4–54 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

epa-

d
R.
gh
e

he
orre-
s

5
Internal Processor Registers

This chapter describes 21264/EV67 internal processor registers (IPRs). They are s
rated into the following circuit logic groups: Ebox, Ibox, Mbox, and Cbox.

The gray areas in register figures indicate reserved fields. Bit ranges that are couple
with the field name specify those bits in that named field that are included in the IP
For example, in Figure 5–2, the field named COUNTER[31:4] contains bits 31 throu
4 of the COUNTER field from Section 5.1.1. The bit range of COUNTER[31:4] in th
IPR is also listed in the columnExtentin Table 5–2. In many cases, such as this one, t
bit ranges correspond. However, the bit range of the named field need not always c
spond to theExtentin the IPR. For example, in Figure 5–14, the field VA[47:13] reside
in IPR IVA_FORM[37:3] under the stated conditions.

The register contents after initialization are listed in Section 7.8.

Table 5–1 lists the 21264/EV67 internal processor registers.

Table 5–1 Internal Processor Registers

Register Name Mnemonic
Index
(Binary)

Score-
Board
Bit Access

MT/MF
Issued
from Ebox
Pipe

Latency
for
MFPR
(Cycles)

Ebox IPRs

Cycle counter CC 1100 0000 5 RW 1L 1

Cycle counter control CC_CTL 1100 0001 5 W0 1L —

Virtual address VA 1100 0010 4, 5, 6, 7 RO 1L 1

Virtual address control VA_CTL 1100 0100 5 WO 1L —

Virtual address format VA_FORM 1100 0011 4, 5, 6, 7 RO 1L 1

Ibox IPRs

ITB tag array write ITB_TAG 0000 0000 6 WO 0L —

ITB PTE array write ITB_PTE 0000 0001 4, 0 WO 0L —

ITB invalidate all process (ASM=0) ITB_IAP 0000 0010 4 WO 0L —

ITB invalidate all ITB_IA 0000 0011 4 WO 0L —

ITB invalidate single ITB_IS 0000 0100 4, 6 WO 0L —

ProfileMePC PMPC 0000 0101 — RO — —

Exception address EXC_ADDR 00000110 — RO 0L 3
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–1

Instruction VA format IVA_FORM 0000 0111 5 RO 0L 3

Current mode CM 0000 1001 4 RW 0L 3

Interrupt enable IER 0000 1010 4 RW 0L 3

Interrupt enable and current mode IER_CM 0000 10xx 4 RW 0L 3

Software interrupt request SIRR 0000 1100 4 RW 0L 3

Interrupt summary ISUM 0000 1101 — RO — —

Hardware interrupt clear HW_INT_CLR 0000 1110 4 WO 0L —

Exception summary EXC_SUM 0000 1111 — RO 0L 3

PAL base address PAL_BASE 0001 0000 4 RW 0L 3

Ibox control I_CTL 0001 0001 4 RW 0L 3

Ibox status I_STAT 0001 0110 4 RW 0L 3

Icache flush IC_FLUSH 0001 0011 4 W 0L —

Icache flush ASM IC_FLUSH_ASM 0001 0010 4 WO 0L —

Clear virtual-to-physical map CLR_MAP 0001 0101 4, 5, 6, 7 WO 0L —

Sleep mode SLEEP 0001 0111 4, 5, 6, 7 WO 0L —

Process context register PCTX 01xn nnnn1 4 W 0L 3

Process context register PCTX 01xx xxxx 4 R 0L 3

Performance counter control PCTR_CTL 0001 0100 4 RW 0L 3

Mbox IPRs

DTB tag array write 0 DTB_TAG0 0010 0000 2, 6 WO 0L —

DTB tag array write 1 DTB_TAG1 1010 0000 1, 5 WO 1L —

DTB PTE array write 0 DTB_PTE0 0010 0001 0, 4 WO 0L —

DTB PTE array write 1 DTB_PTE1 1010 0001 3, 7 WO 0L —

DTB alternate processor mode DTB_ALTMODE 0010 0110 6 WO 1L —

DTB invalidate all process (ASM = 0) DTB_IAP 1010 0010 7 WO 1L —

DTB invalidate all DTB_IA 1010 0011 7 WO 1L —

DTB invalidate single (array 0) DTB_IS0 0010 0100 6 WO 0L —

DTB invalidate single (array 1) DTB_IS1 1010 0100 7 WO 1L —

DTB address space number 0 DTB_ASN0 0010 0101 4 WO 0L —

DTB address space number 1 DTB_ASN1 1010 0101 7 WO 1L —

Memory management status MM_STAT 0010 0111 — RO 0L 3

Mbox control M_CTL 0010 1000 6 WO 0L —

Dcache control DC_CTL 0010 1001 6 WO 0L —

Dcache status DC_STAT 0010 1010 6 RW 0L 3

Table 5–1 Internal Processor Registers (Continued)

Register Name Mnemonic
Index
(Binary)

Score-
Board
Bit Access

MT/MF
Issued
from Ebox
Pipe

Latency
for
MFPR
(Cycles)
5–2 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ebox IPRs

cle.
unter

the
ter.

the
d dis-
5.1 Ebox IPRs

This section describes the internal processor registers that control Ebox functions.

5.1.1 Cycle Counter Register – CC

The cycle counter register (CC) is a read-write register. The lower half of CC is a
counter that, when enabled by way of CC_CTL[32], increments once each CPU cy
The upper half of the register is 32 bits of register storage that may be used as a co
offset as described in theAlpha Architecture Handbook, Version 4under Processor Cycle
Counter (PCC) Register.

A HW_MTPR instruction to the CC writes the upper half of the register and leaves
lower half unchanged. The RPCC instruction returns the full 64-bit value of the regis
Figure 5–1 shows the cycle counter register.

Figure 5–1 Cycle Counter Register

5.1.2 Cycle Counter Control Register – CC_CTL

The cycle counter control register (CC_CTL) is a write-only register through which
lower half of the CC register may be written and its associated counter enabled an
abled. Figure 5–2 shows the cycle counter control register.

Figure 5–2 Cycle Counter Control Register

Cbox IPRs

Cbox data C_DATA 0010 1011 6 RW 0L 3

Cbox shift control C_SHFT 0010 1100 6 WO 0L Ò

1Whenn equals 1, that process context field is selected (FPE, PPCE, ASTRR, ASTER, ASN).

Table 5–1 Internal Processor Registers (Continued)

Register Name Mnemonic
Index
(Binary)

Score-
Board
Bit Access

MT/MF
Issued
from Ebox
Pipe

Latency
for
MFPR
(Cycles)

OFFSET

COUNTER

63 32 31 0

LK99-0008A

CC_ENA

COUNTER[31:4]

63 433 332 31 0

LK99-0009A
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–3

Ebox IPRs

t
vir-

he
it

vior
ress

s

Table 5–2 describes the CC_CTL register fields.

5.1.3 Virtual Address Register – VA

The virtual address register (VA) is a read-only register. When a DTB miss or fault
occurs, the associatedeffective virtual address is written into the VA register. VA is no
written when a LD_VPTE gets a DTB miss or Dstream fault. Figure 5–3 shows the
tual address register.

Figure 5–3 Virtual Address Register

5.1.4 Virtual Address Control Register – VA_CTL

The virtual address control register (VA_CTL) is a write-only register that controls t
way in which the faulting virtual address stored in the VA register is formatted when
is read by way of the VA_FORM register. It also contains control bits that affect the
behavior of the memory pipe virtual address sign extension checkers and the beha
of the Ebox extract, insert, and mask instructions. Figure 5–4 shows the virtual add
control register.

Figure 5–4 Virtual Address Control Register

Table 5–2 Cycle Counter Control Register Fields Description

Name Extent Type Description

Reserved [63:33] — —

CC_ENA [32] WO Counter Enable.

When set, this bit allows the cycle counter to increment.

COUNTER[31:4] [31:4] WO CC[31:4] may be written by way of this field. Write transaction
to CC_CTL result in CC[3:0] being cleared.

Reserved [3:0] — —

VA[63:0]

63 0

LK99-0010A

63 29 3 2 130 0

VPTB[63:30]

VA_FORM_32

VA_48

B_ENDIAN
LK99-0014A
5–4 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ebox IPRs

he
he
tored

r

l

th
Table 5–3 describes the virtual address control register fields.

5.1.5 Virtual Address Format Register – VA_FORM

The virtual address format register (VA_FORM) is a read-only register. It contains t
virtual page table entry address derived from the faulting virtual address stored in t
VA register. It also contains the virtual page table base and associated control bits s
in the VA_CTL register.

Figure 5–5 shows VA_FORM when VA_CTL(VA_48) equals 0 and
VA_CTL(VA_FORM_32) equals 0.

Figure 5–5 Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 0)

Figure 5–6 shows VA_FORM when VA_CTL(VA_48) equals 1 and
VA_CTL(VA_FORM_32) equals 0.

Table 5–3 Virtual Address Control Register Fields Description

Name Extent Type Description

VPTB[63:30] [63:30] WO Virtual Page Table Base.

See the VA_FORM register section for details.

Reserved [29:3] — —

VA_FORM_32 [2] WO This bit is used to control address formatting when reading the
VA_FORM register. See the section on the VA_FORM register fo
details.

VA_48 [1] WO,0 This bit controls the format applied to effective virtual addresses
by the VA_FORM register and the memory pipe virtual address
sign extension checkers. When VA_48 is clear, the 43-bit virtual
address format is used, and when VA_48 is set, the 48-bit virtua
address format is used.
When VA_48 is set, the sign extension checkers generate an
access control violation (ACV) if VA[63:0]≠ SEXT (VA[47:0]).
When VA_48 is clear, the sign extension checkers generate an
ACV if VA[63:0] ≠ SEXT(VA[42:0]).

B_ENDIAN [0] WO Big Endian Mode.

When set, the shift amount (Rbv[2:0]) is inverted for EXTxx,
INSxx, and MSKxx instructions. The lower bits of the physical
address for Dstream accesses are inverted based upon the leng
of the reference as follows:

Byte: Invert bits [2:0]
Word: Invert bits [2:1]
Longword: Inverts bit [2]

VPTB[63:33]

VA[42:13]

63 33 332 2 0

LK99-0011A
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–5

Ibox IPRs

y
ut-
oth

o
he

he
Figure 5–6 Virtual Address Format Register (VA_48 = 1, VA_FORM_32 = 0)

Figure 5–7 shows VA_FORM when VA_CTL(VA_48) equals 0 and
VA_CTL(VA_FORM_32) equals 1.

Figure 5–7 Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 1)

5.2 Ibox IPRs

This section describes the internal processor registers that control Ibox functions.

5.2.1 ITB Tag Array Write Register – ITB_TAG

The ITB tag array write register (ITB_TAG) is a write-only register. The ITB tag arra
is written by way of this register. A write transaction to ITB_TAG writes a register o
side the ITB array. When a write to the ITB_PTE register is retired, the contents of b
the ITB_TAG and ITB_PTE registers are written into the ITB entry. The specific ITB
entry that is written is determined by a round-robin algorithm; the algorithm writes t
entry number 0 as the first entry after the 21264/EV67 is reset. Figure 5–8 shows t
ITB tag array write register.

Figure 5–8 ITB Tag Array Write Register

5.2.2 ITB PTE Array Write Register – ITB_PTE

The ITB PTE array write register (ITB_PTE) is a write-only register through which t
ITB PTE array is written. A round-robin allocation algorithm is used. A write to the
ITB_PTE array, when retired, results inboth the ITB_TAG and ITB_PTE arrays being
written. The specific entry that is written is chosen by the round-robin algorithm
described above. Figure 5–9 shows the ITB PTE array write register.

63 38 3743 342 2 0

VPTB[63:43]

SEXT(VA[47])

VA[47:13] LK99-0012A

63 29 322 22130 0

VPTB[63:30]

VA[31:13] LK99-0013A

63 48 47 13 12 0

VA[47:13] LK99-0015A
5–6 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

rit-

ng

n-

c-
ll
Figure 5–9 ITB PTE Array Write Register

5.2.3 ITB Invalidate All Process (ASM=0) Register – ITB_IAP

The ITB invalidate all process register (ITB_IAP) is a pseudo register that, when w
ten to, invalidates all ITB entries whose ASM bit is clear. An explicit write to
IC_FLUSH_ASM is required to flush the Icache of blocks with ASM equal to zero.

5.2.4 ITB Invalidate All Register – ITB_IA

The ITB invalidate all register (ITB_IA) is a pseudo register that, when written to,
invalidates all ITB entries. An explicit write to IC_FLUSH is required to flush the
Icache.

5.2.5 ITB Invalidate Single Register – ITB_IS

The ITB invalidate single register (ITB_IS) is a write-only register. Writing a virtual
page number to this register invalidates any ITB entry that meets one of the followi
criteria:

• The ITB entry’s virtual page number matches ITB_IS[47:13] (or fewer bits if gra
ularity hint bits are set in the ITB entry) and its ASN field matches the address
space number supplied in PCTX[46:39].

• The ITB entry’s virtual page number matches ITB_IS[47:13] and its ASM bit is set.

Figure 5–10 shows the ITB invalidate single register.

Figure 5–10 ITB Invalidate Single Register

Note: Because the Icache is virtually indexed and tagged, it is normally not ne
essary to flush the Icache when paging. Therefore, a write to ITB_IS wi
not flush the Icache.

63 9 8 7 6 544 443 13 312 11 10 0

PFN[43:13]

URE

SRE

ERE

KRE

GH[1:0]

ASM
LK99-0016A

63 48 47 13 12 0

INVAL_ITB[47:13] LK99-0017A
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–7

Ibox IPRs

e

d by

tion

of

uc-
5.2.6 ProfileMe PC Register – PMPC

The ProfileMe PC register (PMPC) is a read-only register that contains the PC of th
last profiled instruction. Additional information is available in the I_STAT and
PCTR_CTL register descriptions.

Usage of PMPC in performance monitoring is described in Section 6.10.

Figure 5–11 shows the ProfileMe PC register.

Figure 5–11 ProfileMe PC Register

Table 5–4 describes the ProfileMe PC register fields.

5.2.7 Exception Address Register – EXC_ADDR

The exception address register (EXC_ADDR) is a read-only register that is update
hardware when it encounters an exception or interrupt.

EXC_ADDR[0] is set if the associated exception occurred in PALmode. The excep
actions are listed here:

• If the exception was a fault or a synchronous trap, EXC_ADDR contains the PC
the instruction that triggered the fault or trap.

• If the exception was an interrupt, EXC_ADDR contains the PC of the next instr
tion that would have executed if the interrupt had not occurred.

Figure 5–12 shows the exception address register.

Figure 5–12 Exception Address Register

Table 5–4 ProfileMe PC Fields Description

Name Extent Type Description

PC[63:2] [63:2] RO Address of the profiled instruction

Reserved [1] RO Read as zero

PAL [0] RO Indicates that the PC field contains a physical-mode PALmode
address

63 2 1 0

PC[63:2]

PAL
LK99-0018A

63 2 1 0

PC[63:2]

PAL
LK99-0018A
5–8 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

It
the
32

nter-
ither
5.2.8 Instruction Virtual Address Format Register — IVA_FORM

The instruction virtual address format register (IVA_FORM) is a read-only register.
contains the virtual PTE address derived from the faulting virtual address stored in
EXC_ADDR register, and from the virtual page table base, VA_48 and VA_FORM_
bits, stored in the I_CTL register.

Figure 5–13 shows IVA_FORM when I_CTL(VA_48) equals 0 and
I_CTL(VA_FORM_32) equals 0.

Figure 5–13 Instruction Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 0)

Figure 5–14 shows IVA_FORM when I_CTL(VA_48) equals 1 and
I_CTL(VA_FORM_32) equals 0.

Figure 5–14 Instruction Virtual Address Format Register (VA_48 = 1, VA_FORM_32 = 0)

Figure 5–15 shows IVA_FORM when I_CTL(VA_48) equals 0 and
I_CTL(VA_FORM_32) equals 1.

Figure 5–15 Instruction Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 1)

5.2.9 Interrupt Enable and Current Processor Mode Register – IER_CM

The interrupt enable and current processor mode register (IER_CM) contains the i
rupt enable and current processor mode bit fields. These bit fields can be written e
individually or together with a single HW_MTPR instruction. When bits [7:2] of the
IPR index field of a HW_MTPR instruction contain the value 0000102, this register is
selected. Bits [1:0] of the IPR index indicate which bit fields are to be written: bit[1]
corresponds to the IER field and bit[0] corresponds to the processor mode field. A
HW_MFPR instruction to this register returns the values in both fields. Figure 5–16
shows the interrupt enable and current processor mode register.

63 33 332 2 0

VPTB[63:33]

VA[42:13] LK99-0019A

63 38 3743 342 2 0

VPTB[63:43]

SEXT(VA[47])

VA[47:13] LK99-0020A

63 29 322 22130 0

VPTB[63:30]

VA[31:13] LK99-0021A
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–9

Ibox IPRs

s.

ts to
Figure 5–16 Interrupt Enable and Current Processor Mode Register

Table 5–5 describes the interrupt enable and current processor mode register field

5.2.10 Software Interrupt Request Register – SIRR

The software interrupt request register (SIRR) is a read-write register containing bi
request software interrupts. To generate a particular software interrupt, its correspond-
ing bits in SIRR and IER[SIER] must both be set. Figure 5–17 shows the software
interrupt request register.

Table 5–5 IER_CM Register Fields Description

Name Extent Type Description

Reserved [63:39] — —

EIEN[5:0] [38:33] RW External Interrupt Enable

SLEN [32] RW Serial Line Interrupt Enable

CREN [31] RW Corrected Read Error Interrupt Enable

PCEN[1:0] [30:29] RW Performance Counter Interrupt Enables

SIEN[15:1] [28:14] RW Software Interrupt Enables

ASTEN [13] RW AST Interrupt Enable

When set, enables those AST interrupt requests that are also
enabled by the value in ASTER.

Reserved [12:5] — —

CM[1:0] [4:3] RW Current Mode

00 Kernel
01 Executive
10 Supervisor
11 User

Reserved [2:0] — —

63 39 2938 28 514 433 13 332 12 231 30 0

EIEN[5:0]

SLEN

CREN

PCEN[1:0]

SIEN[15:1]

ASTEN

CM[1:0]
LK99-0022A
5–10 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

ing
le bit

lta-
ly
e

8

Figure 5–17 Software Interrupt Request Register

Table 5–6 describes the software interrupt request register fields.

5.2.11 Interrupt Summary Register – ISUM

The interrupt summary register (ISUM) is a read-only register that records all pend
hardware, software, and AST interrupt requests that have their corresponding enab
set.

If a new interrupt (hardware, serial line, crd, or performance counters) occurs simu
neously with an ISUM read, the ISUM read returns zeros. That condition is normal
assumed to be a passive release condition. The interrupt is signaled again when th
PALcode returns to native mode. The effects ofthis condition can be minimized by
reading ISUM twice and ORing the results.

Usage of ISUM in performance monitoring is described in Section 6.10. Figure 5–1
shows the interrupt summary register.

Figure 5–18 Interrupt Summary Register

Table 5–6 Software Interrupt Request Register Fields Description

Name Extent Type Description

Reserved [63:29] — —

SIR[15:1] [28:14] RW Software Interrupt Requests

Reserved [13:0] — —

63 29 28 14 13 0

SIR[15:1] LK99-0023A

63 39 29 938 28 8 514 433 13 332 231 11 10 0

EI[5:0]

SL

CR

PC[1:0]

SI[15:1]

ASTU

ASTS

ASTE

ASTK
LK99-0024A

30
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–11

Ibox IPRs

to
t the

e

e

Table 5–7 describes the interrupt summary register fields.

5.2.12 Hardware Interrupt Clear Register – HW_INT_CLR

The hardware interrupt clear register (HW_INT_CLR) is a write-only register used
clear edge-sensitive interrupt requests. See Section D.31 for more information abou
PALcode restriction concerning this register. Figure 5–19 shows the hardware interrupt
clear register.

Figure 5–19 Hardware Interrupt Clear Register

Table 5–7 Interrupt Summary Register Fields Description

Name Extent Type Description

Reserved [63:39] — —

EI[5:0] [38:33] RO External Interrupts

SL [32] RO Serial Line Interrupt

CR [31] RO Corrected Read Error Interrupts

PC[1:0] [30:29] RO Performance Counter Interrupts

PC0 when PC[0] is set.

PC1 when PC[1] is set.

SI[15:1] [28:14] RO Software Interrupts

Reserved [13:11] — —

ASTU, ASTS [10],[9] RO AST Interrupts

For each processor mode, the bit is set if an associated AST
interrupt is pending. This includes the mode’s ASTER and
ASTRR bits and whether the processor mode value held in th
IER_CM register is greater than or equal to the value for the
mode.

Reserved [8:5] — —

ASTE, ASTK [4],[3] RO AST Interrupts

For each processor mode, the bit is set if an associated AST
interrupt is pending. This includes the mode’s ASTER and
ASTRR bits and whether the processor mode value held in th
IER_CM register is greater than or equal to the value for the
mode.

Reserved [2:0] — —

63 29 28 27 26 2533 32 31 30 0

SL

CR

PC[1:0]

MCHK_D

FBTP
LK99-0025A
5–12 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

trap

is

be
is
n-

-

tion

ad
Table 5–8 describes the hardware interrupt clear register fields.

5.2.13 Exception Summary Register – EXC_SUM

The exception summary register (EXC_SUM) is a read-only register that contains
information about instructions that have triggered traps. The register is updated at
delivery time. Its contents are valid only if it is read (by way of a HW_MFPR) in the
first fetch block of the exception handler. There are three types of traps for which th
register captures related information:

• Arithmetic traps: The instruction generated an exceptional condition that should
reported to the operating system, and/or the FPCR status bit associated with th
condition is clear and should be set by PALcode. Additionally, the REG field co
tains the register number of the destination specifier for the instruction that trig
gered the trap.

• Istream ACV: The BAD_IVA bit of this register indicates whether the offending
Istream virtual address is latched into the EXC_ADDR register or the VA register.

• Dstream exceptions: The REG field contains the register number of either the
source specifier (for stores) or the destination specifier (for loads) of the instruc
that triggered the trap.

Figure 5–20 shows the exception summary register.

Table 5–8 Hardware Interrupt Clear Register Fields Description

Name Extent Type Description

Reserved [63:33] — —

SL [32] W1C Clears serial line interrupt request

CR [31] W1C Clears corrected read error interrupt request

PC[1:0] [30:29] W1C Clears performance counter interrupt requests

MCHK_D [28] W1C Clears Dstream machine check interrupt request

Reserved [27] — —

FBTP [26] W1S Forces the next Bcache hit that fills the Icache to generate b

Icache fill parity

Reserved [25:0] — —
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–13

Ibox IPRs

8-

n

Figure 5–20 Exception Summary Register

Table 5–9 describes the exception summary register fields.

Table 5–9 Exception Summary Register Fields Description

Name Extent Type Description

SEXT(SET_IOV) [63:48] RO, 0 Sign-extended value of bit 47, SET_IOV.

SET_IOV [47] RO PALcode should set FPCR[IOV].

SET_INE [46] RO PALcode should set FPCR[INE].

SET_UNF [45] RO PALcode should set FPCR[UNF].

SET_OVF [44] RO PALcode should set FPCR[OVF].

SET_DZE [43] RO PALcode should set FPCR[DZE].

SET_INV [42] RO PALcode should set FPCR[INV].

PC_OVFL [41] RO Indicates that EXC_ADDR was improperly sign extended for 4
bit mode over/underflow IACV.

Reserved [40:14] RO, 0 Reserved for Compaq.

BAD_IVA [13] RO Bad Istream VA.

This bit should be used by the IACV PALcode routine to deter-
mine whether the offending I-stream virtual address is latched i
the EXC_ADDR register or the VA register. If BAD_IVA is clear,
EXC_ADDR contains the address; if BAD_IVA is set, VA con-
tains the address.

63 48 847 746 645 544 14 443 13 342 12 241 140 0

SEXT(SET_IOV)

SET_IOV

SET_INE

SET_UNF

SET_OVF

SET_DZE

SET_INV

PC_OVFL

BAD_IVA

REG[4:0]

INT

IOV

INE

UNF

FOV

DZE

INV

SWC
LK99-0026A
5–14 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

hys-
after
gis-

ol

se

x

r-
5.2.14 PAL Base Register – PAL_BASE

The PAL base register (PAL_BASE) is a read-write register that contains the base p
ical address for PALcode. Its contents are cleared by chip reset but are not cleared
waking up from sleep mode or from fault reset. Figure 5–21 shows the PAL base re
ter.

Figure 5–21 PAL Base Register

Table 5–10 describes the PAL base register fields.

5.2.15 Ibox Control Register – I_CTL

The Ibox control register (I_CTL) is a read-write register that controls various Ibox
functions. Its contents are cleared by chip reset. Figure 5–22 shows the Ibox contr
register.

REG[4:0] [12:8] RO Destination register of load or operate instruction that triggered
the trap OR source register of store that triggered the trap. The
bits may contain the Rc field of an operate instruction or the Ra
field of a load or store instruction. The value is UNPREDICTABLE
if the trap was triggered by an ITB miss, interrupt, OPCDEC, or
other non load/st/operate.

INT [7] RO Set to indicate Ebox integer overflow trap, clear to indicate Fbo
trap condition.

IOV [6] RO Indicates Fbox convert-to-integer overflow or Ebox integer ove
flow trap.

INE [5] RO Indicates floating-point inexact error trap.

UNF [4] RO Indicates floating-point underflow trap.

FOV [3] RO Indicates floating-point overflow trap.

DZE [2] RO Indicates divide by zero trap.

INV [1] RO Indicates invalid operation trap.

SWC [0] RO Indicates software completion possible. This bit is set if the
instruction that triggered the trap contained the /S modifier.

Table 5–10 PAL Base Register Fields Description

Name Extent Type Description

Reserved [63:44] RO, 0 Reserved for Compaq.

PAL_BASE[43:15] [43:15] RW Base physical address for PALcode.

Reserved [14:0] RO, 0 Reserved for Compaq.

Table 5–9 Exception Summary Register Fields Description (Continued)

Name Extent Type Description

63 1544 1443 0

PAL_BASE[43:15] LK99-0027A
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–15

Ibox IPRs

r

s

re
e

Figure 5–22 Ibox Control Register

Table 5–11 describes the Ibox control register fields.

Table 5–11 Ibox Control Register Fields Description

Name Extent Type Description

SEXT(VPTB[47]) [63:48] RW,0 Sign extended VPTB[47].

VPTB[47:30] [47:30] RW,0 Virtual Page Table Base. See Section 5.1.5 for details.

CHIP_ID[5:0] [29:24] RO This is a read-only field that supplies the revision ID numbe
for the 21264/EV67 part.
21264/EV67 pass 2.2.2 ID is 0011102.
21264/EV67 pass 2.2.3 ID is 0011112.
21264/EV67 pass 2.4 ID is 0011002.
21264/EV67 pass 2.5 ID is 0001112.

BIST_FAIL [23] RO,0 Indicates the status of BiST (clear = pass, set = fail),
described in Section 11.5.1.

TB_MB_EN [22] RW,0 When set, the hardware ensures that the virtual-mode load
in DTB and ITB fill flows that access the page table and the
subsequent virtual mode load or store that is being retried a
‘ordered’ relative to another processor’s stores. This must b
set for multiprocessor systems in which no MB instruction is
present in the TB fill flow, unless there are other mecha-
nisms present that ensure coherency.

SEXT(VPTB[47])

VPTB[47:30]

CHIP_ID[5:0]

BIST_FAIL

TB_MB_EN

MCHK_EN

ST_WAIT_64K

PCT1_EN

PCT0_EN

SINGLE_ISSUE_H

VA_FORM_32

VA_48

SL_RCV

HWE

BP_MODE[1:0]

SBE[1:0]

SDE[1:0]

SPE[2:0]

IC_EN[1:0]

SPCE

SL_XMIT

63 29 19 948 18 847 17 716 615 524 1423 13 322 12 221 11 130 20 10 0

LK99-0029A
5–16 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

n

or-
-

or-

-

n

r.

.

-

MCHK_EN [21] RW,0 Machine check enable — set to enable machine checks.

ST_WAIT_64K [20] RW,0 The stWait table is used to reduce load/store order traps.
When set, the stWait table is cleared after 64K cycles. Whe
clear, the stWait table is cleared after 16K cycles. See Sec-
tion 2.11.

PCT1_EN [19] RW,0 Enable performance counter #1. If this bit is one, the perf
mance counter will count if either the system (SPCE) or pro
cess (PPCE) performance counter enable is asserted.

PCT0_EN [18] RW,0 Enable performance counter #0. If this bit is one, the perf
mance counter will count if EITHER the system (SPCE) or
process (PPCE) performance counter enable is set.

SINGLE_ISSUE_H [17] RW,0 When set, this bit forces instructions to issue only from the
bottom-most entries of the IQ and FQ.

VA_FORM_32 [16] RW,0 This bit controls address formatting on a read of the
IVA_FORM register.

VA_48 [15] RW,0 This bit controls the format applied to effective virtual
addresses by the IVA_FORM register and the Ibox virtual
address sign extension checkers. When VA_48 is clear, 43
bit virtual address format is used, and when VA_48 is set,
48-bit virtual address format is used. The effect of this bit on
the IVA_FORM register is identical to the effect of
VA_CTL[VA_48] on the VA_FORM register. See Section
5.1.5.
When VA_48 is set, the sign extension checkers generate a
ACV if va[63:0] ≠ SEXT(va[47:0]). When VA_48 is clear,
the sign extension checkers generate an ACV if va[63:0]≠
SEXT(va[42:0]).
This bit also affects DTB_DOUBLE traps. If set, the DTB
double miss traps vector to the DTB_DOUBLE_4 entry
point.
DTB_DOUBLE PALcode flow selection is not affected by
VA_CTL[VA_48].

SL_RCV [14] RO See Section 11.2.

SL_XMIT [13] WO When set, drives a value onSromClk_H. See Section 11.2.

HWE [12] RW,0 If set, allow PALRES intructions to be executed in kernel
mode. Note that modification of the ITB while in kernel
mode/native mode may cause UNPREDICTABLE behavio

BP_MODE[1:0] [11:10] RW,0 Branch Prediction Mode Selection.

BP_MODE[1], if set, forces all branches to be predicted to
fall through. If clear, the dynamic branch predictor is chosen
BP_MODE[0]. If set, the dynamic branch predictor chooses
local history prediction. If clear, the dynamic branch predic
tor chooses local or global prediction based on the state of
the chooser.

Table 5–11 Ibox Control Register Fields Description (Continued)

Name Extent Type Description
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–17

Ibox IPRs

ox

d

t,
5.2.16 Ibox Status Register – I_STAT

The Ibox status register (I_STAT) is a read/write-1-to-clear register that contains Ib
status information.

Usage of I_STAT in performance monitoring is described in Section 6.10.

Figure 5–23 shows the Ibox status register.

SBE[1:0] [9:8] RW,0 Stream Buffer Enable.

The value in this bit field specifies the number of Istream
buffer prefetches (besides the demand-fill) that are launche
after an Icache miss. If the value is zero, only demand
requests are launched.

SDE[1:0] [7:6] RW,0 PALshadow Register Enable.

Enables access to the PALshadow registers. If SDE[1] is se
R4-R7 and R20-R23 are used as PALshadow registers.
SDE[0] does not affect 21264/EV67 operation.

SPE[2:0] [5:3] RW,0 Super Page Mode Enable.

Identical to the SPE bits in the Mbox M_CTL SPE[2:0]. See
Section 5.3.9.

IC_EN[1:0] [2:1] RW,3 Icache Set Enable.

At least one set must be enabled. The entire cache may be
enabled by setting both bits. Zero, one, or two Icache sets
can be enabled.
This bit does not clear the Icache, but only disables fills to
the affected set.

SPCE [0] RW,0 System Performance Counting Enable.

Enables performance counting for the entire system if indi-
vidual counters (PCTR0 or PCTR1) are enabled by setting
PCT0_EN or PCT1_EN, respectively.

Performance counting for individual processes can be
enabled by setting PCTX[PPCE]. See Section 5.2.21 for
more information.

See Section 6.10 for information about performance count-
ing.

Table 5–11 Ibox Control Register Fields Description (Continued)

Name Extent Type Description
5–18 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

e
ca-

he
he

e
to

)
)

Figure 5–23 Ibox Status Register

Table 5–12 describes the Ibox status register fields.

Table 5–12 Ibox Status Register Fields Description

Name Extent Type Description

Reserved [63:41] RO Reserved for Compaq.

MIS [40] RO ProfileMe Mispredict Trap.
If the I_STAT[TRP] bit is set, this bit indicates that the profiled instruc-
tion caused a mispredict trap. JSR/JMP/RET/COR or HW_JSR/
HW_JMP/HW_RET/HW_COR mispredicts do not set this bit but can b
recognized by the presence of one of these instructions at the PMPC lo
tion with the I_STAT[TRP] bit set. This identification is exact in all cases
except error condition traps. Hardware corrected Icache parity or Dcac
ECC errors, and machine check traps can occur on any instruction in t
pipeline.

TRP [39] RO ProfileMe Trap.
This bit indicates that the profiled instruction caused a trap. The trap typ
field, PMPC register, and instruction at the PMPC location are needed
distinguish all trap types.

LS0 [38] RO ProfileMe Load-Store Order Trap.
If the profiled instruction caused a replay trap, this bit indicates that the
precise trap cause was an Mbox load-store order replay trap.
If clear, this bit indicates that the replay trap was any one of the follow-
ing:

Mbox load-load order
Mbox load queue full
Mbox store queue full
Mbox wrong size trap (such as, STL→ LDQ)
Mbox Bcache alias (2 physical addresses map to same Bcache line
Mbox Dcache alias (2 physical addresses map to same Dcache line
Icache parity error
Dcache ECC error

63 39 2938 2837 34 33 3241 40 30 0

MIS

TRP

LS0

TRAP TYPE[3:0]

ICM

OVR[2:0]

PAR LK99-0031A
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–19

Ibox IPRs

s.
by

-
Me

d
.

r 0
in

on
ap
ble
TRAP
TYPE[3:0]

[37:34] RO ProfileMe Trap Types.
If the profiled instruction caused a trap (indicated by I_STAT[TRP]), this
field indicates the trap type as listed here:
Value Trap Type

0 Replay
1 Invalid (unused)
2 DTB Double miss (3 level page tables)
3 DTB Double miss (4 level page tables)
4 Floating point disabled
5 Unaligned Load/Store
6 DTB Single miss
7 Dstream Fault
8 OPCDEC
9 Invalid (use PMPC, described below)
10 Machine Check
11 Invalid (use PMPC, described below)
12 Arithmetic
13 Invalid (use PMPC, described below)
14 MT_FPCR
15 Reset

Traps due to ITB miss, Istream access violation, or interrupts are not
reported in the trap type field because they do not cause pipeline abort
Instead, these traps cause pipeline redirection and can be distinguished
examining the PMPC value for the presence of the corresponding PAL
code entry offset addresses indicated below. In these cases, the Profile
interrupt will normally be delivered when exiting the trap PALcode flow
and the EXC_ADDR register will contain the original PC that encoun-
tered the redirect trap.
PMPC[14:0] Trap

0581 ITB miss
0481 Istream Access Violation
0681 Interrupt

ICM [33] RO ProfileMe Icache Miss.
This bit indicates that the profiled instruction was contained in an aligne
4-instruction Icache fetch block that requested a new Icache fill stream

OVR[2:0] [32:30] RO ProfileMe Counter 0 Overcount.
This bit indicates a value (0-7) that must be subtracted from the counte
result to obtain an accurate count of the number of instructions retired
the interval beginning three cycles after the profiled instruction reaches
pipeline stage 2 and ending four cycles after the profiled instruction is
retired.

PAR [29] W1C Icache Parity Error.
This bit indicates that the Icache encountered a parity error on instructi
fetch. When a parity error is detected, the Icache is flushed, a replay tr
back to the address of the error instruction is generated, and a correcta
read interrupt is requested.

Reserved [28:0] RO Reserved for Compaq.

Table 5–12 Ibox Status Register Fields Description (Continued)

Name Extent Type Description
5–20 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

is

en
is
t and

the
ust

tate to
n up.

text
th
5.2.17 Icache Flush Register – IC_FLUSH

The Icache flush register (IC_FLUSH) is a pseudo register. Writing to this register
invalidates all Icache blocks. The cache is flushed when the next HW_RET/STALL
instruction is retired. See Section D.20 for more information.

5.2.18 Icache Flush ASM Register – IC_FLUSH_ASM

The Icache flush ASM register (IC_FLUSH_ASM) is a pseudo register. Writing to th
register invalidates allIcacheblocks with their ASM bit clear.

5.2.19 Clear Virtual-to-Physical Map Register – CLR_MAP

The clear virtual-to-physical map register (CLR_MAP) is a pseudo register that, wh
written, results in the clearing of the current map of virtual to physical registers. Th
register must only be written after there are no register-borne dependencies presen
there are no unretired instructions. See an example in the PALcode restrictions.

5.2.20 Sleep Mode Register – SLEEP

The sleep mode register (SLEEP) is a pseudo register that, when written, results in
PLL speed being reduced and the chip entering a low-power mode. This register m
only be written after a sequence of code has been run which saves all necessary s
DRAM, flushes the caches, and unmasks certain interrupts so the chip can be woke
See Section 7.3 for details.

5.2.21 Process Context Register – PCTX

The process context register (PCTX) contains information associated with the con
of a process. Any combination of the bit fields within this register may be written wi
a single HW_MTPR instruction. When bits [7:6] of the IPR index field of a
HW_MTPR instruction contain the value 012, this register is selected. Bits [4:0] of the
IPR index indicate which bit fields are to be written. Usage of PCTX in performance
monitoring is described in Section 6.10.

Table 5–13 lists the correspondence between IPR index bits and register fields.

A HW_MFPR from this register returns the values in all of its component bit fields.

Figure 5–24 shows the process context register.

Table 5–13 IPR Index Bits and Register Fields

IPR Index Bit Register Field

0 ASN

1 ASTER

2 ASTRR

3 PPCE

4 FPE
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–21

Ibox IPRs

r
ci-
Figure 5–24 Process Context Register

Table 5–14 describes the process context register fields.

Table 5–14 Process Context Register Fields Description

Name Extent Type Description

Reserved [63:47] — —

ASN[7:0] [46:39] RW Address space number.

Reserved [38:13] — —

ASTRR[3:0] [12:9] RW AST request register—used to request AST interrupts in
each of the four processor modes.
To generate a particular AST interrupt, its corresponding
bits in ASTRR and ASTER must be set, along with the
ASTE bit in IER.
Further, the value of the current mode bits in the PS registe
must be equal to or higher than the value of the mode asso
ated with the AST request.
The bit order with this field is:

User Mode 12
Supervisor Mode 11
Executive Mode 10
Kernel Mode 9

ASTER[3:0] [8:5] RW AST enable register—used to individually enable each of
the four AST interrupt requests.
The bit order with this field is:

User Mode 8
Supervisor Mode 7
Executive Mode 6
Kernel Mode 5

Reserved [4:3] — —

63 39 938 847 46 5 413 312 2 1 0

ASN[7:0]

ASTRR[3:0]

ASTER[3:0]

FPE

PPCE
LK99-0032A
5–22 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

Pro-

-

d
-

-

1 0

034A
5.2.22 Performance Counter Control Register – PCTR_CTL

The performance counter control register (PCTR_CTL) is a read-write register that
controls the function of the performance counters for either aggregate counting or
fileMe sampling counting.

Usage of PCTR_CTL in performance monitoring is described in Section 6.10.

Figure 5–25 shows the performance counter control register.

Figure 5–25 Performance Counter Control Register

FPE [2] RW,1 Floating-point enable—if clear, floating-point instructions
generate FEN exceptions. This bit is set by hardware on
reset.

PPCE [1] RW Process performance counting enable.

Enables performance counting for an individual process
with counters PCTR0 or PCTR1, which are enabled by set
ting PCT0_EN or PCT1_EN, respectively.

Performance counting for the entire system can be enable
by setting I_CTL[SPCE]. See Section 5.2.15 for more infor
mation.

See Section 6.10 for information about performance count
ing.

Reserved [0] — —

Table 5–14 Process Context Register Fields Description (Continued)

Name Extent Type Description

63 48 2847 27 26 625 5 4 3 2

SEXT(PCTR0_CTL[47])

PCTR0[19:0]

PM_STALLED

PM_KILLED_BM

PCTR1[19:0]

SL0

SL1[1:0]

VAL

TAK
LK99-0
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–23

Ibox IPRs

s

d

if

r

d

-

ore
Table 5–15 describes the performance counter control register fields.

Table 5–15 Performance Counter Control Register Fields Description

Name Extent Type Description

SEXT(PCTR0_CTL[47]) [63:48] RO When read, this field is sign extended from PCTR_CTL[47]. Write
to this field are ignored.

PCTR0[19:0] [47:28] RW Performance counter 0.
PCTR0 is enabled by I_CTL[PCT0_EN] and either I_CTL[SPCE] or
PCTX[PPCE].

In Aggregate mode:
When enabled, PCTR0 is incremented at each cycle by the selecte
input. (See Section 6.10.2 for more information.)
On overflow, if enabled by IER_CM[PCEN0],
ISUM[PC0] is set and an interrupt is triggered.

In ProfileMe mode:
On overflow, a count window is opened and PCTR0 is incremented
as described in Section 6.10.3. When the count window overflows,
enabled by IER_CM[PCEN0], ISUM[PC0] is set and an interrupt is
triggered.

See Table 5–16 for counter modes.

PM_STALLED [27] RO The profiled instruction stalled for at least one cycle between the
fetch and map stages of the pipeline.

PM_KILLED_BM [26] RO The profiled instruction was killed during or before the cycle in
which it was mapped.

PCTR1[19:0] [25:6] RW Performance counter 1.

PCTR1 is enabled by I_CTL[PCT1_EN] and either I_CTL[SPCE] o
PCTX[PPCE].

In Aggregate mode:
When enabled, PCTR1 is incremented at each cycle by the selecte
input. (See Section 6.10.2 for more information.)
On overflow, if enabled by IER_CM[PCEN1], ISUM[PC1] is set and
an interrupt is triggered.

In ProfileMe mode, how PCTR1 is incremented is described in Sec
tion 6.10.3.

In either case, PCTR1 is incremented no more than 1 per cycle.

See Table 5–16 for counter modes.

Reserved [5] RO Reads to this field return zero. Writes to this field are ignored.

SL0 [4] RW Selector 0.
0 = Aggregate counting mode
1 = ProfileMe mode
See Table 5–16 for more information.

SL1[1:0] [3:2] RW Selector 1.
Selects counter PCTR0 and PCTR1 modes. See Table 5–16 for m
information.
5–24 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Mbox IPRs

.

hm.

s
e

5.3 Mbox IPRs

This section describes the internal processor registers that control Mbox functions

5.3.1 DTB Tag Array Write Registers 0 and 1 – DTB_TAG0, DTB_TAG1

The DTB tag array write registers 0 and 1 (DTB_TAG0 and DTB_TAG1) are write-
only registers through which the two memory pipe DTB tagarrays are written. Write
transactions to DTB_TAG0 and DTB_TAG1 write data to registers outside the DTB
arrays. When write transactions to the corresponding DTB_PTE registers are retired,
the contents of both the DTB_TAG and DTB_PTE registers are written into their
respective DTB arrays, at locations determined by the round-robin allocation algorit
Figure 5–26 shows the DTB tag array write registers 0 and 1.

Figure 5–26 DTB Tag Array Write Registers 0 and 1

VAL [1] RO Profiled instruction valid.
When set, indicates a nontrapping profiled instruction retired valid.
When clear, indicates that a nontrapping profiled instruction was
killed after the cycle in which it was mapped. Valid retire/abort statu
for a trapping profiled instruction is determined by the trap type (se
I_STAT[TRAP_TYPE]).

TAK [0] RO ProfileMe conditional branch taken.
Indicates program branch direction, if the profiled instruction is a
conditional branch.

Table 5–16 Performance Counter Control Register Input Select Fields

SL0[4] SL1[3:2] Mode PCTR0 PCTR1

0 00 Aggregate Retired instructions Cycle counting

0 01 Aggregate Cycle counting Not defined

0 10 Aggregate Retired instructions Bcache miss or long latency probes

0 11 Aggregate Cycle counting Mbox replay traps

1 00 ProfileMe Retired instructions Cycle counting

1 01 ProfileMe Cycle counting Inum retire delay

1 10 ProfileMe Retired instructions Bcache miss or long latency probes

1 11 ProfileMe Cycle counting Mbox replay traps

Table 5–15 Performance Counter Control Register Fields Description (Continued)

Name Extent Type Description

63 48 47 13 12 0

VA[47:13]
LK99-0035A
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–25

Mbox IPRs

ers
n by
en
7

ter

er.
5.3.2 DTB PTE Array Write Registers 0 and 1 – DTB_PTE0, DTB_PTE1

The DTB PTE array write registers 0 and 1 (DTB_PTE0 and DTB_PTE1) are regist
through which the DTB PTE arrays are written. The entries to be written are chose
a round-robin allocation scheme. Write transactions to the DTB_PTE registers, wh
retired, result in both the DTB_TAG and DTB_PTE arrays being written. Figure 5–2
shows the DTB PTE array write registers 0 and 1.

Figure 5–27 DTB PTE Array Write Registers 0 and 1

5.3.3 DTB Alternate Processor Mode Register – DTB_ALTMODE

The DTB alternate processor mode register (DTB_ALTMODE) is a write-only regis
whose contents specify the alternate processor mode used by some HW_LD and
HW_ST instructions. Figure 5–28 shows the DTB alternate processor mode regist

Figure 5–28 DTB Alternate Processor Mode Register

63 62 9 8 716 615 514 413 332 12 231 11 110 0

PA[43:13]

UWE

SWE

EWE

KWE

URE

SRE

ERE

KRE

GH[1:0]

ASM

FOW

FOR
LK99-0036A

63 2 1 0

ALT_MODE[1:0]
LK99-0037A
5–26 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Mbox IPRs

ries

TB

are
the

cri-

s

Table 5–17 describes the DTB_ALTMODE register fields.

5.3.4 Dstream TB Invalidate All Process (ASM=0) Register – DTB_IAP

The Dstream translation buffer invalidate all process (ASM=0) register (DTB_IAP) is a
write-only pseudo register. Write transactions to this register invalidate all DTB ent
in which the address space match (ASM) bit is clear.

5.3.5 Dstream TB Invalidate All Register – DTB_IA

The Dstream translation buffer invalidate all register (DTB_IA) is a write-only pseudo
register. Write transactions to this register invalidate all DTB entries and reset the D
not-last-used pointer to its initial state.

5.3.6 Dstream TB Invalidate Single Registers 0 and 1 – DTB_IS0,1

The Dstream translation buffer invalidate single registers (DTB_IS0 and DTB_IS1)
write-only pseudo registers through which software may invalidate a single entry in
DTB arrays. Writing a virtual page number to one of these registers invalidates any
DTB entry in the corresponding memory pipeline which meets one of the following
teria:

• The DTB entry’s virtual page number matches DTB_IS[47:13] and its ASN field
matches DTB_ASN[63:56].

• The DTB entry’s virtual page number matches DTB_IS[47:13] and its ASM bit i
set.

Figure 5–29 shows the Dstream translation buffer invalidate single registers.

Figure 5–29 Dstream Translation Buffer Invalidate Single Registers

Table 5–17 DTB Alternate Processor Mode Register Fields Description

Name Extent Type Description

Reserved [63:2] — —

ALT_MODE[1:0] [1:0] WO Alt_Mode:
ALT_MODE[1:0] Mode

00 Kernel
01 Executive
10 Supervisor
11 User

63 48 47 13 12 0

VA[47:13] LK99-0015A
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–27

Mbox IPRs

uffer

n.

he
a

il-
5.3.7 Dstream TB Address Space Number Registers 0 and 1 – DTB_ASN0,1

The Dstream translation buffer address space number registers (DTB_ASN0 and
DTB_ASN1) are write-only registers that should be written with the address space
number (ASN) of the current process. Figure 5–30 shows the Dstream translation b
address space number registers 0 and 1.

Figure 5–30 Dstream Translation Buffer Address Space Number Registers 0 and 1

5.3.8 Memory Management Status Register – MM_STAT

The memory management status register (MM_STAT) is a read-only register.
When a Dstream TB miss or fault occurs, information about theerror is latched in
MM_STAT. MM_STAT is not updated when a LD_VPTE gets a DTB miss instructio
Figure 5–31 shows the memory management status register.

Figure 5–31 Memory Management Status Register

Table 5–18 describes the memory management status register fields.

Table 5–18 Memory Management Status Register Fields Description

Name Extent Type Description

Reserved [63:11] — —

DC_TAG_PERR [10] RO This bit is set when a Dcache tag parity error occurred during t
initial tag probe of a load or store instruction. The error created
synchronous fault to the D_FAULT PALcode entry point and is
correctable. The virtual address associated with the error is ava
able in the VA register.

OPCODE[5:0] [9:4] RO Opcode of the instruction that caused the error.
HW_LD is displayed as 3 and HW_ST is displayed as 7.

FOW [3] RO This bit is set when a fault-on-write error occurs during a write
transaction and PTE[FOW] was set.

63 56 55 0

ASN[7:0]
LK99-0038A

63 9 4 3 211 110 0

DC_TAG_PERR

OPCODE[5:0]

FOW

FOR

ACV

WR
LK99-0039A
5–28 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Mbox IPRs

om

-

Note: The Ra field of the instruction that triggered the error can be obtained fr
the Ibox EXC_SUM register.

5.3.9 Mbox Control Register – M_CTL

The Mbox control register (M_CTL) is a write-only register. Its contents are cleared by
chip reset. Figure 5–32 shows the Mbox control register.

Figure 5–32 Mbox Control Register

FOR [2] RO This bit is set when a fault-on-read error occurs during a read
transaction and PTE[FOR] was set.

ACV [1] RO This bit is set when an access violation occurs during a transac
tion. Access violations include a bad virtual address.

WR [0] RO This bit is set when an error occurs during a write transaction.

Table 5–18 Memory Management Status Register Fields Description (Continued)

Name Extent Type Description

63 6 45 3 1 0

SMC[1:0]

SPE[2:0]

LK99-0040A
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–29

Mbox IPRs

e ref-

33

e

es

t
b-
-

t
ub-
-

Table 5–19 describes the Mbox control register fields.

Note: Superpage accesses are only allowed in kernel mode. Non-kernel mod
erences to superpages result in access violations.

5.3.10 Dcache Control Register – DC_CTL

The Dcache control register (DC_CTL) is a write-only register that controls Dcache
activity. The contents of DC_CTL are initialized by chip reset as indicated. Figure 5–
shows the Dcache control register.

Table 5–19 Mbox Control Register Fields Description

Name Extent Type Description

Reserved [63:6] — —

SMC[1:0] [5:4] WO,0 Speculative miss control (see Section 4.6.4).

SPE[2:0] [3:1] WO,0 Superpage mode enables.

SPE[2], when set, enables superpage mapping when VA[47:46] = 2. In this
mode, VA[43:13] are mapped directly to PA[43:13] and VA[45:44] are
ignored.

SPE[1], when set, enables superpage mapping when VA[47:41] = 7E16. In
this mode, VA[40:13] are mapped directly to PA[40:13] and PA[43:41] are
copies of PA[40] (sign extension).

SPE[0], when set, enables superpage mapping when VA[47:30] = 3FFFE16.
In this mode, VA[29:13] are mapped directly to PA[29:13] and PA[43:30] ar
cleared.

Reserved [0] — —

Bits Meaning When Set

00 Allow full-time speculation.

01 Force full-time conservative mode. Make retries wait until retire,
force all new stores that do not hit dirty to retry, and cause prefetch
with modify intent (see Section 2.6.2) to behave like normal
prefetches.

10 Place 21264/EV67 in periodic conservative mode by using an 8-bi
counter to add by 4 each time a branch mispredict happens and su
tract by one each time a conditional branch retires. Enter conserva
tive mode if the MSB of the counter is set.

11 Place 21264/EV67 in periodic conservative mode by using an 8-bi
countner to add by 8 each time a branch mispredict happens and s
tract by one each time a conditional branch retires. Enter conserva
tive mode if the MSB of the counter is set.
5–30 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Mbox IPRs

ity
r.

to
.

d

of

g

Figure 5–33 Dcache Control Register

Table 5–20 describes the Dcache control register fields.

5.3.11 Dcache Status Register – DC_STAT

The Dcache status register (DC_STAT) is a read-write register. If a Dcache tag par
error or data ECC error occurs, information about the error is latched in this registe
Figure 5–34 shows the Dcache status register.

Table 5–20 Dcache Control Register Fields Description

Name Extent Type Description

Reserved [63:8] — —

DCDAT_ERR_EN [7] WO,0 Dcache data ECC and parity error enable.

DCTAG_PAR_EN [6] WO,0 Dcache tag parity enable.

F_BAD_DECC [5] WO,0 Force Bad Data ECC. When set, ECC data isnot written into
the cache along with the block that is loaded by a fill or store.
Writing data that is different from that already in the block will
cause bad ECC to be present. Since the old ECC value will
remain, the ECC will bebad.

F_BAD_TPAR [4] WO,0 Force Bad Tag Parity. When set, this bit causes bad tag parity
be put into the Dcache tag array during Dcache fill operations

Reserved [3] — —

F_HIT [2] WO,0 Force Hit. When set, this bit causes all memory space load an
store instructions to hit in the Dcache, independent of the
Dcache tag address compare. F_HIT does not force the status
the block to register as DIRTY (the tag status bits are still con-
sulted), so stores may still generate offchip activity.
In this mode, only one of the two sets may be enabled, and ta
parity checking must be disabled (set DCTAG_PER_EN to
zero).

SET_EN[1:0] [1:0] WO,3 Dcache Set Enable. At least one set must be enabled.

63 8 7 6 5 4 3 2 1 0

DCDAT_ERR_EN

DCTAG_PAR_EN

F_BAD_DECC

F_BAD_TPAR

F_HIT

SET_EN[1:0]
LK99-0041A
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–31

Cbox CSRs and IPRs

64/

x
-

bits

e
r-

e
r-
Figure 5–34 Dcache Status Register

Table 5–21 describes the Dcache status register fields.

5.4 Cbox CSRs and IPRs

This section describes the Cbox CSRs and IPRs.

The Cbox configuration registers are split into three shift register chains:

• The hardware allocates 367 bits for the WRITE_ONCE chain, of which the 212
EV67 uses 304 bits. During hardware reset(after BiST), 367 bits are always
shifted into the WRITE_ONCE chain from the SROM, MSB first, so that the
unused bits are shifted out the end of the WRITE_ONCE chain.

• A 36-bit WRITE_MANY chain that is loaded using MTPR instructions to the Cbo
data register. Six bits of information are shifted into the WRITE_MANY chain dur
ing each write transaction to the Cbox data register.

• A 60-bit Cbox ERROR_REG chain that is read by using MFFR instructions from
the Cbox data register in combination with MTPR instructions to the Cbox shift
register. Each write transaction to the Cbox shift register destructively shifts six
of information out of the Cboxerror register.

Table 5–21 Dcache Status Register Fields Description

Name Extent Type Description

Reserved [63:5] — —

SEO [4] W1C Second error occurred. When set, this bit indicates that a second
Dcache store ECC error occurred within 6 cycles of the previous
Dcache store ECC error.

ECC_ERR_LD [3] W1C ECC error on load. When set, this bit indicates that a single-bit ECC
error occurred while processing a load from the Dcache or any fill.

ECC_ERR_ST [2] W1C ECC error on store. When set, this bit indicates that an ECC error
occurred while processing a store.

TPERR_P1 [1] W1C Tag parity error — pipe 1. When set, this bit indicates that a Dcach
tag probe from pipe 1 resulted in a tag parity error. The error is unco
rectable and results in a machine check.

TPERR_P0 [0] W1C Tag parity error — pipe 0. When set, this bit indicates that a Dcach
tag probe from pipe 0 resulted in a tag parity error. The error is unco
rectable and results in a machine check.

63 5 4 3 2 1 0

SEO

ECC_ERR_LD

ECC_ERR_ST

TPERR_P1

TPERR_P0
LK99-0042A
5–32 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Cbox CSRs and IPRs

are
es

to
ion
5.4.1 Cbox Data Register – C_DATA

Figure 5–35 shows the Cbox data register.

Figure 5–35 Cbox Data Register

Table 5–22 describes the Cbox data register fields.

5.4.2 Cbox Shift Register – C_SHFT

Figure 5–36 shows the Cbox shift register.

Figure 5–36 Cbox Shift Register

Table 5–23 describes the Cbox shift register fields.

5.4.3 Cbox WRITE_ONCE Chain Description

The WRITE_ONCE chain order is contained in Table 5–24. In the table:

• Many CSRs are duplicated for ease of hardware implementation. These CSRs
indicated in italics. They must be written with values that are identical to the valu
written to the original CSRs.

Table 5–22 Cbox Data Register Fields Description

Name Extent Type Description

Reserved [63:6] — —

C_DATA[5:0] [5:0] RW Cbox data register. A HW_MTPR instruction to this register causes six
bits of data to be placed into a serial shift register. When the
HW_MTPR instruction is retired, the data is shifted into the Cbox. After
the Cbox shift register has been accessed, performing a HW_MFPR
instruction to this register will return six bits of data.

Table 5–23 Cbox Shift Register Fields Description

Name Extent Type Description

Reserved [63:1] — —

C_SHIFT [0] W1 Writing a 1 to this register bit causes six bits of Cbox IPR data to shift in
the Cbox data register. Software can then use a HW_MFPR read operat
to the Cbox data register to read the six bits of data.

63 6 5 0

C_DATA[5:0]
LK99-0043A

63 1 0

C_SHIFT
LK99-0044A
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–33

Cbox CSRs and IPRs

se

e,

e

he
• Only a brief description of each CSR is given. The functional description of the
CSRs is contained in Chapter 4.

• The order of multibit vectors is [MSB:LSB], so the LSB is first bit in the Cbox
chain.

Table 5–24 describes the Cbox WRITE_ONCE chain order from LSB to MSB.

Table 5–24 Cbox WRITE_ONCE Chain Order

Cbox WRITE_ONCE Chain Description

32_BYTE_IO[0] Enable 32_BYTE I/O mode.

BC_CLK_RATIO[1] Asserted when Bcache is at 1.5x ratio.

SKEWED_FILL_MODE[0] Must be asserted for Bcache 1.5x ratio; for maximum performanc
can also be asserted for 3.0x and 3.5x ratios.

DCVIC_THRESHOLD[7:0] Threshold of the number of Dcache victims that will accumulate
before streamed write transactions to the Bcache are initiated. Th
Cbox can accumulate up to six victims for streamed Dcache pro-
cessing. This register is programmed with the decoded value of t
threshold count.

BC_CLEAN_VICTIM[0] Enable clean victims to the system interface.

SYS_BUS_SIZE[1:0] Size of SysAddOut and SysAddOut buses.

SYS_BUS_FORMAT[0] Indicates system bus format.

SYS_CLK_RATIO[4:1] Speed of system bus.
Code Multiplier
0001 1.5X
0010 2.0X
0100 2.5X
1000 3.0X

DUP_TAG_ENABLE[0] Enable duplicate tag mode in the 21264/EV67.

PRB_TAG_ONLY[0] Enable probe-tag only mode in the 21264/EV67.

FAST_MODE_DISABLE[0] When asserted, disables fast data movement mode.

BC_RDVICTIM[0] Enables RdVictim mode on the pins.

BC_CLEAN_VICTIM[0] Duplicate CSR.

RDVIC_ACK_INHIBIT Enable inhibition of incrementing acknowledge counter for RdVic
commands.

SYSBUS_MB_ENABLE Enable MB commands offchip.

SYSBUS_ACK_LIMIT[0:4] Sysbus acknowledge limit CSR.

SYSBUS_VIC_LIMIT[0:2] Limit for victims.

BC_CLEAN_VICTIM[0] Duplicate CSR.

BC_WR_WR_BUBBLE[0] Write to write GCLK bubble.

BC_RD_WR_BUBBLES[0:5] Read to write GCLK bubbles for the Bcache interface.

BC_RD_RD_BUBBLE[0] Read to read GCLK bubble for banked Bcaches.

BC_SJ_BANK_ENABLE Enable bank mode for Bcache.
5–34 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Cbox CSRs and IPRs

-

se
BC_WR_RD_BUBBLES[0:3] Write to read GCLK bubbles.

DUP_TAG_ENABLE Duplicate CSR.

SKEWED_FILL_MODE Duplicate CSR.

BC_RDVICTIM Duplicate CSR.

SKEWED_FILL_MODE Duplicate CSR.

BC_RDVICTIM Duplicate CSR.

BC_CLEAN_VICTIM Duplicate CSR.

DUP_TAG_MODE Duplicate CSR.

SKEWED_FILL_MODE Duplicate CSR.

ENABLE_PROBE_CHECK Enable error checking during probe processing.

SPEC_READ_ENABLE[0] Enable speculative references to the system port.

SKEWED_FILL_MODE Duplicate CSR.

SKEWED_FILL_MODE Duplicate CSR.

MBOX_BC_PRB_STALL Must be asserted when BC_RATIO = 4.0X, 5.0X, 6.0X, 7.0X, or
8.0X.

BC_LAT_DATA_PATTERN[0:31] Bcache data latency pattern.

BC_LAT_TAG_PATTERN[0:23] Bcache tag latency pattern.

BC_RDVICTIM Duplicate CSR.

ENABLE_STC_COMMAND[0] Enable STx_C instructions to the pins.

BC_LATE_WRITE_NUM[0:2] Number of Bcache clocks to delay the data for Bcache write com
mands.

BC_CPU_LATE_WRITE_NUM[0:1] Number of GCLK cycles to delay the Bcache clock/data from
index.

BC_BURST_MODE_ENABLE[0] Burst mode enable signal.

BC_PENTIUM_MODE[0] Enable Pentium mode RAM behavior.

BC_CLK_RATIO[1] Duplicate CSR.

BC_FRM_CLK[0] Force all Bcache transactions to start on rising edges of the A pha
of a GCLK.

BC_CLK_DELAY[0:1] Delay of Bcache clock for 0,0,1,2 GCLK phases.

BC_DDMR_ENABLE[0] Enables the rising edge of the Bcache forwarded clock (always
enabled).

BC_DDMF_ENABLE[0] Enable the falling edge of the Bcache forwarded clock. (always
enabled).

BC_LATE_WRITE_UPPER[0] Asserted when (BC_LATE_WRITE_NUM > 3) or
((BC_LATE_WRITE_NUM = 3) and
(BC_CPU_LATE_WRITE_NUM > 1)).

Table 5–24 Cbox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain Description
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–35

Cbox CSRs and IPRs

on

d on

.

the

the

.

for-

tem
BC_TAG_DDM_FALL_EN[0] Enables the update of the 21264/EV67 Bcache tag outputs based
the falling edge of the forwarded clock.

BC_TAG_DDM_RISE_EN[0] Enables the update of the 21264/EV67 Bcache tag outputs base
the rising edge of the forwarded clock.

BC_CLKFWD_ENABLE[0] Enable clock forwarding on the Bcache interface.

BC_RCV_MUX_CNT_PRESET[0:1] Initial value for the Bcache clock forwarding unload pointer FIFO

BC_LATE_WRITE_UPPER[0] Duplicate CSR.

SYS_DDM_FALL_EN[0] Enables the update of the 21264/EV67 system outputs based on
falling edge of the system forwarded clock.

SYS_DDM_RISE_EN[0] Enables the update of the 21264/EV67 system outputs based on
rising edge of the system forwarded clock.

SYS_CLKFWD_ENABLE[0] Enables clock forwarding on the system interface.

SYS_RCV_MUX_CNT_PRESET[0:1] Initial value for the system clock forwarding unload pointer FIFO

SYS_CLK_DELAY[0:1] Delay of 0 to 2 phases between the forwarded clock out and
address/data.

SYS_DDMR_ENABLE[0] Enables the rising edge of the system forwarded clock (always
enabled).

SYS_DDMF_ENABLE[0] Enables the falling edge of the system forwarded clock (always
enabled).

BC_DDM_FALL_EN[0] Enables update of data/address on the rising edge of the system
warded clock.

BC_DDM_RISE_EN[0] Enables the update of data/address on the falling edge of the sys
forwarded clock.

BC_CLKFWD_ENABLE Duplicate CSR.

BC_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

BC_CLK_DELAY[0:1] Duplicate CSR.

BC_DDMR_ENABLE Duplicate CSR.

BC_DDMF_ENABLE Duplicate CSR.

SYS_DDM_FALL_EN Duplicate CSR.

SYS_DDM_RISE_EN Duplicate CSR.

SYS_CLKFWD_ENABLE Duplicate CSR.

SYS_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

SYS_CLK_DELAY[0:1] Duplicate CSR.

SYS_DDMR_ENABLE Duplicate CSR.

SYS_DDMF_ENABLE Duplicate CSR.

BC_DDM_FALL_EN Duplicate CSR.

BC_DDM_RISE_EN Duplicate CSR.

Table 5–24 Cbox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain Description
5–36 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Cbox CSRs and IPRs
BC_CLKFWD_ENABLE Duplicate CSR.

BC_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

SYS_DDM_FALL_EN Duplicate CSR.

SYS_DDM_RISE_EN Duplicate CSR.

SYS_CLKFWD_ENABLE Duplicate CSR.

SYS_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

SYS_CLK_DELAY[0:1] Duplicate CSR.

SYS_DDMR_ENABLE Duplicate CSR.

SYS_DDMF_ENABLE Duplicate CSR.

BC_DDM_FALL_EN Duplicate CSR.

BC_DDM_RISE_EN Duplicate CSR.

BC_CLKFWD_ENABLE Duplicate CSR.

BC_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

BC_CLK_DELAY[0:1] Duplicate CSR.

BC_DDMR_ENABLE Duplicate CSR.

BC_DDMF_ENABLE Duplicate CSR.

SYS_DDM_FALL_EN Duplicate CSR.

SYS_DDM_RISE_EN Duplicate CSR.

SYS_CLKFWD_ENABLE Duplicate CSR.

SYS_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

SYS_CLK_DELAY[1:0] Duplicate CSR.

SYS_DDMR_ENABLE Duplicate CSR.

SYS_DDMF_ENABLE Duplicate CSR.

BC_DDM_FALL_EN Duplicate CSR.

BC_DDM_RISE_EN Duplicate CSR.

BC_CLKFWD_ENABLE Duplicate CSR.

BC_RCV_MUX_CNT_PRESET[1:0] Duplicate CSR.

SYS_CLK_DELAY[0:1] Duplicate CSR.

SYS_DDMR_ENABLE Duplicate CSR.

SYS_DDMF_ENABLE Duplicate CSR.

SYS_DDM_FALL_EN Duplicate CSR.

SYS_DDM_RISE_EN Duplicate CSR.

SYS_CLKFWD_ENABLE Duplicate CSR.

SYS_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

Table 5–24 Cbox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain Description
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–37

Cbox CSRs and IPRs

ames

se

ck

al-

ck

al-
5.4.4 Cbox WRITE_MANY Chain Description

The WRITE_MANY chain order is contained in Table 5–25. Note the following:

• Many CSRs are duplicated for ease of hardware implementation. These CSR n
are indicated in italics and have two leading asterisks.

• Only a brief description of each CSR is given. The functional description of the
CSRs is contained in Chapter 3.

CFR_GCLK_DELAY[0:3] Number of GCLK cycles to delay internal ClkFwdRst.

CFR_EV6CLK_DELAY[0:2] Number of EV6Clk_x cycles to delay internal ClkFwdRst.

CFR_FRMCLK_DELAY[0:1] Number of FrameClk_x cycles to delay internal ClkFwdRst.

BC_LATE_WRITE_NUM[0:2] Duplicate CSR.

BC_CPU_LATE_WRITE_NUM[1:0] Duplicate CSR.

JITTER_CMD[0] Add one GCLK cycle to the SYSDC write path.

FAST_MODE_DISABLE[0] Duplicate CSR.

SYSDC_DELAY[3:0] Number of GCLK cycles to delay SysDc fill commands before
action by the Cbox.

DATA_VALID_DLY[1:0] Number of Bcache clock cycles to delay signal SysDataInValid
before sample by the Cbox.

BC_DDM_FALL_EN Duplicate CSR.

BC_DDM_RISE_EN Duplicate CSR.

BC_CPU_CLK_DELAY[0:1] Delay of Bcache clock for 0, 1, 2, 3 GCLK cycles.

BC_FDBK_EN[0:7] CSR to program the Bcache forwarded clock shift register feedba
points.

BC_CLK_LD_VECTOR[0:15] CSR to program the Bcache forwarded clock shift register load v
ues.

BC_BPHASE_LD_VECTOR[0:3] CSR to program the Bcache forwarded clock b-phase enables.

SYS_DDM_FALL_EN Duplicate CSR.

SYS_DDM_RISE_EN Duplicate CSR.

SYS_CPU_CLK_DELAY[0:1] Delay of 0..3 GCLK cycles between the forwarded clock out and
address/data.

SYS_FDBK_EN[0:7] CSR to program the system forwarded clock shift register feedba
points.

SYS_CLK_LD_VECTOR[0:15] CSR to program the system forwarded clock shift register load v
ues.

SYS_BPHASE_LD_VECTOR[0:3] CSR to program the system forwarded clock b-phase enables.

SYS_FRAME_LD_VECTOR[0:4] CSR to program the ratio between frame clock and system for-
warded clock.

SYSDC_DELAY[4] Fifth SYSDC_DELAY bit.

Table 5–24 Cbox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain Description
5–38 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Cbox CSRs and IPRs

ain.
• The order of multibit vectors is [MSB:LSB], so the LSB is first bit in the Cbox
chain.

Table 5–25 describes the Cbox WRITE_MANY chain order from LSB to MSB.

Figure 5–37 shows an example of PALcode used to write to the WRITE_MANY ch

Figure 5–37 WRITE_MANY Chain Write Transaction Example

;
; Initialize the Bcache configuration in the Cbox
;
; BC_ENABLE = 1
; INIT_MODE = 0

Table 5–25 Cbox WRITE_MANY Chain Order

Cbox WRITE_MANY Chain Description For Information:

BC_ENABLE[0] Enable the Bcache Table 4–42

INIT_MODE[0] Enable initialize mode Section 7.6

BC_SIZE[3:0] Bcache size Table 4–42

BC_ENABLE Duplicate CSR Table 4–42

BC_ENABLE Duplicate CSR Table 4–42

BC_SIZE[0:3] Duplicate CSR Table 4–42

BC_ENABLE1

1 MBZ during initialization mode; see Section 7.6 for information.

Duplicate CSR Table 4–42

BC_ENABLE1 Duplicate CSR Table 4–42

BC_ENABLE1 Duplicate CSR Table 4–42

INVAL_TO_DIRTY_ENABLE[1] WH64 acknowledges Table 4–15

ENABLE_EVICT Enable issue evict Table 4–1

BC_ENABLE Duplicate CSR Table 4–42

INVAL_TO_DIRTY_ENABLE[0] WH64 acknowledges Table 4–15

BC_ENABLE Duplicate CSR Table 4–42

BC_ENABLE Duplicate CSR Table 4–42

BC_ENABLE Duplicate CSR Table 4–42

SET_DIRTY_ENABLE[0] SetDirty acknowledge programming Table 4–16

INVAL_TO_DIRTY_ENABLE[0] Duplicate CSR Table 4–15

SET_DIRTY_ENABLE[2:1] SetDirty acknowledge programming Table 4–16

BC_BANK_ENABLE[0] Enable bank mode for Bcache Section 4.8.5

BC_SIZE[0:3] Duplicate CSR Table 4–42

INIT_MODE Duplicate CSR Section 7.6

BC_WRT_STS[0:3] Write status for Bcache in initialize-mode
(Valid, Dirty, Shared, Parity)

Section 7.6
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–39

Cbox CSRs and IPRs
; BC_SIZE = 0xF
; INVALID_TO_DIRTY_ENABLE = 3
; ENABLE_EVICT = 1
; SET_DIRTY_ENABLE = 6
; BC_BANK_ENABLE = 1
; BC_WRT_STS = 0
;
; The value for the write_many chain is based on Table 5–25.
;
; The value is sampled from MSB, 6 bits at a time, as it is written
; to EV6__DATA. Therefore, before the value can be shifted in, it must be
; inverted on a by 6 basis. The code then writes out 6 bits at a time,
; shifting right by 6 after each write.
;
; So the following transformation is done on the write_many value:
;
; [35:30]|[29:24]|[23:18]|[17:12]|[11:06]|[05:00] =>
; [05:00]|[11:06]|[17:12]|[23:18]|[29:24]|[35:30]
;
; WRITE_MANY chain = 0x07FBFFFFD
; value to be shifted in = 0xF7FFEFFC1
;
; Before the chain can be written, I_CTL[SBE] must be disabled,
; and the code must be forced into the Icache.
;

ALIGN_CACHE_BLOCK <^x47FF041F>; align with nops

mb ; wait for MEM-OP’s to complete
lda r0, ^x0086(r31) ; load I_CTL.....
hw_mtpr r0, EV6__I_CTL ;SDE=2, IC_EN=3, SBE=0
br r0, . ; create dest address

addq r0, #17, r0 ; finish computing dest address
hw_mtpr r31, EV6__IC_FLUSH ; flush the Icache
bne r31, . ; separate retires
hw_jmp_stall (r0) ; force flush

ALIGN_CACHE_BLOCK <^x47FF041F> ; align with nops

bc_config:
mb ; pull this block in Icache
lda r1, ^xFFC1(r31) ; data[15:00] = 0xFFC1
ldah r0, ^x7FFE(r31) ; data[31:16] = 0x7FFE
zap r1, #^x0c, r1 ; clear out bits [31:16]

bis r1, r0, r1 ; or in bits [31:16]
addq r31, #6, r0 ; shift in 6 x 6 bits

bc_config_shift_in:
hw_mtpr r1, EV6__DATA ; shift in 6 bits
subq r0, #1, r0 ; decrement R0

beq r0, bc_config_done ; done if R0 is zero
srl r1, #6, r1 ; align next 6 bits
br r31, bc_config_shift_in ; continue shifting

bc_config_done:
hw_mtpr r31, <EV6__MM_STAT ! 64> ; wait until last shift

beq r31, bc_config_end ; predicts fall thru
br r31, .-4 ; predict infinite loop
bis r31, r31, r31 ; nop
bis r31, r31, r31 ; nop

bc_config_end:
5–40 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Cbox CSRs and IPRs

LSB

ic-
5.4.5 Cbox Read Register (IPR) Description

The Cbox read register is read 6 bits at a time. Table 5–26 shows the ordering from
to MSB.

Table 5–26 Cbox Read IPR Fields Description

Name Description

C_SYNDROME_1[7:0] If CMD is ChxToDirty, then C_SYNDROME_1 is X; otherwise, is syndrome for
upper QW in OW of victim that was scrubbed.

C_SYNDROME_0[7:0] If CMD is ChxToDirty, then C_SYNDROME_0 is X; otherwise, is syndrome for
lower QW in OW of victim that was scrubbed.

C_STAT[4:0]

1 Error status as specified only when Cbox WRITE_ONCE chain bit
SKEWED_ FILL_MODE[0] is clear; otherwise, error status is
generic DOUBLE_BIT_ERROR (1XXXX).

C_STS[3:0] If C_STAT equalsxxx_MEM_ERR orxxx_BC_ERR, then C_STS contains the
status of the block as follows; otherwise, the value of C_STS is X:

C_ADDR[6:42] Address of last reported ECC or parity error. If C_STAT value is
DSTREAM_DC_ERR, only bits 6:19 are valid. If C_STAT value is
DOUBLE_BIT_ERROR and SKEWED_FILL_MODE[0] is set, then C_ADDR
is X.

Bits Error Status

0 0 0 0 0 Either no error, or error on a speculative load, or a Bcache v
tim read due to a Dcache/Bcache miss

0 0 0 0 1 BC_PERR (Bcache tag parity error)

0 0 0 1 0 DC_PERR (duplicate tag parity error)

0 0 0 1 1 DSTREAM_MEM_ERR

0 0 1 0 0 DSTREAM_BC_ERR

0 0 1 0 1 DSTREAM_DC_ERR

0 0 1 1 X PROBE_BC_ERR

0 1 0 0 0 Reserved

0 1 0 0 1 Reserved

0 1 0 1 0 Reserved

0 1 0 1 1 ISTREAM_MEM_ERR

0 1 1 0 0 ISTREAM_BC_ERR

0 1 1 0 1 Reserved

0 1 1 1 X Reserved

1 0 0 1 1 DSTREAM_MEM_DBL1

1 0 1 0 0 DSTREAM_BC_DBL1

1 1 0 1 1 ISTREAM_MEM_DBL1

1 1 1 0 0 ISTREAM_BC_DBL1

Bit Value Status of Block

7:4 Reserved

3 Parity

2 Valid

1 Dirty

0 Shared
Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5–41

e-

pts
h as
6
Privileged Architecture Library Code

This chapter describes the 21264/EV67 privilegedarchitecture library code (PALcode).
The chapter is organized as follows:

• PALcode description

• PALmode environment

• Required PALcode function codes

• Opcodes reserved for PALcode

• Internal processor register access mechanisms

• PALshadow registers

• PALcode emulation of FPCR

• PALcode entry points

• Translation buffer fill flows

• Performance counter support

6.1 PALcode Description

PALcode is macrocode that provides an architecturally-defined, operating-system-sp
cific programming interface that is common across all Alpha microprocessors. The
actual implementation of PALcode differs for each operating system. PALcode runs
with privileges enabled, instruction stream (Istream) mapping disabled, and interru
disabled. PALcode has privilege to use five special opcodes that allow functions suc
physical data stream (Dstream) references and internal processor register (IPR) manip-
ulation.

PALcode can be invoked by the following events:

• Reset

• System hardware exceptions (MCHK, ARITH)

• Memory-management exceptions

• Interrupts

• CALL_PAL instructions

PALcode has characteristics that make it appear to be a combination of microcode,
ROM BIOS, and system service routines, though the analogy to any of these other
items is not exact. PALcode exists for several major reasons:
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–1

PALmode Environment

t
l

archi-
is
le-

truc-
e.

ase

e of
em-
ine,

ta-

tines
code
e

nt
am

e

its
se.
a
e
do.
c-

-

• There are some necessary support functions that are too complex to implemen
directly in a processor chip’s hardware, but that cannot be handled by a norma
operating system software routine. Routines to fill the translation buffer (TB),
acknowledge interrupts, and dispatch exceptions are some examples. In some
tectures, these functions are handled by microcode, but the Alpha architecture
careful not to mandate the use of microcode so as to allow reasonable chip imp
mentations.

• There are functions that must run atomically, yet involve long sequences of ins
tions that may need complete access to all of the underlying computer hardwar
An example of this is the sequence that returns from an exception or interrupt.

• There are some instructions that are necessary for backward compatibility or e
of programming; however, these are not used often enough to dedicate them to
hardware, or are so complex that they would jeopardize the overall performanc
the computer. For example, an instruction that does a VAX style interlocked m
ory access might be familiar to someone used to programming on a CISC mach
but is not included in the Alphaarchitecture. Another example is the emulation of
an instruction that has no direct hardware support in a particular chip implemen
tion.

In each of these cases, PALcode routines are used to provide the function. The rou
are nothing more than programs invoked at specified times, and read in as Istream
in the same way that all other Alpha code is read. Once invoked, however, PALcod
runs in a special mode called PALmode.

6.2 PALmode Environment
PALcode runs in a special environment called PALmode, defined as follows:

• Istream memory mapping is disabled. Because the PALcode is used to impleme
translation buffer fill routines, Istream mapping clearly cannot be enabled. Dstre
mapping is still enabled.

• The program has privileged access to all of the computer hardware. Most of th
functions handled by PALcode are privileged and need control of the lowest
levels of the system.

• Interrupts are disabled. If a long sequence of instructions need to be executed
atomically, interrupts cannot be allowed.

An important aspect of PALcode is that it uses normal Alpha instructions for most of
operations; that is, the same instruction set that nonprivileged Alpha programmers u
There are a few extra instructions that are only available in PALmode, and will cause
dispatch to the OPCDEC PALcode entry point if attempted while not in PALmode. Th
Alpha architecture allows some flexibility in what these special PALmode instructions
In the 21264/EV67, the special PALmode-only instructions perform the following fun
tions:

• Read or write internal processor registers (HW_MFPR, HW_MTPR)

• Perform memory load or store operations without invoking the normal memory
management routines (HW_LD, HW_ST)

• Return from an exception or interrupt (HW_RET)
6–2 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Required PALcode Function Codes

the
e-

be

e

is

spe-

pro-
-
code

al
ta
When executing in PALmode, there are certain restrictions for using the privileged
instructions because PALmode gives the programmer complete access to many of
internal details of the 21264/EV67. Refer to Section 6.4 for information on these sp
cial PALmode instructions.

Caution: It is possible to cause unintended side effects by writing what appears to
perfectly acceptable PALcode. As such, PALcode is not something that
many users will want to change. Before writing PALcode, at least becom
familiar with the information in Appendix D.

6.3 Required PALcode Function Codes

Table 6–1 lists opcodes required for all Alpha implementations. The notation used
oo.ffff, where oo is the hexadecimal 6-bit opcode and ffff is the hexadecimal 26-bit
function code.

6.4 Opcodes Reserved for PALcode

Table 6–2 lists the opcodes reserved by the Alpha architecture for implementation-
cific use. These opcodes are privileged and are only available in PALmode.

These instructions generally produce an OPCDEC exception if executed while the
cessor is not in PALmode. If I_CTL[HWE] is set, these instructions can also be exe
cuted in kernel mode. Software that uses these instructions must adhere to the PAL
restrictions listed in this section.

6.4.1 HW_LD Instruction

PALcode uses the HW_LD instruction to access memory outside the realm of norm
Alpha memory management and to perform special Dstream load transactions. Da
alignment traps are disabled for the HW_LD instruction.

Figure 6–1 shows the HW_LD instruction format.

Table 6–1 Required PALcode Function Codes

Mnemonic Type Function Code

DRAINA Privileged 00.0002

HALT Privileged 00.0000

IMB Unprivileged 00.0086

Table 6–2 Opcodes Reserved for PALcode

Mnemonic Opcode
Architecture
Mnemonic Function

HW_LD 1B PAL1B Dstream load instruction

HW_ST 1F PAL1F Dstream store instruction

HW_RET 1E PAL1E Return from PALcode routine

HW_MFPR 19 PAL19 Copies the value of an IPR into an integer GPR

HW_MTPR 1D PAL1D Writes the value of an integer GPR into an IPR
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–3

Opcodes Reserved for PALcode

al
Data
T

ss

d

Figure 6–1 HW_LD Instruction Format

Table 6–3 describes the HW_LD instruction fields.

6.4.2 HW_ST Instruction

PALcode uses the HW_ST instruction to access memory outside the realm of norm
Alpha memory management and to do special forms of Dstream store instructions.
alignment traps are inhibited for HW_ST instructions. Figure 6–2 shows the HW_S
instruction format.

Figure 6–2 HW_ST Instruction Format

Table 6–3 HW_LD Instruction Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1B16 The opcode value.

[25:21] RA — Destination register number.

[20:16] RB — Base register for memory address.

[15:13] TYPE 0002 Physical — The effective address for the HW_LD instruction is physical.

0012 Physical/Lock — The effective address for the HW_LD instruction is
physical. It is the load lock version of the HW_LD instruction.

0102 Virtual/VPTE — Flags a virtual PTE fetch (LD_VPTE). Used by trap logic
to distinguish a single TB miss from a double TB miss. Kernel mode acce
checks are performed.

1002 Virtual — The effective address for the HW_LD instruction is virtual.

1012 Virtual/WrChk — The effective address for the HW_LD instruction is
virtual. Access checks for fault-on-read (FOR), fault-on-write (FOW), rea
and write protection.

1102 Virtual/Alt — The effective address for the HW_LD instruction is virtual.
Access checks use DTB_ALT_MODE IPR.

1112 Virtual/WrChk/Alt — The effective address for the HW_LD instruction is
virtual. Access checks for FOR, FOW, read and write protection. Access
checks use DTB_ ALT_MODE IPR.

[12] LEN 0

1

Access length is longword.

Access length is quadword.

[11:0] DISP — Holds a 12-bit signed byte displacement.

31 26 25 21 20 16 15 13 1112 0

FM-05654.AI4

TYPE

LEN

DISPRBRAOPCODE

31 26 25 21 20 16 15 13 1112 0

FM-05654.AI4

TYPE

LEN

DISPRBRAOPCODE
6–4 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Opcodes Reserved for PALcode

B
lue

-
set

truc-

w
n
NT

y.

s

Table 6–4 describes the HW_ST instruction fields.

6.4.3 HW_RET Instruction

The HW_RET instruction is used to return instruction flow to a specified PC. The R
field of the HW_RET instruction specifies an integer GPR, which holds the new va
of the PC. Bit [0] of this register provides the new value of PALmode after the
HW_RET instruction is executed. Bits [15:14] of the instruction determine the stack
action.

Normally the HW_RET instruction succeeds a CALL_PAL instruction, or a trap han
dler that pushed its PC onto the prediction stack. In this mode, the HINT should be
to ‘10’ to pop the PC and generate a predicted target address for the HW_RET ins
tion.

In some conditions, the HW_RET instruction is used in the middle of a PALcode flo
to cause a group of instructions to retire. In these cases, if the HW_RET instructio
does not have a corresponding instruction that pushed a PC onto the stack, the HI
field should be set to ‘00’ to keep the stack from being modified.

In the rare circumstance that the HW_RET instruction might be used like a JSR or
JSR_COROUTINE, the stack can be managed by setting the HINT bits accordingl

See Section D.25 for more information about the HW_RET instruction.

Figure 6–3 shows the HW_RET instruction format.

Table 6–4 HW_ST Instruction Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1F16 The opcode value.

[25:21] RA — Write data register number.

[20:16] RB — Base register for memory address.

[15:13] TYPE 0002 Physical — The effective address for the HW_ST instruction is physical.

0012 Physical/Cond — The effective address for the HW_ST instruction is
physical. Store conditional version of the HW_ST instruction. The lock
flag is returned in RA. Refer to PALcode restrictions for correct use of thi
function.

0102 Virtual — The effective address for the HW_ST instruction is virtual.

1102 Virtual/Alt — The effective address for the HW_ST instruction is virtual.
Access checks use DTB_ ALT_MODE IPR.

All others Unused.

[12] LEN 0

1

Access length is longword.

Access length is quadword.

[11:0] DISP — Holds a 12-bit signed byte displacement.
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–5

Opcodes Reserved for PALcode

r reg-
te-

to
or-

ed

et.

s

Figure 6–3 HW_RET Instruction Format

Table 6–5 describes the HW_RET instruction fields.

6.4.4 HW_MFPR and HW_MTPR Instructions

The HW_MFPR and HW_MTPR instructions are used to access internal processo
isters. The HW_MFPR instruction reads the value from the specified IPR into the in
ger register specified by the RA field of the instruction. The HW_MTPR instruction
writes the value from the integer GPR, specified by the RB field of the instruction, in
the specified IPR. Figure 6–4 shows the HW_MFPR and HW_MTPR instructions f
mat.

Figure 6–4 HW_MFPR and HW_MTPR Instructions Format

Table 6–5 HW_RET Instruction Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1E16 The opcode value.

[25:21] RA — Register number. It should be R31.

[20:16] RB — Target PC of the HW_RET instruction. Bit [0] of the register’s contents
determines the new value of PALmode.

[15:14] HINT 00

01

10

11

HW_JMP — The PC is not pushed onto the prediction stack. The predict
target is PC + (4*DISP[12:0]).

HW_JSR — The PC is pushed onto the prediction stack. The predicted
target is PC + (4*DISP[12:0]).

HW_RET — The prediction is popped off the stack and used as the targ

HW_COROUTINE — The prediction is popped off the stack and used a
the target. The PC is pushed onto the stack.

[13] STALL — If set, the fetcher is stalled until the HW_RET instruction is retired or
aborted. The 21264/EV67 will:

• Force a mispredict

• Kill instructions that were fetched beyond the HW_RET instruction

• Refetch the target of the HW_RET instruction

• Stall until the HW_RET instruction is retired or aborted

If instructions beyond the HW_RET have been issued out of order, they
will be killed and refetched.

[12:0] DISP — Holds a 13-bit signed longword displacement.

31 26 25 21 20 16 15 13 12 0

FM-05656.AI4

HINT

STALL

14

DISPRBRAOPCODE

31 26 25 21 20 16 15 0

FM-05657.AI4

8 7

SCBD_MASKRBRAOPCODE INDEX
6–6 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Internal Processor Register Access Mechanisms

ed for

is

d

mem-
men-

ions

ted

PR.

n is

rs.

.

Table 6–6 describes the HW_MFPR and HW_MTPR instructions fields.

6.5 Internal Processor Register Access Mechanisms

This section describes the hardware and software access mechanisms that are us
the 21264s IPRs.

Because the Ibox reorders and executes instructions speculatively, extra hardware
required to provide software with the correct view of the architecturally-defined state.
The Alpha architecture defines two classes of state: general-purpose registers an
memory. Register renaming is used to provide architecturally-correct register file
behavior. The Ibox and Mbox each have dedicated hardware that provides correct
ory behavior to the programmer. Because the internal processor registers are imple
tation-specific, and their state is not defined by the Alpha architecture, access
mechanisms for these registers may be defined that impose restrictions and limitat
on the software that uses them.

For every IPR, each instruction type can be classified by how it affects and is affec
by the value held by that IPR.

• Explicit readers are HW_MFPR instructions that explicitly read the value of the
IPR.

• Implicit readers are instructions whose behavior is affected by the value of the I
For example, each load instruction is an implicit reader of the DTB.

• Explicit writers are HW_MTPR instructions that explicitly write a value into the
IPR.

• Implicit writers are instructions that may write a value into the IPR as a sideeffect
of execution. For example, a load instruction that generates an access violatio
an implicit writer of the VA, MM_STAT, and EXC_ADDR IPRs. In the 21264/
EV67, only instructions that generate an exception will act as implicit IPR write

Only certain IPRs, such as those with write-one-to-clear bits, are both implicitly and
explicitly written. The read-write semantics of these IPRs is controlled by software

Table 6–6 HW_MFPR and HW_MTPR Instructions Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1916

1D16

The opcode value for the HW_MFPR instruction.

The opcode value for the HW_MTPR instruction.

[25:21] RA — Destination register for the HW_MFPR instruction. It should be R31
for the HW_MTPR instruction.

[20:16] RB — Source register for the HW_MTPR instruction. It should be R31 for the
HW_MFPR instruction.

[15:8] INDEX — IPR index.

[7:0] SCBD_MASK — Specifies which IPR scoreboard bits in the IQ are to be applied to this
instruction. If a mask bit is set, it indicates that the corresponding IPR
scoreboard bit should be applied to this instruction.
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–7

Internal Processor Register Access Mechanisms

are.
ch

elp

ich

r the

r
n
those

rd

fer-

that
re

re
t set

ll
ons.

g

n

d

d its
6.5.1 IPR Scoreboard Bits

In previous Alpha implementations, IPR registers were not scoreboarded in hardw
Software was required to schedule HW_MTPR and HW_MFPR instructions for ea
machine’s pipeline organization in order to ensure correct behavior. This software
scheduling task is more difficult in the 21264/EV67 because the Ibox performs
dynamic scheduling. Hence, eight extra scoreboard bits are used within the IQ to h
maintain correct IPR access order. The HW_MTPR and HW_MFPRinstruction for-
mats contain an 8-bit field that is used as an IPR scoreboard bit mask to specify wh
of the eight IPR scoreboard bits are to be applied to the instruction.

If any of the unmasked scoreboard bits are set when an instruction is about to ente
IQ, then the instruction, and those behind it, are stalled outside the IQ until all the
unmasked scoreboard bits are clear and the queue does not contain any implicit o
explicit readers that were dependent onthose bits when they entered the queue. Whe
all the unmasked scoreboard bits are clear, and the queue does not contain any of
readers, the instruction enters the IQ and the unmasked scoreboard bits are set.

HW_MFPR instructions are stalled in the IQ until all their unmasked IPR scoreboa
bits are clear.

When scoreboard bits [3:0] and [7:4] are set, their effect on other instructions is dif
ent, and they are cleared in a different manner.

If any of scoreboard bits [3:0] are set when a load or store instruction enters the IQ,
load or store instruction will not be issued from the IQ until those scoreboard bits a
clear.

Scoreboard bits [3:0] are cleared when the HW_MTPR instructions that set them a
issued (or are aborted). Bits [7:4] are cleared when the HW_MTPR instructions tha
them are retired (or are aborted).

Bits [3:0] are used for the DTB_TAG and DTB_PTE register pairs within the DTB fi
flows. These bits can be used to order writes to the DTB for load and store instructi
See Sections 5.3.1 and 6.9.1.

Bit [0] is used in both DTB and ITB fill flows to trigger, in hardware, a lightweight
memory barrier (TB-MB) to be inserted between a LD_VPTE and the correspondin
virtual-mode load instruction that missed in the TB.

6.5.2 Hardware Structure of Explicitly Written IPRs

IPRs that are written by software are physically implemented as two registers. Whe
the HW_MTPR instruction that writes the IPR executes, it writes its value to thefirst
register. When the HW_MTPR instruction is retired, the contents of thefirst register are
written into thesecondregister. Instructions that either implicitly or explicitly read the
value of the IPR access thesecondregister. Read-after-write and write-after-write
dependencies are managed using the IPR scoreboard bits. To avoid write-after-rea
conflicts, thesecondregister is not written until the writer is retired. The writer will not
be retired until the previous reader is retired, and the reader is retired after it has rea
value from thesecondregister.

Some groups of IPRs are built using a single sharedfirst register. To prevent write-
after-write conflicts, IPRs that share afirst register also share scoreboard bits.
6–8 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Internal Processor Register Access Mechanisms

gen-
o to

pt-
the
er-

pro-

r
the
6.5.3 Hardware Structure of Implicitly Written IPRs

Implicitly written IPRs are physically built using only a single level of register, how-
ever the IPR has two hardware states associated with it:

1. Default State—The contents of the register may be written when an instruction
erates an exception. If an exception occurs, write a new value into the IPR and g
state 2.

2. Locked State—The contents of the register may only be overwritten by an exce
ing instruction that is older than the instruction associated with the contents of
IPR. If such an exception occurs, overwrite the value of the IPR. When the trigg
ing instruction, or instruction that is older than the triggering instruction, is killed
by the Ibox, go to state 1.

6.5.4 IPR Access Ordering

IPR access mechanisms must allow values to be passed through each IPR from a
ducer to its intended consumers.

Table 6–7 lists all of the paired instruction orderings between instructions of the fou
IPR access types. It specifies whether access order must be maintained, and if so,
mechanisms used to ensure correct ordering.

Table 6–7 Paired Instruction Fetch Order

Second
Instruction First Instruction

Implicit Reader Implicit Writer Explicit Reader Explicit Writer

Implicit
Reader

Read transac-
tions can be
reordered.

No IPRs in this class. Read transactions can
be reordered.

A variety of mechanisms are
used to ensure order:
scoreboard bits to stall issue of
reader; HW_RET_STALL to
stall reader; double write plus
buffer blocks to force retire and
allow for propagation delay.

Implicit
Writer

No IPRs in this
class.

The hardware struc-
ture of implicitly
written IPRs handles
this case.

IPR-specific PALcode
restrictions are
required for this case.
An interlock mecha-
nism must be placed
between the explicit
reader and the implicit
writer (a read transac-
tion).

No IPRs in this class.

Explicit
Reader

Read transac-
tions can be
reordered.

If the reader is in the
PALcode routine
invoked by the
exception associated
with the writer, then
ordering is guaran-
teed.

Read transactions can
be reordered.

Scoreboard bits stall issue of
reader until writer is retired.
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–9

Internal Processor Register Access Mechanisms

the

PR

re-

.

he

tion
re-

e
it
s

d).

i-
ET
sur-

the
st
is
For convenience of implementation, there is no IPR scoreboard bit checking within
same fetch block (octaword-aligned octaword).

• Within one fetch block, there can be only one explicit writer (HW_MTPR) to an
IPR in a particular scoreboard group.

• Within one fetch block, an explicit writer (HW_MTPR) to an IPR in a particular
scoreboard group cannot be followed by an explicit reader (HW_MFPR) to an I
in that same scoreboard group.

• Within one fetch block, an explicit writer (HW_MTPR) to an IPR in a particular
scoreboard group cannot be followed by an implicit reader to an IPR in that sco
board group. This case covers writes to DTB_PTE or DTB_TAG followed by a
LD, ST, or any memory operation, including HW_RETs without the ‘stall’ bit set

6.5.5 Correct Ordering of Explicit Writers Followed by Implicit Readers

Across fetch blocks, the correct ordering of the explicit write of the DTB_PTE or
DTB_TAG followed by an implicit reader (memory operation) is guaranteed using t
IPR scoreboard bits.

However, there are cases where correct ordering of explicit writers followed by implicit
readers cannot be guaranteed using the IPR scoreboard mechanism. If the instruc
that implicitly reads the IPR does so before the issue stage of the pipeline, the sco
board mechanism is not sufficient.

For example, modification of the ITB affects instructions before the issue state of th
pipeline. In this case, PALcode must contain a HW_RET instruction, with its stall b
set, before any instruction that implicitly reads the IPR(s) in question. This prevent
instructions that are newer than the HW_RET instruction from being successfully
fetched, issued, and retired until after the HW_RET instruction is retired (or aborte

There are also cases when the HW_RET with the STALL bit mechanism is not suff
cient. There may be additional propagation delay past the retirement of the HW_R
instruction. In these cases, instead of using a HW_RET, a suggested method of en
ing the ordering is coding a group of 5 fetch blocks, where the first contains the
HW_MTPR to the IPR, the second contains a HW_MTPR to the same IPR or one in
same scoreboard group, and where the following 3 fetch blocks each contain at lea
one non-NOP instruction. See Appendix D for a listing of cases where this method
recommended.

Explicit
Writer

Reader reads
second register.
Writer cannot
write second
register until it
is retired.

Write-one-to-clear
bits, or performance
counter special case.
For example, perfor-
mance counter incre-
ments are typically
not scoreboarded
against read transac-
tions.

Reader reads second
register. Writer cannot
write second register
until it is retired.

Scoreboard bits stall second
writer in map stage until first
writer is retired.

Table 6–7 Paired Instruction Fetch Order (Continued)

Second
Instruction First Instruction
6–10 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

PALshadow Registers

L-
wing

, the
nd

and
is-

ers,
used
the

the

he
an

for

R

6.5.6 Correct Ordering of Explicit Readers Followed by Implicit Writers

Certain IPRs that are updated as a result of faulting memory operations require PA
code assistance to maintain ordering against newer instructions. Consider the follo
code sequence:

HW_MFPR IPR_MM_STAT

LDQ rx,(ry)

It is typically the case that these instructions would issue in-order:

• The MFPR is data-ready and both instructions use a lower subcluster. However
HW_MFPRs (and HW_MTPRs) respond to certain resource-busy indications a
do not issue when the MBOX informs the IBOX that a certain set of resources
(store bubbles) are busy.

• The LDs respond to a different set of resource-busy indications (load-bubbles)
could issue around the HW_MFPR in the presence of the former. PALcode ass
tance is required to enforce the issue order.

One totally reliable method is to insert an MB (memory barrier)instruction before the
first load that occurs after the HW_MFPR MM_STAT. Another method would be to
force a register dependency between the HW_MFPR and the LD.

6.6 PALshadow Registers

The 21264/EV67 contains eight extra virtual integer registers, called shadow regist
which are available to PALcode for use as scratch space and storage for commonly
values. These registers are made available under the control of the SDE[1] field of
I_CTL IPR. These shadow registers overlay R4 through R7 and R20 through R23,
when the CPU is in PALmode and SDE[1] is set.

PALcode generally runs with shadow mode enabled. Any PALcode that supports
CALL_PAL instructions must run in that mode because the hardware writes a
PALshadow register with the return address of CALL_PAL instructions.

PALcode may occasionally be required to toggle shadow mode to obtain access to
overlayed registers. See the PALcode restriction, Updating I_CTL[SDE], in Section
D.32.

6.7 PALcode Emulation of the FPCR

The FPCR register contains status and control bits. They are accessed by way of t
MT_FPCR and MF_FPCR instructions. The register is physically implemented like
explicitly written IPR. It may be written with a value from the floating-point register
file by way of the MT_FPCR instruction. Architecturally-compliant FPCR behavior
requires PALcode assistance. The FPCR register must operate as listed here:

1. Correct operation of the status bits, which must be set when a floating-point
instruction encounters an exceptional condition, independent of whether a trap
the condition is enabled.

2. Correct values must be returned when the FPCR is read by way of a MF_FPC
instruction.
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–11

PALcode Entry Points

g-

The

m.

No

is

is

c-

uc-

off-
L

rns
is-
r the
if
3. Correct actions must occur when the FPCR is written by way of a MT_FPCR
instruction.

6.7.1 Status Flags

The FPCR status bits in the 21264/EV67 are set with PALcode assistance. Floatin
point exceptions, for which the associated FPCR status bit is clear or for which the
associated trap is enabled, result in a hardware trap to the ARITH PALcode routine.
EXC_SUM register contains information to allow this routine to update the FPCR
appropriately, and to decide whether to report the exception to the operating syste

6.7.2 MF_FPCR

The MF_FPCR is issued from the floating-point queue and executed by the Fbox.
PALcode assistance is required.

6.7.3 MT_FPCR

The MT_FPCR instruction is issued from the floating-point queue. This instruction
implemented as an explicit IPR write operation. The value is written into thefirst latch,
and when the instruction is retired, the value is written into thesecondlatch. There is no
IPR scoreboarding mechanism in the floating-point queue, so PALcode assistance
required to ensure that subsequent readers of the FPCR get the updated value.

After writing the first latch, the MT_FPCR instruction invokes a synchronous trap to
the MT_FPCR PALcode entry point. The PALcode can return using a HW_RET
instruction with its STALL bit set. This sequence ensures that the MT_FPCR instru
tion will be correctly ordered for subsequent readers of the FPCR.

6.8 PALcode Entry Points

PALcode is invoked at specific entry points, of which there are two classes:
CALL_PAL and exceptions.

6.8.1 CALL_PAL Entry Points

CALL_PAL entry points are used whenever the Ibox encounters a CALL_PAL instr
tion in the Istream. To speed the processing of CALL_PAL instructions, CALL_PAL
instructions do not invoke pipeline aborts but are processed as normal jumps to the
set from the contents of the PAL_BASE register, which is specified by the CALL_PA
instruction’s function field.

The Ibox fetches a CALL_PAL instruction, bubbles one cycle, and then fetches the
instructions at the CALL_PAL entry point. For convenience of implementation, retu
from CALL_PAL are aided by a linkage register (much like JSRs). PALshadow reg
ter R23 is used as the linkage register. The Ibox loads the PC of the instruction afte
CALL_PAL instruction, into the linkage register. Bit [0] of the linkage register is set
the CALL_PAL instruction was executed while the processor was in PALmode.

The Ibox pushes the value of the return PC onto the return prediction stack.
CALL_PAL instructions start at the following offsets:

• Privileged CALL_PAL instructions start at offset 200016.

• Nonprivileged CALL_PAL instructions start at offset 300016.
6–12 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

PALcode Entry Points

of

y
that
dic-

e-

r-

.

Each CALL_PAL instruction includes a function field that is used to calculate the PC
its associated PALcode entry point. The PALcode OPCDEC exception flow will be
invoked if the CALL_PAL function field satisfies any of the following requirements:

• Is in the range of 4016 to 7F16 inclusive

• Is greater than BF16

• Is between 0016 and 3F16 inclusive, and IER_CM[CM] is not equal to the kernel
mode value 0

If none of the conditions above are met, the PALcode entry point PC is as follows:

• PC[63:15] = PAL_BASE[63:15]

• PC[14] = 0

• PC[13] = 1

• PC[12] = CALL_PAL function field [7]

• PC[11:6] = CALL_PAL function field [5:0]

• PC[5:1] = 0

• PC[0] = 1 (PALmode)

6.8.2 PALcode Exception Entry Points

When hardware encounters an exception, Ibox execution jumps to a PALcode entr
point at a PC determined by the type of exception. The return PC of the instruction
triggered the exception is placed in the EXC_ADDR register and onto the return pre
tion stack.

Table 6–8 shows the PALcode exception entry locations and their offset from the
PAL_BASE IPR.

Table 6–8 PALcode Exception Entry Locations

Entry Name Type Offset 16 Description

DTBM_DOUBLE_3 Fault 100 Dstream TB miss on virtual page table entry fetch. Use thre
level flow.

DTBM_DOUBLE_4 Fault 180 Dstream TB miss on virtual page table entry fetch. Use fou
level flow.

FEN Fault 200 Floating point disabled.

UNALIGN Fault 280 Unaligned Dstream reference.

DTBM_SINGLE Fault 300 Dstream TB miss.

DFAULT Fault 380 Dstream fault or virtual address sign check error.

OPCDEC Fault 400 Illegal opcode or function field:
• Opcode 1, 2, 3, 4, 5, 6 or 7
• Opcode 1916, 1B16, 1D16, 1E16 or 1F16 , not PALmode or

not I_CTL[HWE]
• Extended precision IEEE format
• Unimplemented function field of opcodes 1416 or 1C16

IACV Fault 480 Istream access violation or virtual address sign check error
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–13

Translation Buffer (TB) Fill Flows

liar-
6.9 Translation Buffer (TB) Fill Flows

This section shows the expected PALcode flows for DTB miss and ITB miss. Fami
ity with 21264/EV67 IPRs is assumed.

6.9.1 DTB Fill

Figure 6–5 shows single-miss DTB instructions flow.

Figure 6–5 Single-Miss DTB Instructions Flow Example

Figure 6–5 shows single-miss DTB instructions flow.

hw_mfprp23, EV6__EXC_ADDR ; (0L) get exception address

hw_mfprp4, EV6__VA_FORM ; (4-7,1L) get vpte address

hw_mfprp5, EV6__MM_STAT ; (0L) get miss info

hw_mfpr p7, EV6__EXC_SUM ; (0L) get exc_sum for ra

hw_mfpr p6, EV6__VA ; (4-7,1L) get original va

bic p7, #1, p7 ; clear double miss flag

xor p4, p6, p4 ; interlock p4 and p6

xor p4, p6, p4 ; restore p4

trap__dtbm_single_vpte:

hw_ldq/v p4, (p4) ; (1L) get vpte

blt p_misc, trap__d1to1 ; (xU) <63>=1 => 1-to-1

blbcp4, trap__invalid_dpte ; (xU) invalid => branch

and p4, #^x80, p7 ; isolate mb bit

xor p7, #^x80, p7 ; flip mb bit

ALIGN_FETCH_BLOCK <^x47FF041F>

PVC_VIOLATE <2> ; ignore scoreboard violation

hw_mtprp6, EV6__DTB_TAG0 ; (2&6,0L) write tag0

hw_mtpr p6, EV6__DTB_TAG1 ; (1&5,1L) write tag1

MCHK Interrupt 500 Machine check.

ITB_MISS Fault 580 Istream TB miss.

ARITH Synch. Trap 600 Arithmetic exception or update to FPCR.

INTERRUPT Interrupt 680 Interrupts: hardware, software, and AST.

MT_FPCR Synch. Trap 700 Invoked when a MT_FPCR instruction is issued.

RESET/WAKEUP Interrupt 780 Chip reset or wake-up from sleep mode.

Table 6–8 PALcode Exception Entry Locations (Continued)

Entry Name Type Offset 16 Description
6–14 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Translation Buffer (TB) Fill Flows

g
ped

ns

he

is
re

ro-
s

hw_mtprp4, <EV6__DTB_PTE0 ! ^x44> ; (0,4,2,6) (0L) write pte0

hw_mtprp4, <EV6__DTB_PTE1 ! ^x22> ; (3,7,1,5) (1L) write pte1

ASSUME <tb_mb_en + pte_eco> ne 2

.if ne pte_eco

bne p7, trap__dtbm_single_mb ; branch for mb

hw_ret (p23) ; return

trap__dtbm_single_mb:

mb

hw_ret(p23) ; return

.iff

hw_ret(p23) ; return

; (assumes tb_mb_en on multi-processors)

.endc

The following list presents information about the single-miss DTB code example:

• In Figure 6–5, where (x,y) or (y) appear in the comments,x specifies the scoreboard
bits andy specifies the Ebox subcluster.

• r4 −r7 and r20 − r23 are PALshadow registers.

• PALshadow r22 contains a flag that indicates whether the native code is runnin
“1−to−1”, that is, running in a mode where the physical address should be map
1−to−1 to the virtual address, rather than being taken from a page table.

• IPR scoreboard bits [3:0] are used to order the restarted load or store instructio
for the DTB write transactions.

• MM_STAT and VA will not be overwritten if the LD_VPTE instruction misses the
DTB. There is no issue order constraint.

• The code is written to prevent a later execution of the DTB fill instruction from
being issued before a previous execution and corrupting the previous write to t
TB registers. The correct sequence of executions is accomplished by placing code
dependencies on scoreboard bits [7:4] in the path of the successive writers. Th
prevents the successive writers from being issued before the previous writers a
retired.

• When I_CTL[TB_MB_EN] = 1, the issue of MTPR DTB_PTE0 triggers, in hard-
ware, a lightweight memory barrier (TB-MB). The lightweight memory barrier
enforces read-ordering of store instructions from another processor (I) to this p
cessor’s (J) page table and this processor’s virtual memory area such that if thi
processor sees the write to the PTE from (I) it will see the new data.

Processor I Processor J

Wr Data LD/ST

MB <tb miss>

Wr PTE LD-PTE, write TB
LD/ST
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–15

Translation Buffer (TB) Fill Flows

s
B fill

to

to

y to

ne
of
b-

1

g,
cu-

ss
• The conditional branch is placed in the code so that all of the MTPR instruction
are issued and retired or none of them are issued and retired. This allows the T
hardware to update the TB whenever it sees the retiring of PTE1 and to ignore
writes to TAG0/TAG1/PTE0/PTE1 in the interim between the issuing of those
writes and a retire of PTE1.

• As an alternative to using I_CTL[TB_MB_EN] = 1 to enforceread ordering,
I_CTL[TB_MB_EN] can be set to 0 and the PALcode may use a bit in the PTE
indicate whether to do an explicit MB.

The flow example in 6-5 shows the code using pte_eco and the code not using
pte_eco. It assumes the following:

– In a multi-processor configuration, if pte_eco is not enabled, it is necessary
enable tb_mb_en.

– In a uni-processor configuration, if pte_eco is not enabled, it is not necessar
enable tb_mb_en.

– At no time should pte_eco and tb_mb_en both be enabled.

• The value in DTB_PTEx[GH] determines whether the scoreboard mechanism alo
is sufficient to guarantee all subsequent load/store instructions (implicit readers
the DTB) are ordered relative to the creation of a new DTB entry; whether all su
sequent loads and stores to the loaded address will hit in the DTB.

– If DTB_PTEx[GH] is zero, the scoreboard mechanism alone is sufficient.

– If DTB_PTEx[GH] is not zero, the scoreboard mechanism alone is not suffi-
cient (although this is not a problem). In this case, the new DTB entry is not
visible to subsequent load/store instructions until after the MTPR DTB_PTE
retires.

Issuing a HW_RET_STALL instead of a HW_RET would guarantee orderin
but is not necessary. Code executes correctly without the stall although exe
tion might result in two passes through the DTB miss flow, rather than one,
because the re-execution of the memory operation after the first DTB miss
might miss again.

This behavior is functionally correct because DTB loads that tag-match an
existing DTB entry are ignored by the 21264/EV67 and the second DTB mi
execution will load exactly the same entry as the first.

6.9.2 ITB Fill

Figure 6–6 shows the ITB miss instructions flow.

Figure 6–6 ITB Miss Instructions Flow Example

hw_mfpr r4, EV6__IVA_FORM ; (0L) get vpte address

hw_mfpr r23, EV6__EXC_ADDR ; (0L) get exception address

lda r6, ^x0FFF(r31) ; (xU) create mask for prot

bis r31, r31, r31 ; (xU) fill out fetch block

trap__itb_miss_vpte:

hw_ldq/v r4, (r4) ; (xL) get vpte

and r4, r6, r5 ; (xL) get prot bits

blt p_misc, trap__i1to1 ; (xU) 1-to-1 => branch
6–16 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Performance Counter Support

g
ped

ted

to
s

-
e
ata.

-

srl r4, #OSF_PTE__PFN__S, r6 ; (xU) shift PFN to <0>

sll r6, #EV6__ITB_PTE__PFN__S, r6 ; (xU) shift PFN into place

and r4, #<1@OSF_PTE__FOE__S>, r7 ; (xL) get FOE bit

blbc r4, trap__invalid_ipte ; (xU) invalid => branch

bne r7, trap__foe ; (xU) FOE => branch

srl r4, #7, r7 ; check for mb bit

bis r5, r6, r6 ; (xL) PTE in ITB format

hw_mtpr r23, EV6__ITB_TAG ; (6,0L) write tag

hw_mtpr r6, EV6__ITB_PTE ; (0&4,0L) write PTE

ASSUME <tb_mb_en + pte_eco> ne 2

.if ne pte_eco

blbc r7, trap__itb_miss_mb ; branch for mb

hw_ret_stall (r23); (0L)

trap__itb_miss_mb:

mb

.endc

hw_ret_stall (r23) ; (0L)

The following list presents information about the ITB miss flow code example:

• In Figure 6–6, where (x,y) or (y) appear in the comments,x specifies the scoreboard
bits andy specifies the Ebox subcluster.

• The ITB is only accessed on Icache misses.

• r4 −r7 and r20 − r23 are PALshadow registers.

• PALshadow r22 contains a flag that indicates whether the native code is runnin
“1−to−1”, that is, running in a mode where the physical address should be map
1−to−1 to the virtual address, rather than being taken from a page table.

• The HW_RET instruction should have its STALL bit set to ensure that the restar
Istream does not read the ITB until the ITB is written.

As an alternative to using I_CTL[TB_MB_EN] = 1 to enforceread ordering,
I_CTL[TB_MB_EN] can be set to 0 and the PALcode may use a bit in the PTE
indicate whether to do an explicit MB. The flow example in Figure 6–6 assume
this alternative.

6.10 Performance Counter Support

The 21264/EV67 provides hardware support for two methods of obtaining program
performance feedback information. The two methods do not require program modifica
tion. Instead, performance monitoring utilities make calls to the PALcode to set up th
counters and contain interrupt handlers that call PALcode to retrieve the collected d
The first method, Aggregate mode, offers capabilities that are similar to earlier micro-
processor performance counters.This mode counts events when enabled, until it over
flows, causing an interrupt that can retrieve the collected data. The second method,
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–17

Performance Counter Support

s
t

e

use
t

to

an
cre-
nt

unt.
ProfileMe mode, supports a new way of statistically sampling individual instruction
during program execution. This mode counts events triggered by a targeted infligh
instruction.

Counter support uses the hardware registers listed in Table 6–9.

6.10.1 General Precautions

Initialize both counters, (PCTR_CTL[PCTR0 and PCTR1]), to zero in reset PALcod
to avoid spurious interrupts when exiting initial PALcode. Counters must be written
twice during initialization to ensure that the overflow latch has been cleared (see the
PALcode restrictions in Sections D.28 and D.34).

The counters should never be left within one cycle of overflow when disabled beca
that can cause some interrupts to be blocked in anticipation of an overflow interrup
(see PALcode restriction 32).

If a counter is at the overflow threshold and a value is written to that counter, the
counter signals an overflow interrupt upon leaving PALmode, even if that counter is
disabled. To avoid that interrupt, the PALcode should clear the interrupt by writing
HW_INT_CLR.

Interrupts are disabled in PALmode.

As a quirk of the implementation, while counting is disabled, a read of PCTR_CTL c
yield value+some increment, where value is the actual value in PCTR_CTL, and in
ment for PCTR0 is in the range 0..4 (retired instructions in that cycle), and increme
for PCTR1 is dependent on SL1.

6.10.2 Aggregate Mode Programming Guidelines

Use the following information to program counters in Aggregate mode.

6.10.2.1 Aggregate Mode Precautions

Counters continue to count after overflow.

Only the counters return useful data. See Table 6–11 for counting modes.

Counters can be read by a PALcode instruction at any time to get the aggregate co

Table 6–9 IPRs Used for Performance Counter Support

Register Name Mnemonic Relevant Fields Described in Section

ProfileMe PC PMPC All fields 5.2.6

Interrupt enable and current proces-
sor mode

IER_CM PCEN[1:0] 5.2.9

Interrupt summary ISUM PC[1:0] 5.2.11

Ibox control I_CTL SPCE, PCT0_EN, PCT1_EN 5.2.15

Ibox status I_STAT OVR, ICM, TRAP-TYPE,
LSO, TRP, MIS

5.2.16

Ibox process context PCTX PPCE 5.2.21

Performance counter support PCTR_CTL All fields 5.2.22
6–18 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Performance Counter Support

by

d the

nter-

or-

e-
The legal range for PCTR0 when writing the IPR is 0:(2**20-16).

The legal range for PCTR1 when writing the IPR is 0:(2**20-4).

6.10.2.2 Operation

1. Setup

The following IPRs need to be set up by PALcode instructions.

2. Count

If PCTR0 and PCTR1 are enabled, will increment according to modes selected
SL0 and SL1.

3. Overflow

If PCEN[1:0] is enabled, PC[1:0] is set when PCTR0 or PCTR1 overflows.

4. Hardware interrrupt

When PC[1:0] is set, the PALcode interrupt routine is entered. Interrupt is acknowl-
edged and PALcode generates an interrupt to the operating system performance
monitoring utility.

5. Operating system interrupt handler

The handler should read the IPR PCTR_CTL, as shown in Table 6–10, to note
which counter overflowed in the handler's data structures. The handler may rea
counter to see how many events have happened since the overflow.

The handler may also choose to write the counters to control the frequency of i
rupts.

IPR Name Relevant Fields Meaning

IER_CM PCEN[1:0] Enable Interrupts.

PCTX PPCE Enable Process Performance Counting or use I_CTL[SPCE].

PCTR_CTL SL0 Selects Aggregate or ProfileMe mode; set to 0 for Aggregate mode.

SL1 Selects PCTR0 and PCTR1 counting modes. See Table 6–11 for more inf
mation.

PCTR0[19:0] Set counter 0 starting value [0:(2**20-16)]. See Section 6.10.1 for setup
precautions.

PCTR1[19:0] Set counter 1 starting value [0:(2**20-4)]. See Section 6.10.1 for setup pr
cautions.

I_CTL SPCE Enable System Performance Counting or use PCTX[PPCE].

PCT0_EN Enable performance counter 0.

PCT1_EN Enable performance counter 1.

Table 6–10 Aggregate Mode Returned IPR Contents

IPR Field Contents

PCTR_CTL PCTR0[19:0] Counter #0 value

PCTR1[19:0] Counter #1 value
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–19

Performance Counter Support

s

.

6.10.2.3 Aggregate Counting Mode Description

6.10.2.3.1 Cycle counting

Counts cycles.

PCTR0 is incremented by the number of cycles counted, that is, 1.

6.10.2.3.2 Retired instructions cycles

PCTR0 is incremented by up to 8 retired instructions per cycle when enabled via
I_CTL[PCT0_EN] and either I_CTL[SPCE] or PCTX[PPCE]. On overflow, an inter-
rupt is triggered as ISUM[PC0] if enabled via IER_CM[PCEN0].

The 21264/EV67 can retire up to 11 instructions per cycle, which exceeds PCTR0'
maximum increment of 8 per cycle.However, no retires go uncounted because the
21264/EV67 cannot sustain 11 retires per cycle, and the 21264/EV67 corrects PCTR0
in subsequent cycles.

A squashed instruction does not count as a retire.

6.10.2.3.3 Bcache miss or long latency probes cycles

This input counts the number of times the Bcache result was a miss.

Essentially, a long latency probe is a data request from other processes that cause
Bcache misses in a system.

This count is phase shifted three cycles early and thus includes events that occurred
three cycles before the start and before the end of the ProfileMe window.

6.10.2.3.4 Mbox replay traps cycles

This input counts Mbox replay traps.

6.10.2.4 Counter Modes for Aggregate Mode

Table 6–11 shows the counter modes that are used with Aggregate mode.

6.10.3 ProfileMe Mode Programming Guidelines

Use the following information to program counters in ProfileMe mode.

6.10.3.1 ProfileMe Mode Precautions

Squashed NOPs count as valid fetched instructions.

Counter 1 must be explicitly cleared in the trap handler before each data collection

Table 6–11 Aggregate Mode Performance Counter IPR Input Select Fields

SL0[4] SL1[3:2] PCTR0 PCTR1

0 00 Retired instructions Cycle counting

0 01 Cycle counting Not defined

0 10 Retired instructions Bcache miss or long latency probes

0 11 Cycle counting Mbox replay traps
6–20 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Performance Counter Support

e
ma-

via

and

Pro-

d by

r-

d

The CMOV instruction is decomposed into two valid fetched instructions that, in th
absence of stalls, are fetched in consecutive cycles. See Table 6–12 for more infor
tion.

6.10.3.2 Operation

1. Setup

The following IPRs need to be set up by using PALcode instructions.

2. Open window

PCTR0 accumulates up to 4 valid fetched instructions per cycle when enabled
I_CTL[PCT0_EN] and either I_CTL[SPCE] or PCTX[PPCE].

The valid fetched instruction that causes PCTR0 to overflow opens the window
becomes theprofiled instruction and covers a period of time near to when the
instruction was in flight. The first cycle of the window is the 5th cycle after the
instruction was fetched. A residual count of up to 7 valid fetched instructions is
accumulated in PCTR0 in the two cycles between overflow and the start of the
fileMe window. This residual count is returned in I_STAT[overcount(2,0)].

3. Count

If PCTR0 and PCTR1 are enabled, they increment according to modes selecte
SL0 & SL1.

4. End window

The last cycle of the window depends on whether the instruction traps, retires,
aborts, and/or is squashed by the fetcher.

Table 6–12 CMOV Decomposed

Instruction New Instructions

CMOV Ra, Rb--> Rc CMOV1 Ra, oldRc−−> newRc1

CMOV2 newRc1, Rb−−> newRc2

IPR Name Relevant Fields Meaning

IER_CM PCEN[1:0] Enable Interrupts.

PCTX PPCE Enable Process Performance Counting or use I_CTL[SPCE].

PCTR_CTL SL0 Selects Aggregate or ProfileMe mode; set to 1 for ProfileMe mode.

SL1 Selects PCTR0 and PCTR1 counting modes. See Table 6–14 for more info
mation.

PCTR0[19:0] Set counter 0 value (2**20-N). This selects approximately the Nth valid
fetched instruction as the profiled instruction. Because writes to PCTR0 are
incremented by 0..4, the profiled instruction is one of the (N-4)th to Nth vali
fetched instructions. See Section 6.10.1 for more setup precautions.

PCTR1[19:0] Set counter 1 value = 0. See Section 6.10.1 for more setup precautions.

I_CTL SPCE Enable System Performance Counting or use PCTX[PPCE].

PCT0_EN Enable performance counter 0.

PCT1_EN Enable performance counter 1.
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–21

Performance Counter Support

fter

w is
or

th.

set
For instructions that cause a trap, the last cycle in the window is the 2nd cycle a
the trap. Mispredicted branches are included in this category.

For nontrapping instructions that retire, the last cycle in the window is the 2nd
cycle after the instruction retires.

For instructions that abort, the last cycle in the window is the 2nd cycle after the
trap that caused the abort.

For instructions that are squashed (such as TRAPB), the last cycle in the windo
approximately the 2nd cycle after the squashed instruction would have aborted
retired.

Every non-squashed valid fetched instruction either aborts or retires, but not bo
In either case, the instruction may also trap.

PCTR0 is disabled from counting until PCTR_CTL is next written.

5. Interrupt PALcode

When ISUM field PC[1:0] is set, execution of PCTR0's or PCTR1's interrupt PAL-
code is performed.

6. Operating system interrupt handler

The handler should first read the IPRs in Table 6–13 and then write PCTR_CTL to
up the next interrupt.

Table 6–13 ProfileMe Mode Returned IPR Contents

IPR Name Relevant Fields Meaning

PMPC[63:0] All Profiled PC.

I_STAT ICM Instruction was in a new Icache fill stream.

TRP Instruction caused a trap and was not in the shadow of
a younger trapping instruction.

MIS Conditional branch mispredict.

TRAP TYPE Exception type code.

LSO Load-store order replay trap.

OVR Counter 0 overcount.

PCTR_CTL VAL Instruction retired valid.

TAK Branch direction if instruction is a conditional branch.

PM_STALLED Instruction stalled for at least one cycle between fetch
and map stages of pipeline.

PM_KILLED_BM Instruction killed during or before cycle in which it
was mapped.

PCTR0[19:0] Counter 0 value.

PCTR1[19:0] Counter 1 value.
6–22 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Performance Counter Support

w

he

ch

there

le

f Y

a

y
ruc-
used
TR0
ired

e
be
6.10.3.3 ProfileMe Counting Mode Description

6.10.3.3.1 Cycle counting

In ProfileMe mode, either counter counts cycles during the window of the profiled
instruction.

6.10.3.3.2 Inum retire delay cycles

This input is used to measure a lower bound on the inum retire delay of the profiled
instruction. The maximum final value of PCTR1 is the length of the ProfileMe windo
minus 2.

Counts cycles that a profiled instruction delayed the retire pointer advance during t
ProfileMe window. The 21264/EV67 tracks instructions in the pipeline by allocating
them "inums" near the front of the pipeline. All inums are retired in the order in whi
they were allocated at the end of the pipeline.

Inums are allocated in batches of four, so there may be more inums allocated than
are program instructions in flight. Every inum is retired in order, including those for
aborted instructions.

The "retire pointer" points to the next inum to be retired. An inum retires in the cyc
that the retire pointer advances past the inum.

Let X and Y be consecutive inums in the allocation order. The "inum retire delay" o
is [(cycle in which Y retired) – (cycle in which X retired)]. A large inum retire delay
indicates a possible performance bottleneck (for example, an instruction stalled on
data cache miss).

6.10.3.3.3 Retired instructions cycles

When counting retired instructions in ProfileMe mode, the final count in PCTR0 ma
include instructions that retired before the ProfileMe window and may exclude inst
tions that retired near the end of the ProfileMe window. These discrepancies are ca
by a variable delay between the time that an instruction retires and the time that PC
is incremented for that retire. This discrepancy is in the range of plus or minus 4 ret
instructions.

6.10.3.3.4 Bcache miss or long latency probes cycles

This input counts the number of times the Bcache result was a miss.

Essentially, a long latency probe is a data request from other processes that cause
Bcache misses in a system.

This count is phase shifted three cycles early and thus includes events that occurred
three cycles before the start and before the end of the ProfileMe window.

6.10.3.3.5 Mbox replay traps cycles

This input counts Mbox replay traps.

PCTR1 is enabled to count Mbox replay traps that occur during a window that is th
ProfileMe window phase-shifted one cycle later. The first replay trap counted would
the 7th cycle after the instruction is fetched.
Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6–23

Performance Counter Support
6.10.3.4 Counter Modes for ProfileMe Mode

Table 6–14 shows the counter modes that are used with ProfileMe mode.

Table 6–14 ProfileMe Mode PCTR_CTL Input Select Fields

SL0[4] SL1[3:2] PCTR0 PCTR1

1 00 Retired instructions Cycle counting

1 01 Cycle counting Inum retire delay

1 10 Retired instructions Bcache miss or long latency probes

1 11 Cycle counting Mbox replay traps
6–24 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

ini-
7
Initialization and Configuration

This chapter provides information on 21264/EV67-specific microprocessor system
tialization and configuration. It is organized as follows:

• Power-up reset flow

• Fault reset flow

• Energy star certification and sleep mode flow

• Warm reset flow

• Array initialization

• Initialization mode processing

• External interface initialization

• Internal processor register (IPR) reset state

• IEEE 1149.1 test port reset

• Reset state machine state transitions

• Phase-locked loop (PLL) functional description

Initialization is controlled by the reset state machine, which is responsible for four
major operations. Table 7–1 describes the four major operations.

7.1 Power-Up Reset Flow and the Reset_L and DCOK_H Pins

The 21264/EV67 reset sequence is triggered using the two input signalsReset_Land
DCOK_H in a sequence that is described in Section 7.1.1. AfterReset_Lis deasserted,
the following sequence of operations takes place:

Table 7–1 21264/EV67 Reset State Machine Major Operations

Operation Function

Ramp up Sequence the PLL input and output dividers (Xdiv and Zdiv) to gradually raise the internal
GCLK frequency and generate time intervals for the PLL to re-establish lock.

BiST/SROM Receive a synchronous transfer on theClkFwdRst_H pin in order to start built-in self-test and
SROM load at a predictable GCLK cycle.

Clock forward
interface

Receive a synchronous transfer on theClkFwdRst_H pin in order to initialize the clock for-
warding interface.

Ramp down Sequence the PLL input and output dividers (Xdiv and Zdiv) to gradually lower the internal
GCLK frequency during sleep mode.
Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7–1

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

n

sys-
on-
d

d to
or
ter-

in
rite

is
tial-
ice

, note

ter-

+

1. The clock forwarding and system clock ratio configuration information is loaded
onto the 21264/EV67. See Section 7.1.2.

2. The internal PLL is ramped up to operating frequency.

3. The internal arrays built-in self-test (BiST) is run, followed by Icache initializatio
using an external serial ROM (SROM) interface.

The 21264/EV67 systems, unlike the Alpha 21064 and 21164 microprocessor
tems, are required to have an SROM. The SROM provides the only means to c
figure the system port, and the SROM pins can be used as a software-controlle
UART.

The Icache must contain PALcode that starts at location 0x780. This code is use
configure the 21264/EV67 IPRs as necessary before causing any offchip read
write commands. This allows the 21264/EV67 to be configured to match the ex
nal system implementation.

4. After configuring the 21264/EV67, control can be transferred to code anywhere
memory, including the noncacheable regions. The Icache can be flushed by a w
operation to the ITB invalidate-all register after control is transferred.This transfer
of control should be to addresses not loaded in the Icache by the SROM interface or
the Icache may provide unexpected instructions.

5. Typically, any state required by the PALcode is initialized and then the console
started (switching out of PALmode and into native mode). The console code ini
izes and configures the system and boots an operating system from an I/O dev
such as a disk or the network.

Figure 7–1 shows the sequence of events at power-up, or cold reset. In Figure 7–1
the following symbols for constraints and information:

Constraints:

Information:

A Setup (A0) and hold (A1) for IRQ’s to be latched by DCOK (2 ns for each).

B Enough time forReset_Lto propagate through 5 stages of RESET synchronizer (clocked by the in
nal framing clock, which is driven byEV6Clk_x). Worst case through Pass 3 of the 21264/EV67
would be 5x8x8 = 320 GCLK cycles, because Ydiv values above 8 are out of range.

C Min = 1 FrameClk cycle.

a 8 GCLK cycles from DCOK assertion to first “real”EV6Clk_x cycle.

b Approximately 525 GCLK cycles for external framing clock to be sampled and captured.

c 1 FrameClk_x cycle.

d 3 FrameClk_x cycles.

e Approximately 264 GCLK cycles to prevent first command from appearing too early.

f Approximately 700,000 GCLK cycles for BiST + approximately 100,000 GCLK cycles fixed time
approximately 50,000 GCLK cycles per line of Icache for SROM load.

g 16 GCLK cycles.
7–2 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

on
Figure 7–1 Power-Up Timing Sequence

7.1.1 Power Sequencing and Reset State for Signal Pins

Power sequencing and avoiding potential failure mechanisms is described in Secti
9.3.

The reset state for the signal pins is listed in Table 7–2.

Table 7–2 Signal Pin Reset State

Signal Reset State Signal Reset State

Bcache

BcAdd_H[23:4] Tristated

BcCheck_H[15:0] Tristated BcTagInClk_H NA (input)

BcData_H[127:0] Tristated BcTagOE_L Tristated

BcDataInClk_H[7:0] NA (input) BcTagOutClk_x Tristated

BcDataOE_L Tristated BcTagParity_H Tristated

BcDataOutClk_x[3:0] Tristated BcTagShared_H Tristated

BcDataWr_L Tristated BcTagValid_H Tristated

BcLoad_L Tristated BcTagWr_L Tristated

BcTag_H[42:20] Tristated BcVref NA
(I_DC_REF)

BcTagDirty_H Tristated

System Interface

IRQ_H[5:0] NA (input) SysDataInClk_H[7:0] NA (input)

SysAddIn_L[14:0] NA (input) SysDataInValid_L NA (input)

SysAddInClk_L NA (input) SysDataOutClk_L[7:0] Tristated

IRQ_H

DCOK_H

state

SromOE_L

internal ClkFwdRst

TestStat_H

external Clks

valid

WAIT_NOMINALWAIT_SETTLE RAMP1 RAMP2 WAIT_ClkFwdRst0 WAIT_BiST WAIT_ClkFwdRst1

no min no min

End of BiST BiST Fails BiST Passes

A0

a

B

b c

f

C

g

d

e

FM-06486B.FH8

A1

RUN

ClkFwdRst_H

Reset_L
Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7–3

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

tems
s

he
i-

ome

e

In addition, as power is being ramped,Reset_Lmust be asserted — this allows the
21264/EV67 to reset internal state. Once the target voltage levels are attained, sys
should assertDCOK_H . This indicates to the 21264/EV67 that internal logic function
can be evaluated correctly and that thepower-up sequenceshould be continued. Prior to
DCOK_H being asserted, the logic internal to the 21264/EV67 is being reset and t
internal clock network is running (either clocked by the PLL VCO, which is at a nom
nal speed, or byClkIn_H , if the PLL is bypassed).

The reset state machine is in state WAIT_SETTLE.

7.1.2 Clock Forwarding and System Clock Ratio Configuration

WhenDCOK_H is asserted, the 21264/EV67 samples several pins and latches in s
initialization state, including the value of the PLL Ydiv divisor, which specifies the
ratio of the system clock to the internal clock (see Section 7.11.2.3), and enables th
charge pump on the phase-locked loop.

SysAddOut_L[14:0] Initially, during power-up reset, state
is not defined. If not during power-
up, preserves previous state. Then,
after the clock forward reset period
(as the external clocks start), signal
driven to NZNOP until the reset
state machine enters RUN, when it
is driven to NOP.

SysDataOutValid_L NA (input)

SysAddOutClk_L Tristated SysFillValid_L NA (input)

SysCheck_L[7:0] Tristated SysVref NA
(I_DC_REF)

SysData_L[63:0] Tristated

Clocks

ClkFwdRst_H NA (input) FrameClk_x NA (input)

ClkIn_H
ClkIn_L

NA (input) PLL_VDD NA
(I_DC_REF)

EV6Clk_H
EV6Clk_L

NA (input)

Miscellaneous

DCOK_H Must be deasserted until dc voltage
reaches proper operating level.

Tck_H NA (input)

PllBypass_H NA (input) Tdi_H NA (input)

Reset_L NA (input) Tdo_H Unspecified

SromClk_H Tristated TestStat_H Tristated

SromData_H NA (input) Tms_H NA (input)

SromOE_L Tristated Trst_L NA (input)

Table 7–2 Signal Pin Reset State (Continued)

Signal Reset State Signal Reset State
7–4 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

st of
ps
f

k

Table 7–3 summarizes the pins and the suggested/required initialization state. Mo
this information is supplied by placing (switch-selectable or hardwired) weak pull-u
or pull-downs on theIRQ_H pins. TheIRQ_H pins are sampled on the rising edge o
DCOK_H , during which time the 21264/EV67 is in reset and is not generating any sys-
tem activity. During normal operation, theIRQ_H pins supply interrupt requests to the
21264/EV67.

It is possible to disable the 21264/EV67 PLL and source GCLK directly fromClkIn_ x.
This mode is selected viaPllBypass_H. The 21264/EV67 still produces a divided-
down clock onEV6Clk_x; this output clock, which tracks GCLK, can be used in a
feedback loop to generate a locked input clock via an external PLL. The input cloc
can be locked against a slower speed systemreference clock.

Table 7–3 Pin Signal Names and Initialization State

Signal Name Sample Time Function Value

PllBypass_H Continuous input SelectClkIn_ x onto GCLK instead of internal
PLL.

0 Bypass1

1 Use PLL

ClkFwdRst_H Sampling method
according to
IRQ_H[4]

— —

Reset_L Continuous input — —

IRQ_H[5] Rising edge of
DCOK_H

Select 1:1 FrameClk mode.
Internal FrameClk can be generated two ways:

0 Sample with
FrameClk_H

1 Use a copy of
EV6Clk_H

IRQ_H[4] Rising edge of
DCOK_H

Select method of samplingClkFwdRst_H to
produce internal ClkFwdRst — either with
external or internal copy ofFrameClk_x.

0 Sample with Exter-
nal FrameClk_x

1 Sample with Inter-
nal Frameclk

IRQ_H[3:0] Rising edge of
DCOK_H

Select Ydiv divisor value. This is the divide-
down factor between GCLK andEV6Clk_x.

When the PLL is in use and the 21264/EV67 is
ramped-up to full speed, the VCO adjusts in
order to phase-align (and rate-match)EV6Clk_x
to ClkIn_ x. When the PLL is not in use, and
ClkIn_ x is bypassed onto GCLK,EV6Clk_x is
slower thanClkIn_ x by the divisor Ydiv.

IRQ_H[3:0] Divisor

0011 3
0100 4
0101 5
0110 6
0111 7
0000 8
1000 9
1001 10
1010 11
1011 12
1100 13
1101 14
1110 15
1111 16

1 By samplingFrameClk_H. Used if
FrameClk_H is slower thanClkIn_H .

2 As a direct copy ofEV6Clk_H . Used if
FrameClk_H is the same frequency as
ClkIn_H or is DC.
Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7–5

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

o
1264/

,

ve

.

y

-

s

re
sult
7.1.3 PLL Ramp Up

After the configuration is loaded through theIRQ_H pins, the next phase in the power
up flow is the internal PLL ramp up sequence. Ramping up of the PLL is required t
guarantee that the dynamic change in frequency will not cause the supply on the 2
EV67 to fall due to the supply loop inductance. Clock control circuitry steps GCLK
from power-up/reset clocking to 1/16th operating frequency, to ½ operating frequency
and finally normal operating frequency.

After the assertion ofDCOK_H , the 21264/EV67 waits for the deassertion ofReset_L
from the system while the PLL attempts to achieve a lock. The PLL internal ramp
dividers are set to divide down the input clock by 16 and the PLL attempts to achie
lock against an effective input frequency ofClkIn_ x/16. Once lock is achieved, the
actual internal frequency (GCLK) isClkIn_ x*(Y div divisor value)/16. There should be
a minimum delay of 100 ms between the assertion ofDCOK_H and the deassertion of
Reset_Lto allow for this locking The reset state machine is in the WAIT_NOMINAL
state.

After the deassertion ofReset_L, the reset state machine goes into the RAMP1 state
The 21264/EV67 ramps the internal frequency, by changing the effective input fre-
quency of the PLL toClkIn_ x/2 for a sufficient lock interval (about 20µs). The state
machine then goes into the RAMP2 state, changing the effective input frequency to
ClkIn/1 for an additional lock interval (about 20µs). The lock periods are generated b
the internal duration counter, which is driven by GCLK. The counter counts 4108
GCLK cycles during theClkIn_ x/2 lock interval. Note that GCLK is produced by the
output of the PLL, which is locking to an input clock which is 1/2 of the operating fre
quency — therefore, the 4108 cycle interval constitutes a 12-20µs interval when the
operating frequency is 400–666 MHz. Then, the counter counts 8205 GCLK cycle
during theClkIn_ x/1 lock interval.

7.1.4 BiST and SROM Load and the TestStat_H Pin

The 21264/EV67 uses the deassertion ofClkFwdRst_H (which must be deasserted for
a minimum of oneFrameClk_H cycle and then reasserted) to begin built-in self-test
(BiST). The reset state machine goes into the WAIT_BiST state. Details on BiST a
given in Chapter 11. The power-up BiST lasts approximately 700,000 cycles. The re
of the self-test is made available on theTestStat_Hpin. The pin is forced low by the
system reset. It is then forced high during BiST.

DCOK_H Continuous input When deasserted, initializes the internal 21264/
EV67 reset state machine and keeps the PLL
internal oscillator running at a nominal speed.
Assertion, which implies power to the 21264/
EV67 is good, causes configuration information
to be sampled.

—

1 The maximum permissible instantaneous change inClkIn_ x frequency is 333 MHz (to prevent cur-
rent spikes).

Table 7–3 Pin Signal Names and Initialization State (Continued)

Signal Name Sample Time Function Value
7–6 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

ting
ter

ard-
aits
the

f

As BiST completes, theTestStat_Hpin is held low for 16 GCLK cycles. Then, if BiST
succeeds, the pin remains low. Otherwise, it is asserted. After successfully comple
BiST, the 21264/EV67 then performs the SROM load sequence (described in Chap
11). After the SROM load sequence is finished, the 21264/EV67 deassertsSromOE_L.

7.1.5 Clock Forward Reset and System Interface Initialization

After the deassertion ofSromOE_L, the reset state machine enters the
WAIT_ClkFwdRst1 state, where the 21264/EV67 waits for the system to deassert
ClkFwdReset_H. The 21264/EV67 samples the deasserting edge ofClkFwdReset_H
to take synchronous actions. It uses this synchronous event to reset the clock forw
ing interface, start the outgoing clocks, and deassert internal reset. The chip then w
264 cycles before issuing commands. The reset state machine is then in RUN and
21264/EV67 begins fetching code at address 0x780.

Table 7–4 lists signals relevant to the power-up flow, provides a short description o
each, and any relevant constraints.

Table 7–4 Power-Up Flow Signals and Their Constraints

Signal Name Description Constraint

ClkIn_ x Differential clocks that are
inputs to PLL or are
bypassed onto GCLK
directly

Clocks must be running beforeDCOK_H is
asserted.

PLL_VDD VDD supply to PLL PLL_VDD must leadVDD.

VDD VDD supply to the 21264/
EV67 chip logic (except
PLL)

—

DCOK_H Logic signal to the 21264/
EV67 that the VDD supply
is good

—

Reset_L RESET pin asserted by
SYSTEM to the 21264/
EV67

Reset_Lmust be asserted prior toDCOK_H and
must remain asserted for at least 100 ms after
DCOK_H is asserted. This allows for PLL settling
time. Deassertion ofReset_Lcauses the 21264/
EV67 to ramp divisors to their final value and begin
BiST.

ClkFwdRst_H
Deassertion #1

Signal asserted by SYS-
TEM to synchronously
commence built-in self-test
and SROM load

ClkFwdRst_H must be deasserted after PLL has
achieved its lock in its final divisor value (about 20
µs). The deassertion causes built-in self-test to
begin on an internal clock cycle that corresponds to
one framing clock cycle afterClkFwdRst_H is
deasserted.ClkFwdRst_H can be asserted after
one frame clock cycle. See Figure 7–1.

ClkFwdRst_H
Deassertion #2

Signal asserted by SYS-
TEM to initialize and reset
clock forwarding interfaces

ClkFwdRst_H must be deasserted when the Cbox
has loaded configuration information. This occurs
as the first part of the serial ROM load, after BiST
is run. OnceClkFwdRst_H is deasserted, the
interface is initialized and can receive probe
requests from the 21264/EV67.
Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7–7

Fault Reset Flow

rm-

low-
7.2 Fault Reset Flow

The fault reset sequence of operation is triggered by the assertion of theClkFwdRst_H
signal line. Figure 7–2 shows the fault reset sequence of operation. The reset state
machine is initially in RUN state.ClkFwdRst_H is asserted by the system, which
causes the state machine to transition to the WAIT_FAULT_RESET state.

The 21264/EV67 internally resets a minimum amount of internal state. Note theeffects
of that reset on the IPRs in Table 7–5.

The 21264/EV67 then waits forClkFwdRst_H to deassert twice:

• One deassert to transition directly to the WAIT_ClkFwdRst1 state without perfo
ing any BiST

• One deassert to initialize the clock forwarding interface

The 21264/EV67 then begins fetching code at PAL_BASE + 0x780.

Figure 7–2 shows the fault reset sequence of operation. In Figure 7–2, note the fol
ing symbols for constraints and information:

Constraints:

Information:

Table 7–5 Effect on IPRs After Fault Reset

IPR After Reset

PAL_BASE Maintained (not reset)

I_CTL Bit value = 3 (both Icaches are enabled)

PCTX[FPE] Set

WRITE_MANY Cleared (That is, the WRITE_MANY chain is initialized and the Bcache is
turned off.)

EXC_ADDR Set to an address that is close to the PC

A Min = 1 FrameClk_x cycle

a Approximately 264 GCLK cycles

b Approximately 525 GCLK cycles for external framing clock to be sampled and captured

c 1 FrameClk_x cycle plus 2 GCLK cycles

e NextFrameClk_x rising edge

f 3 FrameClk_x cycles

g Approximately 264 GCLK cycles to prevent first command from appearing too early
7–8 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Energy Star Certification and Sleep Mode Flow

by
nce,
s
be
de.

a

e

ing a

it

e

up
nd the

d

Figure 7–2 Fault Reset Sequence of Operation

7.3 Energy Star Certification and Sleep Mode Flow

The 21264/EV67 is Energy Star compliant. Energy Star is a program administered
the Environmental Protection Agency to reduce energy consumption. For complia
a computer must automatically enter a low power sleep mode using 30 watts or les
after a specified period of inactivity. When the system is awakened, the user shall
returned automatically to the same situation that existed prior to entering sleep mo

During normal operation, the 21264/EV67 encounters inactive periods and enters
mode that saves the entire active processor state to memory.

The PALcode is responsible for saving all necessary state to DRAM and flushing th
caches.

The sleep mode sequence of operations is triggered by the PALcode twice perform
HW_MTPR to the Ibox SLEEP IPR. The first write prevents the assertion of
ClkFwdRst_H from fault-resetting the chip.

The PALcode then informs the system, in an implementation-dependent way, that
may assertClkFwdRst_H.

On the second HW_MTPR to the SLEEP IPR, the PLL begins to ramp down and th
21264/EV67 can then respond to theClkFwdRst_H that was asserted by the system,
causing the outgoing clocks from the 21264/EV67 to stop.

The PLL ramp-down sequence takes exactly the same amount of time as the ramp
sequence described in Section 7.1.3. The same internal duration counter is used a
reset state machine transitions through the DOWN1, DOWN2, and DOWN3 states
which have similar PLL divisor ratios and clock speeds to the RAMP2, RAMP1, an
WAIT_NOMINAL states.

state

SromOE_L

ClkFwdRst_H

internal ClkFwdRst

RUN WAIT_FAULT_RESET

internal clks aligned

external Clks

WAIT_ClkFwdRst0 WAIT_ClkFwdRst1

no min no min

b c

 A

e

f

ga

FM-06488B.AI4

RUN
Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7–9

Energy Star Certification and Sleep Mode Flow

/
an

nt to
n
d.
SE

fol-
After the PLL has finished ramping down, the reset state machine enters the
WAIT_INTERRUPT state. Note theeffects of the entryinto that state on the IPRs
listed in Table 7–6.

Note that Interrupt enables are maintained during sleep mode, enabling the 21264
EV67 to wake up. The 21264/EV67 waits for either an unmasked clock interrupt or
unmasked device interrupt from the system.

When an enabled interrupt occurs, the PLL ramps back to full frequency. Subseque
that, the 21264/EV67 performs a built-in self-initialization (BiSI), a shortened built-i
self-test, which initializes the internal arrayed structures. The SROM is not reloade
Instead, the 21264/EV67 begins fetching code from the system at address PAL_BA
+ 0x780.

Figure 7–3 shows the sleep mode sequence of operations. In Figure 7–3, note the
lowing constraint and informational symbols:

Constraints:

Informational symbols:

Table 7–6 Effect on IPRs After Transition Through Sleep Mode

IPR Effects After Transition Through Sleep Mode

PAL_BASE Maintained (not reset)

I_CTL Bit value = 3 (both Icaches are enabled)

PCTX[FPE] Set

WRITE_MANY Cleared (That is, the WRITE_MANY chain is initialized and the Bcache is
turned off.)

A Min = 1 FrameClk_x cycle

a Approximately 525 GCLK cycles for external framing clock to be sampled and captured

b NextFrameClk_x rising edge

c 1 FrameClk_x cycle

d 3 FrameClk_x cycles

e Approximately 264 GCLK cycles to prevent first command from appearing too early

f Approximately 8192 GCLK cycles for BiSI

g 16 GCLK cycles
7–10 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Warm Reset Flow

te

ts
Figure 7–3 Sleep Mode Sequence of Operation

Table 7–7 describes each signal and constraint for the sleep mode sequence.

7.4 Warm Reset Flow

The warm reset sequence of operation is triggered by the assertion of theReset_Lsig-
nal line. The reset state machine is initially in RUN state. The 21264/EV67 then, by
default, ramps down the PLL (similar to the sleep flow sequence) and the reset sta
machine ends up in the WAIT_RESET state.

Note the effects of entry into that state on the IPRs listed in Table 7–8.

Table 7–7 Signals and Constraints for the Sleep Mode Sequence

Signal Name Description Constraint

ClkFwdRst_H Signal asserted by the system to
initialize and reset clock forwarding
interfaces

ClkFwdRst_H must be asserted by the system
when entering sleep mode. The system deasser
ClkFwdRst_H no sooner than oneFrameClk_H
cycle after sourcing an interrupt to the 21264/
EV67.

Forwarded clocks Bit clocks forwarded to/from the
21264/EV67

Clocks stop running underClkFwdRst_H.

System interrupt Asynchronous interrupt which
causes the 21264/EV67 to exit sleep
mode

—

Table 7–8 Effect on IPRs After Warm Reset

IPR Effects After Warm Reset

PAL_BASE Cleared

I_CTL Cleared

PCTX[FPE] Set

WRITE_MANY Cleared (That is, the WRITE_MANY chain is initialized and the Bcache is
turned off.)

state

SLEEP IPR

Wake-up interrupt

SromOE_L

ClkFwdRst_H

internal ClkFwdRst

external Clks

RUN DOWN1 DOWN2 DOWN3 WAIT_INTR RAMP1 RAMP2 WAIT_ClkFwdRst0 WAIT_BiSI WAIT_ClkFwdRst1

internal clks

TestStat_H

no min no min

a c

A d

e

b f

FM-06487A.AI4

RUN
Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7–11

Array Initialization

ters

e

ins
an

a-
The 21264/EV67 waits untilReset_Lis deasserted before transitioning from the
WAIT_RESET state. The 21264/EV67 ramps up the PLL until the state machine en
the WAIT_ClkFwdRst0 state. Note that the system must assertClkFwdRst_H before
the state machine enters the WAIT_ClkFwdRst0 state. Then, similarly to the other
flows, SromOE_L is asserted and the system waits for the deassertion of
ClkFwdRst_H.

On the deassertion ofClkFwdRst_H, the 21264/EV67 performs BiST and the SROM
loading procedure.

After BiST and SROM loading have completed,SromOE_L deasserts and the 21264/
EV67 waits forClkFwdRst_H to deassert before starting the external clocks and, lik
the other flows, waits for 264 cycles before starting instructions.

7.5 Array Initialization

The following arrays are initialized by BiST:

• Icache and Icache tag
• Dcache, Dcache tag, and Duplicate Dcache tag
• Branch history table

The external second-level cache (Bcache) is disabled byReset_L.

The Bcache must be initialized by PALcode before it is enabled.

7.6 Initialization Mode Processing

The initialization mode allows the 21264/EV67 to generate and manipulate cache
blocks before the system interface has been initialized. Within the 21264/EV67, the
Cbox configuration registers are divided into the WRITE_ONCE and the
WRITE_MANY shift register chains (see Sections 5.4.3 and 5.4.4). The
WRITE_ONCE chain is loaded from the SROM during reset processing, and conta
information such as the clock forwarding setup values. The WRITE_MANY chain c
be written many times using MTPR instructions.

The WRITE_MANY chain contains the following CSRs that are important to initializ
tion mode, which must be set to the values in Table 7–9 to initialize the Bcache.

Table 7–9 WRITE_MANY Chain CSR Values for Bcache Initialization

WRITE_MANY Chain CSRs Required Value at Initialization Mode

BC_ENABLE 1
The duplicate bits for BC_ENABLE in [14:12] must
be 0 during initialization mode.

BC_SIZE[3:0] The exact size or maximum size of the Bcache.

INVAL_TO_DIRTY_ENABLE[1:0] 1

SET_DIRTY_ENABLE[2:0] 0

INIT_MODE 1
7–12 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Initialization Mode Processing

ns.

7

a

Except for INIT_MODE, all the CSR registers have been described in earlier sectio
When asserted, INIT_MODE has the following behavior:

• Cache block updates to the Dcache set the block to the Clean state.

• Updates to the Bcache use the BC_WRT_STS[3:0] bits.

• WrVictimBlk command generation to the system interface are squashed.

Using the INVAL_TO_DIRTY_ENABLE and INIT_MODE registers, initialization
code loaded from the SROM can generate and delete blocks inside the 21264/EV6
without system interaction. This behavior is very useful for initialization and startup
processing, when the system interfaces are not fully functional. Figure 7–4 shows
code example for initializing Bcache.

Figure 7–4 Example for Initializing Bcache
Reset chip and load Icache with this code

set init_mode ;now all WrVictims are ignored

;bc_enable_a 1

;zeroblk_enable_a 1

;set_dirty_enable_a 0

;init_mode_a 1

;enable_evict_a 0

;bc_wrt_sts_a 0

;bc_bank_enable_a 0

;bc_size_a 15

;now all writes to Bcache actually invalidate

;the Bcache. (if space was needed for scratch

;pad, the status bits could just as

;well be Valid)

for 2 X b c_size ;This loop generates legal ECC data, and

{ WH64 address } ;invalidate tags which are written to the

;Bcache for all but the final 64KB of address.

turn_off_bcache: ;bc_enable_a 0

;init_mode_a 0

;bc_size_a 0

;zeroblk_enable_a 1

;enable_evict_a 0

;set_dirty_enable_a 0

;bc_bank_enable_a 0

;bc_wrt_sts_a 0

EVICT_ENABLE 0

BC_WRT_STS[3:0] 0

BC_BANK_ENABLE 0

Table 7–9 WRITE_MANY Chain CSR Values for Bcache Initialization

WRITE_MANY Chain CSRs Required Value at Initialization Mode
Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7–13

External Interface Initialization

ally

te

ses
ati-

it

ers
,
and

rs
ers
SweepMemory: ;Write good parity/ecc to memory by

; writing a all memory locations. This is

;done by WH64 of memory addresses

turn_on_bcache: ;bc_enable_a 0

;bc_size_a Actual Bcache size

;zeroblk_enable_a 3

;set_dirty_enable_a 6

;init_mode_a 0

;enable_evict_a 0

;bc_wrt_sts_a 0

;bc_bank_enable_a 0

for 2 X b c_size ;This loop generates legal ECC data, and

{ WH64 address } ;invalidate tags which are written to the

;Bcache for all but the final 64KB of address.

for 2 X d cache size

{ ECB address } ;and cleans up the Dcache also.

(done)

In addition to initialization, the dynamic programming ability of the WRITE_MANY
chain provides the basic tools to build various other software flows such as dynamic
changing the Bcache enable/size parameters for performance testing.

7.7 External Interface Initialization

After reset, the system interface is in the default configuration dictated by the reset sta
of the IPR bits that select the configuration options.

The response to system interface commands and internally generated memory acces
is determined by this default configuration. System environments that are not comp
ble with the default configuration must use the SROMIcache load feature toinitially
load and execute a PALcode program to configure the external system interface un
IPRs as needed.

7.8 Internal Processor Register Power-Up Reset State

Many IPR bits are not initialized by reset. They are located in error-reporting regist
and other IPR states. They must be initialized by initialization PALcode. Tables 7–5
7–6, and 7–8, list the effects on IPRs by fault reset, transition through sleep mode,
warm reset, respectively. Table 7–10 lists the state of all internal processor registe
(IPRs) immediately following power-up reset. The table also specifies which regist
need to be initialized by power-up PALcode.

Table 7–10 Internal Processor Registers at Power-Up Reset State

Mnemonic Register Name Reset State Comments

Ibox IPRs

ITB_TAG ITB tag array write X —

ITB_PTE ITB PTE array write X —
7–14 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Internal Processor Register Power-Up Reset State
ITB_IAP ITB invalidate-all (ASM=0) X —

ITB_IA ITB invalidate all X Must be written to in PALcode.

ITB_IS ITB invalidate single X —

PMPC ProfileMePC X —

EXC_ADDR Exception address X —

IVA_FORM Instruction VA format X —

IER_CM Interrupt enable current mode X Must be written to in PALcode.

SIRR Software interrupt request X —

ISUM Interrupt summary X —

HW_INT_CLR Hardware interrupt clear X Must be cleared in PALcode.

EXC_SUM Exception summary X —

PAL_BASE PAL base address Cleared —

I_CTL Ibox control IC_EN = 3 All other bits are cleared on reset.

I_STAT Ibox status X Must be cleared in PALcode.

IC_FLUSH Icache flush X —

CLR_MAP Clear virtual-to-physical map X —

SLEEP Sleep mode X —

PCTX Ibox process context PCTX[FPE] is set. All other bits are X.

PCTR_CTL Performance counter control X Must be cleared in PALcode.

Ebox IPRs

CC Cycle counter X Must be cleared in PALcode.

CC_CTL Cycle counter control X Must be cleared in PALcode.

VA Virtual address X —

VA_FORM Virtual address format X —

Virtual address control X Must be cleared in PALcode.

Mbox IPRs

DTB_TAG0 DTB tag array write 0 Cleared —

DTB_TAG1 DTB tag array write 1 Cleared —

DTB_PTE0 DTB PTE array write 0 Cleared —

DTB_PTE1 DTB PTE array write 1 Cleared —

DTB_ALTMODE DTB alternate processor mode X PALcode must initialize.

DTB_IAP DTB invalidate all process
ASM = 0

X —

DTB_IA DTB invalidate all process X Must be written to in PALcode.

Table 7–10 Internal Processor Registers at Power-Up Reset State (Continued)

Mnemonic Register Name Reset State Comments
Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7–15

IEEE 1149.1 Test Port Reset

run-
nd
7.9 IEEE 1149.1 Test Port Reset

SignalTrst_L must be asserted when powering up the 21264/EV67.Trst_L must not
be deasserted prior to assertion ofDCOK_H . Trst_L can remain asserted during nor-
mal operation of the 21264/EV67.

7.10 Reset State Machine

The state diagram in Figure 7–5 summarizes how the 21264/EV67 transitions into
ning code. Each state is described in Table 7–11. Table 7–11 describes outputs a
approximate state transition equations. Note that there are implicit transitions from
each state to an appropriate down-ramp state whenReset_Lis asserted.

DTB_IS0 DTB invalidate single (array 0) X —

DTB_IS1 DTB invalidate single (array 1) X —

DTB_ASN0 DTB address space number 0 Cleared —

DTB_ASN1 DTB address space number 1 Cleared —

MM_STAT Memory management status X —

M_CTL Mbox control Cleared —

DC_CTL Dcache control DC_CTL[7:2] are cleared at reset.
DC_CTL[1:0] are set at power up.

DC_STAT Dcache status X Must be cleared in PALcode.

Cbox IPRs

C_DATA Cbox data X Must be read in PALcode.

C_SHFT Cbox shift control X —

Table 7–10 Internal Processor Registers at Power-Up Reset State (Continued)

Mnemonic Register Name Reset State Comments
7–16 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Reset State Machine

-

Figure 7–5 21264/EV67 Reset State Machine State Diagram

Table 7–11 21264/EV67 Reset State Machine State Descriptions

State Name Description

COLD Chip cold. Transitioned to WAIT_SETTLE with assertion ofReset_L, PLL_VDD, and
VDD .

WAIT_SETTLE PLL_VDD asserted; PLL at minimum frequency.

WAIT_NOMINAL Triggered by assertion ofDCOK_H . PLL achieves a lock at Xdiv and Zdiv divisors equal
16 and 32, respectively.

RAMP1 Triggered byReset_Ldeassertion; Xdiv and Zdiv divisors are changed to 2 and 4, respec
tively, increasing the internal GCLK frequency. An internal duration counter is initial-
ized to count 4108 GCLK cycles.

WAIT_
SETTLE
[16,32]

WAIT_
NOMINAL

[16,32]

RAMP1
[2,4]

RAMP2
[1,2]

WAIT_ClkFwd
Rst0

WAIT_ClkFwd
Rst1

RUN

FAULT_
RESET

DOWN3
[16,32]

DOWN2
[2,4]

DOWN1
[1,2]

COLD
WAIT_

BiSI
WAIT_
BiST

BiSI
finished

Counter
finished

Reset_L
deasserted

Reset_L
asserted

DCOK_H
asserted

Counter
finished

ClkFwdRst_H
deasserted

Counter
finished

*No BiST/BiSI
on recovery from Fault

Reset

BiST
finished

ClkFwdRst_H
deasserted

Counter
finished

Reset_L
deasserted

Enabled
Interrupt

ClkFwdRst_H
asserted

Sleep Mode
or Reset_L
asserted

Out of
Sleep
Mode

Out of
FAULT_
RESET*

Counter
finished

Counter
finished &
Sleep Mode

Counter
finished &

not Sleep Mode

LKG-10982A-98WF

Reset_L
asserted

PLL Ramp Up

PLL Ramp Down

WAIT_
INTERRUPT

WAIT_
RESET

Numbers in "[,]" are
Xdiv and Zdiv divisors,

respectively
Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7–17

Reset State Machine

er is

n

xter-

ted.

g
e
s.

ed.
the
dis-

ly
and

205
wer

to
RAMP2 Triggered by the duration counter reaching 4108 cycles, the Xdiv and Zdiv divisors are
changed to 1 and 2, respectively, and the frequency is increased. The duration count
reloaded to count 8205-cycles.

WAIT_ClkFwdRst0 Triggered by the duration counter reaching 8205 cycles (or by the deassertion of
Reset_Lwhile in the WAIT_RESET state). 21264/EV67 assertsSromOE_L and waits
for SYSTEM to deassertClkFwdReset_H. The deassertion must be synchronous to a
falling edge ofFrameClk_H. 21264/EV67 uses this deassertion to begin BiST and
SROM load at a predictable time. 21264/EV67 samples and generates an internal,
aligned copy ofFrameClk_H, and, in turn, uses this clock to sampleClkFwdReset_H.

WAIT_BiST BiST and SROM load is started. The SROM first loads the Write-once chain and the
reads the number of bits of Icache data to load.

WAIT_BiSI This state is entered when 'waking up' from sleep mode. 21264/EV67 receives an e
nal interrupt, ramps the PLL, synchronously samples a transition onClkFwdReset_H,
and runs built-in self-initialization to clear the internal caches. Built-in self-test is not
performed and the SROM is not loaded.

WAIT_ClkFwdRst1 Entered when the appropriate amount of BiST and SROM loading has been comple
21264/EV67 deassertsSromOE_L and waits for SYSTEM to deassert
ClkFwdReset_H. The deassertion must be synchronous to a rising edge of
FrameClk_H. 21264/EV67 uses this synchronous event to reset the clock forwardin
interface and deassert internal reset. 21264/EV67 subsequently begins running cod
(either preloaded in the SROM or located in memory) and begins system transaction

RUN Chip is running software, interface is reset, and system transactions can be process
From power-up, the Icache sets are enabled and contain bootstrap code loaded from
SROM; 21264/EV67 executes code from Icache. From wake-up, the Icache sets are
abled and 21264/EV67 fetches and executes code from DRAM.

WAIT_RESET Triggered by duration counter reaching 264 cycles, or whenReset_Lis asserted when in
WAIT_INTERRUPT state. 21264/EV67 waits in this state untilReset_Lis deasserted,
at which point, the PLL starts to ramp up again.

FAULT_RESET ClkFwdResetis asserted while the 21264/EV67 is running. The 21264/EV67 internal
resets a minimum amount of internal state, waits for clock forward reset deassertion,
begins fetching code at PAL_BASE + 0x780.

DOWN1 21264/EV67 was in a state in which GCLK was at its highest speed andReset_Lwas
asserted. Internal chip functions are reset and the internal duration counter is set to 8
cycles. The purpose of this sequence is to down-ramp the clocks in anticipation of po
being removed. If power is not removed (that is, reset is being toggled), 21264/EV67
ramps the clocks back to the original speed.
This state is also entered when software writes the I_CTL internal processor register
sleep mode.

Table 7–11 21264/EV67 Reset State Machine State Descriptions (Continued)

State Name Description
7–18 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Phase-Lock Loop (PLL) Functional Description

d by

e

s a

y

by

r-

an
are
pt
t

7.11 Phase-Lock Loop (PLL) Functional Description

The PLL multiplies the clock frequency of a differential input reference clock and
aligns the phase of its output to that differential input clock. Thus, the 21264/EV67 can
communicate synchronously on clock boundaries with clock periods that are define
the system.

7.11.1 Differential Reference Clocks

A skew-controlled, ac-coupled differential clock is provided to the PLL by way of
ClkIn_ x . ClkIn_ x are input signals to a differential amplifier. The frequency of
ClkIn_ x can range from 80 MHz to 200 MHz.ClkIn_ x can be sourced by a variety of
components that include PECL fanout parts or system PLLs.ClkIn_ x are also the pri-
mary clock source for the 21264/EV67 when in PLL bypass mode.

7.11.2 PLL Output Clocks

The following sections summarize the PLL output clocks.

7.11.2.1 GCLK

The PLL provides an output clock, GCLK, with afrequency that can range from 400
MHz to 833.3 MHz under full-speed conditions. GCLK is the nominal onchip clock
that is distributed to the entire 21264/EV67 chip.

7.11.2.2 Differential 21264/EV67 Clocks

TheEV6Clk_x output pads provide an external test point to measure the PLL phas
alignment. They do not provide a clock source.EV6Clk_x are square-wave signals
that drive rail-to-rail continually from 0 to 2.1 volts.

7.11.2.3 Nominal Operating Frequency

Under normal operating conditions, the frequency of the PLL output clock, GCLK, i
simple function of the Ydiv divider value.

DOWN2 Triggered by duration counter reaching 8205 cycles, the PLL ramps GCLK frequenc
down by the first divider ratio (Xdiv and Zdiv equal 2 and 4, respectively). This has the
effect of halving the GCLK frequency. The duration counter is set to 4108 cycles.

DOWN3 Triggered by duration counter reaching 4108 cycles, the PLL ramps frequency down
the second divider ratio (Xdiv and Zdiv equal 16 and 32, respectively). This has the
effect of reducing the frequency by a factor of 16 (of the original frequency). The inte
nal counter is set to 264 cycles.

WAIT_INTERRUPT Triggered by duration counter reaching 264 cycles, the 21264/EV67 waits for either
unmasked clock interrupt or unmasked device interrupt from system. The interrupts
wired to the interrupt request and enable internal registers. When an enabled interru
occurs, the PLL ramps back to full frequency. Subsequent to that, the built-in self-ini
(BiSI) initializes arrayed structures. The SROM is not reloaded; instead, the 21264/
EV67 begins fetching code from the SYSTEM.

Table 7–11 21264/EV67 Reset State Machine State Descriptions (Continued)

State Name Description
Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7–19

Phase-Lock Loop (PLL) Functional Description

t

a

f

00
e to
Table 7–12 shows the allowableClkIn_ x frequencies for a given operating frequency
of the 21264/EV67 and the Ydiv divider. For example, to set the 21264/EV67 GCLK
frequency to 500 MHz with aClkIn_ x frequency of 166.7 MHz, the system must selec
a Ydiv divider of 3 by placing the value 00112 on pinsIRQ_H[3:0] .

Table 7–12 Differential Reference Clock Frequencies in Full-Speed Lock

7.11.2.4 Power-Up/Reset Clocking

During the power-up/reset sequence, when not in PLL bypass mode, there may be
period of time whenClkIn_ x is not yet running, but there is a voltage onPLL_VDD .
The signalDCOK_H is deasserted until power is good throughout the system. The
10% to 90% rise time ofDCOK_H should be less than 2 ns. The deasserted state o
DCOK_H and the presence ofPLL_VDD causes the PLL to generate a global clock
that is distributed throughout the 21264/EV67 with a frequency range of 1 MHz to 5
MHz. The presence of the global clock during this period avoids permanent damag
the 21264/EV67.

GCLK Reference Clock Frequency (MHz) for Ydiv Dividers 1

1 Dividers 11 through 16 are out of range for the 21264/EV67 and reserved for future use. Valid refer-
ence clock (ClkIn_x) frequencies for the 21264/EV67 are specified in the range from 80 to 200.
Divider values that are out of that range are displayed as a dash “—”.

Period (ns) Frequency (MHz) 32

2 Dividers of 1 and 2 are to be used only in a PLL test mode.

4 5 6 7 8 9 10 11

2.5 400 133.3 100 80 — — — — — —

2.4 416.7 138.9 104.2 83.3 — — — — — —

2.3 434.8 144.9 108.7 87.0 — — — — — —

2.2 454.5 151.2 113.6 90.9 — — — — — —

2.1 476.2 158.7 119.0 95.2 — — — — — —

2.0 500 166.7 125.0 100 83.3 — — — — —

1.9 526.3 175.4 131.6 105.3 87.7 — — — — —

1.8 555.6 185.2 138.9 111.1 92.6 — — — — —

1.7 588.2 196.1 147.1 117.6 98.0 84.0 — — — —

1.6 625 — 156.3 125.0 104.2 89.3 — — — —

1.5 666.7 — 166.7 133.3 111.1 95.2 83.3 — — —

1.4 714.3 — 178.6 142.9 119.1 102.0 89.3 — — —

1.3 769.2 — 192.3 153.8 128.2 109.9 96.2 85.5 — —

1.2 833.3 — — 166.7 138.9 119.0 104.2 92.6 83.3 —
7–20 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

ng

is
8
Error Detection and Error Handling

This chapter gives an overview of the 21264/EV67 error detection and error handli
mechanisms, and is organized as follows:

• Data error correction code

• Icache data or tag parity error

• Dcache tag parity error

• Dcache data correctable ECC error

• Dcache store second error

• Dcache duplicate tag parity error

• Bcache tag parity error

• Bcache data correctable ECC error

• Memory/system port data correctable ECC error

• Bcache data correctable ECC error on a probe

• Double-bit fill errors

• Error case summary

Table 8–1 summarizes the 21264/EV67 error detection.

Table 8–1 21264/EV67 Error Detection Mechanisms

Component Error Detection Mechanism

Bcache tag Parity protected.

Bcache data array Quadword-ECC protected.

Dcache tag array Parity protected.

Dcache duplicate tag array Parity protected.

Dcache data array Quadword-ECC protected, however this mode of operation
only supported in systems that have ECC enabled on both the
system and Bcache ports.

Icache tag array Parity protected.

Icache data array Parity protected.

System port data bus Quadword-ECC protected.
Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8–1

Data Error Correction Code

ata

rror

by

and
ire

ener-
is

ing
8.1 Data Error Correction Code

The 21264/EV67 supports a quadword error correction code (ECC) for the system d
bus. ECC is generated by the 21264/EV67 for all memory write transactions
(WrVictimBlk) emitted from the 21264/EV67 and for all probe data. ECC is also
checked on every memory read transaction for single-bit correction and double-bit e
detection. Bcache data is checked for fills to the Dcache and Icache.

The 21264/EV67 ECC implementation corrects single-bit errors in hardware.

I/O write transaction data will not have a valid ECC (the ECC bits must be ignored
the system). Also, ECC checking is not performed on I/O read data.

Error detection and correction can be enabled/disabled by way of Mbox IPR
DC_CTL[DCDAT_ERR_EN].

Table 8–2 shows the ECC code.

8.2 Icache Data or Tag Parity Error

The following actions are performed when an Icache data or tag parityerror occurs.

1. When the hardware detects an error during an Icache read transaction, it traps
replays the instructions that were fetched during the error, then flushes the ent
Icache so the re-fetched instructions do not come directly from the Icache.

2. I_STAT[PAR] is set.

3. A corrected read data (CRD) interrupt is posted, when enabled. (Pass 3 only)

8.3 Dcache Tag Parity Error

The primary copies of the Dcache tags are used only when servicing 21264/EV67-g
ated load and store instructions.There are correctable and uncorrectable forms of th
error. If an issued load or store instruction detects a Dcache tag parity error, the follow
actions are performed:

1. MM_STAT[DC_TAG_PERR] is set.

2. A Dstream fault (DFAULT) is taken.

3. The virtual address associated with the error is available in the VA register.

Table 8–2 64-Bit Data and Check Bit ECC Code

11 1111 1111 2222 2222 2233 3333 3333 4444 4444 4455 5555 5555 6666 CCCC CCCC
0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0123 0123 4567

CB0 0111 0100 1101 0010 0111 0100 1101 0010 1000 1011 0010 1101 1000 1011 0010 1101 1000 0000

CB1 1110 1010 1010 1000 1110 1010 1010 1000 1110 1010 1010 1000 1110 1010 1010 1000 0100 0000

CB2 1001 1001 0110 0101 1001 1001 0110 0101 1001 1001 0110 0101 1001 1001 0110 0101 0010 0000

CB3 1100 0111 0001 1100 1100 0111 0001 1100 1100 0111 0001 1100 1100 0111 0001 1100 0001 0000

CB4 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0000 1000

CB5 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0100

CB6 1111 1111 0000 0000 0000 0000 1111 1111 1111 1111 0000 0000 0000 0000 1111 1111 0000 0010

CB7 1111 1111 0000 0000 0000 0000 1111 1111 0000 0000 1111 1111 1111 1111 0000 0000 0000 0001
8–2 Error Detection and Error Handling Alpha 21264/EV67 Hardware Reference Manual

Dcache Data Single-Bit Correctable ECC Error

e

not

cache
are

or.

ads
may

a,
or is
4. The PALcode flushes the error block by temporarily disabling
DC_CTL[DCTAG_PAR_EN] and evicting the block using two HW_LD instruc-
tions. The onchip duplicate tag provides the correct victim address and cache
coherence state.

If a retried load instruction detects the Dcache tag parity error, the memoryreference
may have already been retired, so the EXC_ADDR is not available. In this case, th
error is uncorrectable and the Mbox performs the following actions:

• Either DC_STAT[TPERR_P0] or DC_STAT[TPERR_P1] is set, indicating the
source of the error.

• When enabled, a machine check (MCHK) is posted. The MCHK is taken when
in PALmode.

8.4 Dcache Data Single-Bit Correctable ECC Error

The following operations may cause Dcache data ECC errors:

• Load instructions

• Stores of less than quadword length

• Dcache victim read transactions

The hardware flow used for Dcache data ECC errors depends on the event that
caused the error.

8.4.1 Load Instruction

Loads that read data from the Dcache may do so either in the same cycle as the D
tag probe (typical case) or in some subsequent cycle (load-queue retry). The hardw
functional flows for these two error cases differ slightly.

When a load instruction reads the Dcache data array in the same cycle as the tagarray,
if an ECC error occurs on the LSD ECC error detectors, then the Iboxstops retiring
instructions and does not resume retiring until after hardware recovers from the err

If an ECC error occurs on the LSD ECC error detectors, when a load instruction re
the Dcache tag array before it reads the Dcache data array, then the load instruction
have already been retired. In either case:

• The incorrect data is written into the load instruction’s destination register;
however, the load queue retains the state associated with the load instruction.

• A consumer of the load instruction’s data may be issued before the error is
recognized; however, the Ibox will invoke a replay trap at an instruction that is
older than (or equal to) any instruction that consumes the load instruction’s dat
and then stalls the replayed Istream in the map stage of the pipeline until the err
corrected.

• Given a READ_ERR read-type from the Mbox for the error load instruction, the
Cbox scrubs the block in the Dcache by evicting the block into the victim buffer
(thereby scrubbing it) and writing it back into the Dcache as follows:

– C_STAT[DSTREAM_DC_ERR] is set.
Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8–3

Dcache Store Second Error

ins

t

not

e

dupli-
tors
ed

ing
– C_ADDR contains bits [19:6] of the Dcache address of the block that conta
the error (bits [42:20] of the physical address are not updated).

– DC_STAT[ECC_ERR_LD] is set.

– The load queue retries the load and rewrites the register.

– A corrected read data (CRD) error interrupt is posted, when enabled.

Note: Errors in speculative load instructions cause a CRD error interrupt
to be posted but the data is not scrubbed by hardware. The PALcode
cannot perform a scrub because C_STAT is zero and C_ADDR does no
contain the address of the error.

8.4.2 Store Instruction (Quadword or Smaller)

A store instruction that is a quadword or smaller could invoke a Dcache ECC error,
since the original quadword must be read to calculate the new check bits.

• The Mbox scrubs the original quadword and replays the write transaction.

• DC_STAT[ECC_ERR_ST] is set.

• A corrected read data (CRD) error interrupt is posted, when enabled.

8.4.3 Dcache Victim Extracts

• Dcache victims with an ECC error are scrubbed as they are written into the
victim data buffer.

• No status is logged.

• No exception is posted.

8.5 Dcache Store Second Error

A second store instructionerror is logged when it occurs close behind the first.
Neither error is corrected.

• DC_STAT[ECC_ERR_ST] is set.

• DC_STAT[SEO] is set.

• When enabled, a machine check (MCHK) is posted. The MCHK is taken when
in PALmode.

8.6 Dcache Duplicate Tag Parity Error

The Dcache duplicate tag has thecorrectversion of the Dcache coherence state for th
21264/EV67, allowing it to be used for correct tag/status data when the Dcache tags
generate a parity error. These tags are parity protected also; however, the Dcache
cate tag cell is designed to be much more tolerant of soft errors. The parity genera
for the duplicate tags are enabled whenever the Cbox performs a physically-index
read transaction of eight locations in the tag array. If an error is generated, the follow
actions are taken:

• Dcache duplicate tag parity errors are not recoverable.
8–4 Error Detection and Error Handling Alpha 21264/EV67 Hardware Reference Manual

Bcache Tag Parity Error

hat

not

the

not

ity is
ted,

s

r.

ine

rror

rmal
• C_STAT[DC_PERR] is set.

• C_ADDR contains bits [42:6] of the Dcache duplicate tag address of the block t
contains the error.

• When enabled, a machine check (MCHK) is posted. The MCHK is taken when
in PALmode.

8.7 Bcache Tag Parity Error

The Bcache tag parity is checked on all Bcache tag references, including references
invoked by system probes. If an error is detected, the following actions are taken:

• Bcache tag parity errors are not recoverable.

• C_STAT[BC_PERR] is set.

• C_ADDR contains bits [42:6] of the Bcache address of the block that contains
error.

• When enabled, a machine check (MCHK) is posted. The MCHK is taken when
in PALmode.

8.8 Bcache Data Single-Bit Correctable ECC Error

The following actions may trigger Bcache data ECC errors:

• Icache fill, data possibly used by Icache

• Dcache fill, data possibly used by load instruction

• Bcache victim during an ECB instruction or during a Dcache/Bcache miss

The recovery mechanism depends on the action that triggered theerror.

8.8.1 Icache Fill from Bcache

For an Icache fill, the LSD ECC checkers detect the error, and bad Icache data par
generated for the octaword that contains the quadword in error. If an error is detec
the following actions are taken:

• The hardware flushes the Icache.

• C_STAT[ISTREAM_BC_ERR] is set.

• C_ADDR contains bits [42:6] of the Bcache fill address of the block that contain
the error.

• C_SYNDROME_0[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
quadword 0 and 1, respectively, of the octaword subblock that contains the erro

• A machine check (MCHK) is posted and taken immediately. The PALcode mach
check handler performs a scrubbing operation as described in Section D.36 to
ensure that the origination point of the error is corrected.

Note: A corrected read data (CRD) error interrupt is also posted in case this e
is in a speculative path and the MCHK is removed. The CRD PALcode
reads the status, to detect this condition, and scrubs the block. In the no
MCHK flow, the PALcode clears the pending CRD error.
Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8–5

Bcache Data Single-Bit Correctable ECC Error

a
t

tion.

d the

r,

(or

s

r.

ut
crub

s, and
infor-
RD
8.8.2 Dcache Fill from Bcache

If the quadword inerror is not used to satisfy a loadinstruction, a hardware recovery
flow is not invoked. The quadword inerror, and its associated check bits, are written
into the Dcache. However, status is logged as shown in the bulleted list below, and
corrected read data (CRD) error interrupt isposted, when enabled. PALcode may elec
to correct the error by scrubbing the block. If the error is not corrected by PALcode
when it occurs, the error will be detected and corrected by a later load/victim opera

If the quadword inerror is used to satisfy a loadinstruction, then the flow is very simi-
lar to that used for a Dcache ECC error. The LSD ECC checker detects the error an
21264/EV67 performs the following actions:

• The load instruction’s destination register is written with incorrect data; howeve
the load queue will retain the state associated with the load instruction.

• A consumer of the load instruction’s data may be issued before the error is
recognized. The Ibox will invoke a replay trap at an instruction that is older than
equal to) any instruction that consumes the load instruction’s data. The 21264/
EV67 then stalls the replayed Istream in the map stage of the pipeline, until the
error is corrected.

• With a READ_ERR read type from the Mbox for the load instruction inerror, the
Cbox scrubs the block in the Dcache by evicting the block into the victim buffer
and writing it back into the Dcache.

• C_STAT[DSTREAM_BC_ERR] is set.

• C_ADDR contains bits [42:6] of the Bcache fill address of the block that contain
the error.

• C_SYNDROME_0[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
quadword 0 and 1, respectively, of the octaword subblock that contains the erro

• The load queue retries the load instruction and rewrites the register.

• DC_STAT[ECC_ERR_LD] is set.

• A corrected read data (CRD) error interrupt is posted, when enabled.

Note: Errors in speculative load instructions cause a CRD error to be posted b
the data is not scrubbed by hardware. The PALcode cannot perform a s
operation because C_STAT is zero and C_ADDR does not contain the
address of the block in error.

8.8.3 Bcache Victim Read

A victim from the Bcache is written directly to the system port, without correction. The
ECC parity checker on the LSD detects the error and posts a corrected read data (CRD)
error interrupt. The Cbox error register is not updated.

8.8.3.1 Bcache Victim Read During a Dcache/Bcache Miss

While the Bcache is servicing a Dcache miss and that Bcache access is also a mis
an error occurs during that Bcache data access, the Cbox does not latch the error
mation. However, the Mbox correction state machine is activated and it invokes a C
error despite the fact that no correction is performed.
8–6 Error Detection and Error Handling Alpha 21264/EV67 Hardware Reference Manual

Memory/System Port Single-Bit Data Correctable ECC Error

d cor-

no

t

r.

ine

writ-
nd a

-

The Bcache access error is written out to memory and is subsequently detected an
rected by the next consumer of the data.

• No correction is made.

• No status is logged (C_STAT = 0).

• A CRD error interrupt is posted, when enabled.

8.8.3.2 Bcache Victim Read During an ECB Instruction

A victim from the Bcache that occurs while an ECB instruction is being executed is
written directly to the system port without correction. No Cbox registers are set and
exception is taken.

8.9 Memory/System Port Single-Bit Data Correctable ECC Error

The following actions may cause memory/system port data ECC errors:

• Icache fill–data possibly used by Icache

• Dcache fill–data possibly used by a load instruction

The recovery mechanism depends on the event that caused the error.

8.9.1 Icache Fill from Memory

For an Icache fill the LSD ECC generators detect the error, and bad Icache data
parity is generated for the octaword that contains the quadword in error.

• The hardware flushes the Icache.

• C_STAT[ISTREAM_MEM_ERR] is set.

• C_ADDR contains bits [42:6] of the system memory fill address of the block tha
contains the error.

• C_SYNDROME_0[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
quadword 0 and 1, respectively, of the octaword subblock that contains the erro

• A machine check (MCHK) is posted and taken immediately. The PALcode mach
check handler performs a scrubbing operation as described in Section D.36 to
ensure that the origination point of the error is corrected.

Note: Also, a corrected read data (CRD) error isposted, when enabled, in case
this error is in a speculative path and the MCHK is removed. The CRD
error PALcode reads the status to detect this condition and scrubs the block.
In the normal MCHK flow, the PALcode clears the pending CRD error.

8.9.2 Dcache Fill from Memory

If the quadword inerror is not used to satisfy a loadinstruction, no hardware
recovery flow is invoked. The quadword in error, and its associated check bits, are
ten into the Dcache. However, status is logged as shown in the bulleted list below a
corrected read data (CRD) error interrupt isposted, when enabled. PALcode may
choose to correct the error by scrubbing the block. If the error is not corrected by PAL
code at the time, the error will be detected and corrected by a load/victim operation.
Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8–7

Bcache Data Single-Bit Correctable ECC Error on a Probe

r,

a.
rror

at

r.

ut
ata
he

ad
a
sor.

e

r.

will
If the quadword inerror is used to satisfy a loadinstruction, then the flow is very simi-
lar to that used for a Dcache ECC error:

• The load instruction’s destination register is written with incorrect data; howeve
the load queue will retain the state associated with the load instruction.

• A consumer of the load instruction’s data may be issued before the error is
recognized; however, the Ibox will invoke a replay trap at an instruction that is
older than (or equal to) any instruction that consumes the load instruction’s dat
The Ibox stalls the replayed Istream in the map stage of the pipeline until the e
is corrected.

• With a READ_ERR read type from the Mbox for the load instruction inerror, the
Cbox scrubs the block in the Dcache by evicting the block into the victim buffer
and writing it back into the Dcache.

• C_STAT[DSTREAM_MEM_ERR] is set.

• C_ADDR contains bits [42:6] of the system memory fill address of the block th
contains the error.

• C_SYNDROME_0[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
quadword 0 and 1, respectively, of the octaword subblock that contains the erro

• The load queue retries the load instruction and rewrites the register.

• DC_STAT[ECC_ERR_LD] is set.

• A corrected read data (CRD) error interrupt is posted, when enabled.

Note: Errors in speculative load instructions cause a CRD error to be posted b
the data is not scrubbed by hardware. The PALcode cannot scrub the d
because C_STAT is zero, and C_ADDR does not have the address of t
block with the error.

8.10 Bcache Data Single-Bit Correctable ECC Error on a Probe

The probed processor extracts the block from its Bcache, signaling a corrected re
data (CRD) error and latching error information. The single-bit ECC detected error dat
is not corrected by the probed processor, but is forwarded to the requesting proces
The requesting processor then detects a related system fillerror as a result of this sys-
tem probe transaction.

• No hardware correction is performed.

• C_STAT[PROBE_BC_ERR] is set.

• C_ADDR contains bit [42:6] of the Bcache address of the block that contains th
error.

• C_SYNDROME_0[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
quadword 0 and 1, respectively, of the octaword subblock that contains the erro

• A CRD error interrupt is posted, when enabled.

• The PALcode on the probed processor may choose to scrub the error, though it
probably be scrubbed by the requesting processor.
8–8 Error Detection and Error Handling Alpha 21264/EV67 Hardware Reference Manual

Double-Bit Fill Errors

t

not

mer
lue.

-

8.11 Double-Bit Fill Errors

Double-biterrors for fills are detected, but not corrected, in the 21264/EV67. The fol-
lowing events may cause a double-bit fill error:

• Icache fill from Bcache

• Dcache fill from Bcache

• Icache fill from memory

• Dcache fill from memory

If an error is detected, the following actions are taken:

• C_STAT is set to one of the following:

ISTREAM_BC_DBL (Icache fill from Bcache)

DSTEAM_BC_DBL (Dcache fill from Bcache)

ISTREAM_MEM_DBL (Icache fill from memory)

DSTREAM_MEM_DBL (Dcache fill from memory)

• C_ADDR contains bits [42:6] of the system memory fill address of the block tha
contains the error.

• When enabled, a machine check (MCHK) is posted. The MCHK is taken when
in PALmode.

• A double-bit fill error from memory, marked by the data's corresponding ECC,
when written to cache, also writes the corresponding ECC to cache. Any consu
of that error (such as another CPU) also consumes the corresponding ECC va

Note: C_ADDR may be inaccurate in heavy traffic conditions. C_STAT is accu
rate.

8.12 Error Case Summary

Table 8–3 summarizes the various error cases and their ramifications.

Table 8–3 Error Case Summary

Error Exception Status
Hardware
Action PALcode Action

Icache data or tag
parity error

CRD ISTAT[PAR] Icache flushed Log as CRD

Dcache tag parity
error (on issue)

DFAULT MM_STAT[DC_TAG_PERR]
VA[address]

— Evict with two
HW_LDs and log as
CRD

Dcache tag parity
error (on retry)

MCHK1 DC_STAT[TPERR_P0] or
DC_STAT[TPERR_P1]

— Log as MCHK

Dcache single-bit
ECC error on load

CRD DC_STAT[ECC_ERR_LD]
C_STAT[DSTREAM_DC_ERR]
C_ADDR[bits [19:6] of the error
address. [42:20] not updated.]

Corrected and
scrubbed

Log as CRD
Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8–9

Error Case Summary
Dcache single-bit
ECC error on
speculative load

CRD DC_STAT[ECC_ERR_LD]
C_STAT contains zero

None Log as CRD

Dcache single-bit
ECC error on small
store

CRD DC_STAT[ECC_ERR_ST] Corrected and
scrubbed

Log as CRD

Dcache single-bit
ECC error on victim
read

None None Corrected and
scrubbed

None

Dcache second error
on store

MCHK1 DC_STAT[SEO] No correction
on either store

Log as MCHK

Dcache duplicate tag
parity error

MCHK1 C_STAT[DC_PERR]
C_ADDR[error address]

Uncorrectable Log as MCHK

Bcache tag parity
error

MCHK1 C_STAT[BC_PERR]
C_ADDR[error address]

Uncorrectable Log as MCHK

Bcache single-bit
error on Icache fill

MCHK
and CRD2

C_STAT[ISTREAM_BC_ERR]
C_ADDR[error address]
C_SYNDROME_0
C_SYNDROME_1

Icache flushed Scrub error as described
in Section D.36.
Log as CRD

Bcache single-bit
error on Dcache fill

CRD DC_STAT[ECC_ERR_LD]
C_STAT[DSTREAM_BC_ERR]
C_ADDR[error address]
C_SYNDROME_0
C_SYNDROME_1

Corrected and
scrubbed in
Dcache3

Scrub error as described
in Section D.36.
Log as CRD

Bcache victim read
on Dcache/Bcache
miss

CRD DC_STAT[ECC_ERR_LD]
C_STAT contains 0

None Log as CRD

Bcache victim read
on ECB

None None None None

Memory single-bit
error on Icache fill

MCHK
and CRD2

C_STAT[ISTREAM_MEM_ERR]
C_ADDR[error address]
C_SYNDROME_0
C_SYNDROME_1

Icache flushed Scrub error as described
in Section D.36.
Log as CRD

Memory single-bit
error on Dcache fill

CRD DC_STAT[ECC_ERR_LD]
C_STAT[DSTREAM_MEM_ERR]
C_ADDR[error address]
C_SYNDROME_0
C_SYNDROME_1

Corrected and
scrubbed in
Dcache3

Scrub error as described
in Section D.36.
Log as CRD

Bcache single-bit
error on a probe hit

CRD C_STAT[PROBE_BC_ERR]
C_ADDR[error address]4

C_SYNDROME_0
C_SYNDROME_1

None May scrub error as
described in Section
D.36.
Log as CRD

Bcache double-bit
error on Icache fill

MCHK1 C_STAT[ISTREAM_BC_DBL]
C_ADDR[error address]4

None Log as MCHK

Table 8–3 Error Case Summary (Continued)

Error Exception Status
Hardware
Action PALcode Action
8–10 Error Detection and Error Handling Alpha 21264/EV67 Hardware Reference Manual

Error Case Summary
Bcache double-bit
error on Dcache fill

MCHK1 C_STAT[DSTREAM_BC_DBL]
C_ADDR[error address]4

None Log as MCHK

Memory double-bit
error on Icache fill

MCHK1 C_STAT[ISTREAM_MEM_DBL]
C_ADDR[error address]4

None Log as MCHK

Memory double-bit
error on Dcache fill

MCHK1 C_STAT[DSTREAM_MEM_DBL]
C_ADDR[error address]4

None Log as MCHK

1 Machine check taken in native mode. It is deferred while in PALmode.
2 CRD error posted in case the machine check is down a speculative path.
3 For a single-bit error on a non-target quadword, the error is not corrected in hardware,

but is corrected by PALcode during the scrub operation.
4 The contents of C_ADDR may not be accurate when there is heavy cache fill traffic.

Table 8–3 Error Case Summary (Continued)

Error Exception Status
Hardware
Action PALcode Action
Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8–11

ply

may

e

t of
9
Electrical Data

This chapter describes the electrical characteristics of the21264/EV67 and its interface
pins. The chapter contains both ac and dc electrical characteristics and power sup
considerations, and is organized as follows:

• Electrical characteristics

• DC characteristics

• Power supply sequencing

• AC characteristics

9.1 Electrical Characteristics

Table 9–1 lists the maximum electrical ratings for the 21264/EV67.

Notes: Stresses above those listed under the given maximum electrical ratings
cause permanent device failure. Functionality at or above these
limits is not implied. Exposure to these limits for extended periods of tim
may affect device reliability.

Power data is preliminary and based on measurements from a limited se
material.

Table 9–1 Maximum Electrical Ratings

Characteristics Ratings

Storage temperature –55° C to +125° C (–67° F to 257° F)

Junction temperature 0° C to 100° C (32° F to 212° F)

Maximum dc voltage on signal pins VDD + 400 mV

Minimum dc voltage on signal pins VSS– 400 mV

Maximum power @ indicated VDD
for the following frequencies: Frequency Peak Power

600 MHz 73 W @ 2.1 V

667 MHz 80 W @ 2.1 V

700 MHz 85 W @ 2.1 V

733 MHz 88 W @ 2.1 V

750 MHz 90 W @ 2.1 V
Alpha 21264/EV67 Hardware Reference Manual Electrical Data 9–1

DC Characteristics

pins
sig-
types.

.

the
9.2 DC Characteristics

This section contains the dc characteristics for the 21264/EV67. The 21264/EV67
can be divided into 10 distinct electrical signal types. The mapping between these
nal types and the package pins is shown in Chapter 3. Table 9–2 shows the signal

Tables 9–3 through 9–12 show the dc switching characteristics of each signal type
Also, the following notes apply to Tables 9–3 to 9–12.

1. The differential voltage, Vdiff, is the absolute difference between the differential
input pins.

2. Delta VBIAS is defined as the open-circuit differential voltage on the appropriate
differential pairs. Test condition for these inputs are to let the input network self
bias and measure the open circuit voltage. The test load must be≥ 1M ohm. In nor-
mal operation, these inputs are coupled with a 680-pF capacitor.

3. Functional operation of the 21264/EV67 with less than allVDD andVSSpins con-
nected is not implied.

4. The test load is a 50-ohm resistor to VDD/2. The resistor can be connected to
21264/EV67 pin by a 50-ohm transmission line of any length.

5. DC test conditions set the minimum swing required. These dc limits set the trip
point precision.

6. Input pin capacitance values include 2.0 pF added for package capacitance.

Table 9–2 Signal Types

Signal Type Description

I_DC_POWER Supply voltage pins (VDD/PLL_VDD)

I_DC_REF Input dc reference pin

I_DA Input differential amplifier receiver

I_DA_CLK Input differential amplifier clock receiver

O_OD Open-drain output driver

O_OD_TP Open-drain driver for test pins

O_PP Push-pull output driver

O_PP_CLK Push-pull output clock driver

B_DA_OD Bidirectional differential amplifier receiver — open-drain

B_DA_PP Bidirectional differential amplifier receiver — push-pull
9–2 Electrical Data Alpha 21264/EV67 Hardware Reference Manual

DC Characteristics
Note: Current out of a 21264/EV67 pin is represented by a – symbol while a +
symbol indicates current flowing into a 21264/EV67 pin.

Table 9–3 VDD (I_DC_POWER)

Parameter Symbol Description Test Conditions Minimum Maximum

VDD Processor core supply voltage — 1.9 V 2.15 V

Power (sleep) Processor power required (sleep) @ VDD = 2.1 V
Note 3

— 19 W1

1 Power measured at 37.5 MHz while running the “Ebox aliveness test.”

PLL_VDD PLL supply voltage — 3.135 V 3.465 Vc

PLL_IDD PLL supply current (running) Freq = 600 MHz — 25 mA

Table 9–4 Input DC Reference Pin (I_DC_REF)

Parameter
Symbol Description Test Conditions Minimum Maximum

VREF DC input reference voltage — 600 mV VDD – 650 mV

| II | Input current VSS≤ V ≤ VDD — 150 µA

Table 9–5 Input Differential Amplifier Receiver (I_DA)

Parameter
Symbol Description Test Conditions Minimum Maximum

VIL Low-level input voltage Note 5 — VREF – 200 mV

VIH High-level input voltage — VREF + 200 mV —

| II | Input current VSS≤ V ≤ VDD — 150 µA

CIN Input-pin capacitance Freq =10 MHz — 5.7 pF
Note 6

Table 9–6 Input Differential Amplifier Clock Receiver (I_DA_CLK)

Parameter
Symbol Description Test Conditions Minimum Maximum

Vdiff Differential input voltage — 200 mv Note 1 —

| ∆ VBIAS | Open-circuit differential I≤ ± 1 µA
Note 2

— 50 mV

| II | Input current VSS≤ V ≤ VDD — 150µA

CIN Input-pin capacitance Freq =10 MHz — 5.0 pF
Note 6
Alpha 21264/EV67 Hardware Reference Manual Electrical Data 9–3

DC Characteristics
Table 9–7 Pin Type: Open-Drain Output Driver (O_OD)

Parameter
Symbol Description

Test
Conditions Minimum Maximum

VOL Low-level output voltage IOL = 70 mA — 400 mV

|IOZ | High impedance output current 0 < V < VDD — 150µA

COD Open-drain pin capacitance Freq = 10 MHz — 5.7 pF
Note 6

Table 9–8 Bidirectional, Differential Amplifier Receiver, Open-Drain Output Driver (B_DA_OD)

Parameter
Symbol Description Test Conditions Minimum Maximum

VIL Low-level input voltage Note 5 — VREF –200 mv

VIH High-level input voltage — VREF + 200 mV —

VOL Low-level output voltage IOL = 70 mA — 400 mV

| II | Input current VSS≤ V ≤ VDD — 150 µA1

CIN Input-pin capacitance Freq =10 MHz — 5.7 pF
Note 6

1 Measurement taken with output driver disabled.

Table 9–9 Pin Type: Open-Drain Driver for Test Pins (O_OD_TP)

Parameter
Symbol Description

Test
Conditions Minimum Maximum

VOL Low-level output voltage IOL = 15 mA — 400 mV

| IOZ | High-impedance output current 0 < V < VDD — 150µA

COD_TP Pin capacitance Freq = 10 MHz — 5.2 pF
Note 6

Table 9–10 Bidirectional, Differential Amplifier Receiver, Push-Pull Output Driver (B_DA_PP)

Parameter
Symbol Description Test Conditions Minimum Maximum

VIL Low-level input voltage — — VREF – 200 mV

VIH High-level input voltage — VREF + 200 mV —

VOL Low-level output voltage IOL = 6 mA — 400 mV

VOH High-level output voltage IOH = –6 mA VDD – 400 mV —

| II | Input current VSS≤ V ≤ VDD — 150µA1

CIN Input-pin capacitance Freq =10 MHz — 6.0 pF
Note 6

1 Measurement taken with output driver disabled.
9–4 Electrical Data Alpha 21264/EV67 Hardware Reference Manual

Power Supply Sequencing and Avoiding Potential Failure Mechanisms

st be

e
ty of

so

al
ulk
9.3 Power Supply Sequencing and Avoiding Potential Failure Mech-
anisms

Before the power-on sequencing can occur,systems should ensure thatDCOK_H is
deasserted andReset_Lis asserted. Then, systems ramp power to the 21264/EV67
PLL_VDD @ 3.3 V and the 21264/EV67 power planes (VDD @ 2.0 V, not to exceed
2.15 V under any circumstances), withPLL_VDD leadingVDD. Systems should
supply differential clocks to the 21264/EV67 onClkIn_H andClkIn_L . The clocks
should be running as power is supplied.

When enabling the power supply inputs in a system, three failure mechanisms mu
avoided:

1. Bidirectional signal buses must not conflict during power-up. A conflict on thes
buses can generate high current conditions, which can compromise the reliabili
the associated chips.

2. Similarly, input receivers should not see intermediate voltage levels that can al
generate high current conditions, which can compromise the reliability of the
receiving chip.

3. Finally, no CMOS chip should see an input voltage that is higher than its intern
VDD. In such a condition, a reasonable level of charge can be injected into the b
of the die. This condition can expose the chip to a positive-feedback latchup
condition.

The 21264/EV67 addresses those three failure mechanisms by disabling all of its
outputs and bidirectional pins (with three exceptions) until the assertion ofDCOK_H .
The three exceptions areTdo_H, EV6Clk_L , andEV6Clk_H . Tdo_H is used only in

Table 9–11 Push-Pull Output Driver (O_PP)

Parameter
Symbol Description

Test
Conditions Minimum Maximum

VOL Low-level output voltage IOL = 40 mA — 500 mV

VOH High-level output voltage IOL = –40 mA VDD – 500 mV —

| IOZ | High-impedance output current 0 < V < VDD — 150µA

COD Open-drain pin capacitance Freq = 10 MHz — 6.0 pF
Note 6

Table 9–12 Push-Pull Output Clock Driver (O_PP_CLK)

Parameter
Symbol Description

Test
Conditions Minimum Maximum

VOL Low-level output voltage Note 4 — VDD/2 – 325 mV

VOH High-level output voltage Note 4 VDD/2 + 325 mV —

| IOZ | High-impedance output
current

0 < V < VDD — 40 mA1

1 Measured value includes current from onchip termination structures.
Alpha 21264/EV67 Hardware Reference Manual Electrical Data 9–5

AC Characteristics

ter-

bus

rain

bus

rnal

ional
4/

tems
s

he
the tester environment and does not need to be disabled.EV6Clk_L andEV6Clk_H
are outputs that are both generated and consumed by the 21264/EV67; thus,VDD
tracks forboth the producer and consumer.

On the push-pull interfaces:

• Disabling all output drivers leaves the output signal at the DC bias point of the
mination network.

• Disabling the bidirectional drivers leaves the other consumers of the bus as the
master.

On the open-drain interfaces:

• Disabling all output drivers leaves the output signal at the voltage of the open-d
pull-up.

• Disabling all bidirectional drivers leaves the other consumers of the bus as the
master.

To avoid failure mechanism number two, systems must sequence and control exte
signal flow in such a way as to avoid zero differential into the21264/EV67 input
receivers (I_DA, I_DA_CLK, B_DA_OD, B_DA_PP, and B_DA_PP). Finally, to
avoid failure mechanism number three, systems must sequence input and bidirect
pins (I_DA, I_DA_CLK, B_DA_OD, B_DA_PP, and I_DC_REF) such that the 2126
EV67 does not see a voltage above its VDD.

In addition, as power is being ramped,Reset_Lmust be asserted — this allows the
21264/EV67 to reset internal state. Once the target voltage levels are attained, sys
should assertDCOK_H . This indicates to the 21264/EV67 that internal logic function
can be evaluated correctly and that thepower-up sequenceshould be continued. Prior to
DCOK_H being asserted, the logic internal to the 21264/EV67 is being reset and t
internal clock network is running (either clocked by the VCO, which is at a nominal
speed, or byClkIn_H , if the PLL is bypassed).

The reset state machine is in state WAIT_SETTLE.

9.4 AC Characteristics

Abbreviations:

The following abbreviations apply to Table 9–13:

• TSU = Setup time

• Duty cycle = Minimum clock duty cycle

• TDH = Hold time

• Slew rate = referenced to signal edge

AC Test Conditions:

The following conditions apply to the measurements that are listed in Table 9–13:

• VDD is in the range between 1.9 V and 2.15 V.

• SysVref is VDD/2 Volts.

• BcVref is 0.75 Volts.
9–6 Electrical Data Alpha 21264/EV67 Hardware Reference Manual

AC Characteristics

t is

-

• The input voltage swing is Vref ± 0.40 Volts.

• All output skew data is based on simulation into a 50-ohm transmission line tha
terminated with 50 ohms to VDD/2 for Bcache timing, and with 50 ohms to VDD
for all other timing.

Timings are measured at the pins as follows:

– For open-drain outputs, timing is measured to (Vol + Vterm)/2. Where Vterm is
the offchip termination voltage for system signals.

– For non-open-drain outputs, timing is measured to (Vol + Voh)/2.
– For all inputs other than type I_DA_CLK, timing is measured to the point

where the input signal crosses VREF.
– For type I_DA_CLK inputs, timing is measured when the voltage on the com

plementary inputs is equal.

Table 9–13 AC Specifications

Signal Name Type Reference Signal TSU 1 TDH2 TSkew Duty Cycle TSlew

SysAddIn_L[14:0 I_DA SysAddInClk_L 400 ps 400 ps NA NA 1.0 V/ns

SysFillValid_L I_DA SysAddInClk_L 400 ps 400 ps NA NA 1.0 V/ns

SysDataInValid_L I_DA SysAddInClk_L 400 ps 400 ps NA NA 1.0 V/ns

SysDataOutValid_L I_DA SysAddInClk_L 400 ps 400 ps NA NA 1.0 V/ns

SysAddInClk_L I_DA NA NA NA NA 45–55% 1.0 V/ns

SysAddOut_L[14:0] O_OD SysAddOutClk_L NA NA ± 300 ps3 NA NA

SysAddOutClk_L O_OD EV6Clk_x NA NA ± 400 ps 45-55% NA

SysData_L[63:0] B_DA_OD SysDataInClk_H[7:0] 400 ps 400 ps NA NA 1.0 V/ns

SysDataOutClk_L[7:0]4 NA NA ± 300 ps3 NA NA

SysCheck_L[7:0] B_DA_OD SysDataInClk_H[7:0] 400 ps 400 ps NA NA 1.0 V/ns

SysDataOutClk_L[7:0]4 NA NA ± 300 ps3 NA NA

SysDataInClk_H[7:0] I_DA NA NA NA NA 45-55% 1.0 V/ns

SysDataOutClk_L[7:0] O_OD EV6Clk_x NA NA ± 400 ps 45-55% NA

BcAdd_H[23:4] O_PP BcTagOutClk_x NA NA ± 300 ps5,6 NA —

BcDataOE_L O_PP BcDataOutClk_x[3:0]7 45-55% —

BcLoad_L O_PP 38-63%8 —

BcDataWr_L O_PP 40-60%9 —

BcData_H[127:0] B_DA_PP BcDataOutClk_x[3:0]10 NA NA ± 300 ps6 45-55% 1.0 V/ns

38-63%8 NA

40-60%9 NA

BcDataInClk_H[7:0] 400 ps 400 ps NA NA NA

BcDataInClk_H[7:0] I_DA NA NA NA NA 45-55%

BcDataOutClk_H[3:0] O_PP EV6Clk_x NA NA ± 400 ps

BcDataOutClk_L[3:0] O_PP EV6Clk_x NA NA ± 400 ps

BcTag_H[42:20] B_DA_PP BcTagInClk_H 400 ps 400 ps NA NA 1.0 V/ns

BcTagDirty_H B_DA_PP BcTagInClk_H 400 ps 400 ps NA NA 1.0 V/ns

BcTagParity_H B_DA_PP BcTagInClk_H 400 ps 400 ps NA NA 1.0 V/ns
Alpha 21264/EV67 Hardware Reference Manual Electrical Data 9–7

AC Characteristics
BcTagShared_H B_DA_PP BcTagInClk_H 400 ps 400 ps NA NA 1.0 V/ns

BcTagValid_H B_DA_PP BcTagInClk_H 400 ps 400 ps NA NA 1.0 V/ns

BcTagValid_H B_DA_PP BcTagOutClk_x NA NA ± 300 ps6 45-55% NA

BcTagDirty_H B_DA_PP 38-63%8 NA

BcTagShared_H B_DA_PP 40-60%9 NA

BcTagParity_H B_DA_PP

BcTagOE_L O_PP

BcTagWr_L O_PP

BcTagInClk_H I_DA NA NA NA NA 45-55%

BcTagOutClk_x O_PP EV6Clk_x NA NA ± 400 ps

IRQ_H[5:0] I_DA DCOK_H 10 ns11 10 ns11 NA NA 100 mV/ns

Reset_L12 I_DA NA NA NA NA 100 mV/ns

DCOK_H 13 I_DA NA NA NA NA 100 mV/ns

PllBypass_H14 I_DA NA NA NA NA 100 mV/ns

ClkIn_ x15 I_DA_CLK NA NA NA 40–60%16 1.0 V/ns

FrameClk_x17 I_DA_CLK ClkIn_ x 400 ps 400 ps NA NA 1.0 V/ns

EV6Clk_x18 O_PP_CLK ClkIn_ x NA NA ±1.0 ns YDiv±5% NA

EV6Clk_x19 Cycle Compression Specification: See Note 19

ClkFwdRst_H I_DA FrameClk_x 400 ps 400 ps NA NA 1.0 V/ns

SromData_H I_DA SromClk_H 2.0 ns 2.0 ns NA 100 mV/ns

SromOE_L O_OD EV6Clk_x NA NA ± 2.0 ns

SromClk_H20 O_OD EV6Clk_x NA NA ± 7.0 ns

Tms_H I_DA Tck_H 2.0 ns 2.0 ns NA NA 100 mV/ns

Trst_L 21 I_DA Tck_H NA NA NA NA 100 mV/ns

Tdi_H I_DA Tck_H 2.0 ns 2.0 ns NA NA 100 mV/ns

Tdo_H O_OD Tck_H NA NA ± 7.0 ns NA NA

Tck_H I_DA IEEE 1149.1 Port Freq. = 5.0
MHz Max.

NA NA NA 45-55% 100 mV/ns

TestStat_H O_OD EV6Clk_x NA NA ± 4.0 ns NA NA

1 The TSU specified for all clock-forwarded signal groups is with respect to the associated clock.
2 The TDH specified for all clock-forwarded signal groups is with respect to the associated clock.
3 The TSkew value applies only when the SYS_CLK_DELAY[0:1] entry in the Cbox WRITE_ONCE

chain (Table 5–24) is set to zero phases of delay between forwarded clock out and address/data.
4 The TSkew specified forSysData_Lsignals is only with respect to the associated clock.
5 These signals should be referenced toBcTagOutClk_x when measuring TSkew, provided that

BcTagOutClkl_x andBcDataOutClk_x have no programmed offset.

Table 9–13 AC Specifications (Continued)

Signal Name Type Reference Signal TSU 1 TDH2 TSkew Duty Cycle TSlew
9–8 Electrical Data Alpha 21264/EV67 Hardware Reference Manual

AC Characteristics

-

6 The TSkew value applies only when the BC_CLK_DELAY[0:1] entry in the Cbox WRITE_ONCE
chain (Table 5–24) is set to zero phases of delay for Bcache clock.

7 The TSkew specified forBcAdd_H signals is only with respect to the associated clock.
8 The duty cycle for 2.5X single data mode 2 GCLK phases high and 3 GCLK phases low.
9 The duty cycle for 3.5X single data mode 3 GCLK phases high and 4 GCLK phases low.
10 The TSkew specified forBcData_H signals is only with respect to the associated clock pair.
11 IRQ_H[5:0] must have their TSU and TDH times referenced toDCOK_H during power-up to ensure

the correct Y divider and resultingEV6Clk_x duty cycle. When the 21264/EV67 is executing
instructionsIRQ_H[5:0] act as normal asynchronous pins to handle interrupts.

12 Reset_Lis an asynchronous pin. It may be asserted asynchronously.
13 DCOK_H is an asynchronous pin. Note the minimum slew rate on the assertion edge.
14 PllBypass_Hmay not switch whenClkIn_ x is running. This pin must either be deasserted during

power-up or the 21264/EV67 core power pin (VDD pins) indicating the 21264/EV67’s internal PLL
will be used. Note that it is illegal to usePllBypass_Hasserted during power-up unless aClkIn_ x is
present.

15 See Section 7.11.2 for a discussion ofClkIn_ x as it relates to operating the 21264/EV67’s internal
PLL versus running the 21264/EV67 in PLL bypass mode.ClkIn_ x has specific input jitter require-
ments to ensure optimum performance of the internal 21264/EV67 PLL.

16 In PLL bypass mode, duty cycle deviation from 50%–50% directly degrades device operating fre-
quency.

17 The TSU and TDH ofFrameClk_x are referenced to the deasserting edge ofClkIn_ x.
18 This signal is a feedback to the internal PLL and may be monitored for overall 21264/EV67 jitter. It

can also be used as a feedback signal to an external PLL when in PLL bypass mode. Proper termina
tion of EV6Clk_x is imperative.

19 The cycle or phase cannot be more than 5% shorter than the nominal. Do not confuse this measure-
ment with duty cycle.

20 The period forSromClk_H is 256 GCLK cycles.
21 WhenTrst_L is deasserted,Tms_H must not change state.Trst_L is asserted asynchronously but

may be deasserted synchronously.
Alpha 21264/EV67 Hardware Reference Manual Electrical Data 9–9

heat
f

he
10
Thermal Management

This chapter describes the 21264/EV67 thermal management and thermal design
considerations, and is organized as follows:

• Operating temperature

• Heat sink specifications

• Thermal design considerations

10.1 Operating Temperature

The 21264/EV67 is specified to operate when the temperature at the center of the
sink (Tc) is as shown in Table 10–1. Temperature Tc should be measured at the center o
the heat sink, between the two package studs. The GRAFOIL pad is the interface mate-
rial between the package and the heat sink.

Note: Compaq recommends using the heat sink because it greatly improves t
ambient temperature requirement.

Table 10–1 Operating Temperature at Heat Sink Center (Tc)

Tc Frequency

80.2° C 600 MHz

78.1° C 667 MHz

76.9° C 700 MHz

76.0° C 733 MHz

75.4° C 750 MHz

72.7° C 833 MHz
Alpha 21264/EV67 Hardware Reference Manual Thermal Management 10–1

Operating Temperature
Table 10–2 lists the values for the center of heat-sink-to-ambient (θca) for the 21264/
EV67 587-pin PGA. Tables 10–3 through 10–8 show the allowable Ta (without
exceeding Tc) at various airflows.

Table 10–2 θca at Various Airflows for 21264/EV67

Airflow (linear ft/min) 100 200 400 800 1000

θcawith heat sink type 1 (°C/W) 2.0 1.2 0.65 0.40 0.37

θcawith heat sink type 2 (°C/W) 1.4 0.78 0.45 0.33 0.31

θcawith heat sink type 31 (°C/W)

1 Heat sink type 3 has a 80 mm× 80 mm× 15 mm fan attached.

— 0.38 —

Table 10–3 Maximum T a for 21264/EV67 @ 600 MHz and @ 2.0 V with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000

Maximum Ta with heat sink type 1 (°C) — — 37.3 53.8 55.8

Maximum Ta with heat sink type 2 (°C) — 28.7 50.5 58.4 59.7

Maximum Ta with heat sink type 31 (°C)

1 Heat sink type 3 has a 80 mm× 80 mm× 15 mm fan attached.

— 55.1 —

Table 10–4 Maximum T a for 21264/EV67 @ 667 MHz and @ 2.0 V with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000

Maximum Ta with heat sink type 1 (°C) — — 30.7 48.9 51.1

Maximum Ta with heat sink type 2 (°C) — 21.2 45.3 54.0 55.5

Maximum Ta with heat sink type 31 (°C)

1 Heat sink type 3 has a 80 mm× 80 mm× 15 mm fan attached.

— 50.4 —

Table 10–5 Maximum T a for 21264/EV67 @ 700 MHz and @ 2.0 V with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000

Maximum Ta with heat sink type 1 (°C) — — 26.9 46.1 48.4

Maximum Ta with heat sink type 2 (°C) — — 42.2 51.5 53.0

Maximum Ta with heat sink type 31 (°C)

1 Heat sink type 3 has a 80 mm× 80 mm× 15 mm fan attached.

— 47.6 —

Table 10–6 Maximum T a for 21264/EV67 @ 733 MHz and @ 2.0 V with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000

Maximum Ta with heat sink type 1 (°C) — — 24.0 44.0 46.4

Maximum Ta with heat sink type 2 (°C) — — 40.0 49.6 51.2

Maximum Ta with heat sink type 31 (°C)

1 Heat sink type 3 has a 80 mm× 80 mm× 15 mm fan attached.

— 45.6 —
10–2 Thermal Management Alpha 21264/EV67 Hardware Reference Manual

Heat Sink Specifications

the
10.2 Heat Sink Specifications

Three heat sink types are specified. The mounting holes for all three are in line with
cooling fins.

Figure 10–1 shows the heat sink type 1, along with its approximate dimensions.

Table 10–7 Maximum T a for 21264/EV67 @ 750 MHz and @ 2.0 V with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000

Maximum Ta with heat sink type 1 (°C) — — 22.1 42.6 45.1

Maximum Ta with heat sink type 2 (°C) — — 38.5 48.4 50.0

Maximum Ta with heat sink type 31 (°C) — 44.3 —

1 Heat sink type 3 has a 80 mm× 80 mm× 15 mm fan attached.

Table 10–8 Maximum T a for 21264/EV67 @ 833 MHz and @ 2.0 V with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000

Maximum Ta with heat sink type 1 (°C) — — — 36.3 39.1

Maximum Ta with heat sink type 2 (°C) — — 31.8 42.7 44.5

Maximum Ta with heat sink type 31 (°C) — 33.8 —

1 Heat sink type 3 has a 80 mm× 80 mm× 15 mm fan attached.
Alpha 21264/EV67 Hardware Reference Manual Thermal Management 10–3

Heat Sink Specifications
Figure 10–1 Type 1 Heat Sink

25.4 mm
(1.0 in)

32.5 mm
(1.280 in)

80.5 mm
(3.17 in)

80.5 mm
(3.17 in)

FM-06119.AI4
10–4 Thermal Management Alpha 21264/EV67 Hardware Reference Manual

Heat Sink Specifications
Figure 10–2 shows the heat sink type 2, along with its approximate dimensions.

Figure 10–2 Type 2 Heat Sink

25.4 mm
(1.0 in)

44.5 mm
(1.75)

81.0 mm
(3.19 in)

81.0 mm
(3.19 in)

FM-06120.AI4
Alpha 21264/EV67 Hardware Reference Manual Thermal Management 10–5

Heat Sink Specifications
Figure 10–3 shows heat sink type 3, along with its approximate dimensions.

The cooling fins of heat sink type 3 are cross-cut. Also, an 80 mm× 80 mm× 15 mm
fan is attached to heat sink type 3.

Figure 10–3 Type 3 Heat Sink

80.0 mm
(3.15 in)

Fan Fan
15 mm

(0.59 in)

(1.62 in)

80.0 mm
(3.15 in)

71.5 mm
(2.815 in)

80.0 mm
(3.15 in)

71.5 mm
(2.815 in)

25.4 mm
(1.0 in)

70.65 mm
(2.815 in)

40.0 mm
(1.575 in)

27.3 mm
(1.075 in)

FM-06121.AI4
10–6 Thermal Management Alpha 21264/EV67 Hardware Reference Manual

Thermal Design Considerations

w

ir is

ices
e

10.3 Thermal Design Considerations

Follow these guidelines for printed circuit board (PCB) component placement:

• Orient the 21264/EV67 on the PCB with the heat sink fins aligned with the airflo
direction.

• Avoid preheating ambient air. Place the 21264/EV67 on the PCB so that inlet a
not preheated by any other PCB components.

• Do not place other high power devices in the vicinity of the 21264/EV67.

Do not restrict the airflow across the 21264/EV67 heat sink. Placement of other dev
must allow for maximum system airflow in order to maximize the performance of th
heat sink.
Alpha 21264/EV67 Hardware Reference Manual Thermal Management 10–7

a-
m

isted
.1.

c-

l-pur-
lists
11
Testability and Diagnostics

This chapter describes the 21264/EV67 user-oriented testability and diagnostic fe
tures. These features include automatic power-up self-test, Icache initialization fro
external serial ROMs, and the serial diagnostic terminal port.

The boundary-scan register, which is another testability and diagnostic feature, is l
in Appendix B. The boundary-scan register is compatible with IEEE Standard 1149

This chapter is organized as follows:

• Test pins

• SROM/serial diagnostic terminal port

• IEEE 1149.1 port

• TestStat_H pin

• Power-up self-test andinitialization

• Notes on IEEE 1149.1 operation and compliance

The 21264/EV67 has several manufacturing test features that are used only by the fa
tory, and they are beyond the scope of this chapter.

11.1 Test Pins

The 21264/EV67 test access ports include the IEEE 1149.1 test access port, a dua
pose SROM/Serial diagnostic terminal port, and a test status output pin. Table 11–1
the test access port pins.

Table 11–1 Dedicated Test Port Pins

Pin Name Type Function

Tms_H Input IEEE 1149.1 test mode select

Tdi_H Input IEEE 1149.1 test data in

Trst_L Input IEEE 1149.1 test logic reset

Tck_H Input IEEE 1149.1 test clock

Tdo_H Output IEEE 1149.1 test data output

SromData_H Input SROM data/Diagnostic terminal data input
Alpha 21264/EV67 Hardware Reference Manual Testability and Diagnostics 11–1

SROM/Serial Diagnostic Terminal Port

on
fter

rts
e

o

the

n be
stem

e

11.2 SROM/Serial Diagnostic Terminal Port

This port supports two functions. During power-up, it supports automatic initializati
of the Cbox configuration registers and the Icache from the system serial ROMs. A
power-up, it supports a serial diagnostic terminal.

11.2.1 SROM Load Operation

The following actions are performed while the SROM is loaded:

• TheSromOE_L pin supplies the output enable as well as the reset to the serial
ROM. (Refer to the serial ROM specifications for details.) The 21264/EV67 asse
this signal low for the duration of the Icache load from the serial ROM. When th
load has been completed, the signal remains deasserted.

• TheSromClk_H pin supplies the clock to the SROM that causes it to advance t
the next bit. Simultaneously, it causes the existing data on theSromData_H pin to
be shifted into an internal shift register. The cycle time of this clock is 256 times
CPU clock rate. (If the FASTROM flag is set, the rate is 16 times the CPU clock
rate.) The hold time onSromData_H is 2* CPU cycle time with respect to
SromClk_H.

• TheSromData_H pin reads data from the SROM.

Every data and tag bit in Icache is loaded by that sequence.

11.2.2 Serial Terminal Port

After the SROM data is loaded into the Icache, the three SROM interface signals ca
used as a software UART and the pins become parallel I/O pins that can drive a sy
debug or diagnostic terminal by using an interface such as RS422.

The serial line interface is automatically enabled if theSromOE_L pin is wired to the
following pins:

• An active high enable RS422 (or 26LS32) driver, driving toSromData_H

• An active high enable RS422 (or 26LS31) receiver, driven fromSromClk_H

After reset,SromClk_H is driven from the Ibox I_CTL[SL_XMIT]. This register is
cleared during reset, so it starts driving as a 0, but it can be written by software. Th
data becomes available at the pin after the HW_MTPR instruction that wrote
I_CTL[SL_XMIT] is retired.

SromClk_H Output SROM clock/Diagnostic terminal data output

SromOE_L Output SROM enable/Diagnostic terminal enable

TestStat_H Output BiST status/timeout output

Table 11–1 Dedicated Test Port Pins (Continued)

Pin Name Type Function
11–2 Testability and Diagnostics Alpha 21264/EV67 Hardware Reference Manual

IEEE 1149.1 Port

ata

as

n the

evel
rmi-

AP

ic. It

5
ports
e
nu-

ne

st

st
On the receive side, while in native mode, any transition on the Ibox I_CTL
[SL_RCV], driven from theSromData_H pin, results in a trap to the PALcode inter-
rupt handler. When in PALmode, all interrupts are blocked. The interrupt routine then
begins sampling I_CTL [SL_RCV] under a software timing loop to input as much d
as needed, using the chosen serial line protocol.

11.3 IEEE 1149.1 Port

The IEEE 1149.1 Test Access Port consists of theTdi_H , Tdo_H, Tms_H, Tck_H,
andTrst_L pins. These pins access the IEEE 1149.1 mandated public test features
well as several private chip manufacturing test features.

The port meets all requirements of the standard except that there are no pull-ups o
Tdi_H , Tms_H, andTrst_L pins, as required by the present standard.

The scope of 1149.1 compliant features on the 21264/EV67 is limited to the board l
assembly verification test. The systems that do not intend to drive this port must te
nate the port pins as follows: pull-ups onTdi_H andTms_H, pull-downs onTck_H
andTrst_L .

The port logic consists of the usual standard compliant components, namely, the T
Controller State Machine, the Instruction Register, and the Bypass Register.

The Bypass Register provides a short shift path through the chip’s IEEE 1149.1 log
is generally useful at the board level testing. It consists of a 1-bit shift register.

The Instruction Register holds test instructions. On the 21264/EV67, this register is
bits wide. Table 11–2 describes the supported instructions. The instruction set sup
several public and private instructions. The public instructions operate and produc
behavior compliant with the standard. The private instructions are used for chip ma
facturing test and must not be used outside of chip manufacturing.

Figure 11–1 shows the TAP controller state machine state diagram. The signalTms_H
controls the state transitions that occur with the rising clock edge. TAP state machi
states are decoded and used for initiating various actions for testing.

Table 11–2 IEEE 1149.1 Instructions and Opcodes

Opcode Instruction Operation/Function

00xxx
01xxx
10xxx

Private These instructions are for factory test use only. The user mu
not load them as they may have a harmful effect on the
21264/EV67.

11000 SAMPLE IEEE 1149.1 SAMPLE instruction.

11001 HIGHZ IEEE 1149.1 HIGHZ instruction.

11010 CLAMP IEEE 1149.1 CLAMP instruction.

11011 EXTEST IEEE 1149.1 EXTEST instruction.

11100
11101
11110

Private These instructions are for factory test use only. The user mu
not load them as they may have a harmful effect on the
21264/EV67.

11111 BYPASS IEEE 1149.1 BYPASS instruction.
Alpha 21264/EV67 Hardware Reference Manual Testability and Diagnostics 11–3

TestStat_H Pin

ail

her-
ori-

-
an

.

Figure 11–1 TAP Controller State Machine

11.4 TestStat_H Pin

TheTestStat_Hpin serves two purposes. During power-up, it indicates BiST pass/f
status. After power-up, it indicates the 21264/EV67 timeout event.

The system reset forcesTestStat_Hto low. Tbox forces it high during the internal BiST
and array initialization operations. During result extraction (DoResult state), the Tbox
drives it low for 16 cycles. After that, the pin remains low if the BiST has passes, ot
wise, it is asserted high and remains high until chip is reset again. Figure 11–2 pict
ally shows the behavior of the pin during the power-up operations.

Note: A system designer may sample theTestStat_Hpin on the first rising edge
of theSromClk_H pin to determine BiST results. After the power-up dur
ing the normal chip operation, whenever the 21264/EV67 does not retire
instruction for 2K CPU cycles, the pin is asserted high for 3 CPU cycles

Test Logic
 Reset

Run-Test/Idle Select-IR-Scan

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1 1 1

1

1

1

11

11

1

1

1

1

1

0

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Scan SequenceScan Sequence

Values
shown
are for
TMS.

MK145508.AI4
11–4 Testability and Diagnostics Alpha 21264/EV67 Hardware Reference Manual

Power-Up Self-Test and Initialization

r
truc-

U

s on
Figure 11–2 TestStat_H Pin Timing During Power-Up Built-In Self-Test (BiST)

Figure 11–3 TestStat_H Pin Timing During Built-In Self-Initialization (BiSI)

11.5 Power-Up Self-Test and Initialization

Upon powering up, the 21264/EV67 automatically performs the self-test of all majo
embedded RAM arrays and then loads the Cbox configuration registers and the ins
tion cache from the system SROM. The chip’s internal logic is held in reset during
these operations. See Chapter 9 for sequencing of power-up operations.

11.5.1 Built-in Self-Test

The power-up self-test is performed on theinstruction cache and tag arrays, the data
cache and tag arrays, the triplicate tag arrays, and the various RAM arrays located in the
branch history table logic. The power-up self-test lasts for approximately 700,000 CP
cycles. The result of self-test is made available as Pass/Fail status on theTestStat_H
pin (see Section 11.4).

The result of self-test is also available in an IPR bit. Software can read this status
through IPR I_CTL(23) (0 = pass, 1 = fail). See Section 5.2.15.

The power-up BiST leaves all bits in all arrays initialized to zeroes. The instruction
cache and the tag are reinitialized as part of the SROM initialization step. This is
detailed in Section 11.5.2.

11.5.2 SROM Initialization

Power-upinitialization on the 21264/EV67 is different from previous generation Alpha
systems in two aspects. First, in the 21264/EV67 systems, the presence of serial
ROMs is mandatory as initialization of several Cbox configuration registers depend
them. Second, it is possible to skip or partially fillIcache from serial ROMs. Figure 11–
4 shows the map of the data in serial ROMs.

BiSTResult

ClkFwdReset_L

Tbox_Reset_A_L

TBox Reset Engine

TestStatus_H

DoBistIdle DoResult DoSROM Idle

LKG-10950A-98WF

BiSTResult OR T

TimeOut

ClkFwdRst_L1

Tbox_Rst_A_L1

TBox Reset Engine1

TestStatus_H1

DoMfgSelfinitIdle Idle

LKG-10951A-98WF
Alpha 21264/EV67 Hardware Reference Manual Testability and Diagnostics 11–5

Power-Up Self-Test and Initialization

c-
er

pace

he is

-

der

ty

the
ag-
In the SROM represented in Figure 11–4, the length for fields Cbox Config
Data(0,n) plus MBZ(m,0) must equal 367 bits. (If Cbox Config Data(0,n) is
(0,366), MBZ would be zero.)

For the 21264/EV67, Cbox Config Data is 304 bits; the value forn is 303.

Therefore, the value MBZ field for Pass 3 is:

MBZ(m,0) = 367 minus 304 = 63 = (62,0)

Tables 11–3 and 5–24 describe the details of the Icache and Cbox bit fields, respe
tively. Note that fetch_count(1,0) must be 3, which guarantees that the SROM nev
partially loads an Icacheblock.

Figure 11–4 SROM Content Map

11.5.2.1 Serial Instruction Cache Load Operation

All Icache bits, including each block’s tag, address space number (ASN), address s
match (ASM), and valid and branch history bits are loaded serially from offchip serial
ROMs. Once the serial load has been invoked by the chip reset sequence, the cac
loaded from the lower to the higher addresses.

The serial Icache fill invoked by the chip reset sequence operates internally at a fre
quency of .

Table 11–3 lists the Icache bit fields in an SROM line. Fetch bits are listed in the or
of shift direction (to down and to right). In Table 11–3:

The load occurs at the rate of 1 bit per 256 CPU cycles. The chip outputs a 50% du
cycle clock on theSromClk_H pin.

The serial ROMs can contain enough Alpha code to complete the configuration of
external interface (for example, set the timing on the external cache RAMs, and di
nose the path between the CPU chip and the real ROM).

Bit Type Meaning

c Disp_add carry

i Instruction

iq Iqueue predecodes

tr Trouble bits

dv Destination valid

ea Ea_src

par-MBZ Must be zero

fetch [0](0,192) fetch[j-1](0,192) fetch[j](0,192) fetch_count(11,0) Cbox Config Data(0, n) MBZ(m,0)
(first block) (last block)

GCLK
256

11–6 Testability and Diagnostics Alpha 21264/EV67 Hardware Reference Manual

Notes on IEEE 1149.1 Operation and Compliance

is
ared
nd

de

the
The instruction cache lines are loaded in the reverse order. If the fetch_count(9,0)
zero, then, no instruction cache lines are loaded. Since the valid bits are already cle
by the BiST operation, the first instruction fetch is missed in the instruction cache a
the chip seeks instructions from the offchip memory.

Refer to the Alpha Motherboards Software Developer’s Kit (SDK) for example C co
that calculates the predecode values of a serial Icache load.

11.6 Notes on IEEE 1149.1 Operation and Compliance

1. IEEE 1149.1 port pins on the 21264/EV67 are not pulled up or pulled down on
chip. The necessary pull-up or pull-down function must be implemented on the
board.

2. Tms_H should not change whenTrst_L is being deasserted.

References

IEEE Std. 1149.1-1993A Test Access Port and Boundary Scan Architecture.

See Appendix B for a listing of the Boundary-Scan Register.

Table 11–3 Icache Bit Fields in an SROM Line

Fetch Bit Icache Data Fetch Bit Icache Data Fetch Bit Icache Data

0 par-MBZ 86 par-MBZ 172 lp_train

1 c[3] 87 c[0] 173:175 lp_src(2:0)

2:27 i[3](25,20,24,19,23,18,22,17
,21,16:0)

88:113 i[0](25,20,24,19,3,18,22,17,
21,16:0)

176:181 lp_idx(14:9)

28 c[2] 114 c[1] 182:186 lp_idx(8:4)

29:42 i[2](25,20,24,19,
23,18,22,17,21,16:12)

115:128 i[1] (25,20,24,19,
23,18,22,17,21,16:12)

187 lp_idx(15)

43 parity 129 parity 188:192 lp_ssp[4:0]

44:55 i[2](11:0) 130:141 i[1](11:0) — —

56 dv[3] 142 dv[0] — —

57:59 iq[3](2:0) 143:145 iq[0](2:0) — —

60:65 i[3](26:31) 146:151 i[0](26:31) — —

66,68 ea[3](2:0) 152:154 ea[0](2:0) — —

69 dv[2] 155 dv[1] — —

70,72 iq[2](2:0) 156:158 iq[1](2:0) — —

73:78 i[2](26:31) 159:164 i[1](26:31) — —

79:81 ea[2](2:0) 165:167 ea[1](2:0) — —

82:85 tr(7:4) 168:171 tr(0:3) — —
Alpha 21264/EV67 Hardware Reference Manual Testability and Diagnostics 11–7

e in
l-
A
Alpha Instruction Set

This appendix provides a summary of the Alpha instruction set and describes the
21264/EV67 IEEE floating-point conformance. It is organized as follows:

• Alpha instruction summary

• Reserved opcodes

• IEEE floating-point instructions

• VAX floating-point instructions

• Independent floating-point instructions

• Opcode summary

• Required PALcode function codes

• IEEE floating-point conformance

A.1 Alpha Instruction Summary

This section contains a summary of all Alpha architecture instructions. All values ar
hexadecimal radix. Table A–1 describes the contents of the Format and Opcode co
umns that are in Table A–2.

Table A–1 Instruction Format and Opcode Notation

Instruction Format
Format
Symbol

Opcode
Notation Meaning

Branch Bra oo oo is the 6-bit opcode field.

Floating-point F-P oo.fff oo is the 6-bit opcode field.
fff is the 11-bit function code field.

Memory Mem oo oo is the 6-bit opcode field.

Memory/function code Mfc oo.ffff oo is the 6-bit opcode field.
ffff is the 16-bit function code in the displacement
field.
Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A–1

Alpha Instruction Summary
Qualifiers for operate instructions are shown in Table A–2. Qualifiers for IEEE and
VAX floating-point instructions are shown in Tables A–5 and A–6, respectively.

Memory/ branch Mbr oo.h oo is the 6-bit opcode field.
h is the high-order 2 bits of the displacement field.

Operate Opr oo.ff oo is the 6-bit opcode field.
ff is the 7-bit function code field.

PALcode Pcd oo oo is the 6-bit opcode field; the particular PAL-
code instruction is specified in the 26-bit function
code field.

Table A–2 Architecture Instructions

Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating

ADDG F-P 15.0A0 Add G_floating

ADDL Opr 10.00 Add longword

ADDL/V Opr 10.40 Add longword with integer overflow enable

ADDQ Opr 10.20 Add quadword

ADDQ/V Opr 10.60 Add quadword with integer overflow enable

ADDS F-P 16.080 Add S_floating

ADDT F-P 16.0A0 Add T_floating

AMASK Opr 11.61 Architecture mask

AND Opr 11.00 Logical product

BEQ Bra 39 Branch if= zero

BGE Bra 3E Branch if≥ zero

BGT Bra 3F Branch if > zero

BIC Opr 11.08 Bit clear

BIS Opr 11.20 Logical sum

BLBC Bra 38 Branch if low bit clear

BLBS Bra 3C Branch if low bit set

BLE Bra 3B Branch if≤ zero

BLT Bra 3A Branch if < zero

BNE Bra 3D Branch if≠ zero

BR Bra 30 Unconditional branch

Table A–1 Instruction Format and Opcode Notation (Continued)

Instruction Format
Format
Symbol

Opcode
Notation Meaning
A–2 Alpha Instruction Set Alpha 21264/EV67 Hardware Reference Manual

Alpha Instruction Summary
BSR Mbr 34 Branch to subroutine

CALL_PAL Pcd 00 Trap to PALcode

CMOVEQ Opr 11.24 CMOVE if= zero

CMOVGE Opr 11.46 CMOVE if≥ zero

CMOVGT Opr 11.66 CMOVE if > zero

CMOVLBC Opr 11.16 CMOVE if low bit clear

CMOVLBS Opr 11.14 CMOVE if low bit set

CMOVLE Opr 11.64 CMOVE if≤ zero

CMOVLT Opr 11.44 CMOVE if < zero

CMOVNE Opr 11.26 CMOVE if ≠ zero

CMPBGE Opr 10.0F Compare byte

CMPEQ Opr 10.2D Compare signed quadword equal

CMPGEQ F-P 15.0A5 Compare G_floating equal

CMPGLE F-P 15.0A7 Compare G_floating less than or equal

CMPGLT F-P 15.0A6 Compare G_floating less than

CMPLE Opr 10.6D Compare signed quadword less than or equal

CMPLT Opr 10.4D Compare signed quadword less than

CMPTEQ F-P 16.0A5 Compare T_floating equal

CMPTLE F-P 16.0A7 Compare T_floating less than or equal

CMPTLT F-P 16.0A6 Compare T_floating less than

CMPTUN F-P 16.0A4 Compare T_floating unordered

CMPULE Opr 10.3D Compare unsigned quadword less than or equal

CMPULT Opr 10.1D Compare unsigned quadword less than

CPYS F-P 17.020 Copy sign

CPYSE F-P 17.022 Copy sign and exponent

CPYSN F-P 17.021 Copy sign negate

CTLZ Opr 1C.32 Count leading zero

CTPOP Opr 1C.30 Count population

CTTZ Opr 1C.33 Count trailing zero

CVTDG F-P 15.09E Convert D_floating to G_floating

CVTGD F-P 15.0AD Convert G_floating to D_floating

CVTGF F-P 15.0AC Convert G_floating to F_floating

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A–3

Alpha Instruction Summary
CVTGQ F-P 15.0AF Convert G_floating to quadword

CVTLQ F-P 17.010 Convert longword to quadword

CVTQF F-P 15.0BC Convert quadword to F_floating

CVTQG F-P 15.0BE Convert quadword to G_floating

CVTQL F-P 17.030 Convert quadword to longword

CVTQS F-P 16.0BC Convert quadword to S_floating

CVTQT F-P 16.0BE Convert quadword to T_floating

CVTST F-P 16.2AC Convert S_floating to T_floating

CVTTQ F-P 16.0AF Convert T_floating to quadword

CVTTS F-P 16.0AC Convert T_floating to S_floating

DIVF F-P 15.083 Divide F_floating

DIVG F-P 15.0A3 Divide G_floating

DIVS F-P 16.083 Divide S_floating

DIVT F-P 16.0A3 Divide T_floating

ECB Mfc 18.E800 Evict cache block

EQV Opr 11.48 Logical equivalence

EXCB Mfc 18.0400 Exception barrier

EXTBL Opr 12.06 Extract byte low

EXTLH Opr 12.6A Extract longword high

EXTLL Opr 12.26 Extract longword low

EXTQH Opr 12.7A Extract quadword high

EXTQL Opr 12.36 Extract quadword low

EXTWH Opr 12.5A Extract word high

EXTWL Opr 12.16 Extract word low

FBEQ Bra 31 Floating branch if= zero

FBGE Bra 36 Floating branch if≥ zero

FBGT Bra 37 Floating branch if >zero

FBLE Bra 33 Floating branch if≤ zero

FBLT Bra 32 Floating branch if <zero

FBNE Bra 35 Floating branch if≠ zero

FCMOVEQ F-P 17.02A FCMOVE if= zero

FCMOVGE F-P 17.02D FCMOVE if≥ zero

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
A–4 Alpha Instruction Set Alpha 21264/EV67 Hardware Reference Manual

Alpha Instruction Summary
FCMOVGT F-P 17.02F FCMOVE if > zero

FCMOVLE F-P 17.02E FCMOVE if≤ zero

FCMOVLT F-P 17.02C FCMOVE if < zero

FCMOVNE F-P 17.02B FCMOVE if ≠ zero

FETCH Mfc 18.8000 Prefetch data

FETCH_M Mfc 18.A000 Prefetch data, modify intent

FTOIS F-P 1C.78 Floating to integer move, S_floating

FTOIT F-P 1C.70 Floating to integer move, T_floating

IMPLVER Opr 11.6C Implementation version

INSBL Opr 12.0B Insert byte low

INSLH Opr 12.67 Insert longword high

INSLL Opr 12.2B Insert longword low

INSQH Opr 12.77 Insert quadword high

INSQL Opr 12.3B Insert quadword low

INSWH Opr 12.57 Insert word high

INSWL Opr 12.1B Insert word low

ITOFF F-P 14.014 Integer to floating move, F_floating

ITOFS F-P 14.004 Integer to floating move, S_floating

ITOFT F-P 14.024 Integer to floating move, T_floating

JMP Mbr 1A.0 Jump

JSR Mbr 1A.1 Jump to subroutine

JSR_COROUTINE Mbr 1A.3 Jump to subroutine return

LDA Mem 08 Load address

LDAH Mem 09 Load address high

LDBU Mem 0A Load zero-extended byte

LDF Mem 20 Load F_floating

LDG Mem 21 Load G_floating

LDL Mem 28 Load sign-extended longword

LDL_L Mem 2A Load sign-extended longword locked

LDQ Mem 29 Load quadword

LDQ_L Mem 2B Load quadword locked

LDQ_U Mem 0B Load unaligned quadword

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A–5

Alpha Instruction Summary
LDS Mem 22 Load S_floating

LDT Mem 23 Load T_floating

LDWU Mem 0C Load zero-extended word

MAXSB8 Opr 1C.3E Vector signed byte maximum

MAXSW4 Opr 1C.3F Vector signed word maximum

MAXUB8 Opr 1C.3C Vector unsigned byte maximum

MAXUW4 Opr 1C.3D Vector unsigned word maximum

MB Mfc 18.4000 Memory barrier

MF_FPCR F-P 17.025 Move from FPCR

MINSB8 Opr 1C.38 Vector signed byte minimum

MINSW4 Opr 1C.39 Vector signed word minimum

MINUB8 Opr 1C.3A Vector unsigned byte minimum

MINUW4 Opr 1C.3B Vector unsigned word minimum

MSKBL Opr 12.02 Mask byte low

MSKLH Opr 12.62 Mask longword high

MSKLL Opr 12.22 Mask longword low

MSKQH Opr 12.72 Mask quadword high

MSKQL Opr 12.32 Mask quadword low

MSKWH Opr 12.52 Mask word high

MSKWL Opr 12.12 Mask word low

MT_FPCR F-P 17.024 Move to FPCR

MULF F-P 15.082 Multiply F_floating

MULG F-P 15.0A2 Multiply G_floating

MULL Opr 13.00 Multiply longword

MULL/V Opr 13.40 Multiply longword with integer overflow enable

MULQ Opr 13.20 Multiply quadword

MULQ/V Opr 13.60 Multiply quadword with integer overflow enable

MULS F-P 16.082 Multiply S_floating

MULT F-P 16.0A2 Multiply T_floating

ORNOT Opr 11.28 Logical sum with complement

PERR Opr 1C.31 Pixel error

PKLB Opr 1C.37 Pack longwords to bytes

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
A–6 Alpha Instruction Set Alpha 21264/EV67 Hardware Reference Manual

Alpha Instruction Summary
PKWB Opr 1C.36 Pack words to bytes

RC Mfc 18.E000 Read and clear

RET Mbr 1A.2 Return from subroutine

RPCC Mfc 18.C000 Read process cycle counter

RS Mfc 18.F000 Read and set

S4ADDL Opr 10.02 Scaled add longword by 4

S4ADDQ Opr 10.22 Scaled add quadword by 4

S4SUBL Opr 10.0B Scaled subtract longword by 4

S4SUBQ Opr 10.2B Scaled subtract quadword by 4

S8ADDL Opr 10.12 Scaled add longword by 8

S8ADDQ Opr 10.32 Scaled add quadword by 8

S8SUBL Opr 10.1B Scaled subtract longword by 8

S8SUBQ Opr 10.3B Scaled subtract quadword by 8

SEXTB Opr 1C.00 Sign extend byte

SEXTW Opr 1C.01 Sign extend word

SLL Opr 12.39 Shift left logical

SQRTF F-P 14.08A Square root F_floating

SQRTG F-P 14.0AA Square root G_floating

SQRTS F-P 14.08B Square root S_floating

SQRTT F-P 14.0AB Square root T_floating

SRA Opr 12.3C Shift right arithmetic

SRL Opr 12.34 Shift right logical

STB Mem 0E Store byte

STF Mem 24 Store F_floating

STG Mem 25 Store G_floating

STL Mem 2C Store longword

STL_C Mem 2E Store longword conditional

STQ Mem 2D Store quadword

STQ_C Mem 2F Store quadword conditional

STQ_U Mem 0F Store unaligned quadword

STS Mem 26 Store S_floating

STT Mem 27 Store T_floating

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A–7

Reserved Opcodes

y can
A.2 Reserved Opcodes

This section describes the opcodes that are reserved in the Alpha architecture. The
be reserved for Compaq or for PALcode.

A.2.1 Opcodes Reserved for Compaq

Table A–3 lists opcodes reserved for Compaq.

STW Mem 0D Store word

SUBF F-P 15.081 Subtract F_floating

SUBG F-P 15.0A1 Subtract G_floating

SUBL Opr 10.09 Subtract longword

SUBL/V Opr 10.49 Subtract longword with integer overflow enable

SUBQ Opr 10.29 Subtract quadword

SUBQ/V Opr 10.69 Subtract quadword with integer overflow enable

SUBS F-P 16.081 Subtract S_floating

SUBT F-P 16.0A1 Subtract T_floating

TRAPB Mfc 18.0000 Trap barrier

UMULH Opr 13.30 Unsigned multiply quadword high

UNPKBL Opr 1C.35 Unpack bytes to longwords

UNPKBW Opr 1C.34 Unpack bytes to words

WH64 Mfc 18.F800 Write hint — 64 bytes

WMB Mfc 18.4400 Write memory barrier

XOR Opr 11.40 Logical difference

ZAP Opr 12.30 Zero bytes

ZAPNOT Opr 12.31 Zero bytes not

Table A–3 Opcodes Reserved for Compaq

Mnemonic Opcode Mnemonic Opcode

OPC01 01 OPC05 05

OPC02 02 OPC06 06

OPC03 03 OPC07 07

OPC04 04 — —

Table A–2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description
A–8 Alpha Instruction Set Alpha 21264/EV67 Hardware Reference Manual

IEEE Floating-Point Instructions

d

A.2.2 Opcodes Reserved for PALcode

Table A–4 lists the 21264/EV67-specific instructions. See Chapter 2 for more
information.

A.3 IEEE Floating-Point Instructions

Table A–5 lists the hexadecimal value of the 11-bit function code field for the IEEE
floating-point instructions, with and without qualifiers. The opcode for these
instructions is 1616.

Table A–4 Opcodes Reserved for PALcode

21264/EV67
Mnemonic Opcode

Architecture
Mnemonic Function

HW_LD 1B PAL1B Performs Dstream load instructions.

HW_ST 1F PAL1F Performs Dstream store instructions.

HW_REI 1E PAL1E Returns instruction flow to the program counter (PC) pointe
to by EXC_ADDR internal processor register (IPR).

HW_MFPR 19 PAL19 Accesses the Ibox, Mbox, and Dcache IPRs.

HW_MTPR 1D PAL1D Accesses the Ibox, Mbox, and Dcache IPRs.

Table A–5 IEEE Floating-Point Instruction Function Codes

Mnemonic None /C /M /D /U /UC /UM /UD

ADDS 080 000 040 0C0 180 100 140 1C0

ADDT 0A0 020 060 0E0 1A0 120 160 1E0

CMPTEQ 0A5 — — — — — — —

CMPTLT 0A6 — — — — — — —

CMPTLE 0A7 — — — — — — —

CMPTUN 0A4 — — — — — — —

CVTQS 0BC 03C 07C 0FC — — — —

CVTQT 0BE 03E 07E 0FE — — — —

CVTST
See
below

— — — — — — —

CVTTQ
See
below

— — — — — — —

CVTTS 0AC 02C 06C 0EC 1AC 12C 16C 1EC

DIVS 083 003 043 0C3 183 103 143 1C3

DIVT 0A3 023 063 0E3 1A3 123 163 1E3

MULS 082 002 042 0C2 182 102 142 1C2

MULT 0A2 022 062 0E2 1A2 122 162 1E2
Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A–9

IEEE Floating-Point Instructions
SQRTS 08B 00B 04B 0CB 18B 10B 14B 1CB

SQRTT 0AB 02B 06B 0EB 1AB 12B 16B 1EB

SUBS 081 001 041 0C1 181 101 141 1C1

SUBT 0A1 021 061 0E1 1A1 121 161 1E1

Mnemonic /SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID

ADDS 580 500 540 5C0 780 700 740 7C0

ADDT 5A0 520 560 5E0 7A0 720 760 7E0

CMPTEQ 5A5

CMPTLT 5A6

CMPTLE 5A7

CMPTUN 5A4

CVTQS 7BC 73C 77C 7FC

CVTQT 7BE 73E 77E 7FE

CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC

DIVS 583 503 543 5C3 783 703 743 7C3

DIVT 5A3 523 563 5E3 7A3 723 763 7E3

MULS 582 502 542 5C2 782 702 742 7C2

MULT 5A2 522 562 5E2 7A2 722 762 7E2

SQRTS 58B 50B 54B 5CB 78B 70B 74B 7CB

SQRTT 5AB 52B 56B 5EB 7AB 72B 76B 7EB

SUBS 581 501 541 5C1 781 701 741 7C1

SUBT 5A1 521 561 5E1 7A1 721 761 7E1

Mnemonic None /S

CVTST 2AC 6AC

Mnemonic None /C /V /VC /SV /SVC /SVI /SVIC

CVTTQ 0AF 02F 1AF 12F 5AF 52F 7AF 72F

Mnemonic D /VD /SVD /SVID /M /VM /SVM /SVIM

CVTTQ 0EF 1EF 5EF 7EF 06F 16F 56F 76F

Table A–5 IEEE Floating-Point Instruction Function Codes (Continued)
A–10 Alpha Instruction Set Alpha 21264/EV67 Hardware Reference Manual

VAX Floating-Point Instructions

rder

g-
e

Programming Note:

In order to use CMPTxx with software completion trap handling, it is necessary to
specify the /SU IEEE trap mode, even though an underflow trap is not possible. In o
to use CVTQS or CVTQT with software completion trap handling, it is necessary to
specify the /SUI IEEE trap mode, even though an underflow trap is not possible.

A.4 VAX Floating-Point Instructions

Table A–6 lists the hexadecimal value of the 11-bit function code field for the VAX
floating-point instructions. The opcode for these instructions is 1516.

A.5 Independent Floating-Point Instructions

Table A–7 lists the hexadecimal value of the 11-bit function code field for the floatin
point instructions that are not directly tied to IEEE or VAX floating point. The opcod
for the following instructions is 1716.

Table A–6 VAX Floating-Point Instruction Function Codes

Mnemonic None /C /U /UC /S /SC /SU /SUC

ADDF 080 000 180 100 480 400 580 500

ADDG 0A0 020 1A0 120 4A0 420 5A0 520

CMPGEQ 0A5 4A5

CMPGLE 0A7 4A7

CMPGLT 0A6 4A6

CVTDG 09E 01E 19E 11E 49E 41E 59E 51E

CVTGD 0AD 02D 1AD 12D 4AD 42D 5AD 52D

CVTGF 0AC 02C 1AC 12C 4AC 42C 5AC 52C

CVTGQ See below

CVTQF 0BC 03C

CVTQG 0BE 03E

DIVF 083 003 183 103 483 403 583 503

DIVG 0A3 023 1A3 123 4A3 423 5A3 523

MULF 082 002 182 102 482 402 582 502

MULG 0A2 022 1A2 122 4A2 422 5A2 522

SQRTF 08A 00A 18A 10A 48A 40A 58A 50A

SQRTG 0AA 02A 1AA 12A 4AA 42A 5AA 52A

SUBF 081 001 181 101 481 401 581 501

SUBG 0A1 021 1A1 121 4A1 421 5A1 521

Mnemonic None /C /V /VC /S /SC /SV /SVC

CVTGQ 0AF 02F 1AF 12F 4AF 42F 5AF 52F
Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A–11

Opcode Summary

ith
ow.

uld
the

is
Table A–7 Independent Floating-Point Instruction Function Codes

A.6 Opcode Summary

Table A–8 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In the
table, the column headings that appear over the instructions have a granularity of 816.
The rows beneath the Offset column supply the individual hexadecimal number to
resolve that granularity.

If an instruction column has a 0 in the right (low) hexadecimal digit, replace that 0 w
the number to the left of the backslash (\) in the Offset column on the instruction’s r
If an instruction column has an 8 in the right (low) hexadecimal digit, replace that 8
with the number to the right of the backslash in the Offset column.

For example, the third row (2/A) under the 1016 column contains the symbol INTS*,
representing the all-integer shift instructions. The opcode for those instructions wo
then be 1216 because the 0 in 10 is replaced by the 2 in the Offset column. Likewise,
third row under the 1816 column contains the symbol JSR*, representing all jump
instructions. The opcode for those instructions is 1A because the 8 in the heading
replaced by the number to the right of the backslash in the Offset column. The
instruction format is listed under the instruction symbol.

Mnemonic None /V /SV

CPYS 020 — —

CPYSE 022 — —

CPYSN 021 — —

CVTLQ 010 — —

CVTQL 030 130 530

FCMOVEQ 02A — —

FCMOVGE 02D — —

FCMOVGT 02F — —

FCMOVLE 02E — —

FCMOVLT 02C — —

MF_FPCR 025 — —

MT_FPCR 024 — —

Table A–8 Opcode Summary

Offset 00 08 10 18 20 28 30 38

0/8 PAL*
(pal)

LDA
(mem)

INTA*
(op)

MISC*
(mem)

LDF
(mem)

LDL
(mem)

BR
(br)

BLBC
(br)

1/9 Res LDAH
(mem)

INTL*
(op)

\PAL\ LDG
(mem)

LDQ
(mem)

FBEQ
(br)

BEQ
(br)

2/A LDBU Res INTS*
(op)

JSR*
(mem)

LDS
(mem)

LDL_L
(mem)

FBLT
(br)

BLT
(br)
A–12 Alpha Instruction Set Alpha 21264/EV67 Hardware Reference Manual

Required PALcode Function Codes

d is
Table A–9 explains the symbols used in Table A–8.

A.7 Required PALcode Function Codes

Table A–10 lists opcodes required for all Alpha implementations. The notation use
oo.ffff, whereoo is the hexadecimal 6-bit opcode andffff is the hexadecimal 26-bit
function code.

3/B Res LDQ_U
(mem)

INTM*
(op)

\PAL\ LDT
(mem)

LDQ_L
(mem)

FBLE
(br)

BLE
(br)

4/C LDWU Res ITFP* FPTI* STF
(mem)

STL
(mem)

BSR
(br)

BLBS
(br)

5/D Res STW FLTV*
(op)

\PAL\ STG
(mem)

STQ
(mem)

FBNE
(br)

BNE
(br)

6/E Res STB FLTI*
(op)

\PAL\ STS
(mem)

STL_C
(mem)

FBGE
(br)

BGE
(br)

7/F Res STQ_U
(mem)

FLTL*
(op)

\PAL\ STT
(mem)

STQ_C
(mem)

FBGT
(br)

BGT
(br)

Table A–9 Key to Opcode Summary Used in Table A–8

Symbol Meaning

FLTI* IEEE floating-point instruction opcodes

FLTL* Floating-point operate instruction opcodes
FLTV* VAX floating-point instruction opcodes

FPTI* Floating-point to integer register move opcodes
INTA* Integer arithmetic instruction opcodes

INTL* Integer logical instruction opcodes
INTM* Integer multiply instruction opcodes

INTS* Integer shift instruction opcodes
ITFP* Integer to floating-point register move opcodes

JSR* Jump instruction opcodes
MISC* Miscellaneous instruction opcodes

PAL* PALcode instruction (CALL_PAL) opcodes

\PAL\ Reserved for PALcode

Res Reserved for Compaq

Table A–10 Required PALcode Function Codes

Mnemonic Type Function Code

DRAINA Privileged 00.0002

HALT Privileged 00.0000

IMB Unprivileged 00.0086

Table A–8 Opcode Summary (Continued)

Offset 00 08 10 18 20 28 30 38
Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A–13

IEEE Floating-Point Conformance

ro-
ral

s

d
/

a

s

re-

lude
tic

x,
lues

rol
A.8 IEEE Floating-Point Conformance

The 21264/EV67 supports the IEEE floating-point operations defined in theAlpha Sys-
tem Reference Manual, Revision8 and therefore also from theAlpha Architecture Ref-
erence Manual, Fourth Edition. Support for a complete implementation of the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754 1985) is p
vided by a combination of hardware and software. The 21264/EV67 provides seve
hardware features to facilitate complete support of the IEEE standard.

The 21264/EV67 provides the following hardwarefeatures to facilitate complete sup-
port of the IEEE standard:

• The 21264/EV67 implements precise exception handling in hardware, as denoted
by the AMASK instruction returning bit 9 set. TRAPB instructions are treated a
NOPs and are not issued.

• The 21264/EV67 accepts both Signaling and Quiet NaNs as input operands an
propagates them as specified by the Alpha architecture. In addition, the 21264
EV67 delivers a canonical Quiet NaN when an operation is required to produce
NaN value and none of its inputs are NaNs. Encodings for Signaling NaN and
Quiet NaN are defined by theAlpha Architecture Reference Manual, Fourth Edi-
tion.

• The 21264/EV67 accepts infinity operands and implements infinity arithmetic a
defined by the IEEE standard and theAlpha Architecture Reference Manual,
Fourth Edition.

• The 21264/EV67 implements SQRT for single (SQRTS) and double (SQRTT) p
cision in hardware.

Note: In addition, the 21264/EV67 also implements the VAX SQRTF and
SQRTG instructions.

• The 21264/EV67 implements the FPCR[DNZ] bit. When FPCR[DNZ] is set,
denormal input operand traps can be avoided for arithmetic operations that inc
the /S qualifier. When FPCR[DNZ] is clear, denormal input operands for arithme
operations produce an unmaskable denormal trap. CPYSE/CPYSN, FCMOVx
and MF_FPCR/MT_FPCR are not arithmetic operations, and pass denormal va
without initiating arithmetic traps.

• The 21264/EV67 implements the following disable bits in the floating-point cont
register (FPCR):

– Underflow disable (UNFD)

– Overflow disable (OVFD)

– Inexact result disable (INED)

– Division by zero disable (DZED)

– Invalid operation disable (INVD)
A–14 Alpha Instruction Set Alpha 21264/EV67 Hardware Reference Manual

IEEE Floating-Point Conformance

he
nd

on.
7,

c-
n the

,
nly
ion
e

tion,

s

gen-
If one of these bits is set, and an instruction with the /S qualifier set generates t
associated exception, the 21264/EV67 produces the IEEE nontrapping result a
suppresses the trap. These nontrapping responses include correctly signed
infinity, largest finite number, and Quiet NaNs as specified by the IEEE
standard.

The 21264/EV67 does not produce a denormal result for the underflow excepti
Instead, a true zero (+0) is written to the destination register. In the 21264/EV6
the FPCR underflow to zero (UNDZ) bit must be set if the underflow disable
(UNFD) bit is set. If desired, trapping on underflow can be enabled by the instru
tion and the FPCR, and software may compute the denormal value as defined i
IEEE standard.

The 21264/EV67 records floating-point exception information in two places:

• The FPCR status bits record the occurrence of all exceptions that are detected
whether or not the corresponding trap is enabled. The status bits are cleared o
through an explicit clear command (MT_FPCR); hence, the exception informat
they record is a summary of all exceptions that have occurred since the last tim
they were cleared.

• If an exception is detected and the corresponding trap is enabled by the instruc
and is not disabled by the FPCR control bits, the 21264/EV67 will record the
condition in the EXC_SUM register and initiate an arithmetic trap.

The following items apply to Table A–11:

• The 21264/EV67 traps on a denormal input operand for all arithmetic operation
unless FPCR[DNZ] = 1.

• Input operand traps take precedence over arithmetic result traps.

• The following abbreviations are used:

Inf: Infinity

QNaN: Quiet NaN

SNaN: Signalling NaN

CQNaN: Canonical Quiet NaN

For IEEE instructions with /S, Table A–11 lists all exceptional input and output
conditions recognized by the 21264/EV67, along with the result and exception
erated for each condition.

Table A–11 Exceptional Input and Output Conditions

Alpha Instructions
21264/EV67 Hardware
Supplied Result Exception

ADDx SUBx INPUT

Inf operand ±Inf (none)

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

Effective subtract of two Inf operands CQNaN Invalid Op

ADDx SUBx OUTPUT
Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A–15

IEEE Floating-Point Conformance
Exponent overflow ±Inf or ±MAX Overflow

Exponent underflow +0 Underflow

Inexact result Result Inexact

Table A–11 Exceptional Input and Output Conditions (Continued)

Alpha Instructions
21264/EV67 Hardware
Supplied Result Exception
A–16 Alpha Instruction Set Alpha 21264/EV67 Hardware Reference Manual

IEEE Floating-Point Conformance
MULx INPUT

Inf operand ±Inf (none)

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

0 * Inf CQNaN Invalid Op

MULx OUTPUT (same as ADDx)

DIVx INPUT

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

0/0 or Inf/Inf CQNaN Invalid Op

A/0 (A not 0) ±Inf Div Zero

A/Inf ±0 (none)

Inf/A ±Inf (none)

DIVx OUTPUT (same as ADDx)

SQRTx INPUT

+Inf operand +Inf (none)

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

-A (A not 0) CQNaN Invalid Op

-0 -0 (none)

SQRTx OUTPUT

Inexact result root Inexact

CMPTEQ CMPTUN INPUT

Inf operand True or False (none)

QNaN operand False for EQ, True for UN (none)

SNaN operand False for EQ,True for UN Invalid Op

CMPTLT CMPTLE INPUT

Inf operand True or False (none)

QNaN operand False Invalid Op

SNaN operand False Invalid Op

CVTfi INPUT

Inf operand 0 Invalid Op

QNaN operand 0 Invalid Op

Table A–11 Exceptional Input and Output Conditions (Continued)

Alpha Instructions
21264/EV67 Hardware
Supplied Result Exception
Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A–17

See Section 2.14 for information about the floating-point control register (FPCR).

SNaN operand 0 Invalid Op

CVTfi OUTPUT

Inexact result Result Inexact

Integer overflow Truncated result Invalid Op

CVTif OUTPUT

Inexact result Result Inexact

CVTff INPUT

Inf operand ±Inf (none)

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

CVTff OUTPUT (same as ADDx)

FBEQ FBNE FBLT FBLE FBGT FBGE
LDS LDT
STS STT
CPYS CPYSN
FCMOVx

Table A–11 Exceptional Input and Output Conditions (Continued)

Alpha Instructions
21264/EV67 Hardware
Supplied Result Exception

gis-

ssed
on

alog
B
21264/EV67 Boundary-Scan Register

This appendix contains the BSDL description of the 21264/EV67 boundary-scan re
ter.

B.1 Boundary-Scan Register

The Boundary-Scan Register (BSR) on the 21264/EV67 is 367 bits long. It is acce
by the three public (SAMPLE, EXTEST, CLAMP) instructions. The register operati
for the public instructions is compliant with the IEEE 1149.1 standard.

The boundary-scan register covers all input, output, and bidirectional pins with the
exception of the compliance enable pins and pins that are power-supply-type or an
in nature. The BSDL for the boundary-scan register is given in Section B.1.1.

B.1.1 BSDL Description of the Alpha 21264/EV67 Boundary-Scan Register

-- alpha21264/EV67.bsdl
--The BSDL Description for EV6’s IEEE 1149.1 Circuits

-- Revision History
--Rev Date Description
-- 1.0 Feb 99 First external release

entity Alpha_21264/EV67 is-- (ref B.8)
generic (PHYSICAL_PIN_MAP :string := "PGA_EV6");-- (ref B.8.2)
port (-- (ref B.8.3)

TestStat_H :out bit ;
SromOE_L :out bit ;
SromClk_H :out bit ;
SromData_H :in bit ;
Reset_L :in bit ;
IRQ_H :in bit_vector (0 to 5) ;

DcOk_H :linkage bit ; -- Compliance enable input
NoConnect_0 :linkage bit ; -- n/c
NoConnect_1 :linkage bit ; -- n/c
PllBypass_H :linkage bit ;
FrameClk_H :linkage bit ;
FrameClk_L :linkage bit ;
ClkFwdRst_H :in bit ;
BcCheck_H :inout bit_vector (0 to 15);
BcData_H :inout bit_vector (0 to 127);
SysData_L :inout bit_vector (0 to 63) ;
SysCheck_L :inout bit_vector (0 to 7) ;
BcDataInClk_H :in bit_vector (0 to 7) ;
SysDataOutClk_L :out bit_vector (0 to 7) ;
Spare_7 :linkage bit_vector (0 to 7) ;
Alpha 21264/EV67 Hardware Reference Manual 21264/EV67 Boundary-Scan Register B–1

Boundary-Scan Register
SysDataInClk_H :in bit_vector (0 to 7) ;
BcDataOutClk_L :out bit_vector (0 to 3) ; -- JWB corrected
BcDataOutClk_H :out bit_vector (0 to 3) ; -- JWB corrected
ClkIn_H :linkage bit ; -- Oscillator
ClkIn_L :linkage bit ; -- Oscillator
PLL_VDD :linkage bit ;
EV6Clk_H :linkage bit ;
EV6Clk_L :linkage bit ;
Spare_4 :linkage bit ;
Spare_5 :linkage bit ;
BcTag_H :inout bit_vector (20 to 42);
BcVref :linkage bit ;
BcTagInClk_H :in bit ; -- Name in model:

BcTagClkIn_H
BcTagParity_H :inout bit ;
BcTagShared_H :inout bit ;
BcTagDirty_H :inout bit ;
BcTagValid_H :inout bit ;
BcTagOutClk_L :out bit ;
BcTagOutClk_H :out bit ;
BcTagOE_L :out bit ;
BcTagWr_L :out bit ;
BcDataWr_L :out bit ;
BcLoad_L :out bit ;
BcDataOE_L :out bit ;
BcAdd_H :out bit_vector (4 to 23) ;
SysAddOut_L :out bit_vector (0 to 14) ;
SysAddIn_L :in bit_vector (0 to 14) ;
SysAddInClk_L :in bit ;
SysAddOutClk_L :out bit ; --JWB added

SysVref :linkage bit ; --JWB added
SysFillValid_L :in bit ;
SysDataInValid_L :in bit ;
SysDataOutValid_L :in bit ;
Spare_0 :linkage bit ; -- n/c
MiscVref :linkage bit ; --
Spare_2 :linkage bit ; -- n/c
Tdi_H :in bit ;
Tdo_H :out bit ;
Trst_L :in bit ;
Tck_H :in bit ;
Tms_H :in bit ;

VSS:linkage bit_vector (0 to 103);
VDD :linkage bit_vector (0 to 93));

use STD_1149_1_1994.all ;-- (ref B.8.4)

attribute COMPONENT_CONFORMANCE of Alpha_21264: entity is "STD_1149_1_1993";
attribute PIN_MAP of Alpha_21264 : entity is PHYSICAL_PIN_MAP ;

constant PGA_EV6 : PIN_MAP_STRING := " " &
"SysAddIn_L : (BD30, BC29, AY28, BE29, AW27, BA27, BD28, BE27, "&
" AY26, BC25, BB24, AV24, BD24, BE23, AW23), "&
"SysAddInClk_L : BB26, "&
"SysVref : BA25, "&
"SysFillValid_L : BC23, "&
"SysAddOut_L : (AW33, BE39, BD36, BC35, BA33, AY32, BE35, AV30, "&
" BB32, BA31, BE33, AW29, BC31, AV28, BB30), "&
"SysAddOutClk_L : BD34, "&
"SysData_L : (F14 , G13 , F12 , H12 , H10 , G7 , F6 , K8 , "&
" M6 , N7 , P6 , T8 , V8 , V6 , W7 , Y6 , "&
" AB8 , AC7 , AD8 , AE5 , AH6 , AH8 , AJ7 , AL5 , "&
" AP8 , AR7 , AT8 , AV6 , AV10, AW11, AV12, AW13, "&
" F32 , F34 , H34 , G35 , F40 , G39 , K38 , J41 , "&
" M40 , N39 , P40 , T38 , V40 , W41 , W39 , Y40 , "&
B–2 21264/EV67 Boundary-Scan Register Alpha 21264/EV67 Hardware Reference Manual

Boundary-Scan Register
" AB38, AC39, AD38, AF40, AH38, AJ39, AL41, AK38, "&
" AN39, AP38, AR39, AT38, AY38, AV36, AW35, AV34),"&
"SysCheck_L : (L7 , AA5 , AK8 , BA13, L39 , AA41, AM40, AY34),"&
"SysDataInClk_H : (D8 , P4 , AF6 , AY6 , E37 , R43 , AG41, AV40),"&

:
"SysDataOutClk_L : (G11 , U7 , AG7 , AY8 , H36 , R41 , AH40, AW39),"&
"SysDataInValid_L : BD22, "&
"SysDataOutValid_L : BB22, "&
"BcAdd_H : (B28 , E27 , A29 , G27 , C29 , F28 , B30 , D30 ,"&
" C31 , H28 , G29 , A33 , E31 , D32 , B34 , A35 ,"&
" B36 , H30 , C35 , E33), "&
"BcDataOE_L : A27 , "&
"BcLoad_L : F26 , "&
"BcDataWr_L : D26 , "&
"BcData_H : (B10 , D10 , A5 , C5 , C3 , E3 , H6 , E1 ,"&
" J3 , K2 , L3 , M2 , T2 , U1 , V2 , Y4 ,"&
" AC1 , AD2 , AE3 , AG1 , AK2 , AL3 , AR1 , AP2 ,"&
" AY2 , BB2 , AW5 , BB4 , BB8 , BE5 , BB10, BE7 ,"&
" G33 , C37 , B40 , C41 , C43 , E43 , G41 , F44 ,"&
" K44 , N41 , M44 , P42 , U43 , V44 , Y42 , AB44 ,"&
" AD42, AE43, AF42, AJ45, AK42, AN45, AP44, AN41 ,"&
" AW45, AU41, AY44, BA43, BC43, BD42, BB38, BE41 ,"&
" C11 , A7 , C9 , B6 , B4 , D4 , G5 , D2 ,"&
" H4 , G1 , N5 , L1 , N1 , U3 , W5 , W1 ,"&
" AB2 , AC3 , AD4 , AF4 , AJ3 , AK4 , AN1 , AM4 ,"&
" AU5 , BA1 , BA3 , BC3 , BD6 , BA9 , BC9 , AY12 ,"&
" A39 , D36 , A41 , B42 , D42 , D44 , H40 , H42 ,"&
" G45 , L43 , L45 , N45 , T44 , U45 , W45 , AA43 ,"&
" AC43, AD44, AE41, AG45, AK44, AL43, AM42, AR45 ,"&
" AP40, BA45, AV42, BB44, BB42, BC41, BA37, BD40),"&
"BcCheck_H : (F2 , AB4 , AT2 , BC11, M38 , AB42, AU43, BC37 ,"&
" M8 , AA3 , AW1 , BD10, E45 , AC45, AT44, BB36),"&
"BcDataInClk_H : (E7 , R3 , AH2 , BC5 , F38 , U39 , AH44, AY40),"&
"Spare_7 : (F8 , T4 , AJ1 , BD4 , E39 , V38 , AJ43, BA39),"&
"BcDataOutClk_L : (K4 , AV4 , K42 , AT42), "&
"BcDataOutClk_H : (J5 , AU3 , J43 , AR43), "&
"BcTag_H : (E13 , H16 , A11 , B12 , D14 , E15 , A13 , G17 ,"&
" C15 , H18 , D16 , B16 , C17 , A17 , E19 , B18 ,"&
" A19 , F20 , D20 , E21 , C21 , D22 , H22), "&
"BcTagValid_H : B24 , "&
"BcTagDirty_H : C23 , "&
"BcTagShared_H : G23 , "&
"BcTagParity_H : B22 , "&
"BcTagOE_L : H24 , "&
"BcTagWr_L : E25 , "&
"BcTagInClk_H : G19 , "&
"BcVref : F18 , "&
"BcTagOutClk_L : D24 , "&
"BcTagOutClk_H : C25 , "&
"IRQ_H : (BA15, BE13, AW17, AV18, BC15, BB16), "&
"Reset_L : BD16, "&
"SromData_H : BC17, "&
"SromCLK_H : AW19, "&
"SromOE_L : BE17, "&
"Tms_H : BD18, "&
"Tck_H : BE19, "&
"Trst_L : AY20, "&
"Tdi_H : BA21, "&
"Tdo_H : BB20, "&
"TestStat_H : BA19, "&
"ClkIn_H : AM8 , "&
"ClkIn_L : AN7 , "&
"FrameClk_H : AV16, "&
"FrameClk_L : AW15, "&
"PllBypass_H : BD12, "&
Alpha 21264/EV67 Hardware Reference Manual 21264/EV67 Boundary-Scan Register B–3

Boundary-Scan Register
"NoConnect_0 : BB14, "&
"NoConnect_1 : BD2 , "&
"ClkFwdRst_H : BE11, "&
"EV6Clk_H : AM6 , "&
"EV6Clk_L : AL7 , "&
"Spare_4 : AT4 , "&
"Spare_5 : AR3 , "&
"PLL_VDD : AV8 , "&
"Spare_0 : BC21, "&
"MiscVref : AV22, "&
"Spare_2 : BE9 , "&
"DCOK_H : AY18, "&
"VSS: (C1 , W3 , AR5 , G9 , E17 , G25 , C33 , AA39, "&
" BA41, R45 , J1 , AG3 , BA5 , AW9 , BA17, AW25, "&
" BC33, AE39, A43 , AA45, R1 , AN3 , C7 , C19 , "&
" BE25, E35 , AL39, G43 , AE45, AA1 , AW3 , J7 , "&
" E11 , BC19, C27 , BA35, AU39, N43 , AL45, AE1 , "&
" BE3 , R7 , BA11, A21 , BC27, A37 , BC39, W43 , "&
" AU45, AL1 , E5 , AA7 , C13 , G21 , E29 , G37 , "&
" E41 , AG43, BC45, AU1 , L5 , AE7 , BC13, AW21, "&
" BA29, AW37, L41 , AN43, BC1 , U5 , AU7 , A15 , "&
" BE21, A31 , BE37, U41 , AW43, A3 , AC5 , AW7 , "&
" G15 , E23 , G31 , C39 , AC41, BE43, G3 , AJ5 , "&
" BC7 , AY14, BA23, AW31, J39 , AJ41, C45 , N3 , "&
" AN5 , A9 , BE15, A25 , BE31, R39 , AR41, J45 , "&
“ E9 , R5 , AG5 , BA7 , D38 , T42 , AG39, AW41) ,"&
"VDD : (B2 , V4 , AP6 , D12 , B20 , H26 , BD32, AM38, "&
" BB40, Y44 , H2 , AH4 , AT6 , BB12, H20 , AV26, "&
" D34 , AV38, F42 , AF44, P2 , AP4 , BB6 , B14 , "&
" AV20, BD26, BB34, BD38, M42 , AM44, Y2 , AY4 , "&
" B8 , H14 , BD20, D28 , F36 , D40 , V42 , AV44, "&
" AF2 , D6 , P8 , AV14, F22 , BB28, AY36, K40 , "&
" AH42, BD44, AM2 , K6 , Y8 , BD14, AY22, F30 , "&
" B38 , T40 , AP42, AV2 , T6 , AF8 , F16 , A23 , "&
" AY30, H38 , AB40, AY42, AB6 , BD8 , AY16, F24 , "&
" B32 , P38 , AD40, B44 , F4 , AD6 , F10 , D18 , "&
" AY24, H32 , Y38 , AK40, H44 , M4 , AK6 , AY10, "&
" BB18, B26 , AV32, AF38, AT40, P44) ";

constant numeric_EV6 : PIN_MAP_STRING := " " &
"SysAddIn_L : (559 , 536 , 468 , 580 , 445 , 490 , 558 , 579 , "&
" 467 , 534 , 511 , 421 , 556 , 577 , 443), "&
"SysAddInClk_L : 512 , "&
"SysVref : 489 , "&
"SysFillValid_L : 533 , "&
"SysAddOut_L : (448 , 585 , 562 , 539 , 493 , 470 , 583 , 424 , "&
" 515 , 492 , 582 , 446 , 537 , 423 , 514), "&
"SysAddOutClk_L : 561 , "&
"SysData_L : (118 , 140 , 117 , 161 , 160 , 137 , 114 , 189 , "&
" 204 , 213 , 220 , 237 , 253 , 252 , 261 , 268 , "&
" 285 , 293 , 301 , 308 , 332 , 333 , 341 , 356 , "&
" 381 , 389 , 397 , 412 , 414 , 437 , 415 , 438 , "&
" 127 , 128 , 172 , 151 , 131 , 153 , 190 , 183 , "&
" 207 , 214 , 223 , 238 , 255 , 263 , 262 , 271 , "&
" 286 , 294 , 302 , 319 , 334 , 342 , 359 , 350 , "&
" 374 , 382 , 390 , 398 , 473 , 427 , 449 , 426),"&
"SysCheck_L : (197 , 276 , 349 , 483 , 198 , 279 , 367 , 471),"&
"SysDataInClk_H : (70 , 219 , 316 , 457 , 107 , 232 , 327 , 429),"&
"SysDataOutClk_L : (139 , 245 , 325 , 458 , 173 , 231 , 335 , 451),"&
"SysDataInValid_L : 555 , "&
"SysDataOutValid_L : 510 , "&
"BcAdd_H : (35 , 102 , 14 , 147 , 58 , 125 , 36 , 81 , "&
" 59 , 169 , 148 , 16 , 104 , 82 , 38 , 17 , "&
" 39 , 170 , 61 , 105), "&
"BcDataOE_L : 13 , "&
B–4 21264/EV67 Boundary-Scan Register Alpha 21264/EV67 Hardware Reference Manual

Boundary-Scan Register
"BcLoad_L : 124 , "&
"BcDataWr_L : 79 , "&
"BcData_H : (26 , 71 , 2 , 46 , 45 , 90 , 159 , 89 , "&
" 179 , 186 , 195 , 202 , 234 , 242 , 250 , 267 , "&
" 290 , 298 , 307 , 322 , 346 , 355 , 386 , 378 , "&
" 455 , 500 , 434 , 501 , 503 , 568 , 504 , 569 , "&
" 150 , 62 , 41 , 64 , 65 , 110 , 154 , 133 , "&
" 193 , 215 , 209 , 224 , 248 , 257 , 272 , 289 , "&
" 304 , 312 , 320 , 345 , 352 , 377 , 385 , 375 , "&
" 454 , 407 , 476 , 498 , 543 , 565 , 518 , 586 , "&
" 49 , 3 , 48 , 24 , 23 , 68 , 136 , 67 , "&
" 158 , 134 , 212 , 194 , 210 , 243 , 260 , 258 , "&
" 282 , 291 , 299 , 315 , 339 , 347 , 370 , 363 , "&
" 404 , 477 , 478 , 523 , 547 , 481 , 526 , 460 , "&
" 19 , 84 , 20 , 42 , 87 , 88 , 175 , 176 , "&
" 156 , 200 , 201 , 217 , 241 , 249 , 265 , 280 , "&
" 296 , 305 , 311 , 329 , 353 , 360 , 368 , 393 , "&
" 383 , 499 , 430 , 521 , 520 , 542 , 495 , 564),"&
"BcCheck_H : (112 , 283 , 394 , 527 , 206 , 288 , 408 , 540 , "&
" 205 , 275 , 432 , 549 , 111 , 297 , 401 , 517),"&
"BcDataInClk_H : (92 , 227 , 330 , 524 , 130 , 246 , 337 , 474),"&
"Spare_7 : (115 , 235 , 338 , 546 , 108 , 254 , 344 , 496),"&
"BcDataOutClk_L : (187 , 411 , 192 , 400), "&
"BcDataOutClk_H : (180 , 403 , 184 , 392), "&
"BcTag_H : (95 , 163 , 5 , 27 , 73 , 96 , 6 , 142 , "&
" 51 , 164 , 74 , 29 , 52 , 8 , 98 , 30 , "&
" 9 , 121 , 76 , 99 , 54 , 77 , 166), "&
"BcTagValid_H : 33 , "&
"BcTagDirty_H : 55 , "&
"BcTagShared_H : 145 , "&
"BcTagParity_H : 32 , "&
"BcTagOE_L : 167 , "&
"BcTagWr_L : 101 , "&
"BcTagInClk_H : 143 , "&
"BcVref : 120 , "&
"BcTagOutClk_L : 78 , "&
"BcTagOutClk_H : 56 , "&
"IRQ_H : (484 , 572 , 440 , 418 , 529 , 507), "&
"Reset_L : 552 , "&
"SromData_H : 530 , "&
"SromCLK_H : 441 , "&
"SromOE_L : 574 , "&
"Tms_H : 553 , "&
"Tck_H : 575 , "&
"Trst_L : 464 , "&
"Tdi_H : 487 , "&
"Tdo_H : 509 , "&
"TestStat_H : 486 , "&
"ClkIn_H : 365 , "&
"ClkIn_L : 373 , "&
"FrameClk_H : 417 , "&
"FrameClk_L : 439 , "&
"PllBypass_H : 550 , "&
"NoConnect_0 : 506 , "&
"NoConnect_1 : 545 , "&
"ClkFwdRst_H : 571 , "&
"EV6Clk_H : 364 , "&
"EV6Clk_L : 357 , "&
"Spare_4 : 395 , "&
"Spare_5 : 387 , "&
"PLL_VDD : 413 , "&
"Spare_0 : 532 , "&
"MiscVref : 420 , "&
"Spare_2 : 570 , "&
"DCOK_H : 463 , "&
Alpha 21264/EV67 Hardware Reference Manual 21264/EV67 Boundary-Scan Register B–5

Boundary-Scan Register
"VSS : (44 , 259 , 388 , 138 , 97 , 146 , 60 , 278 , "&
" 497 , 233 , 178 , 323 , 479 , 436 , 485 , 444 , "&
" 538 , 310 , 21 , 281 , 226 , 371 , 47 , 53 , "&
" 578 , 106 , 358 , 155 , 313 , 274 , 433 , 181 , "&
" 94 , 531 , 57 , 494 , 406 , 216 , 361 , 306 , "&
" 567 , 229 , 482 , 10 , 535 , 18 , 541 , 264 , "&
" 409 , 354 , 91 , 277 , 50 , 144 , 103 , 152 , "&
" 109 , 328 , 544 , 402 , 196 , 309 , 528 , 442 , "&
" 491 , 450 , 199 , 376 , 522 , 244 , 405 , 7 , "&
" 576 , 15 , 584 , 247 , 453 , 1 , 292 , 435 , "&
" 141 , 100 , 149 , 63 , 295 , 587 , 135 , 340 , "&
" 525 , 461 , 488 , 447 , 182 , 343 , 66 , 211 , "&
" 372 , 4 , 573 , 12 , 581 , 230 , 391 , 185 ,"&
“ 93 , 228 , 324 , 480 , 85 , 240 , 326 , 452),"&

"VDD : (22 , 251 , 380 , 72 , 31 , 168 , 560 , 366 , "&
" 519 , 273 , 157 , 331 , 396 , 505 , 165 , 422 , "&
" 83 , 428 , 132 , 321 , 218 , 379 , 502 , 28 , "&
" 419 , 557 , 516 , 563 , 208 , 369 , 266 , 456 , "&
" 25 , 162 , 554 , 80 , 129 , 86 , 256 , 431 , "&
" 314 , 69 , 221 , 416 , 122 , 513 , 472 , 191 , "&
" 336 , 566 , 362 , 188 , 269 , 551 , 465 , 126 , "&
" 40 , 239 , 384 , 410 , 236 , 317 , 119 , 11 , "&
" 469 , 174 , 287 , 475 , 284 , 548 , 462 , 123 , "&
" 37 , 222 , 303 , 43 , 113 , 300 , 116 , 75 , "&
" 466 , 171 , 270 , 351 , 177 , 203 , 348 , 459 , "&
" 508 , 34 , 425 , 318 , 399 , 225) ";

attribute PORT_GROUPING of Alpha_21264/EV67 : entity is-- (Ref B.8.8. See Note 4.
"Differential_Voltage ((CLKIN_H), (CLKIN_L))" ;

attribute TAP_SCAN_CLOCK of Tck_H : signal is (5.0e6, LOW);
attribute TAP_SCAN_IN of Tdi_H : signal is TRUE;
attribute TAP_SCAN_OUT of Tdo_H : signal is TRUE;
attribute TAP_SCAN_MODE of Tms_H : signal is TRUE;
attribute TAP_SCAN_RESET of Trst_L : signal is TRUE;

attribute COMPLIANCE_PATTERNS of Alpha_21264/EV67 : entity is -- (Ref B.8.10). See
Note 4.

"(DcOk_H), (1)" ;

attribute INSTRUCTION_LENGTH of Alpha_21264/EV67 : entity is 5 ;
attribute INSTRUCTION_OPCODE of Alpha_21264/EV67 : entity is

"EXTEST (11011),"&-- No longer mandated to be (00000)!
"SAMPLE (11000),"&-- JWB changed "PRELOAD" to "SAMPLE"
"CLAMP (11010),"&
"HIGHZ (11001),"&
"DIE_ID (11110),"&
"BYPASS (11111)";

attribute INSTRUCTION_CAPTURE of Alpha_21264/EV67 : entity is "00001" ;
attribute INSTRUCTION_PRIVATE of Alpha_21264/EV67 : entity is "Private"; -- See Note 4.

attribute REGISTER_ACCESS of Alpha_21264/EV67 : entity is-- (ref B.8.13)
"BOUNDARY (EXTEST, SAMPLE)," &-- Redundant. Added for completeness
"BYPASS (BYPASS, HIGHZ, CLAMP)," &-- ditto
"DIE_ID[32] (DIE_ID)";

attribute BOUNDARY_LENGTH of Alpha_21264/EV67 : entity is 367 ;

attribute BOUNDARY_REGISTER of Alpha_21264/EV67 : entity is

-- scan cell safe cntrl disable disable
-- cell type port function | cell value state
----|-----|-----|-------------------|--------|---|----|------|--------------

" 366 (BC_2, TestStat_H, OUTPUT2, x), "& --
" 365 (BC_2, SromOE_L, OUTPUT2, X), "& --
B–6 21264/EV67 Boundary-Scan Register Alpha 21264/EV67 Hardware Reference Manual

Boundary-Scan Register
" 364 (BC_2, SromClk_H, OUTPUT2, x), "& --
" 363 (BC_2, SromData_H, INPUT, x), "& --
" 362 (BC_3, reset_L, INPUT, x), "& --
" 361 (BC_3, IRQ_H(5), INPUT, x), "& --
" 360 (BC_3, IRQ_H(4), INPUT, x), "& --
" 359 (BC_3, IRQ_H(3), INPUT, x), "& --
" 358 (BC_3, IRQ_H(2), INPUT, x), "& --
" 357 (BC_3, IRQ_H(1), INPUT, x), "& --
" 356 (BC_3, IRQ_H(0), INPUT, x), "& --
" 355 (BC_3, ClkFwdRst_H, INPUT, x), "& --
" 354 (BC_2, BcCheck_H(3), BIDIR, x, 339, 0, Z), "& --
" 353 (BC_2, BcCheck_H(11), BIDIR, x, 339, 0, Z), "& --
" 352 (BC_2, SysCheck_L(3), BIDIR, x, 336, 0, WEAK1), "& --
" 351 (BC_2, BcData_H(31), BIDIR, x, 339, 0, Z), "& --
" 350 (BC_2, BcData_H(95), BIDIR, x, 339, 0, Z), "& --
" 349 (BC_2, SysData_L(31), BIDIR, x, 336, 0, WEAK1), "& --
" 348 (BC_2, BcData_H(30), BIDIR, x, 339, 0, Z), "& --
" 347 (BC_2, BcData_H(94), BIDIR, x, 339, 0, Z), "& --
" 346 (BC_2, SysData_L(30), BIDIR, x, 336, 0, WEAK1), "& --
" 345 (BC_2, BcData_H(29), BIDIR, x, 339, 0, Z), "& --
" 344 (BC_2, BcData_H(93), BIDIR, x, 339, 0, Z), "& --
" 343 (BC_2, SysData_L(29), BIDIR, x, 336, 0, WEAK1), "& --
" 342 (BC_2, BcData_H(28), BIDIR, x, 339, 0, Z), "& --
" 341 (BC_2, BcData_H(92), BIDIR, x, 339, 0, Z), "& --
" 340 (BC_2, SysData_L(28), BIDIR, x, 336, 0, WEAK1), "& --
" 339 (BC_3, *, CONTROL, 0), "& -- bccell0
" 338 (BC_3, BcDataInClk_H(3), INPUT, x), "& --
" 337 (BC_2, SysDataOutClk_L(3), OUTPUT2, x), "& --
" 336 (BC_3, *, CONTROL, 0), "& -- sccell0
" 335 (BC_3, SysDataInClk_H(3), INPUT, x), "& --
" 334 (BC_2, BcData_H(27), BIDIR, x, 339, 0, Z), "& --
" 333 (BC_2, BcData_H(91), BIDIR, x, 339, 0, Z), "& --
" 332 (BC_2, SysData_L(27), BIDIR, x, 336, 0, WEAK1), "& --
" 331 (BC_2, BcData_H(26), BIDIR, x, 339, 0, Z), "& --
" 330 (BC_2, BcData_H(90), BIDIR, x, 339, 0, Z), "& --
" 329 (BC_2, SysData_L(26), BIDIR, x, 336, 0, WEAK1), "& --
" 328 (BC_2, BcData_H(25), BIDIR, x, 339, 0, Z), "& --
" 327 (BC_2, BcData_H(89), BIDIR, x, 339, 0, Z), "& --
" 326 (BC_2, SysData_L(25), BIDIR, x, 336, 0, WEAK1), "& --
" 325 (BC_2, BcData_H(24), BIDIR, x, 339, 0, Z), "& --
" 324 (BC_2, BcData_H(88), BIDIR, x, 339, 0, Z), "& --
" 323 (BC_2, SysData_L(24), BIDIR, x, 336, 0, WEAK1), "& --
" 322 (BC_2, BcDataOutClk_L(1), OUTPUT2, x), "& --
" 321 (BC_2, BcDataOutClk_H(1), OUTPUT2, x), "& --
" 320 (BC_2, BcCheck_H(2), BIDIR, x, 305, 0, Z), "& --
" 319 (BC_2, BcCheck_H(10), BIDIR, x, 305, 0, Z), "& --
" 318 (BC_2, SysCheck_L(2), BIDIR, x, 302, 0, WEAK1), "& --
" 317 (BC_2, BcData_H(23), BIDIR, x, 305, 0, Z), "& --
" 316 (BC_2, BcData_H(87), BIDIR, x, 305, 0, Z), "& --
" 315 (BC_2, SysData_L(23), BIDIR, x, 302, 0, WEAK1), "& --
" 314 (BC_2, BcData_H(22), BIDIR, x, 305, 0, Z), "& --
" 313 (BC_2, BcData_H(86), BIDIR, x, 305, 0, Z), "& --
" 312 (BC_2, SysData_L(22), BIDIR, x, 302, 0, WEAK1), "& --
" 311 (BC_2, BcData_H(21), BIDIR, x, 305, 0, Z), "& --
" 310 (BC_2, BcData_H(85), BIDIR, x, 305, 0, Z), "& --
" 309 (BC_2, SysData_L(21), BIDIR, x, 302, 0, WEAK1), "& --
" 308 (BC_2, BcData_H(20), BIDIR, x, 305, 0, Z), "& --
" 307 (BC_2, BcData_H(84), BIDIR, x, 305, 0, Z), "& --
" 306 (BC_2, SysData_L(20), BIDIR, x, 302, 0, WEAK1), "& --
" 305 (BC_3, *, CONTROL, 0), "& -- bccell1
" 304 (BC_3, BcDataInClk_H(2), INPUT, x), "& --
" 303 (BC_2, SysDataOutClk_L(2), OUTPUT2, x), "& --
" 302 (BC_3, *, CONTROL, 0), "& -- sccell1
" 301 (BC_3, SysDataInClk_H(2), INPUT, x), "& --
" 300 (BC_2, BcData_H(19), BIDIR, x, 305, 0, Z), "& --
Alpha 21264/EV67 Hardware Reference Manual 21264/EV67 Boundary-Scan Register B–7

Boundary-Scan Register
" 299 (BC_2, BcData_H(83), BIDIR, x, 305, 0, Z), "& --
" 298 (BC_2, SysData_L(19), BIDIR, x, 302, 0, WEAK1), "& --
" 297 (BC_2, BcData_H(18), BIDIR, x, 305, 0, Z), "& --
" 296 (BC_2, BcData_H(82), BIDIR, x, 305, 0, Z), "& --
" 295 (BC_2, SysData_L(18), BIDIR, x, 302, 0, WEAK1), "& --
" 294 (BC_2, BcData_H(17), BIDIR, x, 305, 0, Z), "& --
" 293 (BC_2, BcData_H(81), BIDIR, x, 305, 0, Z), "& --
" 292 (BC_2, SysData_L(17), BIDIR, x, 302, 0, WEAK1), "& --
" 291 (BC_2, BcData_H(16), BIDIR, x, 305, 0, Z), "& --
" 290 (BC_2, BcData_H(80), BIDIR, x, 305, 0, Z), "& --
" 289 (BC_2, SysData_L(16), BIDIR, x, 302, 0, WEAK1), "& --
" 288 (BC_2, BcCheck_H(1), BIDIR, x, 273, 0, Z), "& --
" 287 (BC_2, BcCheck_H(9), BIDIR, x, 273, 0, Z), "& --
" 286 (BC_2, SysCheck_L(1), BIDIR, x, 270, 0, WEAK1), "& --
" 285 (BC_2, BcData_H(15), BIDIR, x, 273, 0, Z), "& --
" 284 (BC_2, BcData_H(79), BIDIR, x, 273, 0, Z), "& --
" 283 (BC_2, SysData_L(15), BIDIR, x, 270, 0, WEAK1), "& --
" 282 (BC_2, BcData_H(14), BIDIR, x, 273, 0, Z), "& --
" 281 (BC_2, BcData_H(78), BIDIR, x, 273, 0, Z), "& --
" 280 (BC_2, SysData_L(14), BIDIR, x, 270, 0, WEAK1), "& --
" 279 (BC_2, BcData_H(13), BIDIR, x, 273, 0, Z), "& --
" 278 (BC_2, BcData_H(77), BIDIR, x, 273, 0, Z), "& --
" 277 (BC_2, SysData_L(13), BIDIR, x, 270, 0, WEAK1), "& --
" 276 (BC_2, BcData_H(12), BIDIR, x, 273, 0, Z), "& --
" 275 (BC_2, BcData_H(76), BIDIR, x, 273, 0, Z), "& --
" 274 (BC_2, SysData_L(12), BIDIR, x, 270, 0, WEAK1), "& --
" 273 (BC_3, *, CONTROL, 0), "& -- bccell2
" 272 (BC_3, BcDataInClk_H(1), INPUT, x), "& --
" 271 (BC_2, SysDataOutClk_L(1), OUTPUT2, x), "& --
" 270 (BC_3, *, CONTROL, 0), "& -- sccell2
" 269 (BC_3, SysDataInClk_H(1), INPUT, x), "& --
" 268 (BC_2, BcData_H(11), BIDIR, x, 273, 0, Z), "& --
" 267 (BC_2, BcData_H(75), BIDIR, x, 273, 0, Z), "& --
" 266 (BC_2, SysData_L(11), BIDIR, x, 270, 0, WEAK1), "& --
" 265 (BC_2, BcData_H(10), BIDIR, x, 273, 0, Z), "& --
" 264 (BC_2, BcData_H(74), BIDIR, x, 273, 0, Z), "& --
" 263 (BC_2, SysData_L(10), BIDIR, x, 270, 0, WEAK1), "& --
" 262 (BC_2, BcData_H(9) , BIDIR, x, 273, 0, Z), "& --
" 261 (BC_2, BcData_H(73), BIDIR, x, 273, 0, Z), "& --
" 260 (BC_2, SysData_L(9), BIDIR, x, 270, 0, WEAK1), "& --
" 259 (BC_2, BcData_H(8) , BIDIR, x, 273, 0, Z), "& --
" 258 (BC_2, BcData_H(72), BIDIR, x, 273, 0, Z), "& --
" 257 (BC_2, SysData_L(8), BIDIR, x, 270, 0, WEAK1), "& --
" 256 (BC_2, BcDataOutClk_L(0), OUTPUT2, x), "& --
" 255 (BC_2, BcDataOutClk_H(0), OUTPUT2, x), "& --
" 254 (BC_2, BcCheck_H(0), BIDIR, x, 239, 0, Z), "& --
" 253 (BC_2, BcCheck_H(8), BIDIR, x, 239, 0, Z), "& --
" 252 (BC_2, SysCheck_L(0), BIDIR, x, 236, 0, WEAK1), "& --
" 251 (BC_2, BcData_H(7) , BIDIR, x, 239, 0, Z), "& --
" 250 (BC_2, BcData_H(71), BIDIR, x, 239, 0, Z), "& --
" 249 (BC_2, SysData_L(7), BIDIR, x, 236, 0, WEAK1), "& --
" 248 (BC_2, BcData_H(6) , BIDIR, x, 239, 0, Z), "& --
" 247 (BC_2, BcData_H(70), BIDIR, x, 239, 0, Z), "& --
" 246 (BC_2, SysData_L(6), BIDIR, x, 236, 0, WEAK1), "& --
" 245 (BC_2, BcData_H(5) , BIDIR, x, 239, 0, Z), "& --
" 244 (BC_2, BcData_H(69), BIDIR, x, 239, 0, Z), "& --
" 243 (BC_2, SysData_L(5), BIDIR, x, 236, 0, WEAK1), "& --
" 242 (BC_2, BcData_H(4) , BIDIR, x, 239, 0, Z), "& --
" 241 (BC_2, BcData_H(68), BIDIR, x, 239, 0, Z), "& --
" 240 (BC_2, SysData_L(4), BIDIR, x, 236, 0, WEAK1), "& --
" 239 (BC_3, *, CONTROL, 0), "& -- bccell3
" 238 (BC_3, BcDataInClk_H(0), INPUT, x), "& --
" 237 (BC_2, SysDataOutClk_L(0), OUTPUT2, x), "& --
" 236 (BC_3, *, CONTROL, 0), "& -- sccell3
" 235 (BC_3, SysDataInClk_H(0), INPUT, x), "& --
B–8 21264/EV67 Boundary-Scan Register Alpha 21264/EV67 Hardware Reference Manual

Boundary-Scan Register
" 234 (BC_2, BcData_H(3) , BIDIR, x, 239, 0, Z), "& --
" 233 (BC_2, BcData_H(67), BIDIR, x, 239, 0, Z), "& --
" 232 (BC_2, SysData_L(3), BIDIR, x, 236, 0, WEAK1), "& --
" 231 (BC_2, BcData_H(2) , BIDIR, x, 239, 0, Z), "& --
" 230 (BC_2, BcData_H(66), BIDIR, x, 239, 0, Z), "& --
" 229 (BC_2, SysData_L(2), BIDIR, x, 236, 0, WEAK1), "& --
" 228 (BC_2, BcData_H(1) , BIDIR, x, 239, 0, Z), "& --
" 227 (BC_2, BcData_H(65), BIDIR, x, 239, 0, Z), "& --
" 226 (BC_2, SysData_L(1), BIDIR, x, 236, 0, WEAK1), "& --
" 225 (BC_2, BcData_H(0) , BIDIR, x, 239, 0, Z), "& --
" 224 (BC_2, BcData_H(64), BIDIR, x, 239, 0, Z), "& --
" 223 (BC_2, SysData_L(0), BIDIR, x, 236, 0, WEAK1), "& --
" 222 (BC_2, BcTag_H(20), BIDIR, x, 208, 0, Z), "& --
" 221 (BC_2, BcTag_H(21), BIDIR, x, 208, 0, Z), "& --
" 220 (BC_2, BcTag_H(22), BIDIR, x, 208, 0, Z), "& --
" 219 (BC_2, BcTag_H(23), BIDIR, x, 208, 0, Z), "& --
" 218 (BC_2, BcTag_H(24), BIDIR, x, 208, 0, Z), "& --
" 217 (BC_2, BcTag_H(25), BIDIR, x, 208, 0, Z), "& --
" 216 (BC_2, BcTag_H(26), BIDIR, x, 208, 0, Z), "& --
" 215 (BC_2, BcTag_H(27), BIDIR, x, 208, 0, Z), "& --
" 214 (BC_2, BcTag_H(28), BIDIR, x, 208, 0, Z), "& --
" 213 (BC_2, BcTag_H(29), BIDIR, x, 208, 0, Z), "& --
" 212 (BC_2, BcTag_H(30), BIDIR, x, 208, 0, Z), "& --
" 211 (BC_2, BcTag_H(31), BIDIR, x, 208, 0, Z), "& --
" 210 (BC_2, BcTag_H(32), BIDIR, x, 208, 0, Z), "& --
" 209 (BC_2, BcTag_H(33), BIDIR, x, 208, 0, Z), "& --
" 208 (BC_3, *, CONTROL, 0), "& -- tccell0
" 207 (BC_3, BcTagInClk_H, INPUT, x), "& --
" 206 (BC_2, BcTag_H(34), BIDIR, x, 208, 0, Z), "& --
" 205 (BC_2, BcTag_H(35), BIDIR, x, 208, 0, Z), "& --
" 204 (BC_2, BcTag_H(36), BIDIR, x, 208, 0, Z), "& --
" 203 (BC_2, BcTag_H(37), BIDIR, x, 208, 0, Z), "& --
" 202 (BC_2, BcTag_H(38), BIDIR, x, 208, 0, Z), "& --
" 201 (BC_2, BcTag_H(39), BIDIR, x, 208, 0, Z), "& --
" 200 (BC_2, BcTag_H(40), BIDIR, x, 208, 0, Z), "& --
" 199 (BC_2, BcTag_H(41), BIDIR, x, 208, 0, Z), "& --
" 198 (BC_2, BcTag_H(42), BIDIR, x, 208, 0, Z), "& --
" 197 (BC_2, BcTagParity_H, BIDIR, x, 208, 0, Z), "& --
" 196 (BC_2, BcTagShared_H, BIDIR, x, 208, 0, Z), "& --
" 195 (BC_2, BcTagDirty_H, BIDIR, x, 208, 0, Z), "& --
" 194 (BC_2, BcTagValid_H, BIDIR, x, 208, 0, Z), "& --
" 193 (BC_2, BcTagOutClk_L, OUTPUT2, x), "& --
" 192 (BC_2, BcTagOutClk_H, OUTPUT2, x), "& --
" 191 (BC_2, BcTagOE_L, OUTPUT2, x), "& --
" 190 (BC_2, BcTagWr_L, OUTPUT2, x), "& --
" 189 (BC_2, BcDataWr_L, OUTPUT2, x), "& --
" 188 (BC_2, BcLoad_L, OUTPUT2, x), "& --
" 187 (BC_2, BcDataOE_L, OUTPUT2, x), "& --
" 186 (BC_2, BcAdd_H(4), OUTPUT2, x), "& --
" 185 (BC_2, BcAdd_H(5), OUTPUT2, x), "& --
" 184 (BC_2, BcAdd_H(6), OUTPUT2, x), "& --
" 183 (BC_2, BcAdd_H(7), OUTPUT2, x), "& --
" 182 (BC_2, BcAdd_H(8), OUTPUT2, x), "& --
" 181 (BC_2, BcAdd_H(9), OUTPUT2, x), "& --
" 180 (BC_2, BcAdd_H(10), OUTPUT2, x), "& --
" 179 (BC_2, BcAdd_H(11), OUTPUT2, x), "& --
" 178 (BC_2, BcAdd_H(12), OUTPUT2, x), "& --
" 177 (BC_2, BcAdd_H(13), OUTPUT2, x), "& --
" 176 (BC_2, BcAdd_H(14), OUTPUT2, x), "& --
" 175 (BC_2, BcAdd_H(15), OUTPUT2, x), "& --
" 174 (BC_2, BcAdd_H(16), OUTPUT2, x), "& --
" 173 (BC_2, BcAdd_H(17), OUTPUT2, x), "& --
" 172 (BC_2, BcAdd_H(18), OUTPUT2, x), "& --
" 171 (BC_2, BcAdd_H(19), OUTPUT2, x), "& --
" 170 (BC_2, BcAdd_H(20), OUTPUT2, x), "& --
Alpha 21264/EV67 Hardware Reference Manual 21264/EV67 Boundary-Scan Register B–9

Boundary-Scan Register
" 169 (BC_2, BcAdd_H(21), OUTPUT2, x), "& --
" 168 (BC_2, BcAdd_H(22), OUTPUT2, x), "& --
" 167 (BC_2, BcAdd_H(23), OUTPUT2, x), "& --
" 166 (BC_2, SysData_L(32), BIDIR, x, 150, 0, WEAK1), "& --
" 165 (BC_2, BcData_H(96), BIDIR, x, 153, 0, Z), "& --
" 164 (BC_2, BcData_H(32), BIDIR, x, 153, 0, Z), "& --
" 163 (BC_2, SysData_L(33), BIDIR, x, 150, 0, WEAK1), "& --
" 162 (BC_2, BcData_H(97), BIDIR, x, 153, 0, Z), "& --
" 161 (BC_2, BcData_H(33), BIDIR, x, 153, 0, Z), "& --
" 160 (BC_2, SysData_L(34), BIDIR, x, 150, 0, WEAK1), "& --
" 159 (BC_2, BcData_H(98), BIDIR, x, 153, 0, Z), "& --
" 158 (BC_2, BcData_H(34), BIDIR, x, 153, 0, Z), "& --
" 157 (BC_2, SysData_L(35), BIDIR, x, 150, 0, WEAK1), "& --
" 156 (BC_2, BcData_H(99), BIDIR, x, 153, 0, Z), "& --
" 155 (BC_2, BcData_H(35), BIDIR, x, 153, 0, Z), "& --
" 154 (BC_3, SysDataInClk_H(4), INPUT, x), "& --
" 153 (BC_3, *, CONTROL, 0), "& -- sccell4
" 152 (BC_2, SysDataOutClk_L(4), OUTPUT2, x), "& --
" 151 (BC_3, BcDataInClk_H(4), INPUT, x), "& --
" 150 (BC_3, *, CONTROL, 0), "& -- bccell4
" 149 (BC_2, SysData_L(36), BIDIR, x, 150, 0, WEAK1), "& --
" 148 (BC_2, BcData_H(100), BIDIR, x, 153, 0, Z), "& --
" 147 (BC_2, BcData_H(36), BIDIR, x, 153, 0, Z), "& --
" 146 (BC_2, SysData_L(37), BIDIR, x, 150, 0, WEAK1), "& --
" 145 (BC_2, BcData_H(101), BIDIR, x, 153, 0, Z), "& --
" 144 (BC_2, BcData_H(37), BIDIR, x, 153, 0, Z), "& --
" 143 (BC_2, SysData_L(38), BIDIR, x, 150, 0, WEAK1), "& --
" 142 (BC_2, BcData_H(102), BIDIR, x, 153, 0, Z), "& --
" 141 (BC_2, BcData_H(38), BIDIR, x, 153, 0, Z), "& --
" 140 (BC_2, SysData_L(39), BIDIR, x, 150, 0, WEAK1), "& --
" 139 (BC_2, BcData_H(103), BIDIR, x, 153, 0, Z), "& --
" 138 (BC_2, BcData_H(39), BIDIR, x, 153, 0, Z), "& --
" 137 (BC_2, SysCheck_L(4), BIDIR, x, 150, 0, WEAK1), "& --
" 136 (BC_2, BcCheck_H(12), BIDIR, x, 153, 0, Z), "& --
" 135 (BC_2, BcCheck_H(4), BIDIR, x, 153, 0, Z), "& --
" 134 (BC_2, BcDataOutClk_H(2), OUTPUT2, x), "& --
" 133 (BC_2, BcDataOutClk_L(2), OUTPUT2, x), "& --
" 132 (BC_2, SysData_L(40), BIDIR, x, 119, 0, WEAK1), "& --
" 131 (BC_2, BcData_H(104), BIDIR, x, 116, 0, Z), "& --
" 130 (BC_2, BcData_H(40), BIDIR, x, 116, 0, Z), "& --
" 129 (BC_2, SysData_L(41), BIDIR, x, 119, 0, WEAK1), "& --
" 128 (BC_2, BcData_H(105), BIDIR, x, 116, 0, Z), "& --
" 127 (BC_2, BcData_H(41), BIDIR, x, 116, 0, Z), "& --
" 126 (BC_2, SysData_L(42), BIDIR, x, 119, 0, WEAK1), "& --
" 125 (BC_2, BcData_H(106), BIDIR, x, 116, 0, Z), "& --
" 124 (BC_2, BcData_H(42), BIDIR, x, 116, 0, Z), "& --
" 123 (BC_2, SysData_L(43), BIDIR, x, 119, 0, WEAK1), "& --
" 122 (BC_2, BcData_H(107), BIDIR, x, 116, 0, Z), "& --
" 121 (BC_2, BcData_H(43), BIDIR, x, 116, 0, Z), "& --
" 120 (BC_3, SysDataInClk_H(5), INPUT, x), "& --
" 119 (BC_3, *, CONTROL, 0), "& -- sccell5
" 118 (BC_2, SysDataOutClk_L(5), OUTPUT2, x), "& --
" 117 (BC_3, BcDataInClk_H(5), INPUT, x), "& --
" 116 (BC_3, *, CONTROL, 0), "& -- bccell5
" 115 (BC_2, SysData_L(44), BIDIR, x, 119, 0, WEAK1), "& --
" 114 (BC_2, BcData_H(108), BIDIR, x, 116, 0, Z), "& --
" 113 (BC_2, BcData_H(44), BIDIR, x, 116, 0, Z), "& --
" 112 (BC_2, SysData_L(45), BIDIR, x, 119, 0, WEAK1), "& --
" 111 (BC_2, BcData_H(109), BIDIR, x, 116, 0, Z), "& --
" 110 (BC_2, BcData_H(45), BIDIR, x, 116, 0, Z), "& --
" 109 (BC_2, SysData_L(46), BIDIR, x, 119, 0, WEAK1), "& --
" 108 (BC_2, BcData_H(110), BIDIR, x, 116, 0, Z), "& --
" 107 (BC_2, BcData_H(46), BIDIR, x, 116, 0, Z), "& --
" 106 (BC_2, SysData_L(47), BIDIR, x, 119, 0, WEAK1), "& --
" 105 (BC_2, BcData_H(111), BIDIR, x, 116, 0, Z), "& --
B–10 21264/EV67 Boundary-Scan Register Alpha 21264/EV67 Hardware Reference Manual

Boundary-Scan Register
" 104 (BC_2, BcData_H(47), BIDIR, x, 116, 0, Z), "& --
" 103 (BC_2, SysCheck_L(5), BIDIR, x, 119, 0, WEAK1), "& --
" 102 (BC_2, BcCheck_H(13), BIDIR, x, 116, 0, Z), "& --
" 101 (BC_2, BcCheck_H(5), BIDIR, x, 116, 0, Z), "& --
" 100 (BC_2, SysData_L(48), BIDIR, x, 87, 0, WEAK1), "& --
" 99 (BC_2, BcData_H(112), BIDIR, x, 84, 0, Z), "& --
" 98 (BC_2, BcData_H(48), BIDIR, x, 84, 0, Z), "& --
" 97 (BC_2, SysData_L(49), BIDIR, x, 87, 0, WEAK1), "& --
" 96 (BC_2, BcData_H(113), BIDIR, x, 84, 0, Z), "& --
" 95 (BC_2, BcData_H(49), BIDIR, x, 84, 0, Z), "& --
" 94 (BC_2, SysData_L(50), BIDIR, x, 87, 0, WEAK1), "& --
" 93 (BC_2, BcData_H(114), BIDIR, x, 84, 0, Z), "& --
" 92 (BC_2, BcData_H(50), BIDIR, x, 84, 0, Z), "& --
" 91 (BC_2, SysData_L(51), BIDIR, x, 87, 0, WEAK1), "& --
" 90 (BC_2, BcData_H(115), BIDIR, x, 84, 0, Z), "& --
" 89 (BC_2, BcData_H(51), BIDIR, x, 84, 0, Z), "& --
" 88 (BC_3, SysDataInClk_H(6), INPUT, x), "& --
" 87 (BC_3, *, CONTROL, 0), "& -- sccell6
" 86 (BC_2, SysDataOutClk_L(6), OUTPUT2, x), "& --
" 85 (BC_3, BcDataInClk_H(6), INPUT, x), "& --
" 84 (BC_3, *, CONTROL, 0), "& -- bccell6
" 83 (BC_2, SysData_L(52), BIDIR, x, 87, 0, WEAK1), "& --
" 82 (BC_2, BcData_H(116), BIDIR, x, 84, 0, Z), "& --
" 81 (BC_2, BcData_H(52), BIDIR, x, 84, 0, Z), "& --
" 80 (BC_2, SysData_L(53), BIDIR, x, 87, 0, WEAK1), "& --
" 79 (BC_2, BcData_H(117), BIDIR, x, 84, 0, Z), "& --
" 78 (BC_2, BcData_H(53), BIDIR, x, 84, 0, Z), "& --
" 77 (BC_2, SysData_L(54), BIDIR, x, 87, 0, WEAK1), "& --
" 76 (BC_2, BcData_H(118), BIDIR, x, 84, 0, Z), "& --
" 75 (BC_2, BcData_H(54), BIDIR, x, 84, 0, Z), "& --
" 74 (BC_2, SysData_L(55), BIDIR, x, 87, 0, WEAK1), "& --
" 73 (BC_2, BcData_H(119), BIDIR, x, 84, 0, Z), "& --
" 72 (BC_2, BcData_H(55), BIDIR, x, 84, 0, Z), "& --
" 71 (BC_2, SysCheck_L(6), BIDIR, x, 87, 0, WEAK1), "& --
" 70 (BC_2, BcCheck_H(14), BIDIR, x, 84, 0, Z), "& --
" 69 (BC_2, BcCheck_H(6), BIDIR, x, 84, 0, Z), "& --
" 68 (BC_2, BcDataOutClk_H(3), OUTPUT2, x), "& --
" 67 (BC_2, BcDataOutClk_L(3), OUTPUT2, x), "& --
" 66 (BC_2, SysData_L(56), BIDIR, x, 53, 0, WEAK1), "& --
" 65 (BC_2, BcData_H(120), BIDIR, x, 50, 0, Z), "& --
" 64 (BC_2, BcData_H(56), BIDIR, x, 50, 0, Z), "& --
" 63 (BC_2, SysData_L(57), BIDIR, x, 53, 0, WEAK1), "& --
" 62 (BC_2, BcData_H(121), BIDIR, x, 50, 0, Z), "& --
" 61 (BC_2, BcData_H(57), BIDIR, x, 50, 0, Z), "& --
" 60 (BC_2, SysData_L(58), BIDIR, x, 53, 0, WEAK1), "& --
" 59 (BC_2, BcData_H(122), BIDIR, x, 50, 0, Z), "& --
" 58 (BC_2, BcData_H(58), BIDIR, x, 50, 0, Z), "& --
" 57 (BC_2, SysData_L(59), BIDIR, x, 53, 0, WEAK1), "& --
" 56 (BC_2, BcData_H(123), BIDIR, x, 50, 0, Z), "& --
" 55 (BC_2, BcData_H(59), BIDIR, x, 50, 0, Z), "& --
" 54 (BC_3, SysDataInClk_H(7), INPUT, x), "& --
" 53 (BC_3, *, CONTROL, 0), "& -- sccell7
" 52 (BC_2, SysDataOutClk_L(7), OUTPUT2, x), "& --
" 51 (BC_3, BcDataInClk_H(7), INPUT, x), "& --
" 50 (BC_3, *, CONTROL, 0), "& -- bccell7
" 49 (BC_2, SysData_L(60), BIDIR, x, 53, 0, WEAK1), "& --
" 48 (BC_2, BcData_H(124), BIDIR, x, 50, 0, Z), "& --
" 47 (BC_2, BcData_H(60), BIDIR, x, 50, 0, Z), "& --
" 46 (BC_2, SysData_L(61), BIDIR, x, 53, 0, WEAK1), "& --
" 45 (BC_2, BcData_H(125), BIDIR, x, 50, 0, Z), "& --
" 44 (BC_2, BcData_H(61), BIDIR, x, 50, 0, Z), "& --
" 43 (BC_2, SysData_L(62), BIDIR, x, 53, 0, WEAK1), "& --
" 42 (BC_2, BcData_H(126), BIDIR, x, 50, 0, Z), "& --
" 41 (BC_2, BcData_H(62), BIDIR, x, 50, 0, Z), "& --
" 40 (BC_2, SysData_L(63), BIDIR, x, 53, 0, WEAK1), "& --
Alpha 21264/EV67 Hardware Reference Manual 21264/EV67 Boundary-Scan Register B–11

Boundary-Scan Register
" 39 (BC_2, BcData_H(127), BIDIR, x, 50, 0, Z), "& --
" 38 (BC_2, BcData_H(63), BIDIR, x, 50, 0, Z), "& --
" 37 (BC_2, SysCheck_L(7), BIDIR, x, 53, 0, WEAK1), "& --
" 36 (BC_2, BcCheck_H(15), BIDIR, x, 50, 0, Z), "& --
" 35 (BC_2, BcCheck_H(7), BIDIR, x, 50, 0, Z), "& --
" 34 (BC_2, SysAddOut_L(0), OUTPUT2, x), "& --
" 33 (BC_2, SysAddOut_L(1), OUTPUT2, x), "& --
" 32 (BC_2, SysAddOut_L(2), OUTPUT2, x), "& --
" 31 (BC_2, SysAddOut_L(3), OUTPUT2, x), "& --
" 30 (BC_2, SysAddOut_L(4), OUTPUT2, x), "& --
" 29 (BC_2, SysAddOut_L(5), OUTPUT2, x), "& --
" 28 (BC_2, SysAddOut_L(6), OUTPUT2, x), "& --
" 27 (BC_2, SysAddOut_L(7), OUTPUT2, x), "& --
" 26 (BC_2, SysAddOutClk_L, OUTPUT2, x), "& --
" 25 (BC_2, SysAddOut_L(8), OUTPUT2, x), "& --
" 24 (BC_2, SysAddOut_L(9), OUTPUT2, x), "& --
" 23 (BC_2, SysAddOut_L(10), OUTPUT2, x), "& --
" 22 (BC_2, SysAddOut_L(11), OUTPUT2, x), "& --
" 21 (BC_2, SysAddOut_L(12), OUTPUT2, x), "& --
" 20 (BC_2, SysAddOut_L(13), OUTPUT2, x), "& --
" 19 (BC_2, SysAddOut_L(14), OUTPUT2, x), "& --
" 18 (BC_3, SysAddIn_L(0), INPUT, x), "& --
" 17 (BC_3, SysAddIn_L(1), INPUT, x), "& --
" 16 (BC_3, SysAddIn_L(2), INPUT, x), "& --
" 15 (BC_3, SysAddIn_L(3), INPUT, x), "& --
" 14 (BC_3, SysAddIn_L(4), INPUT, x), "& --
" 13 (BC_3, SysAddIn_L(5), INPUT, x), "& --
" 12 (BC_3, SysAddIn_L(6), INPUT, x), "& --
" 11 (BC_3, SysAddIn_L(7), INPUT, x), "& --
" 10 (BC_3, SysAddIn_L(8), INPUT, x), "& --
" 9 (BC_3, SysAddInClk_L, INPUT, x), "& --
" 8 (BC_3, SysAddIn_L(9), INPUT, x), "& --
" 7 (BC_3, SysAddIn_L(10), INPUT, x), "& --
" 6 (BC_3, SysAddIn_L(11), INPUT, x), "& --
" 5 (BC_3, SysAddIn_L(12), INPUT, x), "& --
" 4 (BC_3, SysAddIn_L(13), INPUT, x), "& --
" 3 (BC_3, SysAddIn_L(14), INPUT, x), "& --
" 2 (BC_3, SysFillValid_L, INPUT, x), "& --
" 1 (BC_3, SysDataInValid_L, INPUT, x), "& --
" 0 (BC_3, SysDataOutValid_L, INPUT, x) ";

attribute DESIGN_WARNING of Alpha_21264/EV67: entity is
"1. IEEE 1149.1 circuits on Alpha 21264/EV67 are designed primarily to support "&
" testing in off-line module manufacturing environment. The SAMPLE/PRELOAD"&
" instruction support is designed primarily for supporting interconnection"&
" verification test and not for at-speed samples of pin data. "&
"2. TDO is Open-Drain signal. "&
"3. Add comment on port pin electrical characteristics: "&
"4. Comment out if compiler does not support this statement. ";

end Alpha_21264/EV67;
B–12 21264/EV67 Boundary-Scan Register Alpha 21264/EV67 Hardware Reference Manual

C
Serial Icache Load Predecode Values

See the Alpha Motherboards Software Developer’s Kit (SDK) for information.
Alpha 21264/EV67 Hardware Reference Manual Serial Icache Load Predecode Values C–1

itial-

ts
ns
ere-
t

D
PALcode Restrictions and Guidelines

D.1 Restriction 1 : Reset Sequence Required by Retire Logic and
Mapper

For convenience of implementation, the Ibox retire logic done status bits are not in
ized during reset. Instead, as shown in the example below, the first batch of valid
instructions sweeps through inum-space and initializes these bits. The 80 status bi
(one for each inflight instruction) must be marked not done by the first 80 instructio
mapped after reset, and later marked done when those instructions are retired. Th
fore, the first 20 fetch blocks must contain four valid instructions each, and must no
contain any retire logic NOP instructions.

reset:
** (1) Initialize 80 retirator "done" status bits and
** the integer and floating mapper destinations.
** (2) Do A MTPR ITB_IA, which turns on the mapper source
** enables.
** (3) Create a map stall to complete the ITB_IA.
**
** State after execution of this code:
** retirator initialized
** destinations mapped
** source mapping enabled
** itb flushed
**
** The PALcode need not assume the following since the SROM is not
** required to do these:
** dtb flushed
** dtb_asn0 0
** dtb_asn1 0
** dtb_alt_mode 0
*/

/*
** Initialize retirator and destination map, doing 80 retires.
*/

addq r31,r31,r0 /* initialize Int. Reg. 0*/
addq r31,r31,r1 /* initialize Int. Reg. 1*/
addt f31,f31,f0 /* initialize F.P. Reg. 0*/
mult f31,f31,f1 /* initialize F.P. Reg. 1*/

addq r31,r31,r2 /* initialize Int. Reg. 2*/
addq r31,r31,r3 /* initialize Int. Reg. 3*/
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–1

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper
addt f31,f31,f2 /* initialize F.P. Reg. 2*/
mult f31,f31,f3 /* initialize F.P. Reg. 3*/

addq r31,r31,r4 /* initialize Int. Reg. 4*/
addq r31,r31,r5 /* initialize Int. Reg. 5*/
addt f31,f31,f4 /* initialize F.P. Reg. 4*/
mult f31,f31,f5 /* initialize F.P. Reg. 5*/

addq r31,r31,r6 /* initialize Int. Reg. 6*/
addq f31,r31,r7 /* initialize Int. Reg. 7*/
addt f31,f31,f6 /* initialize F.P. Reg. 6*/
mult f31,f31,f7 /* initialize F.P. Reg. 7*/

addq r31,r31,r8 /* initialize Int. Reg. 8*/
addq r31,r31,r9 /* initialize Int. Reg. 9*/
addt f31,f31,f8 /* initialize F.P. Reg. 8*/
mult f31,f31,f9 /* initialize F.P. Reg. 9*/

addq r31,r31,r10 /* initialize Int. Reg. 10*/
addq r31,r31,r11 /* initialize Int. Reg. 11*/
addt f31,f31,f10 /* initialize F.P. Reg. 10*/
mult f31,f31,f11 /* initialize F.P. Reg. 11*/

addq r31,r31,r12 /* initialize Int. Reg. 12*/
addq r31,r31,r13 /* initialize Int. Reg. 13*/
addt f31,f31,f12 /* initialize F.P. Reg. 12*/
mult f31,f31,f13 /* initialize F.P. Reg. 13*/

addq r31,r31,r14 /* initialize Int. Reg. 14*/
addq r31,r31,r15 /* initialize Int. Reg. 15*/
addt f31,f31,f14 /* initialize F.P. Reg. 14*/
mult f31,f31,f15 /* initialize F.P. Reg. 15*/

addq r31,r31,r16 /* initialize Int. Reg. 16*/
addq r31,r31,r17 /* initialize Int. Reg. 17*/
addt f31,f31,f16 /* initialize F.P. Reg. 16*/
mult f31,f31,f17 /* initialize F.P. Reg. 17*/

addq r31,r31,r18 /* initialize Int. Reg. 18*/
addq r31,r31,r19 /* initialize Int. Reg. 19*/
addt f31,f31,f18 /* initialize F.P. Reg. 18*/
mult f31,f31,f19 /* initialize F.P. Reg. 19*/

addq r31,r31,r20 /* initialize Int. Reg. 20*/
addq r31,r31,r21 /* initialize Int. Reg. 21*/
addt f31,f31,f20 /* initialize F.P. Reg. 20*/
mult f31,f31,f21 /* initialize F.P. Reg. 21*/

addq r31,r31,r22 /* initialize Int. Reg. 22*/
addq r31,r31,r23 /* initialize Int. Reg. 23*/
addt f31,f31,f22 /* initialize F.P. Reg. 22*/
mult f31,f31,f23 /* initialize F.P. Reg. 23*/

addq r31,r31,r24 /* initialize Int. Reg. 24*/
addq r31,r31,r25 /* initialize Int. Reg. 25*/
addt f31,f31,f24 /* initialize F.P. Reg. 24*/
mult f31,f31,f25 /* initialize F.P. Reg. 25*/

addq r31,r31,r26 /* initialize Int. Reg. 26*/
D–2 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper
addq r31,r31,r27 /* initialize Int. Reg. 27*/
addt f31,f31,f26 /* initialize F.P. Reg. 26*/
mult f31,f31,f27 /* initialize F.P. Reg. 27*/

addq r31,r31,r28 /* initialize Int. Reg. 28*/
addq r31,r31,r29 /* initialize Int. Reg. 29*/
addt f31,f31,f28 /* initialize F.P. Reg. 28*/
mult f31,f31,f29 /* initialize F.P. Reg. 29*/

addq r31,r31,r30 /* initialize Int. Reg. 30*/
addt f31,f31,f30 /* initialize F.P. Reg. 30*/
addq r31,r31,r0 /* initialize retirator 63*/
addq r31,r31,r0 /* initialize retirator 64*/

addq r31,r31,r0 /* initialize retirator 65*/
addq r31,r31,r0 /* initialize retirator 66*/
addq r31,r31,r0 /* initialize retirator 67*/
addq r31,r31,r0 /* initialize retirator 68*/

addq r31,r31,r0 /* initialize retirator 69*/
addq r31,r31,r0 /* initialize retirator 70*/
addq r31,r31,r0 /* initialize retirator 71*/
addq r31,r31,r0 /* initialize retirator 72*/

addq r31,r31,r0 /* initialize retirator 73*/
addq r31,r31,r0 /* initialize retirator 74*/
addq r31,r31,r0 /* initialize retirator 75*/
addq r31,r31,r0 /* initialize retirator 76*/

addq r31,r31,r0 /* initialize retirator 77*/
addq r31,r31,r0 /* initialize retirator 78*/
addq r31,r31,r0 /* initialize retirator 79*/
addq r31,r31,r0 /* initialize retirator 80*/

/* stop deleting*/

mtpr r31,EV6__ITB_IA /* flush the ITB (SCRBRD=4) *** this also
turns on mapper source enables ****/

mtpr r31,EV6__DTB_IA /* flush the DTB (SCRBRD=7)*/
mtpr r31,EV6__VA_CTL /* clear VA_CTL (SCRBRD=5)*/
mtpr r31,EV6__M_CTL /* clear M_CTL (SCRBRD=6)*/

/*
** Create a stall outside the IQ until the mtpr EV6__ITB_IA retires.
** We can use DTB_ASNx even though we don’t seem to follow the restriction on
** scoreboard bits (4-7).It’s okay because there are no real dstream
** operations happening.
*/

mtpr r31,EV6__DTB_ASN0 /* clear DTB_ASN0 (SCRBRD=4) creates a map-
stall under the above mtpr to SCRBRD=4*/

mtpr r31,EV6__DTB_ASN1 /* clear DTB_ASN1 (SCRBRD=7)*/
mtpr r31,EV6__CC_CTL /* clear CC_CTL (SCRBRD=5)*/
mtpr r31,EV6__DTB_ALT_MODE/* clear DTB_ALT_MODE (SCRBRD=6)*/

/*
** MAP_SHADOW_REGISTERS
**
** The shadow registers are mapped. This code may be done by the SROM
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–3

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper
** or the PALcode, but it must be done in the manner and order below.
**
** It assumes that the retirator has been initialized, that the
** non-shadow registers are mapped, and that mapper source enables are on.
**
** Source enables are on. For fault-reset and wake from sleep, we need to
** ensure we are in the icache so we don’t fetch junk that touches the
** shadow sources before we write the destinations. For normal reset,
** we are already in the icache. However, so this macro is useful for
** all cases, force the code into the icache before doing the mapping.
**
** Assume for fault-reset, and wake from sleep case, the exc_addr is
** stored in r1.
*/

addq r31,r31,r0 /* nop*/
addq r31,r31,r0 /* nop*/
addq r31,r31,r0 /* nop*/
br r31, tch0 /* fetch in next block*/

.align 3
nxt0: lda r0,0x0086(r31) /* load I_CTL.....*/

mtpr r0,EV6__I_CTL /*SDE=2, IC_EN=3 (SCRBRD=4)*/
br r31, nxt1 /* continue executing in next block*/

tch0: br r31, tch1 /* fetch in next block*/

nxt1: mtpr r31,EV6__IER_CM /* clear IER_CM (SCRBRD=4) creates a map-stall
under the above mtpr to SCRBRD=4*/

addq r31,r31,r0 /* nop*/
br r31, nxt2 /* continue executing in next block*/

tch1: br r31, tch2 /* fetch in next block*/

nxt2: addq r31,r31,r0 /* 1st buffer fetch block for above map-
stall*/

addq r31,r31,r0 /* nop*/
br r31, nxt3 /* continue executing in next block*/

tch2: br r31, tch3 /* fetch in next block*/

nxt3: addq r31,r31,r0 /* 2nd buffer fetch block for above map-stall*/
addq r31,r31,r0 /* nop*/
br r31, nxt4 /* continue executing in next block*/

tch3: br r31, tch4 /* fetch in next block*/

nxt4: addq r31,r31,r0 /* need 3rd buffer fetch block to get correct
SDE bit for next fetch block*/

addq r31,r31,r0 /* nop*/
br r31, nxt5 /* continue executing in next block*/

tch4: br r31, tch5 /* fetch in next block*/

nxt5: addq r31,r31,r4 /* initialize Shadow Reg. 0*/
addq r31,r31,r5 /* initialize Shadow Reg. 1*/
br r31, nxt6 /* continue executing in next block*/

tch5: br r31, tch6 /* fetch in next block*/

nxt6: addq r31,r31,r6 /* initialize Shadow Reg. 2*/
addq r31,r31,r7 /* initialize Shadow Reg. 3*/
br r31, nxt7 /* continue executing in next block*/

tch6: br r31, tch7 /* fetch in next block*/

nxt7: addq r31,r31,r20 /* initialize Shadow Reg. 4*/
D–4 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper
addq r31,r31,r21 /* initialize Shadow Reg. 5*/
br r31, nxt8 /* continue executing in next block*/

tch7: br r31, tch8 /* fetch in next block*/

nxt8: addq r31,r31,r22 /* initialize Shadow Reg. 6*/
addq r31,r31,r23 /* initialize Shadow Reg. 7*/
br r31, nxt9 /* continue executing in next block*/

tch8: br r31, nxt0 /* go back to 1st block and start executing*/
nxt9:

/*
** INIT_WRITE_MANY
**
** Write the cbox write many chain, initializing the bcache configuration.
**
** This code is on a cache block boundary,
**
** *** the bcache is initialized OFF for the burnin test ***
*/

/*
** Because we aligned on and fit into a icache block, and because sbe=0,
** and because we do an mb at the beginning (which blocks further progress
** until the entire block has been fetched in), we don’t have to
** fool with pulling this code in before executing it.
*/

#undef bc_enable_a
#undef init_mode_a
#undef bc_size_a
#undef zeroblk_enable_a
#undef enable_evict_a
#undef set_dirty_enable_a
#undef bc_bank_enable_a
#undef bc_wrt_sts_a

#define bc_enable_a 0
#define init_mode_a 0
#define bc_size_a 0
#define zeroblk_enable_a 1
#define enable_evict_a 0
#define set_dirty_enable_a 0
#define bc_bank_enable_a 0
#define bc_wrt_sts_a 0

loadwm:
lda r1, WRITE_MANY_CHAIN_H(r31)
sll r1, 32, r1 /* data<35:32> */
LDLI(r1, WRITE_MANY_CHAIN_L, r1) /* data<31:00> */
addq r31,6,r0 /* shift in 6x 6-bits*/
mb /* wait for all istream/dstream to complete*/

br r31, bccshf
.align 6

bccshf:mtpr r1,EV6__DATA /* shift in 6 bits*/
subq r0,1,r0 /* decrement R0*/
beq r0,bccend /* done if R0 is zero*/
srl r1,6,r1 /* align next 6 bits*/
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–5

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper
br r31,bccshf /* continue shifting*/
bccend:mtpr r31,EV6__EXC_ADDR + 16/* dummy IPR write - sets SCBD bit 4 */

addq r31,r31,r0 /* nop*/
addq r31,r31,r1 /* nop*/

mtpr r31,EV6__EXC_ADDR + 16 /* also a dummy IPR write -
/* stalls until above write
/* retires*/

beq r31, bccnxt /* predicts fall through in PALmode*/
br r31, .-4 /* fools ibox predictor into infinite loop*/
addq r31,r31,r1 /* nop*/

bccnxt:addq r31,4,r0 /* load PCTX.....*/
mtpr r0,EV6__PROCESS_CONTEXT /* FPE=1 (SCRBRD=4)*/
lda r0,DC_CTL_INIT_K(r31) /* load DC_CTL.....*/
mtpr r0,EV6__DC_CTL /*ECC_EN=0, FHIT=0, SET_EN=3

/* (SCRBRD=6)*/

addq r31,r31,r0 /* nop*/
addq r31,r31,r1 /* nop*/
lda r0,0xff61(r31) /* R0 = x̂ff61 (superpage) */
zap r0,0xfc,r0 /* PTE protection for DTB write in next

block*/

mtpr r31,EV6__DTB_TAG0 /* write DTB_TAG0 (SCRBRD=2,6)*/
mtpr r31,EV6__DTB_TAG1 /* write DTB_TAG1 (SCRBRD=1,5)*/
mtpr r0,EV6__DTB_PTE0 /* write DTB_PTE0 (SCRBRD=0,4)*/
mtpr r0,EV6__DTB_PTE1 /* write DTB_PTE1 (SCRBRD=3,7)*/

mtpr r31,EV6__SIRR /* clear SIRR (SCRBRD=4)*/
lda r0,0x08FF(r31) /* load FPCR.....*/
sll r0,52,r0 /*initial FPCR value*/
itoft r0, f0 /* nop itoftr0,f0 ; value = 0x8FF0000000000000*/

mt_fpcr f0 /* nop mt_fpcrf0,f0,f0; do the load*/
lda r0,0x2086(r31) /* load I_CTL.....*/
ldah r0,0x0050(r0) /*TB_MB_EN=1, CALL_PAL_R23=1, SL_XMIT=1,

/* SBE=0, SDE=2, IC_EN=3*/
mtpr r0,EV6__I_CTL /* value = 0x0000000000502086 (SCRBRD=4)*/

mtpr r31,EV6__CC /* clear CC (SCRBRD=5)*/
lda r0,0x001F(r31) /* write-one-to-clear bits in HW_INT_CLR,

/* I_STAT and DC_STAT*/
sll r0,28,r0 /* value = 0x00000001F0000000*/
mtpr r0,EV6__HW_INT_CLR/* clear bits in HW_INT_CLR (SCRBRD=4)*/

mtpr r0,EV6__I_STAT /* clear bits in I_STAT
/*(SCRBRD=4) creates a map-stall
/* under the above mtpr to SCRBRD=4*/

lda r0,0x001F(r31) /* value = 0x000000000000001F*/
mtpr r0,EV6__DC_STAT /* clear bits in DC_STAT (SCRBRD=6)*/
addq r31,r31,r0 /* nop*/

mtpr r31,EV6__PCTR_CTL /* 1st buffer fetch block for above map-stall
/* and 1st clear PCTR_CTL (SCRBRD=4)*/

bis r31,1,r0 /* set up value for demon write*/
bis r31,1,r0 /* set up value for demon write*/
mulq/v r31,r31,r0 /* nop*/
D–6 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper
mtpr r31,EV6__PCTR_CTL /* 2nd buffer fetch block for above map-stall
/* and 2nd clear PCTR_CTL (SCRBRD=4)*/

bis r31,1,r0 /* set up value for demon write*/
bis r31,1,r0 /* set up value for demon write*/
mulq r31,r31,r0 /* nop*/

lda r0,0x780(r31) /* this is new initialization stuff to
prevent*/

mb
whint r0 /* ld/st below from going off-chip */
mb
bis r31,1,r0 /* set up value for demon write*/

ldq_p r1,0x780(r31) /* flush Pipe 0 LD logic*/
ldq_p r0,0x788(r31) /* flush Pipe 1 LD logic*/
mb /* wait for LD’s to complete*/
mb /* wait for LD’s to complete*/

stq_p r1,0x780(r31) /* flush Pipe 0 ST logic*/
stq_p r0,0x788(r31) /* flush Pipe 1 ST logic*/
bis r31, 32, r0 /* load loop count of 32*/

jsr_init_loop:
bsr r31,jsr_init_loop_nxt /* JSR to PC+4*/

jsr_init_loop_nxt:
stq_p r1,0x780(r31) /* flush Pipe 0 ST logic*/
subq r0,1,r0 /* decrement loop count*/
beq r0,jsr_init_done /* done?*/
br r31,jsr_init_loop /* continue loop*/

jsr_init_done:
lda r0,0x03FF(r31) /* create FP one..... */
sll r0,52,r0 /*value = 0x3FF0000000000000 */
itoft r0,f0 /* put it into F0 reg */
addq r31,r31,r1 /* nop (also clears R1) */

mult f0,f0,f0 /* flush mul-pipe */
addt f0,f0,f0 /* flush add-pipe */
divt f0,f0,f0 /* flush div-pipe */
sqrtt f0,f0 /* flush div-pipe */

cvtqt f0,f0 /* flush add-pipe (integer logic) */
perr r31,r31,r0 /* flush MVI logic */
maxuw4 r31,r31,r0 /* flush MVI logic */
pkwb r31,r0 /* flush MVI logic */

rc r0 /* clear interrupt flag*/
addq r31,r31,r1 /* nop (also clears R1)*/
addq r31,r31,r1 /* nop (also clears R1)*/
addq r31,r31,r1 /* nop (also clears R1)*/

/*
* This palbase init exists for the rare cases
* when this code is loaded into upper memory.
* That is the case when this code is loaded
* and executed in memory on a system that has
* already been initialized. This technique
* can sometimes be used to debug snippets of
* this code.
*/
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–7

Restriction 2 : No Multiple Writers to IPRs in Same Scoreboard Group

at
ord).
ear.
the

cit

R

G
ns
br r31,palbase_init
palbase_init:

br r0, br60 /* r0 <- current location */
br60: lda r1, (EntryPoint-br60)(r0) /* r1 <- location of codebase */

mtpr r1, EV6__PAL_BASE /* set up pal_base register */

bis r31, 2, r0
mtpr r0, EV6__VA_CTL

bis r31, 8, r0
mtpr r0, EV6__M_CTL

br r0, jmp0
jmp0: addq r0, (jmp1-jmp0+1), r0

hw_rets/jmp(r0)
jmp1:

lda r1, 1(r31) /* r1 <- cc_ctl enable bit */
sll r1, 32, r1
mtpr r1, EV6__CC_CTL /* Enable/clear the cycle counter. */

/*
** Now initialize the dcache to allow the
** minidebugger so save gpr’s
*/

D.2 Restriction 2 : No Multiple Writers to IPRs in Same Scoreboard
Group

For convenience of implementation, only one explicit writer (HW_MTPR) to IPRs th
are in the same group can appear in the same fetch block (octaword-aligned octaw
Multiple explicit writers to IPRs that are not in the same scoreboard group can app
If this restriction is violated, the IPR readers might not see the in-order state. Also,
IPR might ultimately end up with a bad value.

D.3 Restriction 4 : No Writers and Readers to IPRs in Same Score-
board Group

This restriction is made for the convenience of microprocessor implementation.
An explicit reader of an IPR in a particular scoreboard group cannot follow an expli
writer (HW_MTPR) to an IPR in that same scoreboard group within one fetch block
(octaword-aligned octaword). Also within one fetch block, an implicit reader of an IP
in a particular scoreboard group cannot follow an explicit writer (HW_MTPR) to an
IPR in that scoreboard group. This restriction covers writes to DTB_PTE or DTB_TA
followed by LD, ST, or any memory operation, including all types of JMP instructio
and HW_RET instructions that do not have the STALL bit set.
D–8 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Guideline 6 : Avoid Consecutive Read-Modify-Write-Read-Modify-Write

e

e
con-

re is

r
uc-
pera-
d
regis-

s, it is

or-
irty

e
ses
ck
t
was

ons,
tee
int
low

at-
r
n in
L-
er
the

of
tion
e R31
D.4 Guideline 6 : Avoid Consecutive Read-Modify-Write-Read-
Modify-Write

Avoid consecutive read-modify-write-read-modify-write sequences to IPRs in the sam
scoreboard group.

The latency between the first write and the second read is determined by the retire
latency of the IPR. For convenience of implementation, the latency between the tim
when the read is issued and when the final write is issued depends on the run-time
tents of the issue queue. It is somewhere between four and nine cycles, even if the
no data dependency between the read and write.

D.5 Restriction 7 : Replay Trap, Interrupt Code Sequence, and STF/
ITOF

On an Mbox replay trap, the 21264/EV67 Ibox guarantees that the refetched load o
store instruction that caused the trap is issued before any newer load or store instr
tions. For load and integer store instructions, this is a consequence of the natural o
tion of the issue queue. The refetchedinstruction enters the age-prioritized queue ahea
of newer load and store instructions and does not have any dependencies on dirty
ters.

Because there is no overhead time for checking these register dependencies (that i
known upon enqueueing that there are no dirty registers), the queue will issue the
refetched instruction in priority order. For floating-point store instructions, there is n
mally some overhead associated with checking the floating-point source register d
status, so the store instruction would normally wait before being issued. This would
have the undesired consequence of allowing newer load and store instructions to b
issued out of order. A deadlock can occur if issuing the instructions out-of-order cau
the floating-point store instruction to continually replay the trap. To avoid the deadlo
on a floating-point store instruction replay trap, the source register dirty status is no
checked (the source register is assumed to be clean because the store instruction
issued previously).

The hardware mechanism that keeps track of replayed floating-point store instructi
and cancels the dirty register check, requires some software restrictions to guaran
that it is applied appropriately to the replayed instruction and not to other floating-po
store instructions. The hardware mechanism marks the position in the fetch block (
two bits of the PC) where the replay trap occurred. This action cancels the dirty flo
ing-point source register check of the next valid instruction enqueued to the intege
queue (integer, all load and store, and ITOF instructions) that has the same positio
the fetch block (normally the replayed STF). If the PC is somehow diverted to a PA
code flow, this hardware might inadvertently cancel the register check of some oth
STF (or ITOF) instruction. Fortunately, there are a minimal number of reasons why
PC might be diverted during a replay trap. They are interrupts and ITB fills.

The following PALcode example shows that an STF or ITOF instruction, in a given
position in a fetch block, must be preceded by a valid instruction that is issued out
the integer queue in the same position in an earlier fetch block. Acceptable instruc
classes include load, integer store, and integer operate instructions that do not hav
as a destination or branch.
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–9

Restriction 9 : PALmode Istream Address Ranges

ess
can
Bad_interrupt_flow_entry:

ADDQ R31,R31,R0

STF Fa,(Rb) ; This STF might not undergo a dirty source register

; check and might give wrong results

ADDQ R31,R31,R0

ADDQ R31,R31,R0

................................

Good_interrupt_flow_entry:

ADDQ R31,R31,R0; Enables FP dirty source register

; check for (PC[1:0] == 00)

ADDQ R31,R31,R0; Enables FP dirty source register

; check for (PC[1:0] == 01)

ADDQ R31,R31,R0; Enables FP dirty source register

; check for (PC[1:0] == 10)

ADDQ R31,R31,R0; Enables FP dirty source register

; check for (PC[1:0] == 11)

ADDQ R31,R31,R0

STF Fa,(Rb); This STF will successfully undergo

; a dirty source register check

ADDQ R31,R31,R0

ADDQ R31,R31,R0

D.6 Restriction 9 : PALmode Istream Address Ranges

PALmode[physical] Istream addresses must ensure proper sign extension for the
selected value of I_CTL[VA_48]. When I_CTL[VA_48] is clear, indicating 43-bit vir-
tual address format, PALmode[physical] Istream addresses must sign-extend addr
bits above bit 42 although the physical address range is 44 bits. An illegal address
only be generated by a PALmode JSR-type instruction or a HW_RET instruction
returning to a PALmode address.

D.7 Restriction 10: Duplicate IPR Mode Bits

The virtual address size is selectable by programming IPR bits I_CTL[VA_48]
and VA_CTL[VA_48]. These bit values should usually be equal when operating in
native (virtual) mode. The I_CTL[VA_48] bit determines the DTB double3/double4
PALcode entry, the JSR mispredict comparison width, the VPC address generation
width, the Istream ACV limits, and the IVA_FORM format selection. The
VA_CTL[VA_48] bit determines the VA_FORM format selection and the Dstream
ACV limits. IPR mode bits I_CTL[VA_FORM_32] and VA_CTL[VA_FORM_32]
should be consistent when executing in native mode.
D–10 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 11: Ibox IPR Update Synchronization

ET

y

of

for
sec-

r

uc-
ked

yed
.

of
mit-
ility

d
uent

be
.

-
yn-
D.8 Restriction 11: Ibox IPR Update Synchronization

When updating any Ibox IPR, a return to native (virtual) mode should use the HW_R
instruction with the associated STALL bit set to ensure that the updated IPR value
affects all instructions following the return path. The new IPR value takes effect onl
after the associated HW_MTPR instruction is retired.

For update to some IPR fields with propagation delay, such as I_CTL[SDE] and
PCTX[FPE], synchronization as described in Section D.32 is the preferred method
synchronization.

D.9 Restriction 12: MFPR of Implicitly-Written IPRs EXC_ADDR,
IVA_FORM, and EXC_SUM

Implicitly written IPRs are non-renamed hardware registers that must be available
subsequent traps. After any trap to PALcode, hardware protects the values from a
ond implicit write by locking these registers and delaying subsequent traps for asafe
(limited time). Their values can be read reliably by a HW_MFPR within the first fou
instructions of a PALcode flow and prior to any taken branch in that PALcode flow,
whichever is earlier. These instructions should not include PALmode trapping instr
tions. After the delimiting instruction defined above retires, these registers are unloc
and may change due to new exception conditions.

If a second exception occurs before the registers are unlocked, it will be either dela
or forced to replay trap (a non-PALmode trap) until the register has been unlocked
After being unlocked, a subsequent new path exception condition will be allowed to
reload the register and trap to PALcode. The 21264/EV67 may complete execution
the first PALcode flow, encountering the second exception condition before the deli
ing instruction is retired, hence the need for the locking mechanism to ensure visib
of the initial register value.

The VA_FORM, VA, and MM_STAT registers are not included in this list of protecte
IPRS. See Section D.24 for a description of how to protect these IPRs from subseq
implicit writers.

D.10 Restriction 13 : DTB Fill Flow Collision

Two DTB fill flows might collide such that the HW_MTPR’s in the second fill could be
issued before all of the HW_MTPR’s in the first PALcode flow are retired. This can
prevented by putting appropriate software scoreboard barriers in the PALcode flow

D.11 Restriction 14 : HW_RET

There can be no HW_RET in the first fetch block of a PALcode routine, other
than CALL_PAL routines. With a HW_RET in the first fetch block of a PALcode rou
tine, the HW_RET will be mispredicted and the JSR/RETURN stack could lose its s
chronization.
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–11

Guideline 16 : JSR-BAD VA

L-

d in
full

t be

-
k as
-

on of
to
he

to
up-

for

R
e
.

D.12 Guideline 16 : JSR-BAD VA

A JSR memory format instruction that generates a bad VA (IACV) trap requires PA
code assistance to determine the correct exception address. If the
EXC_SUM[BAD_IVA] is set, bits [63,1] of the exception address are valid in the VA
IPR and not the EXC_ADDR as usual. The PALmode bit, however, is always locate
EXC_ADDR[0] and must be combined, if necessary, by PALcode to determine the
exception address.

D.13 Restriction 17: MTPR to DTB_TAG0/DTB_PTE0/DTB_TAG1/
DTB_PTE1

These four write operations must be executed atomically, that is, either all four mus
retired or none of them may be retired.

D.14 Restriction 18: No FP Operates, FP Conditional Branches,
FTOI, or STF in Same Fetch Block as HW_MTPR

No FP operate instructions (including Mx_FPCR), FP conditional branches, FTOI reg
ister move instructions, or FP store instructions are allowed in the same fetch bloc
any HW_MTPR instructions. This includes ADDx/MULx/DIVx/SQRTx/FPCondition
alBranch/STx/FTOIx, wherex is any applicable FP data type, but does not include
LDx/ITOFx.

D.15 Restriction 19: HW_RET/STALL After Updating the FPCR by
way of MT_FPCR in PALmode

FPCR updating occurs in hardware based on the retirement of a nontrapping versi
MT_FPCR (in PALcode). Use a HW_RET/STALL after the nontrapping MT_FPCR
achieve minimum latency (four cycles) between the retiring of the MT_FPCR and t
first FLOP that uses the updated FPCR.

D.16 Guideline 20 : I_CTL[SBE] Stream Buffer Enable

The I_CTL[SBE] bits should not be enabled when running with the Icache disabled
avoid potentially long fill delays. When the Icache is disabled, the only method of s
plying instructions is by way of a stream hit. If the fill is returned in non-sequential
wrap order, the stream will continue fetching through the entire page while waiting
a hit. Normally the data will be found in the cache.

D.17 Restriction 21: HW_RET/STALL After HW_MTPR ASN0/ASN1

There must be a scoreboard bit-to-register dependency chain to prevent HW_MTP
ASN0 or HW_MTPR ASN1 from being issued while any of scoreboard bits [7:4] ar
set. The following example contains a code sequence that creates the dependency chain

:Assume Ra holds value to write to ASN0/ASN1

HW_MFPR R0, VA, SCBD<7,6,5,4>

XOR R0, R0, R0

BIS R0, R9, R9
D–12 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 22: HW_RET/STALL After HW_MTPR IS0/IS1

ust

r nei-

y be

-
ad-
an
hing

n

BIS R31, R31, R31

HW_MTPR R9, ASN0, SCBD<4>

HW_MTPR R9, ASN1, SCBD<7>

This sequence guarantees, through the register dependency on R0, that neither
HW_MTPR are issued before scoreboard bits [7:4] are cleared. In addition, there m
be a HW_RET/STALL after a HW_MTPR ASN0/HW_MTPR ASN1 pair. Finally,
these two writes must be executed atomically, that is, either both must be retired o
ther may be retired.

D.18 Restriction 22: HW_RET/STALL After HW_MTPR IS0/IS1

There must be a scoreboard bit-to-register dependency chain to prevent either
HW_MTPR IS0 or HW_MTPR IS1 from issuing instructions whileanyof scoreboard
bits [7:4] are set. The following example contains a code sequence thatcreates the
dependency chain.

HW_MFPR R0, VA, SCBD<7,6,5,4>,R0

XOR R0, R0, R0

BIS R0, R9, R9

BIS R31 ,R31, R31

HW_MTPR R9, IS0, SCBD<6>

HW_MTPR R9, IS1, SCBD<7>

This sequence guarantees, through the register dependency on R0, that neither
HW_MTPR are issued before scoreboard bits [7:4] are cleared. There must be a
HW_RET/STALL after an HW_MTPR IS0/HW_MTPR IS1 pair. Also, these two
writes must be executed atomically, that is, either both must be retired or neither ma
retired.

D.19 Restriction 23: HW_ST/P/CONDITIONAL Does Not Clear the
Lock Flag

A HW_ST/P/CONDITIONAL will not clear the lock flag such that a successive store
conditional (either STx_C or HW_ST/C) might succeed even in the absence of a lo
locked instruction. In the 21264/EV67, a store-conditional is forced to fail if there is
intervening memory operation between the store-conditional and its address-matc
LDxL. The following example shows the memory operations.

LDL/Q/F/G/S/T

STL/Q/F/G/S/T

LDQ_U (not to R31)

STQ_U

Absent from this list are HW_LD (any type), HW_ST (any type), ECB, and WH64.
Their absence implies that they willnot force a subsequent store-conditional instructio
to fail. PALcodemustinsert a memory operation from the above list after a HW_ST/
CONDITIONAL in order to force a future store-conditional to fail if it was not pre-
ceded by a load-locked operation:

HW_LDxL
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–13

Restriction 24: HW_RET/STALL After HW_MTPR IC_FLUSH, IC_FLUSH_ASM,

r
til
ted.

nnot

ch
ed

o

ing
use

y
R,
ed
ET

t
via
he

cu-
he

to
s

xxx

HW_ST/C -> R0

Bxx R0, try_again

STQ ; Force next ST/C to fail if no preceding LDxL

HW_RET

D.20 Restriction 24: HW_RET/STALL After HW_MTPR IC_FLUSH,
IC_FLUSH_ASM, CLEAR_MAP

There must be a HW_RET/STALL after a HW_MTPR IC_FLUSH, IC_FLUSH_ASM, o
CLEAR_MAP. The Icache flush associated with these instructions will not occur un
the HW_RET/STALL occurs and all outstanding Istream fetches have been comple

Also, there must be a guarantee that the HW_MTPR IC_FLUSH or HW_MTPR
IC_FLUSH_ASM will not be retired simultaneously with the HW_RET/STALL. This
can be ensured by inserting a conditional branch between the two (BNE R31, 0 ca
be mispredicted in PALmode), or by ensuring at least 10 instructions between the
MTPR instruction and the HW_RET/STALL containing at least one instruction in ea
quad aligned group with a valid destination. Finally, the HW_RET/STALL that is us
for CLEAR_MAP cannot trigger a cache flush. That is, if both a CLEAR_MAP and
IC_FLUSH are desired, there must be two HW_RET/STALLs, one following each
HW_MTPR.

D.21 Restriction 25: HW_MTPR ITB_IA After Reset

An HW_MTPR ITB_IA is required in the reset PALcode to initialize the ITB. It is als
required that PALcode not be exited, even via a mispredicted path until this
HW_MTPR ITB_IA has been retired. PALmode can change temporarily after fetch
a HW_RET, regardless of the STALL qualifier, down a mispredicted path leading to
of the ITB before it is actually initialized.

Unexpected instruction fetch and execution can occur following misprediction of an
memory format control instruction (JMP, JSR, RET, JSR_CO, or HW_JMP, HW_JS
HW_RET, HW_JSR_CO regardless of the STALL qualifier), or after any mispredict
conditional branch instruction. If the unexpected instruction flow contains a HW_R
instruction, PALmode may be exited prematurely.

One way to ensure that PALmode is not exited is to place the HW_MTPR ITB_IA a
least 80 instructions before any possible HW_RET instruction can be encountered
any fetch path. Since memory format control instructions can mispredict to any cac
location, they should also be avoided within these 80 instructions.

D.22 Guideline 26: Conditional Branches in PALcode

To avoid pollution of the branch predictors and improve overall branch prediction ac
racy, conditional branch instructions in PALcode will be predicted to not be taken. T
only exception to this rule are conditional branches within the first cache fetch (up
four instructions) of all PALcode flows except CALL_PAL flows. Conditional branche
should be avoided in this window.
D–14 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 27: Reset of ‘Force-Fail Lock Flag’ State in PALcode

d-
a

soft-
wing

y

e
LDs

s
sert

s

en
t
tive-
iting
ush

)
rget

but
ol-
il
D.23 Restriction 27: Reset of ‘Force-Fail Lock Flag’ State in PALcode

A virtual mode load or store is required in PALcode before the execution of any loa
locked or store-conditional instructions. The virtual-mode load or store may not be
HW_LD, HW_ST, LDx_L, ECB, or WH64.

D.24 Restriction 28: Enforce Ordering Between IPRs Implicitly Writ-
ten by Loads and Subsequent Loads

Certain IPRs, which are updated as a result of faulting memory operations, require
ware assistance to maintain ordering against newer instructions. Consider the follo
code sequence:

HW_MFPR IPR_MM_STAT

LDQ rx, (ry)

These instructions would typically be issued in-order. The HW_MFPR is data-read
and both instructions use a lower subcluster. However, the HW_MFPRs (and
HW_MTPRs) respond to certain resource-busy indications and are not issued when th
Mbox informs the Ibox that a certain set of resources (store-bubbles) are busy. The
respond to a different set of resource-busy indications (load-bubbles) and could be
issued around the HW_MFPR in the presence of the former. Software assistance i
required to enforce the issue order. One sure way to enforce the issue order is to in
an MB instruction before the first load that occurs after the HW_MFPR MM_STAT.
The VA, VA_FORM, and DC_CTL registers require a similar constraint. All LOAD
instructions except HW_LD might modify any or all of these registers. HW_LD doe
not modify MM_STAT.

D.25 Guideline 29 : JSR, JMP, RET, and JSR_COR in PALcode

Unprivileged JSR, JMP, RET, and JSR_COR instructions will always mispredict wh
used in PALcode. In addition, HW_RET to a PALmode target will always mispredic
since the JSR stack only predicts native-mode return addresses. HW_RET to a na
mode target uses the JSR stack for prediction and should usually be used when ex
PALmode in order to maintain JSR stack alignment since all PALmode traps also p
the value of the EXC_ADDR on the JSR stack.

Privileged versions of the JSR type instructions (HW_JSR,HW_JMP,HW_JSR_COR
can be used both within PALmode or to exit PALmode and generate a predicted ta
based on their hint bits and the current processor PALmode state.

D.26 Restriction 30 : HW_MTPR and HW_MFPR to the Cbox CSR

External bus activity must be isolated from writes and reads to the Cbox CSR. This
requires that all Dstream and Istream fills must be avoideduntil after the HW_MTPR/
HW_MFPR updates are completed. An MB instruction can block Dstream activity,
blocking all Istream fills, including prefetches, requires more extensive code. The f
lowing code example blocks all Istream fill requests and stalls instruction fetch unt
after the desired MTPR/MFPR action is completed. This code disables Istream
prefetching by way of a HW_MTPR to I_CTL[SBE], IC_FLUSH, and
HW_RET_STALL sequence.
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–15

Restriction 30 : HW_MTPR and HW_MFPR to the Cbox CSR
ALIGN_FETCH_BLOCK
sys__cbox:

mb ; quiet the dstream
hw_mfpr p6, EV6__I_CTL ; (4,0L) get i_ctl
lda p4, ^xFCFF(r31) ; mask for clearing SBE bits
and p6, p4, p4 ; clear SBE bits

sbe_off_offset = <sys__cbox_sbe_off_done - sys__cbox_sbe_off>

hw_mtpr p4, EV6__I_CTL ; (4,0L) write new i_ctl
br p6, sys__cbox_sbe_off

sys__cbox_sbe_off:
addq p6, #<sbe_off_offset+1>, p6 ; past stall in palmode
bsr r31, . ; stack push
ALIGN_FETCH_BLOCK <^x47FF041F>; align
hw_mtpr r31, EV6__IC_FLUSH ; (4,0L) eliminate prefetches
bne r31, . ; pvc #24
PVC_JSR sbe_off ; synch and flush
hw_ret_stall (p6) ; use ret, pop stack
PVC_JSR sbe_off, dest=1 ; br stops predictor

sys__cbox_sbe_off_done:
br r31, sys__cbox_touch1 ; now pull in the next block

ALIGN_CACHE_BLOCK
sys__cbox_over1: ; block 1

addq r31, #11, p6 ; initialize shift count (11x)
addq r31, r31, p7 ; initialize shift data
br r31, sys__cbox_over2 ; go to block 2

sys__cbox_touch1: ;
br r31, sys__cbox_touch2 ; touch block 2

sys__cbox_over2: ; block 2
hw_mtpr r31, EV6__SHIFT_CONTROL ; (6,0L) shift in 6 bits
subq p6, #1, p6 ; decrement shift count
br r31, sys__cbox_over3 ; go to block 3

sys__cbox_touch2: ;
br r31, sys__cbox_touch3 ; touch block 3

sys__cbox_over3: ; block 3
hw_mtpr r31, <EV6__MM_STAT ! 64 > ; (6,0L) wait for shift
bis p5, #1, p5 ; return in pal mode
br r31, sys__cbox_over4 ; go to block 4

sys__cbox_touch3: ;
br r31, sys__cbox_touch4 ; touch block 4

sys__cbox_over4: ; block 4
hw_mfpr p4, EV6__DATA ; (6,0L) read cbox data
bis r31, r31, r31 ; nop
br r31, sys__cbox_over5 ; go to block 5

sys__cbox_touch4: ;
br r31, sys__cbox_touch5 ; touch block 5

sys__cbox_over5: ; block 5
and p4, #^x3F, p4 ; clean to <5:0>
addq p4, p7, p7 ; accumulate shift data
br r31, sys__cbox_over6 ; go to block 6

sys__cbox_touch5: ;
br r31, sys__cbox_touch6 ; touch block 6
D–16 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 31 : I_CTL[VA_48] Update

cks,
de
tion

ot
rs
sts.
r
ce
.

sys__cbox_over6: ; block 6
beq p6, sys__cbox_over8 ; branch if done
bis r31, r31, r31 ; nop
br r31, sys__cbox_over7 ; go to block 7

sys__cbox_touch6: ;
br r31, sys__cbox_touch7 ; touch block 7

sys__cbox_over7: ; block 7
bis p7, r31, p20 ; save before shifting
sll p7, #6, p7 ; shift data 6 bits left
br r31, sys__cbox_over2 ; do next shift

sys__cbox_touch7: ;
br r31, sys__cbox_touch8 ; touch block 8

sys__cbox_over8: ; block 8
beq r31, sys__cbox_cbox_done ; predict not taken
PVC_VIOLATE <1006>
br r31, .-4 ; predict back to infinite loop
bis r31, r31, r31 ;

sys__cbox_touch8: ;
br r31, sys__cbox_over1 ; now start executing the shifts

sys__cbox_cbox_done: ; now restore i_ctl
hw_mfpr p6, EV6__I_CTL ; (4,0L) get i_ctl
lda p4, <3@EV6__I_CTL__SBE__S>(r31) ; sbe bits
or p6, p4, p4 ; set SBE bits
bis r31, r31, r31

hw_mtpr p4, EV6__I_CTL ; (4,0L) restore i_ctl

PVC_JSR cbox, bsr=1, dest=1
hw_ret_stall (p5) ; return to caller with stall

D.27 Restriction 31 : I_CTL[VA_48] Update

The VA_48 virtual address format cannot be changed while executing a JSR, JMP,
GOTO, JSR_COROUTINE, or HW_RET instruction. A simple method of ensuring
that the address does not change is to write I_CTL twice, in two separate fetch blo
with the same data. The second write will stall the pipeline and ensure that the mo
cannot change, even down a mispredicted path, while a following JSR type instruc
might be using the address comparison logic.

D.28 Restriction 32 : PCTR_CTL Update

The performance counter must not be left in a state near overflow. If counting is dis-
abled, the counters may produce multiple overflow signals if the counter output is n
updated due to the counter being disabled. A repeated overflow signal with counte
disabled can block other incoming interrupt requests while the overflow state persi
To avoid this situation, reads or writes to the counters should not leave a value nea
overflow. In normal operation, with counters enabled, a counter overflow will produ
an overflow pulse, clear the counter, and produce a performance counter interrupt
Interrupts can only be blocked for one cycle.
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–17

Restriction 33 : HW_LD Physical/Lock Use

ld
he
ill
r

y to
st is
he

uent
uring
ed

-
r
s

loca-

e. If

rop-
s
ver-

i-
D.29 Restriction 33 : HW_LD Physical/Lock Use

The HW_LD physical/lock instruction must be one of the first three instructions in a
quad-instruction aligned fetch block. A pipelineerror can occur if the HW_LDphysi-
cal/lock is fetched as the fourth instruction of the fetch block.

D.30 Restriction 34 : Writing Multiple ITB Entries in the Same PAL-
code Flow

Before a PALcode flow writes multiple ITB entries, additional scoreboard bits shou
be set to avoid possible corruption of the TAG IPR prior to final update in the ITB. T
addition of scoreboard bits 0 and 4 to the standard scoreboard bit 6 for ITB_TAG w
prevent subsequent HW_MTPR ITB_TAG writes from changing the staging registe
TAG value prior to retirement of the HW_MTPR ITB_PTE that triggers the final ITB
update.

D.31 Guideline 35 : HW_INT_CLR Update

When writing the HW_INT_CLR IPR to clear interrupt requests, it may be necessar
write the same value twice in distinct fetch blocks to ensure that the interrupt reque
cleared before exiting PALcode. A second write will cause a scoreboard stall until t
first write retires, creating a convenient synchronization with the PALmode exit.

D.32 Restriction 36 : Updating I_CTL[SDE]

A software interlock is required between updates of the I_CTL[SDE] and a subseq
instruction fetch that may use any destination registers. A suggested method of ens
this interlock is to use two MTPR I_CTL instructions in separate fetch blocks, follow
by three more fetch blocks of non-NOP instructions.

D.33 Restriction 37 : Updating VA_CTL[VA_48]

A software interlock is required between updates of the VA_CTL[VA_48] and follow
ing LD or ST instructions. This is necessary since the VA_CTL update will not occu
until the HW_MTPR VA_CTL instruction retires. A sufficient method of ensuring thi
interlock is to write the VA_CTL with the same data in two successive fetch blocks,
causing a mapper stall. The dependant LD or ST instructions can be placed in any
tion of the second fetch block.

D.34 Restriction 38 : Updating PCTR_CTL

When updating the PCTR_CTL, it may be necessary to write the update value twic
the counter being updated is currently disabled by way of the respective I_CTL or
PCTX bits, the value must be written twice to ensure that the counter overflow is p
erly cleared. The overflow bit is conditionally latched using the same write enable a
the counter update, so an additional write of the counter value will ensure that the o
flow logic accuratelyreflects the addition of the new counter value plus the input cond
tions. The new update value must not be within one cycle of overflow (within 16 for
SL0, within 4 for SL1) as required by Section D.28.
D–18 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Guideline 39: Writing Multiple DTB Entries in the Same PAL Flow

r-

up
bits):

che
ong
r non-

ive
mory.
D.35 Guideline 39: Writing Multiple DTB Entries in the Same PAL
Flow

If a PALcode flow intends to write multiple DTB entries (as would occur in a double
miss), it must take care to keep subsequent HW_MTPR DTB_TAGx writes from co
rupting the staging register TAG values prior to retirement of the HW_MTPR
DTB_PTEx, which triggers the final DTB update.

For example, in the double miss DTB flow, the following code could be used to hold
the return to the single miss flow (the numbers in parentheses are the scoreboard

hw_mtpr r4, EV6__DTB_TAG0 ; (2&6) write tag0
hw_mtpr r4, EV6__DTB_TAG1 ; (1&5) write tag 1
hw_mtpr r5, EV6__DTB_PTE0 ; (0&4) write pte0
hw_mtpr r5, EV6__DTB_PTE1 ; (3&7) write pte1

bis r31, r31, r31 ; force new fetch block
bis r31, r31, r31
bis r31, r31, r31
hw_mtpr r31, <EV6__MM_STAT ! ^x80> ; (7) wait for pte write

hw_ret (r6) ; return to single miss

D.36 Restriction 40: Scrubbing a Single-Bit Error

On Bcache and Memory single bit errors on Icache fills, the hardware flushes the
Icache, but the PALcode must scrub the block in the Bcache and memory. On Bca
and Memory single bit errors on Dcache fills, the hardware scrubs the Dcache as l
as the error was on a target quadword, but the PALcode must scrub the Dcache fo
target quadwords, and must in general scrub the block in the Bcache and memory.

The scrub consists of reading each quadword in the block, with at least one exclus
access load/store to ensure the corrected data will be scrubbed in Bcache and me
The scrub itself causes a CRD to be flagged, which is cleared by the PALcode before
exiting to native mode.

; Sample code for scrubbing a single bit error.
;
; Since we only have the block address, and the hardware only corrects
; target quadwords, we read each quadword.
; In order to ensure eviction to bcache and memory, a store
; is needed to mark the block dirty. An exclusive access is
; used to ensure we scrub in main memory. Virtual access is
; used because of restrictions in use of hw_ld/hw_st lock
; instructions.
; After the scrub, read the cbox chain again.
; The scrub will cause a crd, but will get cleared with a write
; to hw_int_clr.
;
; Current state:
; r5 base of crd logout frame
;

hw_ldq/p r4, MCHK_CRD__C_ADDR(r5) ; get address back
bis r31, r31, r31
bis r31, r31, r31
bis r31, r31, r31
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–19

Restriction 40: Scrubbing a Single-Bit Error
hw_mtpr r31, EV6__DTB_IA ; (7,1L) flush dtb
lda r20, ^x3301(r31) ; set WE, RE
bis r31, r31, r31
bis r31, r31, r31

hw_mtpr r31, <EV6__MM_STAT ! ^x80> ; wait for retire
srl r4, #13, r6 ; shift byte offset
sll r6, #EV6__DTB_PTE0__PFN__S, r6 ; shift into position
bis r6, r20, r6 ; produce pte

hw_mtpr r4, EV6__DTB_TAG0 ; (2&6,0L) write tag0
hw_mtpr r4, EV6__DTB_TAG1 ; (1&5,1L) write tag1
hw_mtpr r6, EV6__DTB_PTE0 ; (0&4,0L) write pte0
hw_mtpr r6, EV6__DTB_PTE1 ; (3&7,1L) write pte1

mb ; quiet before we start
bis r31, r31, r31
bis r31, r31, r31
bis r31, r31, r31

ldq r6, ^x00(r4) ; re-read the bad block QW #0
ldq r6, ^x08(r4) ; re-read the bad block QW #1
ldq r6, ^x10(r4) ; re-read the bad block QW #2
ldq r6, ^x18(r4) ; re-read the bad block QW #3
ldq r6, ^x20(r4) ; re-read the bad block QW #4
ldq r6, ^x28(r4) ; re-read the bad block QW #5
ldq r6, ^x30(r4) ; re-read the bad block QW #6
mb ; no other mem-ops till done

ldq_l r6, ^x38(r4) ; re-read the bad block QW #7
stq_c r6, ^x38(r4) ; now store it to force scrub
mb
and r6, r31, r6 ; consumer of above

beq r6, sys__crd_scrub_done ; these 2 lines......
br r31, .-4 ;stop pre-fetching

sys__crd_scrub_done:
bsr r7, sys__cbox ; clean the cbox error chain
bis r31, r31, r31

hw_mtpr r31, EV6__DTB_IA ; (7,1L) flush dtb
bis r31, r31, r31
bis r31, r31, r31
bis r31, r31, r31

hw_mtpr r31, <EV6__MM_STAT ! ^x80> ; wait for retire
bis r31, #1, r7 ; get a 1
sll r7, #EV6__HW_INT_CLR__CR__S, r7 ; shift into position
hw_mtpr r7, EV6__HW_INT_CLR ; (4,0L) clear crd

lda r7, EV6__DC_STAT_W1C_CRD(r31) ; W1C bits
hw_mtpr r7, EV6__DC_STAT ; (6,0L)
bis r31, r31 ,r31
bis r31, r31 ,r31

hw_mtpr r31, <EV6__MM_STAT ! ^x50> ; stall till they retire
D–20 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the Same Fetch Block

is-
rom

s.
ex-

la-
D.37 Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the
Same Fetch Block

Write the ITB_TAG and ITB_PTE registers in the same fetch block. This avoids a
mispredict path write of invalid data to the ITB_TAG register.

D.38 Restriction 42: Updating VA_CTL, CC_CTL, or CC IPRs

When writing to the VA_CTL, CC_CTL, or CC IPRs, write the same value twice in d
tinct fetch blocks. This ensures that the instruction is retired before any mispredict f
a younger branch, DTB miss trap, or hw_ret_stall.

D.39 Restriction 43: No Trappable Instructions Along with
HW_MTPR

There are two parts to this restriction:

1. There cannot be any mispredictable/trappable instructions together with an
HW_MTPR in the current fetch block.

2. There cannot be any mispredictable/trappable instructions in the previous fetch
block.

D.40 Restriction 44: Not Applicable to the 21264/EV67

D.41 Restriction 45: No HW_JMP or JMP Instructions in PALcode

Do not include HW_JMP or JMP instructions in PALcode; use HW_RET instead.

HW_JMP always predicts in PALmode, and may mispredict to random cache block
This may cause speculative code to begin executing in PALmode and may have un
pected side effects such as I/O stream references.

HW_RET always predicts in native mode, and when it mispredicts, it avoids specu
tive execution in PALmode.
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–21

Restriction 46: Avoiding Live locks in Speculative Load CRD Handlers

w of
rror,

ads

k a

same
e

e

ruc-

ed/

a
the
ing-
d

D.42 Restriction 46: Avoiding Live locks in Speculative Load CRD
Handlers

Speculative load CRD handlers that release from the interrupt without scrubbing a
cache block could suffer from the following live-lock condition:

1. An initial error on a speculative load forces a CRD interrupt.

2. The CRD releases without scrubbing the block. A speculative load in the shado
the hw_ret (or hw_ret_stall) touches a Dcache location that has the single-bit e
forcing a CRD.

3. The CRD handler is entered again immediately.

4. Go to (2).

This problem can be avoided if all jumps in the CRD handler path for speculative lo
use the following sequence:

mb ; make sure hw_ret goes

ALIGN_FETCH_BLOCK <^x47FF041F>
mulq p6, #1, p6 ; Hold up loads
mulq p6, #1, p6 ; Hold up loads
hw_mtpr p6, <EV6__MM_STAT ! ^x44> ; Hold up loads
PVC_VIOLATE<43> ; Ignore restriction 43
hw_ret_stall (p23) ; Return

This sequence prevents speculative loads from issuing in the shadow of the
hw_ret_stall. Note that it is a violation of restriction 4 to have in the same fetch bloc
MTPR that specifies scoreboard bit 2 (an explicit writer in the memory operation
group) and a HW_RET (an implicit reader in the memory operation group). Under nor-
mal circumstances, the intention would be for a HW_RET to wait until the MTPR
issues, and that can only be enforced by putting the two instructions in different fetch
blocks. In this case, the intention is for the HW_RET to issuebeforethe MTPR. The
hardware does not enforce the scoreboarding when the two instructions are in the
fetch block, and thus the HW_RET can issue and mispredict before any speculativ
loads (which are held up by the MTPR) can issue.

D.43 Restriction 47: Cache Eviction for Single-Bit Cache Errors

A live lock can occur if issuing instructions out-of-order causes a floating-point stor
instruction (with sberr) to replay trap.

A hardware mechanism exists that keeps track of replayed floating-point store inst
tions, and cancels the dirty register check. See Section D.5 for more details.

If the floating-point store instruction has an sberr and the CRD_HANDLER is enter
exited before the instruction is replayed, the mechanism will lose track of the instruc-
tion. When the instruction is replayed, the dirty register check is not canceled, and
replay trap occurs, causing the floating-point store instruction to continually replay
trap until the sberr is evicted from cache. The sberr will not evict, because the float
point store instruction is killed by the replay trap. Killed instructions are not scrubbe
by the Error Recovery Machine, and CBOX_ERR[C_ADDR] may not contain the
address of the sberr. Because CBOX_ERR[C_ADDR] is not guaranteed, the
CRD_HANDLER might not evict the sberr.
D–22 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 47: Cache Eviction for Single-Bit Cache Errors

o

If "CBOX_ERR[C_ADDR]" has not changed when the CRD_HANDLER is re-
entered, or "CBOX_ERR[C_STAT] == 0x0", all cache locations should be evicted t
avoid the live lock described above.

; Sample code for evicting cache.
; This method loads a 64K block, then exits the CRD_HANDLER
; to check if the sberr has been evicted. If not it loads the next 64K block.
; In the sample code below,
; sx is a shadow register
; ldi is a macro that loads a 64-bit constant into the specified register

full_scrub:
hw_ldq/p s5, 104(r31)

ldi s1, ^x200 ; Loop dec value
ldi s2, ^x1C0 ; Start offset
ldi s3, ^x10000 ; Block size (64K -> size of dcache)
ldi s4, ^x2000000 ; 2X bcache size

addq s3,s5,s5
ble s5, s4, <.+4> ; Skip next instruction if ADDR

; .le. 2X bcache
bis r31, r31, s5 ; Set ADDR = 0x0
hw_stq/p s5, 104(r31) ; Store ADDR for next pass thru
subq s5, s2, s5
mb ; Make sure no speculative loads

; happen in the CRD handler
.align 4, NOP_OPCODE ; |
blbc r31, <.+4> ; |
br r31, <.-4> ; V
.align 4, NOP_OPCODE ; Make sure no speculative loads

; happen in the CRD handler

next_reread:
; ******** four cache blocks

; Evict dcache by prefetching to all dcache indexes.
; use 'hw_ldl r31 xxxx' Normal Prefetch
; Do not use 'hw_ldq/p r31 xxx' Prefetch,
; Evict Next because this will always access the same set in dcache.
hw_ldl/p r31,̂ x1C0(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,̂ x180(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,̂ x140(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,̂ x100(s5) ; Re-read the bad block QW #0

hw_ldl/p r31,̂ xC0(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,̂ x80(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,̂ x40(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,̂ x00(s5) ; Re-read the bad block QW #0

subq s5, s1, s5 ; Decrement addr
subq s3, s1, s3 ; Decrement counter
ble s3, <.+4>
br r31, next_reread
bsr s7, sys__cbox ; Read and clean cbox error ipr
Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D–23

Restriction 48: MB Bracketing of Dcache Writes to Force Bad Data ECC and Force

-
qui-
D.44 Restriction 48: MB Bracketing of Dcache Writes to Force Bad
Data ECC and Force Bad Tag Parity

Writes to DC_CTL[F_BAD_DECC] and DC_CTL[DCDAT_ERR_EN] must be brack
eted by MB instructions to quiesce the memory system. The Istream must also be
esced before and during the sequence, as described in Section D.26.
D–24 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

and
E
21264/EV67-to-Bcache Pin Interconnections

This appendix provides the pin interface between the21264/EV67 and Bcache
SSRAMs.

E.1 Forwarding Clock Pin Groupings

Table E–1 lists the correspondance between the clock signals for the 21264/EV67
Bcache (late-write non-bursting and dual-data rate) SSRAMs.

Table E–1 Bcache Forwarding Clock Pin Groupings

Pad and Pin Input Clock Output Clocks

BcData_H[71:64,7:0] BcDataInClk_H[0] BcDataOutClk_x[0]

BcCheck_H[8,0] BcDataInClk_H[0] BcDataOutClk_x[0]

BcData_H[79:72,15:8] BcDataInClk_H[1] BcDataOutClk_x[0]

BcCheck_H[9,1] BcDataInClk_H[1] BcDataOutClk_x[0]

BcData_H[87:80,23:16] BcDataInClk_H[2] BcDataOutClk_x[1]

BcCheck_H[10,2] BcDataInClk_H[2] BcDataOutClk_x[1]

BcData_H[95:88,31:24] BcDataInClk_H[3] BcDataOutClk_x[1]

BcCheck_H[11,3] BcDataInClk_H[3] BcDataOutClk_x[1]

BcData_H[103:96,39:32] BcDataInClk_H[4] BcDataOutClk_x[2]

BcCheck_H[12,4] BcDataInClk_H[4] BcDataOutClk_x[2]

BcData_H[111:104,47:40] BcDataInClk_H[5] BcDataOutClk_x[2]

BcCheck_H[13,5] BcDataInClk_H[5] BcDataOutClk_x[2]

BcData_H[119:112,55:48] BcDataInClk_H[6] BcDataOutClk_x[3]

BcCheck_H[14.6] BcDataInClk_H[6] BcDataOutClk_x[3]

BcData_H[127:120,63:56] BcDataInClk_H[7] BcDataOutClk_x[3]

BcCheck_H[15,7] BcDataInClk_H[7] BcDataOutClk_x[3]

BcTag_H[42:20] BcTagInClk_H BcTagOutClk_x

BcTagParity_H BcTagInClk_H BcTagOutClk_x
Alpha 21264/EV67 Hardware Reference Manual 21264/EV67-to-Bcache Pin Interconnections E–1

Late-Write Non-Bursting SSRAMs

AMs
n for
E.2 Late-Write Non-Bursting SSRAMs

Table E–2 provides the data pin connections between late-write non-bursting SSR
and the 21264/EV67 or the system board. Table E–3 provides the same informatio
the tag pins.

Data Pin Usage

Tag Pin Usage

Unused Bcache tag pins should be pulled to ground through a 200-ohm resistor.

BcTagShared_H BcTagInClk_H BcTagOutClk_x

BcTagDirty_H BcTagInClk_H BcTagOutClk_ x

BcTagValid_H BcTagInClk_H BcTagOutClk_x

Table E–2 Late-Write Non-Bursting SSRAMs Data Pin Usage

21264/EV67 Signal Name or Board Connection Late-Write SSRAM Data Pin Name

BcAdd_H[21:4] SA_H[17:0]

BcDataOutClk_H[3:0] CK_H

Set from board to 1/2 the 21264/EV67 core voltage CK_L

BcData_H[127:0]/BcCheck_H[15:0] DQx

BcDataWr_L SW_L

Unconnected Tck_H

Unconnected Tdo_H

Unconnected Tms_H

Unconnected Tdi_H

From board, pull down to VSS G_L

From board, pull down to VSS SBx_L

From board, pull down to VSS orBcDataOE_L SS_L (Vendor dependent)

Table E–3 Late-Write Non-Bursting SSRAMs Tag Pin Usage

21264/EV67 Signal Name or Board Connection Late-Write SSRAM Tag Pin Name

BcAdd_H[22:6] SA_H[16:0]

BcTag_H[42:20] DQx

BcTagOE_L or from board, pull down to VSS SS_L (Vendor dependent)

BcTagWr_L SW_L

From board, pull down to VSS SBx_L

BcTagOutClk_H CK_H

Table E–1 Bcache Forwarding Clock Pin Groupings (Continued)

Pad and Pin Input Clock Output Clocks
E–2 21264/EV67-to-Bcache Pin Interconnections Alpha 21264/EV67 Hardware Reference Manual

Dual-Data Rate SSRAMs

the
tag
E.3 Dual-Data Rate SSRAMs

Table E–4 provides the data pin connections between dual-data rate SSRAMs and
21264/EV67 or the system board. Table E–5 provides the same information for the
pins.

Data and Tag Pin Usage

Set from board to 1/2 the 21264/EV67 core voltage CK_L

Set from board to 1/2 the 21264/EV67 core voltage VREF1_H
VREF2_H

Set from board (implementation dependent) ZQ_H

BcTagValid_H DQx

BcTagDirty_H DQx

BcTagShared_H DQx

Unconnected TMS_H

Unconnected TDI_H

Unconnected TCK_H

Unconnected TDC_H

Table E–4 Dual-Data Rate SSRAM Data Pin Usage

21264/EV67 Signal Name or Board
Connection Dual-Data Rate SSRAM Data Pin Name

BcAdd_H[21:4] SA_H[17:0]

BcData_H[33:20]/
BcCheck_H[15:0]

DQx

BcLoad_L LD_L (B1)

BcDataWr_L R/W_L(B2)

From board, pulled up to VDD LBO_L

From board, pulled down to VSS Q_L

BcDataInClk_H CQ_H

BcDataOutClk_H CK_H

BcDataOutClk_L CK_L

Set from board to 1/2 the 21264/EV67 core
voltage

VREF1_H
VREF2_H

Set from board (implementation-dependent) ZQ_H

Unconnected or terminated CQ_L

From board, pulled up to VDD TCK_H

Unconnected TDO_H

Table E–3 Late-Write Non-Bursting SSRAMs Tag Pin Usage (Continued)

21264/EV67 Signal Name or Board Connection Late-Write SSRAM Tag Pin Name
Alpha 21264/EV67 Hardware Reference Manual 21264/EV67-to-Bcache Pin Interconnections E–3

Dual-Data Rate SSRAMs
From board, pulled up to VDD TMS_H

From board, pulled up to VDD TDI_H

Unconnected or pulled down to VSS TRST_L

BcDataOE_L OE_L (G_L)

From board, pulled down to VSS SD/DD_L (B3)

Table E–5 Dual-Data Rate SSRAM Tag Pin Usage

21264/EV67 Signal Name or Board Connection Dual-Data Rate SSRAM Tag Pin Name

BcAdd_H[23:6] SA_H[17:0]

BcTag_H[33:20] DQx

BcTagOE_L LD_L (B1)

BcTagWr_L R/W_L (B2)

From board, pulled up to VDD LBO_L

From board, pulled down to VSS Q_L
SA[19:18]

BcTagInClk_H CQ_H

BcTagOutClk_H CK_H

BcTagOutClk_L CK_L

Set from board to 1/2 core voltage VREF1_H
VREF2_H

Set from board (implementation-dependent) ZQ_H

BcTagValid_H DQx

BcTagDirty_H DQx

BcTagShared_H DQx

BcTagParity_H DQx

Unconnected or terminated CQ_L

From board, pulled up to VDD TCK_H

Unconnected TDO_H

From board, pulled up to VDD TMS_H

From board, pulled up to VDD TDI_H

Unconnected TRST_L

From board, pulled down to VSS OE_L (G_L)

From board, pulled up to VDD SD/DD_L (B3)

Table E–4 Dual-Data Rate SSRAM Data Pin Usage (Continued)

21264/EV67 Signal Name or Board
Connection Dual-Data Rate SSRAM Data Pin Name
E–4 21264/EV67-to-Bcache Pin Interconnections Alpha 21264/EV67 Hardware Reference Manual

the

ed
ASNs
ss

N

s

Glossary

This glossary provides definitions for specific terms and acronyms associated with
Alpha 21264/EV67 microprocessor and chips in general.

abort

The unit stops the operation it is performing, without saving status, to perform some
other operation.

address space number (ASN)

An optionally implemented register used to reduce the need for invalidation of cach
address translations for process-specific addresses when a context switch occurs.
are processor specific; the hardware makes no attempt to maintain coherency acro
multiple processors.

address translation

The process of mapping addresses from one address space to another.

ALIGNED

A datum of size 2**N is stored in memory at a byte address that is a multiple of 2**
(that is, one that has N low-order zeros).

ALU

Arithmetic logic unit.

ANSI

American National Standards Institute. An organization that develops and publishe
standards for the computer industry.

ASIC

Application-specific integrated circuit.

ASM

Address space match.

ASN

Seeaddress space number.

assert

To cause a signal to change to its logical true state.

AST

Seeasynchronous system trap.
Alpha 21264/EV67 Hardware Reference Manual Glossary –1

o
cific
upts
rou-
ter-

nel.

c-

1.

s).
h the
s
he

ck
asynchronous system trap (AST)

A software-simulated interrupt to a user-defined routine. ASTs enable a user process t
be notified asynchronously, with respect to that process, of the occurrence of a spe
event. If a user process has defined an AST routine for an event, the system interr
the process and executes the AST routine when that event occurs. When the AST
tine exits, the system resumes execution of the process at the point where it was in
rupted.

bandwidth

Bandwidth is often used to express the rate of data transfer in a bus or an I/O chan

barrier transaction

A transaction on the external interface as a result of an MB (memory barrier) instru
tion.

Bcache

Seesecond-level cache.

bidirectional

Flowing in two directions. The buses are bidirectional; they carryboth input and output
signals.

BiSI

Built-in self-initialization.

BiST

Built-in self-test.

bit

Binary digit. The smallest unit of data in a binary notation system, designated as 0 or

bit time

The total time that a signal conveys a single valid piece of information (specified in n
All data and commands are associated with a clock and the receiver’s latch on bot
rise and fall of the clock. Bit times are a multiple of the 21264/EV67 clocks. System
must produce a bit time identical to 21264/EV67’s bit time. The bit time is one-half t
period of the forwarding clock.

BIU

Bus interface unit.SeeCbox.

Block exchange

Memory feature that improves bus bandwidth by paralleling a cache victim write-ba
with a cache miss fill.

board-level cache

See second-level cache.
Glossary –2 Alpha 21264/EV67 Hardware Reference Manual

r

on-

ts
a, and

ered

con-

d in
ified,
tain-
nsis-

ain
boot

Short for bootstrap. Loading an operating system into memory is called booting.

BSR

Boundary-scan register.

buffer

An internal memory area used for temporary storage of data records during input o
output operations.

bugcheck

A software condition, usually the response to software’s detection of an “internal inc
sistency,” which results in the execution of the system bugcheck code.

bus

A group of signals that consists of many transmission lines or wires. It interconnec
computer system components to provide communications paths for addresses, dat
control information.

byte

Eight contiguous bits starting on an addressable byte boundary. The bits are numb
right to left, 0 through 7.

byte granularity

Memory systems are said to have byte granularity if adjacent bytes can be written
currently and independently by different processes or processors.

cache

Seecache memory.

cache block

The smallest unit of storage that can be allocated or manipulated in a cache. Also
known as a cache line.

cache coherence

Maintaining cache coherence requires that when a processor accesses data cache
another processor, it must not receive incorrect data and when cached data is mod
all other processors that access that data receive modified data. Schemes for main
ing consistency can be implemented in hardware or software. Also called cache co
tency.

cache fill

An operation that loads an entire cache block by using multiple read cycles from m
memory.

cache flush

An operation that marks all cache blocks as invalid.
Alpha 21264/EV67 Hardware Reference Manual Glossary –3

he

sed to
ed
re

or. A
copies
ory in

ts.

ons.

ber

een
cache hit

The status returned when a logic unit probes a cache memory and finds a valid cac
entry at the probed address.

cache interference

The result of an operation that adversely affects the mechanisms and procedures u
keep frequently used items in a cache. Such interference may cause frequently us
items to be removed from a cache or incur significant overhead operations to ensu
correct results. Either action hampers performance.

cache line

Seecache block.

cache line buffer

A buffer used to store a block of cache memory.

cache memory

A small, high-speed memory placed between slower main memory and the process
cache increases effective memory transfer rates and processor speed. It contains
of data recently used by the processor and fetches several bytes of data from mem
anticipation that the processor will access the next sequential series of bytes. The
21264/EV67 microprocessor contains two onchip internal caches.See alsowrite-
through cache and write-back cache.

cache miss

The status returned when cache memory is probed with no valid cache entry at the
probed address.

CALL_PAL instructions

Special instructions used to invoke PALcode.

Cbox

External cache and system interface unit. Controls the Bcache and the system por

central processing unit (CPU)

The unit of the computer that is responsible for interpreting and executing instructi

CISC

Complex instruction set computing. An instruction set that consists of a large num
of complex instructions.Contrast withRISC.

clean

In the cache of a system bus node, refers to a cache line that is valid but has not b
written.

clock

A signal used to synchronize the circuits in a computer.
Glossary –4 Alpha 21264/EV67 Hardware Reference Manual

that

ni-

struc-

lling
clock offset (or clkoffset)

The delay intentionally added to the forwarded clock to meet the setup and hold
requirements at the Receive Flop.

CMOS

Complementary metal-oxide semiconductor. A silicon device formed by a process
combines PMOS and NMOS semiconductor material.

conditional branch instructions

Instructions that test a register for positive/negative or forzero/nonzero. They can also
test integer registers for even/odd.

control and status register (CSR)

A device or controller register that resides in the processor’s I/O space. The CSR i
tiates device activity and records its status.

CPI

Cycles per instruction.

CPU

Seecentral processing unit.

CSR

Seecontrol and status register.

cycle

One clock interval.

data bus

A group of wires that carry data.

Dcache

Data cache. A cache reserved for storage of data. The Dcache does not contain in
tions.

DDR

Dual-data rate. A dual-data rate SSRAM can provide data on both the rising and fa
edges of the clock signal.

denormal

An IEEE floating-point bit pattern that represents a number whose magnitude lies
between zero and the smallest finite number.

DIP

Dual inline package.
Alpha 21264/EV67 Hardware Reference Manual Glossary –5

y
ne

that

must

n

).

be
direct-mapping cache

A cache organization in which only one address comparison is needed to locate an
data in the cache, because any block of main memory data can be placed in only o
possible position in the cache.

direct memory access (DMA)

Access to memory by an I/O device that does not require processor intervention.

dirty

One status item for a cache block. The cache block is valid and has been written so
it may differ from the copy in system main memory.

dirty victim

Used in reference to a cache block in the cache of asystem bus node. The cache block
is valid but is about to be replaced due to a cache block resource conflict. The data
therefore be written to memory.

DMA

Seedirect memory access.

DRAM

Dynamic random-access memory. Read/write memory that must berefreshed (read
from or written to) periodically to maintain the storage of information.

DTB

Data translation buffer.Also defined asDstream translation buffer.

DTL

Diode-transistor logic.

dual issue

Two instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

ECC

Error correction code. Code and algorithms used by logic to facilitate error detectio
and correction. See alsoECC error.

ECC error

An error detected by ECC logic, to indicate that data (or the protected “entity”) has
been corrupted. The error may be correctable (soft error) or uncorrectable (hard error

ECL

Emitter-coupled logic.

EEPROM

Electrically erasable programmable read-only memory. A memory device that can
byte-erased, written to, and read from.Contrast withFEPROM.
Glossary –6 Alpha 21264/EV67 Hardware Reference Manual

-

-

nt

e bit
ges

sys-
eset
external cache

Seesecond-level cache.

FEPROM

Flash-erasable programmable read-only memory. FEPROMs can be bank- or bulk
erased.Contrast withEEPROM.

FET

Field-effect transistor.

FEU

The unit within the 21264/EV67 microprocessor that performs floating-point calcula
tions.

firmware

Machine instructions stored in nonvolatile memory.

floating point

A number system in which the position of the radix point is indicated by the expone
part and another part represents the significant digits or fractional part.

flush

Seecache flush.

forwarded clock

A single-ended differential signal that is aligned with its associated fields. The for-
warded clock is sourced and aligned by the sender with a period that is two times th
time. Forwarded clocks must be 50% duty cycle clocks whose rising and falling ed
are aligned with the changing edge of the data.

FPGA

Field-programmable gate array.

FPLA

Field-programmable logicarray.

FQ

Floating-point issue queue.

framing clock

The framing clock defines the start of a transmission either from the system to the
21264/EV67 or from the 21264/EV67 to the system. Theframing clock is apower-of-
2 multiple of the 21264/EV67GCLK frequency, and is usually the system clock. The
framing clock and the input oscillator can have the same frequency. The
add_frame_select IPR sets that ratio of bit times to framing clock. The frame clock
could have a period that is four times the bit time with a add_frame_select of 2X.
Transfers begin on the rising and falling edge of the frame clock. This is useful for
tems that have system clocks with a period too small to perform the synchronous r
Alpha 21264/EV67 Hardware Reference Manual Glossary –7

nd/

d and/

r not

con-
on-
ield
ain-

es

ver

-

of the clock forward logic. Additionally, the framing clock can have a period that is
less than, equal to, or greater than the time it takes to send a full four cycle comma
address.

GCLK

Global clock within the 21264/EV67.

granularity

A characteristic of storage systems that defines the amount of data that can be rea
or written with a single instruction, or read and/or written independently.

hardware interrupt request (HIR)

An interrupt generated by a peripheral device.

high-impedance state

An electrical state of high resistance to current flow, which makes the device appea
physically connected to the circuit.

hit

Seecache hit.

Icache

Instruction cache. A cache reserved for storage of instructions. One of the threeareas of
primary cache (located on the 21264/EV67) used to store instructions. The Icache
tains 8KB of memory space. It is a direct-mapped cache. Icache blocks, or lines, c
tain 32 bytes of instruction stream data with associated tag as well as a 6-bit ASM f
and an 8-bit branch history field per block. Icache does not contain hardware for m
taining cache coherency with memory and is unaffected by the invalidate bus.

IDU

A logic unit within the 21264/EV67 microprocessor that fetches, decodes, and issu
instructions. It also controls the microprocessor pipeline.

IEEE Standard 754

A set of formats and operations that apply to floating-point numbers. The formats co
32-, 64-, and 80-bit operand sizes.

IEEE Standard 1149.1

A standard for the Test Access Port and Boundary Scan Architecture used in board
level manufacturing test procedures.

Inf

Infinity.

INT nn

The term INTnn, wherenn is one of 2, 4, 8, 16, 32, or 64, refers to a data field size ofnn
contiguous NATURALLY ALIGNED bytes. For example, INT4refers to a NATU-
RALLY ALIGNED longword.
Glossary –8 Alpha 21264/EV67 Hardware Reference Manual

ard-
le
cks

ro-
mory

ed
interface reset

A synchronously received reset signal that is used to preset and start the clock forw
ing circuitry. During this reset, all forwarded clocks are stopped and the presettab
count values are applied to the counters; then, some number of cycles later, the clo
are enabled and are free running.

Internal processor register (IPR)

Special registers that are used to configure options or report status.

IOWB

I/O write buffer.

IPGA

Interstitial pin grid array.

IQ

Integer issue queue.

ITB

Instruction translation buffer.

JFET

Junction field-effect transistor.

latency

The amount of time it takes the system to respond to an event.

LCC

Leadless chip carrier.

LFSR

Linear feedback shift register.

load/store architecture

A characteristic of a machine architecture where data items are first loaded into a p
cessor register, operated on, and then stored back to memory. No operations on me
other than load and store are provided by the instruction set.

longword (LW)

Four contiguous bytes starting on an arbitrary byte boundary. The bits are number
from right to left, 0 through 31.

LQ

Load queue.

LSB

Least significant bit.
Alpha 21264/EV67 Hardware Reference Manual Glossary –9

ana-

n
in

col
red

are
machine check

An operating system action triggered by certain system hardware-detectederrors that
can be fatal to system operation. Once triggered, machine check handler software
lyzes the error.

MAF

Miss address file.

main memory

The large memory, external to the microprocessor, used for holding most instructio
code and data. Usually built from cost-effective DRAM memory chips. May be used
connection with the microprocessor’s internalcaches and an external cache.

masked write

A write cycle that only updates a subset of a nominal data block.

MBO

Seemust be one.

Mbox

This section of the processor unit performs address translation, interfaces to the
Dcache, and performs several other functions.

MBZ

Seemust be zero.

MESI protocol

A cache consistency protocol with full support for multiprocessing. The MESI proto
consists of four states that define whether a block is modified (M), exclusive (E), sha
(S), or invalid (I).

MIPS

Millions of instructions per second.

miss

Seecache miss.

module

A board on which logic devices (such as transistors, resistors, and memory chips)
mounted and connected to perform a specific system function.

module-level cache

Seesecond-level cache.

MOS

Metal-oxide semiconductor.

MOSFET

Metal-oxide semiconductor field-effect transistor.
Glossary –10 Alpha 21264/EV67 Hardware Reference Manual

e col-

ed to

han

ze of
ess

ered
MSI

Medium-scale integration.

multiprocessing

A processing method that replicates the sequential computer and interconnects th
lection so that each processor can execute the same or a different program at the same
time.

must be one (MBO)

A field that must be supplied as one.

must be zero (MBZ)

A field that is reserved and must be supplied as zero. If examined, it must be assum
be UNDEFINED.

NaN

Not-a-Number. An IEEE floating-point bit pattern that represents something other t
a number. This comes in two forms: signaling NaNs (for Alpha, those with an initial
fraction bit of 0) and quiet NaNs (for Alpha, those with an initial fraction bit of 1).

NATURALLY ALIGNED

SeeALIGNED.

NATURALLY ALIGNED data

Data stored in memory such that the address of the data is evenly divisible by the si
the data in bytes. For example, an ALIGNED longword is stored such that the addr
of the longword is evenly divisible by 4.

NMOS

N-type metal-oxide semiconductor.

NVRAM

Nonvolatile random-access memory.

OBL

Observability linear feedback shift register.

octaword

Sixteen contiguous bytes starting on an arbitrary byte boundary. The bits are numb
from right to left, 0 through 127.

OpenVMS Alpha operating system

The version of the open VMS operating system for Alpha platforms.

operand

The data or register upon which an operation is performed.
Alpha 21264/EV67 Hardware Reference Manual Glossary –11

the
k.

ses

s.

n.

f
um-

ped
output mux counter

Counter used to select the output mux that drives address and data. It is reset with
Interface Reset and incremented by a copy of the locally generated forwarded cloc

PAL

Privileged architecture library.See alsoPALcode.See alsoProgrammable array logic
(hardware). A device that can be programmed by a process that blows individual fu
to create a circuit.

PALcode

Alpha privileged architecture library code, written to support Alpha microprocessor
PALcode implements architecturally defined behavior.

PALmode

A special environment for running PALcode routines.

parameter

A variable that is given a specific value that is passed to a program before executio

parity

A method for checking the accuracy of data by calculating the sum of the number o
ones in a piece of binary data. Even parity requires the correct sum to be an even n
ber, odd parity requires the correct sum to be an odd number.

PGA

Pin grid array.

pipeline

A CPU design technique whereby multiple instructions are simultaneously overlap
in execution.

PLA

Programmable logic array.

PLCC

Plastic leadless chip carrier or plastic-leaded chip carrier.

PLD

Programmable logic device.

PLL

Phase-locked loop.

PMOS

P-type metal-oxide semiconductor.

PQ

Probe queue.
Glossary –12 Alpha 21264/EV67 Hardware Reference Manual

cated

e
his

e

data.

67
PQFP

Plastic quad flat pack.

primary cache

The cache that is the fastest and closest to the processor. The first-level caches, lo
on the CPU chip, composed of the Dcache and Icache.

program counter

That portion of the CPU that contains the virtual address of the next instruction to b
executed. Most current CPUs implement the program counter (PC) as a register. T
register may be visible to the programmer through the instruction set.

PROM

Programmable read-only memory.

pull-down resistor

A resistor placed between a signal line and a negative voltage.

pull-up resistor

A resistor placed between a signal line to a positive voltage.

QNaN

Quiet Nan. See NaN.

quad issue

Four instructions are issued, in parallel, during the same microprocessor cycle. Th
instructions use different resources and so do not conflict.

quadword

Eight contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, 0 through 63.

RAM

Random-access memory.

RAS

Row address select.

RAW

Read-after-write.

READ_BLOCK

A transaction where the 21264/EV67 requests that an external logic unit fetch read

read data wrapping

System feature that reduces apparent memory latency by allowingread data cycles to
differ theusual low-to-high sequence. Requires cooperation between the 21264/EV
and external hardware.
Alpha 21264/EV67 Hardware Reference Manual Glossary –13

a
ile

lock

y the

ng

ni-

d

truc-
SC
ng
read stream buffers

Arrangement whereby each memory module independently prefetches DRAM dat
prior to an actual read request for that data. Reduces average memory latency wh
improving total memory bandwidth.

receive counter

Counter used to enable the receive flops. It is clocked by the incoming forwarded c
and reset by the Interface Reset.

receive mux counter

The receive mux counter is preset to a selectable starting point and incremented b
locally generated forward clock.

register

A temporary storage or control location in hardware logic.

reliability

The probability a device or system will not fail to perform its intended functions duri
a specified time interval when operated under stated conditions.

reset

An action that causes a logic unit to interrupt the task it is performing and go to its i
tialized state.

RISC

Reduced instruction set computing. A computer with an instruction set that is paire
down and reduced in complexity so that most can be performed in a single processor
cycle. High-level compilers synthesize the more complex, least frequently used ins
tions by breaking them down into simpler instructions. This approach allows the RI
architecture to implement a small, hardware-assisted instruction set, thus eliminati
the need for microcode.

ROM

Read-only memory.

RTL

Register-transfer logic.

SAM

Serial access memory.

SBO

Should be one.

SBZ

Should be zero.

scheduling

The process of ordering instruction execution to obtain optimum performance.
Glossary –14 Alpha 21264/EV67 Hardware Reference Manual

he

iative
rom
so-

ss
SDRAM

Synchronous dynamic random-access memory.

second-level cache

A cache memory provided outside of the microprocessor chip, usually located on t
same module. Also called board-level, external, or module-levelcache.

set-associative

A form of cache organization in which the location of a data block in main memory
constrains, but does not completely determine, its location in the cache. Set-assoc
organization is a compromise between direct-mapped organization, in which data f
a given address in main memory has only one possible cache location, and fully as
ciative organization, in which data from anywhere in main memory can be put any-
where in the cache. An “n-way set-associative” cache allows data from a given addre
in main memory to be cached in any ofn locations.

SIMM

Single inline memory module.

SIP

Single inline package.

SIPP

Single inline pin package.

SMD

Surface mount device.

SNaN

Signaling NaN.SeeNan.

SRAM

SeeSSRAM.

SROM

Serial read-only memory.

SSI

Small-scale integration.

SSRAM

Synchronous static random-access memory.

stack

An area of memory set aside for temporary datastorage or for procedure and interrupt
service linkages. A stack uses the last-in/first-out concept. As items are added to
(pushed on) the stack, the stack pointer decrements. As items are retrieved from
(popped off) the stack, the stack pointer increments.
Alpha 21264/EV67 Hardware Reference Manual Glossary –15

om-

e

ock

.

ged
ra-
STRAM

Self-timed random-access memory.

superpipelined

Describes a pipelined machine that has a larger number of pipe stages and more c
plex scheduling and control.See alsopipeline.

superscalar

Describes a machine architecture that allows multiple independent instructions to b
issued in parallel during a given clock cycle.

system clock

The primary skew controlled clock used throughout the interface components to cl
transfer between ASICs, main memory, and I/O bridges.

tag

The part of a cache block that holds the address information used to determine if a
memory operation is a hit or a miss on that cache block.

target clock

Skew controlled clock that receives the output of the RECEIVE MUX.

TB

Translation buffer.

tristate

Refers to a bused line that has three states:high, low, and high-impedance.

TTL

Transistor-transistor logic.

UART

Universal asynchronous receiver-transmitter.

UNALIGNED

A datum of size 2**N stored at a byte address that is not a multiple of 2**N.

unconditional branch instructions

Instructions that change the flow of program control without regard to any condition
Contrast withconditional branch instructions.

UNDEFINED

An operation that may halt the processor or cause it to lose information. Only privile
software (that is, software running in kernel mode) can trigger an UNDEFINED ope
tion. (This meaning only applies when the word is written in all upper case.)
Glossary –16 Alpha 21264/EV67 Hardware Reference Manual

pro-
-
g

ts

to

to
UNPREDICTABLE

Results or occurrences that do not disrupt the basic operation of the processor; the
cessor continues to execute instructions in its normal manner. Privileged or unprivi
leged software can trigger UNPREDICTABLE results or occurrences. (This meanin
only applies when the word is written in all upper case.)

UVPROM

Ultraviolet (erasable) programmable read-only memory.

VAF

Seevictim address file.

valid

Allocated. Valid cache blocks have been loaded with data and may return cache hi
when accessed.

VDF

Seevictim data file.

VHSIC

Very-high-speed integrated circuit.

victim

Used in reference to a cache block in the cache of asystem bus node. The cache block
is valid but is about to be replaced due to a cache block resource conflict.

victim address file

The victim address file and the victim data file, together, form an 8-entry buffer used
hold information for transactions to the Bcache and main memory.

victim data file

The victim address file and the victim data file, together, form an 8-entry buffer used
hold information for transactions to the Bcache and main memory.

virtual cache

A cache that is addressed with virtual addresses. The tag of the cache is a virtual
address. This process allows direct addressing of the cache without having to go
through the translation buffer making cache hit times faster.

VLSI

Very-large-scale integration.

VPC

Virtual program counter.

VRAM

Video random-access memory.
Alpha 21264/EV67 Hardware Reference Manual Glossary –17

um-

but
y

pies,
ies to

rite

s to
67

e
pt of
te the
WAR

Write-after-read.

word

Two contiguous bytes (16 bits) starting on an arbitrary byte boundary. The bits are n
bered from right to left, 0 through 15.

write-back

A cache management technique in which write operation data is written into cache
is not written into main memory in the same operation. This may result in temporar
differences between cache data and main memory data. Some logic unit must maintain
coherency between cache and main memory.

write-back cache

Copies are kept of any data in the region; read and write operations may use the co
and write operations use additional state to determine whether there are other cop
invalidate or update.

WRITE_BLOCK

A transaction where the 21264/EV67 requests that an external logic unit process w
data.

write data wrapping

System feature that reduces apparent memory latency by allowing write data cycle
differ theusual low-to-high sequence. Requires cooperation between the 21264/EV
and external hardware.

write-through cache

A cache management technique in which a write operation to cache also causes th
same data to be written in main memory during the same operation. Copies are ke
any data in a region; read operations may use the copies, but write operations upda
actual data location and either update or invalidate all copies.
Glossary –18 Alpha 21264/EV67 Hardware Reference Manual

Index

Numerics
21264/EV67, features of, 1–3

32_BYTE_IO Cbox CSR
defined, 5–34

A
Abbreviations, xix

binary multiples, xix
register access, xix

AC characteristics, 9–6

Address conventions, xx

Aggregate mode, 6–18

Aligned convention, xx

Alpha instruction summary, A–1

AMASK instruction values, 2–38

ARITH synchronous trap, 6–14

B
B_DA_OD pin type, 3–3, 9–2

values for, 9–4
B_DA_PP pin type, 3–3, 9–2

values for, 9–4
BC_BANK_ENABLE Cbox CSR, 4–52, 5–39,

7–13

BC_BPHASE_LD_VECTOR Cbox CSR, 4–45
defined, 5–38

BC_BURST_MODE_ENABLE Cbox CSR, 4–52
defined, 5–35

BC_CLEAN_VICTIM Cbox CSR, 4–23
defined, 5–34

BC_CLK_DELAY Cbox CSR, 4–45
defined, 5–35

BC_CLK_LD_VECTOR Cbox CSR, 4–45
defined, 5–38

BC_CLKFWD_ENABLE Cbox CSR, 4–47
defined, 5–36

BC_CLOCK_OUT Cbox CSR, 4–45

BC_CPU_CLK_DELAY Cbox CSR, 4–44, 4–45
defined, 5–38

BC_CPU_LATE_WRITE_NUM Cbox CSR
defined, 5–35

BC_DDM_FALL_EN Cbox CSR, 4–47
defined, 5–36

BC_DDM_RISE_EN Cbox CSR, 4–47
defined, 5–36

BC_DDMF_ENABLE Cbox CSR, 4–47
defined, 5–35

BC_DDMR_ENABLE Cbox CSR, 4–47
defined, 5–35

BC_ENABLE Cbox CSR, 4–51, 5–39, 7–12

BC_FDBK_EN Cbox CSR, 4–46
defined, 5–38

BC_FRM_CLK Cbox CSR, 4–47
defined, 5–35

BC_LAT_DATA_PATTERN Cbox CSR, 4–48
defined, 5–35

BC_LAT_TAG_PATTERN Cbox CSR, 4–48
defined, 5–35

BC_LATE_WRITE_NUM Cbox CSR, 4–49
defined, 5–35

BC_LATE_WRITE_UPPER Cbox CSR
defined, 5–35

BC_PENTIUM_MODE Cbox CSR, 4–52
defined, 5–35

BC_PERR error status in C_STAT, 5–41

BC_RCV_MUX_CNT_PRESET Cbox CSR
defined, 5–36

BC_RCV_MUX_PRESET_CNT Cbox CSR, 4–48

BC_RD_RD_BUBBLE Cbox CSR
defined, 5–34

BC_RD_WR_BUBBLES Cbox CSR, 4–49
defined, 5–34

BC_RDVICTIM Cbox CSR, 4–23, 4–26
defined, 5–34

BC_SIZE Cbox CSR, 4–51, 5–39, 7–12
Alpha 21264/EV67 Hardware Reference Manual Index–1

BC_SJ_BANK_ENABLE Cbox CSR
defined, 5–34

BC_TAG_DDM_FALL_EN Cbox CSR, 4–47
defined, 5–36

BC_TAG_DDM_RISE_EN Cbox CSR, 4–47
defined, 5–36

BC_WR_RD_BUBBLES Cbox CSR, 4–49
defined, 5–35

BC_WR_WR_BUBBLE Cbox CSR, 4–54
defined, 5–34

BC_WRT_STS Cbox CSR, 5–39, 7–13

Bcache
banking, 4–54
bubbles on the data bus, 4–49
clocking, 4–44
control pins, 4–52
data read transactions, 4–47
data single-bit correctable ECC error, 8–5
data single-bit correctable ECC error on a probe,

8–8
data write transactions, 4–48
error case summary for, 8–10
filling Dcache error, 8–6
filling Icache error, 8–5
forwarding clock pin groupings, E–1
maximum clock ratio, 4–42
port, 4–42
port pins, 4–43
programming the size of, 4–51
setting clock period, 4–45
structure of, 4–7
tag parity errors, 8–5
tag read transactions, 4–47
victim read during an ECB instruction error,

8–7
victim read during Dcache/Bcache miss error,

8–6
victim read error, 8–6

BcAdd_H signal pins, 3–3, 4–43
characteristics, 4–51

BcCheck_H signal pins, 3–3, 4–43

BcData_H signal pins, 3–3, 4–43

BcDataInClk_H signal pins, 3–3, 4–43
using, 4–53

BcDataOE_L signal pin, 3–3, 4–43

BcDataOutClk_x signal pins, 3–4, 4–43

BcDataWr_L signal pin, 3–4, 4–44

BcLoad_L signal pin, 3–4, 4–44

BcTag_H signal pins, 3–4, 4–44

BcTagDirty_H signal pin, 3–4, 4–44

BcTagInClk_H signal pin, 3–4, 4–44
using, 4–53

BcTagOE_L signal pin, 3–4, 4–44

BcTagOutClk_x signal pins, 3–4, 4–44

BcTagParity_H signal pin, 3–4, 4–44

BcTagShared_H signal pin, 3–4, 4–44

BcTagValid_H signal pin, 3–4, 4–44

BcTagWr_L signal pin, 3–4, 4–44

BcVref signal pin, 3–4, 4–44

Bidirectional differential amplifier receiver -
open-drain. See B_DA_OD

Bidirectional differential amplifier receiver -
push-pull. See B_DA_PP

Binary multiple abbreviations, xix

BiST. See Built-in self-test

Bit notation conventions, xx

Bounder-scan register, B–1

Branch history table, initialized by BiST, 7–12

Branch mispredication, pipeline abort delay from,
2–16

Branch predictor, 2–3

BSDL description of the boundary-scan register,
B–1

Built-in self-test, 11–5
load, 7–6

C
C_ADDR Cbox read register field, 5–41

C_DATA Cbox data register, 5–33
at power-on reset state, 7–16

C_SHFT Cbox shift register, 5–33
at power-on reset state, 7–16

C_STAT Cbox read register field, 5–41

C_STS Cbox read register field, 5–41

C_SYNDROME_0 Cbox read register field, 5–41

C_SYNDROME_1 Cbox read register field, 5–41

Cache block states, 4–9
response to 21264/EV67 commands, 4–10
transitions, 4–10

Cache coherency, 4–8

CALL_PAL entry points, 6–12

Caution convention, xx
Index–2 Alpha 21264/EV67 Hardware Reference Manual

Cbox
data register C_DATA, 5–33
described, 2–11, 4–3
duplicate Dcache tag array, 2–11
duplicate Dcache tag array with, 4–13
HW_MTPR and HW_MFPR to CSR, D–15
I/O write buffer, 2–11
internal processor registers, 5–3
probe queue, 2–11
read register, 5–41
shift register C_SHFT, 5–33
victim address file, 2–11
WRITE_MANY chain, 5–38
WRITE_MANY chain example, 5–39
WRITE_ONCE chain, 5–33

CC cycle counter register, 5–3
at power-on reset state, 7–15

CC_CTL cycle counter control register, 5–3
at power-on reset state, 7–15

CFR_EV6CLK_DELAY Cbox CSR, defined, 5–38

CFR_FRMCLK_DELAY Cbox CSR, defined, 5–38

CFR_GCLK_DELAY Cbox CSR, defined, 5–38

ChangeToDirtyFail, SysDc command, 4–10, 4–11,
4–12

ChangeToDirtySuccess, SysDc command, 4–10,
4–11, 4–12

Choice predictor, 2–5

ChxToDirty, 21264/EV67 command, 4–12

CLAMP public instruction, B–1

Clean cache block state, 4–9

Clean/Shared cache block state, 4–10

CleanToDirty, 21264/EV67 command, 4–22, 4–40
system probes, with, 4–41

CleanVictimBlk, 21264/EV67 command, 4–22,
4–39

ClkFwdRst_H signal pin, 3–4, 4–30
with system initialization, 7–7

ClkIn_x signal pins, 3–4

Clock forwarding, 7–4

CLR_MAP clear virtual-to-physical map register,
5–21

at power-on reset state, 7–15
CMOV instruction, special cases of, 2–26

COLD reset machine state, 7–17

Commands
21264/EV67 to system, 4–19
system to 21264/EV67, 4–26
when to NXM, 4–38

Conventions, xix
abbreviations, xix
address, xx
aligned, xx
bit notation, xx
caution, xx
data units, xxi
do not care, xxi
external, xxi
field notation, xxi
note, xxi
numbering, xxi
ranges and extents, xxi
register figures, xxi
signal names, xxi
unaligned, xx
X, xxi

CTAG, 4–13

D
Data cache. See Dcache

Data merging
load instructions in I/O address space, 2–28
store instructions in I/O address space, 2–29

Data transfer commands, system, 4–28

Data types
floating point support, 1–2
integer supported, 1–2
supported, 1–1

Data units convention, xxi

Data wrap, 4–36
double-pumped, 4–38
interleaved, 4–37

DATA_VALID_DLY Cbox CSR, defined, 5–38

dc
characteristics of, 9–2
input pin capacitance defined, 9–2
test load defined, 9–2
voltage on signal pins, 9–1

DC_CTL Dcache control register, 5–30
at power-on reset state, 7–16
error correction and, 8–2

DC_PERR error status in C_STAT, 5–41

DC_STAT Dcache status register, 5–31
at power-on reset state, 7–16
Alpha 21264/EV67 Hardware Reference Manual Index–3

Dcache
described, 2–12
duplicate tag parity errors, 8–4
duplicate tags with, 4–13
error case summary for, 8–9
fill from Bcache error, 8–6
fill from memory errors, 8–7
initialized by BiST, 7–12
pipelined, 2–16
single-bit correctable ECC error, 8–3
store second error, 8–4
tag parity errors, 8–2
victim extracts, 8–4

Dcache data single-bit correctable ECC errors, 8–3

Dcache tag, initialized by BiST, 7–12

DCOK_H signal pin, 3–4
power-on reset flow, 7–1

DCVIC_THRESHOLD Cbox CSR, defined, 5–34

DFAULT fault, 6–13

Differential 21264/EV67 clocks, 7–19

Differential reference clocks, 7–19

Dirty cache block state, 4–10

Dirty/Shared cache block state, 4–10

Do not care convention, xxi

Double-bit fill errors, 8–9

DOWN1 reset machine state, 7–18

DOWN2 reset machine state, 7–19

DOWN3 reset machine state, 7–19

Dstream translation buffer, 2–13
See also DTB

DSTREAM_BC_DBL error status in C_STAT,
5–41

DSTREAM_BC_ERR error status in C_STAT,
5–41

DSTREAM_DC_ERR error status in C_STAT,
5–41

DSTREAM_MEM_DBL error status in C_STAT,
5–41

DSTREAM_MEM_ERR error status in C_STAT,
5–41

DTAG. See Duplicate Dcache tag array

DTB entries, writing multiple in same PAL flow,
D–19

DTB fill , 6–14

DTB, pipeline abort delay with, 2–16

DTB_ALTMODE alternate processor mode register,
5–26

at power-on reset state, 7–15

DTB_ASN0 address space number register 0
at power-on reset state, 7–16

DTB_ASN0 address space number registers 0, 5–28

DTB_ASN1 address space number register 1, 5–28
at power-on reset state, 7–16

DTB_IA invalidate-all process register, 5–27
at power-on reset state, 7–15

DTB_IAP invalidate-all (ASM=0) process register,
5–27

at power-on reset state, 7–15
DTB_IS0 invalidate single (array 0) register, 5–27

at power-on reset state, 7–16
DTB_IS1 invalidate single (array 1) register, 5–27

at power-on reset state, 7–16
DTB_PTE0 array write 0 register

at power-on reset state, 7–15
MTPR to, D–12

DTB_PTE0 array write register 0, 5–26

DTB_PTE1 array write 1 register, 5–26
at power-on reset state, 7–15
MTPR to, D–12

DTB_TAG0 array write 0 register, 5–25
at power-on reset state, 7–15
MTPR to, D–12

DTB_TAG1 array write 1 register, 5–25
at power-on reset state, 7–15
MTPR to, D–12

DTBM_DOUBLE_3 fault, 6–13

DTBM_DOUBLE_4 fault, 6–13

DTBM_SINGLE fault, 6–13

Dual-data rate SSRAM pin assignments, E–3

DUP_TAG_ENABLE Cbox CSR, defined, 5–34

Duplicate Dcache tag array, 2–11

Duplicate Dcache, initialized by BiST, 7–12

Duplicate tag array, Cbox copy. See CTAG

Duplicate tag stores, Bcache, 4–7

E
Ebox

cycle counter control register CC_CTL, 5–3
cycle counter register CC, 5–3
described, 2–8
executed in pipeline, 2–16
internal processor registers, 5–1
slotting, 2–18
subclusters, 2–18
virtual address control register VA_CTL, 5–4
virtual address format register VA_FORM, 5–5
virtual address register, 5–4

ECB instruction, external interface reference, 4–5
Index–4 Alpha 21264/EV67 Hardware Reference Manual

ECC
64-bit data and check bit code, 8–2
Dcache data single-bit correctable errors, 8–3
for system data bus, 8–2
memory/system port single-bit correctable

errors, 8–7
store instructions, 8–4

ENABLE_EVICT Cbox CSR, 4–23, 5–39

ENABLE_PROBE_CHECK Cbox CSR
defined, 5–35

ENABLE_STC_COMMAND Cbox CSR, defined,
5–35

Energy star certification, 7–9

Error case summary, 8–9

Error correction code. See ECC

Error detection mechanisms, 8–1

EV6Clk_x signal pins, 3–4

Evict, 21264/EV67 command, 4–13, 4–22, 4–39

EVICT_ENABLE Cbox CSR, 7–13

EXC_ADDR exception address register, 5–8
after fault reset, 7–8
at power-on reset state, 7–15

EXC_SUM exception summary register, 5–13
at power-on reset state, 7–15

Exception and interrupt logic, 2–8

Exception condition summary, A–15

External cache and system interface unit. See Cbox

External convention, xxi

External interface initialization, 7–14

EXTEST public instruction, B–1

F
F31

load instructions with, 2–23
retire instructions with, 2–22

Fast data disable mode, 4–33

Fast data mode, 4–30, 4–31

FAST_MODE_DISABLE Cbox CSR, 4–30
defined, 5–34

Fault reset flow, 7–8

Fault reset sequence of operations, 7–9

FAULT_RESET reset machine state, 7–18

Fbox
described, 2–10
executed in pipeline, 2–16

FEN fault, 6–13

FetchBlk, 21264/EV67 command, 4–22, 4–39
system probes, with, 4–41

FetchBlkSpec, 21264/EV67 command, 4–22, 4–39

Field notation convention, xxi

Floating-point arithmetic trap, pipeline abort delay
with, 2–16

Floating-point control register, 2–36
PALcode emulation of, 6–11

Floating-point execution unit. See Fbox

Floating-point instructions
IEEE, A–9
independent, A–11
VAX , A–11

Floating-point issue queue, 2–7

Forwarding clock pin groupings, E–1

FPCR. See Floating-point control register

FQ. See Floating-point issue queue

FrameClk_x signal pins, 3–5, 4–30

G
GCLK, 7–19

Global predictor, 2–4

H
Heat sink center temperature, 10–1

Heat sink specifications, 10–3

HW_INT_CLR hardware interrupt clear register,
5–12

at power-on reset state, 7–15
updating, D–18

HW_LD PALcode instruction, 6–3, A–9, D–18

HW_MFPR PALcode instruction, 6–6, A–9

HW_MTPR PALcode instruction, 6–6, A–9

HW_REI PALcode instruction, A–9

HW_RET PALcode instruction, 6–5

HW_ST PALcode instruction, 6–4, A–9

I
I/O address space

instruction data merging, 2–29
load instruction data merging, 2–28
load instructions with, 2–28
store instructions with, 2–29

I/O write buffer, 2–11
defined, 2–32
Alpha 21264/EV67 Hardware Reference Manual Index–5

e

I_CTL Ibox control register, 5–15
after fault reset, 7–8
after warm reset, 7–11
at power-on reset state, 7–15
PALshadow registers, 6–11
through sleep mode, 7–10
VA_48 field update, D–17

I_DA pin type, 3–3, 9–2
values for, 9–3

I_DA_CLK pin type, 3–3, 9–2
values for, 9–3

I_DC_POWER pin type, 9–2

I_DC_REF pin type, 3–3, 9–2
values for, 9–3

I_STAT Ibox status register, 5–18
at power-on reset state, 7–15

IACV fault, 6–13

Ibox
branch predictor, 2–3
clear virtual-to-physical map register

CLR_MAP, 5–21
exception address register EXC_ADDR, 5–8
exception and interrupt logic, 2–8
exception summary register EXC_SUM, 5–13
floating-point issue queue, 2–7
hardware interrupt clear register HW_INT_CLR,

5–12
Ibox control register I_CTL, 5–15
Ibox process context register PCTX, 5–21
Ibox status register I_STAT, 5–18
Icache flush ASM register IC_FLUSH_ASM,

5–21
Icache flush register IC_FLUSH, 5–21
instruction fetch logic, 2–6
instruction virtual address format register

IVA_FORM, 5–9
instruction-stream translation buffer, 2–5
integer issue queue, 2–6
internal processor registers, 5–1
interrupt enable and current processor mode

register IER_CM, 5–9
interrupt summary register ISUM, 5–11
ITB invalidate single register ITB_IS, 5–7
ITB invalidate-all ASM (ASM=0) register

ITB_IAP, 5–7
ITB invalidate-all register ITB_IA, 5–7
ITB PTE array write register ITB_PTE, 5–6
ITB tag array write register ITB_TAG, 5–6
PAL base register PAL_BASE, 5–15
performance counter control register

PCTR_CTL, 5–23
ProfileMe register PMPC, 5–8
register rename maps, 2–6
retire logic, 2–8
retire logic and mapper, required sequence for,

D–1
sleep mode register SLEEP, 5–21
software interrupt request register SIRR, 5–10
subsections in, 2–2
virtual program counter logic, 2–2

IC_FLUSH Icache flush register
at power-on reset state, 7–15

IC_FLUSH_ASM Icache flush ASM register, 5–21

Icache
data errors, 8–2
error case summary for, 8–9
fill from Bcache error, 8–5
fill from memory error, 8–7
flush register IC_FLUSH, 5–21
initialized by BiST, 7–12
tag, initialized by BiST, 7–12

IEEE 1149.1
notes for compliance to, 11–7
test port reset, 7–16
test port, operation of, 11–3

IEEE floating-point conformance, A–14

IEEE floating-point instruction opcodes, A–9

IER_CM interrupt enable and current processor mod
register, 5–9

at power-on reset state, 7–15
IMPLVER instruction values, 2–38

Independent floating-point function codes, A–11

INIT_MODE Cbox CSR, 5–39, 7–12

Initialization mode processing, 7–12

Input dc reference pin. See I_DC_REF pin type

Input differential amplifier clock receiver. See
I_DA_CLK pin type

Input differential amplifier receiver. See I_DA pin
type

Instruction fetch logic, 2–6

Instruction fetch, issue, and retire unit. See Ibox

Instruction fetch, pipelined, 2–14

Instruction issue rules, 2–16

Instruction latencies, pipelined, 2–20

Instruction ordering, 2–30

Instruction retire latencies, minimum, 2–21

Instruction retire rules
F31, 2–22
floating-point divide, 2–22
floating-point square root, 2–22
pipelined, 2–21
R31, 2–22

Instruction slot, pipelined, 2–14

Instruction-stream translation buffer, 2–5

Int_Add_BcClk internal forwarded clock, 4–44,
4–48

Int_Data_BcClk internal forwarded clock, 4–44,
4–49

INT_FWD_CLK clock queue, 4–30

Integer arithmetic trap, pipeline abort delay with,
Index–6 Alpha 21264/EV67 Hardware Reference Manual

2–16

Integer execution unit. See Ebox

Integer issue queue, 2–6
pipelined, 2–15

Internal processor registers, 5–1
accessing, 6–7
explicitly written, 6–8
implicitly written, 6–9
ordering access, 6–9
paired fetch order, 6–9
scoreboard bits for, 6–8

INTERRUPT interrupt, 6–14

INVAL_TO_DIRTY Cbox CSR, 4–23
programming, 4–23

INVAL_TO_DIRTY_ENABLE Cbox CSR, 5–39,
7–12

InvalToDirty, 21264/EV67 command, 4–12, 4–22,
4–40

system probes, with, 4–41
InvalToDirtyVic, 21264/EV67 command, 4–22,

4–40

IOWB. See I/O write buffer

IPRs. See Internal processor registers

IQ. See Integer issue queue

IRQ_H signal pins, 3–5

Istream, 2–5

Istream memory references
translation to external references, 4–5

ISTREAM_BC_DBL error status in C_STAT, 5–41

ISTREAM_BC_ERR error status in C_STAT, 5–41

ISTREAM_MEM_DBL error status in C_STAT,
5–41

ISTREAM_MEM_ERR error status in C_STAT,
5–41

ISUM interrupt summary register, 5–11
at power-on reset state, 7–15

ITB, 2–5

ITB fill , 6–16

ITB miss, pipeline abort delay with, 2–16

ITB_IA invalidate-all register, 5–7
at power-on reset state, 7–15

ITB_IAP invalidate-all (ASM=0) register, 5–7
at power-on reset state, 7–15

ITB_IS invalidate single register, 5–7
at power-on reset state, 7–15

ITB_MISS fault, 6–14

ITB_PTE array write register, 5–6
at power-on reset state, 7–14

ITB_TAG array write register, 5–6
at power-on reset state, 7–14

IVA_FORM instruction virtual address format
register, 5–9

at power-on reset state, 7–15

J
JITTER_CMD Cbox CSR, defined, 5–38

JMP misprediction, in PALcode, D–15

JSR misprediction
in PALcode, D–15
pipeline abort delay with, 2–16

JSR_COR misprediction, in PALcode, D–15

Junction temperature, 9–1

L
Late-write non-bursting SSRAM pin assignments,

E–2

LDBU instruction, normal prefetch with, 2–23

LDF instruction, normal prefetch with, 2–23

LDG instruction, normal prefetch with, 2–23

LDQ instruction, prefetch with evict next, 2–24

LDS instruction, prefetch with modify intent, 2–23

LDT instruction, normal prefetch with, 2–23

LDWU instruction, normal prefetch with, 2–23

LDx_L instructions
in-order processing for, 4–15
locking mechanism for, 4–14

Load hit speculation, 2–24

Load instructions
ECC with, 8–3
I/O reference ordering, 2–31
Mbox order traps, 2–31
memory reference ordering, 2–31
translation to external interface, 4–5

Load queue, described, 2–13

Load-load order trap, 2–32

Local predictor, 2–4

Lock mechanism, 4–14

Logic symbol, the 21264/EV67, 3–2

LQ. See Load queue

M
M_CTL Mbox control register, 5–29

at power-on reset state, 7–16
MAF. See Miss address file

MB instruction processing, 2–33
Alpha 21264/EV67 Hardware Reference Manual Index–7

MB, 21264/EV67 command, 4–13, 4–21

MB_CNT Cbox CSR, operation, 2–32

MBDone, SysDc command, 4–13

Mbox
Dcache control register DC_CTL, 5–30
Dcache status register DC_STAT, 5–31
described, 2–12
Dstream translation buffer, 2–13
DTB address space number registers 0 and 1

DTB_ASNx, 5–28
DTB alternate processor mode register

DTB_ALTMODE, 5–26
DTB invalidate-all (ASM=0) process register

DTB_IAP, 5–27
DTB invalidate-all process register DTB_IA,

5–27
DTB invalidate-single registers 0 and 1

DTB_ISx, 5–27
DTB PTE array write registers 0 and 1

DTB_PTEx, 5–26
DTB tag array write registers 0 and 1

DTB_TAGx, 5–25
internal processor registers, 5–2
load queue, 2–13
Mbox control register M_CTL, 5–29
memory management status register

MM_STAT, 5–28
miss address file, 2–13
order traps, 2–31
pipeline abort delay with order trap, 2–16
pipeline abort delays, 2–16
store queue, 2–13

MBOX_BC_PRB_STALL Cbox CSR, defined,
5–35

MCHK interrupt, 6–14

Mechanical specifications, 3–17

Memory
error case summary for, 8–10
filling Dcache errors, 8–7
filling Icache errors, 8–7

Memory address space
load instructions with, 2–27
merging rules, 2–30
store instructions with, 2–29

Memory barrier instructions
translation to external interface, 4–5

Memory barriers, 2–32

Memory reference unit. See Mbox

MF_FPCR instruction, 6–12

Microarchitecture
summarized, 2–1

MiscVref signal pin, 3–5

Miss address file, 2–13
I/O address space loads, 2–28
memory address space loads, 2–28
memory address space stores, 2–29

MM_STAT memory management status register,
5–28

at power-on reset state, 7–16
MT_FPCR instruction, 6–12

MT_FPCR synchronous trap, 6–14

N
NoConnect pin type, 3–3

Nonexistent memory
processing, 4–38

NOP, 21264/EV67 command, 4–21

Note convention, xxi

Numbering convention, xxi

NXM. See Nonexistent memory

NZNOP, 21264/EV67 command, 4–21

O
O_OD pin type, 3–3, 9–2

values for, 9–4
O_OD_TP pin type, 3–3, 9–2

values for, 9–4
O_PP pin type, 3–3, 9–2

values for, 9–5
O_PP_CLK pin type, 3–3, 9–2

values for, 9–5
OPCDEC fault, 6–13

Opcodes
IEEE floating-point, A–9
independent floating-point, A–11
reserved for Compaq, A–8
reserved for PALcode, A–9
summary of, A–12
VAX floating-point, A–11

Open-drain driver for test pins. See O_OD_TP

Open-drain output driver. See O_OD pin type

Operating temperature, 10–1

P
Packaging, 3–18

Paired instruction fetch order, 6–9

PAL_BASE register, 5–15
after fault reset, 7–8
after warm reset, 7–11
at power-on reset state, 7–15
through sleep mode, 7–10
Index–8 Alpha 21264/EV67 Hardware Reference Manual

PALcode
conditional branches in, D–14
described, 6–1
entries points for, 6–12
exception entry points, 6–13
guidelines for, D–1
HW_LD instruction, 6–3
HW_MFPR instruction, 6–6
HW_MTPR instruction, 6–6
HW_RET instruction, 6–5
HW_ST instruction, 6–4
required function codes, 6–3
reserved opcodes for, 6–3
restrictions for, D–1

PALmode environment, 6–2

PALshadow registers, 6–11

PCTR_CTL performance counter control counter
register

updating, D–17
PCTR_CTL performance counter control register,

5–23
at power-on reset state, 7–15
updating, D–18

PCTX Ibox process context register, 5–21
after fault reset, 7–8
after warm reset, 7–11
at power-on reset state, 7–15
through sleep mode, 7–10

Phase-lock loop. See PLL

Physical address considerations, 4–4

Pipeline
abort delay, 2–16
Dcache access, 2–16
Ebox execution, 2–16
Ebox slotting, 2–18
Fbox execution, 2–16
instruction fetch, 2–14
instruction group definitions, 2–17
instruction issue rules, 2–16
instruction latencies, 2–20
instruction retire rules, 2–21
instruction slot, 2–14
issue queue, 2–15
organization, 2–13
register maps, 2–15
register reads, 2–16

PLL
description, 7–19
output clocks, 7–19
ramp up, 7–6

PLL_IDD, values for, 9–3

PLL_VDD signal pin, 3–5

PLL_VDD, values for, 9–3

PllBypass_H signal pin, 3–5

PMPC ProfileMe register, 5–8

Ports
IEEE 1149.1, 11–3
serial terminal, 11–2
SROM load, 11–2

Power
maximum, 9–1
sleep defined, 9–3

Power supply sequencing, 9–5

Power-on
flow signals and constraints, 7–7
reset flow, 7–1
self-test and initialization, 11–5
timing sequence, 7–3

PRB_TAG_ONLY Cbox CSR, 4–28
defined, 5–34

Privileged architecture library code
SeePALcode

Probe commands, system, 4–26, 4–40

Probe queue, 2–11

PROBE_BC_ERR error status in C_STAT, 5–41

ProbeResponse, 21264/EV67 command, 4–21,
4–24, 4–39

ProfileMe mode, 6–20

Push-pull output clock driver. See O_PP_CLK

Push-pull output driver. See O_PP

R
R31

load instructions with, 2–23
retire instructions with, 2–22
speculative loads to, 2–25

RAMP1 reset machine state, 7–17

RAMP2 reset machine state, 7–18

Ranges and extents convention, xxi

RdBlk, 21264/EV67 command, 4–39

RdBlkI, 21264/EV67 command, 4–39

RdBlkMod, 21264/EV67 command, 4–39

RdBlkModSpec, 21264/EV67 command, 4–39

RdBlkModVic, 21264/EV67 command, 4–39

RdBlkSpec, 21264/EV67 command, 4–39

RdBlkSpecI, 21264/EV67 command, 4–39

RdBlkVic, 21264/EV67 command, 4–39

RdBlkVicI, 21264/EV67 command, 4–39

RdBytes, 21264/EV67 command, 4–39

RdLWs, 21264/EV67 command, 4–39

RdQWs, 21264/EV67 command, 4–39

RDVIC_ACK_INHIBIT Cbox CSR, 4–25, 4–26
defined, 5–34
Alpha 21264/EV67 Hardware Reference Manual Index–9

ReadBlk, 21264/EV67 command, 4–21
system probes, with, 4–41

ReadBlkI, 21264/EV67 command, 4–22

ReadBlkMod, 21264/EV67 command, 4–22
system probes, with, 4–41

ReadBlkModSpec, 21264/EV67 command, 4–22

ReadBlkModVic, 21264/EV67 command, 4–22

ReadBlkSpec, 21264/EV67 command, 4–22

ReadBlkSpecI, 21264/EV67 command, 4–22

ReadBlkVic, 21264/EV67 command, 4–22

ReadBlkVicI, 21264/EV67 command, 4–22

ReadBytes, 21264/EV67 command, 4–22

ReadData, SysDc command, 4–10, 4–11, 4–12

ReadDataDirty, SysDc command, 4–10, 4–11, 4–12

ReadDataError, SysDc command, 4–10, 4–11,
4–12, 4–13

ReadDataShared, SysDc command, 4–10, 4–11,
4–12

ReadDataShared/Dirty, SysDc command, 4–10,
4–11, 4–12

ReadLWs, 21264/EV67 command, 4–22

ReadQWs, 21264/EV67 command, 4–22

Register access abbreviations, xix

Register figure conventions, xxi

Register maps, pipelined, 2–15

Register rename maps, 2–6

Replay traps, 2–31

RESET interrupt, 6–14

Reset state machine
major operations of, 7–1

Reset_L signal pin, 3–5
power-on reset flow, 7–1

RET misprediction, in PALcode, D–15

Retire logic, 2–8, D–1

RO,n convention, xix

RUN reset machine state, 7–18

RW,n convention, xx

S
SAMPLE public instruction, B–1

Scrubbing single-bit errors, D–19

I_CTL Ibox control register
updating I_CTL, D–18

Second-level cache. See Bcache

Security holes
with UNPREDICTABLE results, xxii

Serial terminal port, 11–2

SET_DIRTY_ENABLE Cbox CSR, 4–23, 5–39,
7–12

programming, 4–24
SharedToDirty, 21264/EV67 command, 4–22, 4–40

system probes, with, 4–41
Signal name convention, xxi

Signal pin types, defined, 3–3

Signal pins
test, 11–1

Single-bit error scribbing, D–19

Single-bit errors in hardware, correcting, 8–2

SIRR software interrupt request register, 5–10
at power-on reset state, 7–15

Sleep mode
flow, 7–9
timing sequence, 7–11

SLEEP mode register, 5–21
at power-on reset state, 7–15

Spare pin type, 3–3

SPEC_READ_ENABLE Cbox CSR, 4–23
defined, 5–35

SQ. See Store queue

SROM content map, 11–6

SROM initialization, 11–5

SROM interface, in microarchitecture, 2–13

SROM line, Icache bit fields in a, 11–6

SROM load, 7–6

SROM load operation, 11–2

SromClk_H signal pin, 3–5, 11–2

SromData_H signal pin, 3–5, 11–2

SromOE_L signal pin, 3–5, 11–2

SSRAMs
dual-data rate pin assignments, E–3
late-write non-bursting pin assignments, E–2

STC_ENABLE Cbox CSR, 4–24

STCChangeToDirty, 21264/EV67 command, 4–13,
4–22, 4–40

Storage temperature, 9–1

Store instructions
Dcache ECC errors with, 8–4
I/O address space, 2–29
I/O reference ordering, 2–31
Mbox order traps, 2–31
memory address space, 2–29
memory reference ordering, 2–31
translation to external interface, 4–5
Index–10 Alpha 21264/EV67 Hardware Reference Manual

Store queue, 2–13

Store-load order trap, 2–32

STx_C instructions
in-order processing for, 4–15
locking mechanism for, 4–14

SUM bit. See Summary bit

Summary bit, in FPCR, 2–36

Supply voltage signal pins. See I_DC_POWER pin
type

Synchronous static random-access memory. See
SSRAMs

SYS_BPHASE_LD_VECTOR Cbox CSR, 4–18
defined, 5–38

SYS_BUS_FORMAT Cbox CSR, defined, 5–34

SYS_BUS_SIZE Cbox CSR, 4–21
defined, 5–34

SYS_CLK_DELAY Cbox CSR, defined, 5–36

SYS_CLK_LD_VECTOR Cbox CSR, 4–18
defined, 5–38

SYS_CLK_RATIO Cbox CSR, defined, 5–34

SYS_CLKFWD_ENABLE Cbox CSR, defined,
5–36

SYS_CPU_CLK_DELAY Cbox CSR
defined, 5–38

SYS_DDM_FALL_EN Cbox CSR, 4–18
defined, 5–36

SYS_DDM_RD_FALL_EN Cbox CSR, 4–18

SYS_DDM_RD_RISE_EN Cbox CSR, 4–19

SYS_DDM_RISE_EN Cbox CSR, 4–18
defined, 5–36

SYS_DDMF_ENABLE Cbox CSR, 4–19
defined, 5–36

SYS_DDMR_ENABLE Cbox CSR, 4–19
defined, 5–36

SYS_FDBK_EN Cbox CSR, 4–18
defined, 5–38

SYS_FRAME_LD_VECTOR Cbox CSR, 4–19,
4–31

defined, 5–38
SYS_RCV_MUX_CNT_PRESET Cbox CSR, 4–31

defined, 5–36
SYS_RCV_MUX_PRESET Cbox CSR, 4–33

SysAddIn_L signal pins, 3–5

SysAddInClk_L signal pin, 3–5

SysAddOut_L signal pins, 3–5

SysAddOutClk_L signal pin, 3–5

SYSBUS_ACK_LIMIT Cbox CSR, 4–25
defined, 5–34

SYSBUS_FORMAT Cbox CSR, 4–21

SYSBUS_MB_ENABLE Cbox CSR, 4–23
defined, 5–34
operation, 2–32

SYSBUS_VIC_LIMIT Cbox CSR, 4–26
defined, 5–34

SysCheck_L signal pin, 3–5

SYSCLK, 4–31

SysData_L signal pin, 3–5

SysDataInClk_H signal pin, 3–5

SysDataInValid_L signal pin, 3–5
rules for, 4–34

SysDataOutClk_L signal pin, 3–5

SysDataOutValid_L signal pin, 3–5
rules for, 4–35

SysDc commands, 4–11
system probes, with, 4–42

SysDc field, system to 21264/EV67 commands,
4–29

SYSDC_DELAY Cbox CSR, 4–32
defined, 5–38

SysFillValid_L signal pin, 3–5
rules for, 4–35

System clock ratio configuration, 7–4

System initialization, 7–7

System interface clocks, programming, 4–18

System port, 4–16

SysVref signal pin, 3–6

T
Tag parity errors, 8–2

TB fill flow , 2–34, 6–14

Tck_H signal pin, 3–6

Tdi_H signal pin, 3–6

Tdo_H signal pin, 3–6

Temperatures
maximium average per frequency, 10–2
operating, 10–1

Terminology, xix

TestStat_H signal pin, 3–6
purpose for, 11–4
with BiST and SROM load, 7–6

Thermal design characteristics, 10–7

Tms_H signal pin, 3–6

Traps
load-load order, 2–32
Mbox order, 2–31
replay, 2–31
store-load order, 2–32
Alpha 21264/EV67 Hardware Reference Manual Index–11

Trst_L signal pin, 3–6

U
UNALIGN fault, 6–13

Unaligned convention, xx

V
VA virtual address register, 5–4

at power-on reset state, 7–15
VA_CTL virtual address control register, 5–4

at power-on reset state, 7–15
updating VA_48 field, D–18

VA_FORM virtual address format register, 5–5
at power-on reset state, 7–15

VAF. See Victim address file

VAX floating-point instruction opcodes, A–11

VBIAS defined, 9–2

VDB. See Victim data buffer

VDBFlushRequest, 21264/EV67 command, 4–21

VDD signal pin list, 3–16

VDD, values for, 9–3

VDF. See Victim data file

Vdiff defined, 9–2

Victim address file
described, 2–11

Victim address file, described, 2–11

Victim data buffer (VDB), 4–8

Virtual address support, 1–2

Virtual program counter logic, 2–2

VPC. See Virtual program counter logic

VREF, values for, 9–3

VSS signal pin list, 3–16

W
WAIT_BiSI reset machine state, 7–18

WAIT_BiST reset machine state, 7–18

WAIT_ClkFwdRst0 reset machine state, 7–18

WAIT_ClkFwdRst1 reset machine state, 7–18

WAIT_INTERRUPT reset machine state, 7–19

WAIT_NOMINAL reset machine state, 7–17

WAIT_RESET reset machine state, 7–18

WAIT_SETTLE reset machine state, 7–17

WAKEUP interrupt, 6–14

WAR, eliminating, 2–6

Warm reset flow, 7–11

WAW
eliminating, 2–6

WMB instruction processing, 2–34

WO,n convention, xx

Wrap order
double-pumped, 4–38
interleaved, 4–37

WrBytes, 21264/EV67 command, 4–22, 4–39

Write hint instructions, translation to external
interface, 4–5

WRITE_MANY chain, 5–38
example, 5–39
values for Bcache initialization, 7–12

WRITE_MANY register
after fault reset, 7–8
after warm reset, 7–11
through sleep mode, 7–10

WRITE_ONCE chain description, 5–33

Write-after-read. See WAR

Write-after-write. See WAW

WrLWs, 21264/EV67 command, 4–22, 4–39

WrQWs, 21264/EV67 command, 4–22, 4–39

WrVictimBlk, 21264/EV67 command, 4–22, 4–39
system probes, with, 4–41

X
X convention, xxi
Index–12 Alpha 21264/EV67 Hardware Reference Manual

	Table of Contents
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	A
	B
	C
	D
	E

	Figures
	Tables
	Preface
	Introduction
	1.1� The Architecture
	1.1.1� Addressing
	1.1.2� Integer Data Types
	1.1.3� Floating-Point Data Types

	1.2� 21264/EV67 Microprocessor Features

	Internal Architecture
	2.1� 21264/EV67 Microarchitecture
	2.1.1� Instruction Fetch, Issue, and Retire Unit
	2.1.1.1� Virtual Program Counter Logic
	2.1.1.2� Branch Predictor
	2.1.1.3� Instruction-Stream Translation Buffer
	2.1.1.4� Instruction Fetch Logic
	2.1.1.5� Register Rename Maps
	2.1.1.6� Integer Issue Queue
	2.1.1.7� Floating-Point Issue Queue
	2.1.1.8� Exception and Interrupt Logic
	2.1.1.9� Retire Logic

	2.1.2� Integer Execution Unit
	2.1.3� Floating-Point Execution Unit
	2.1.4� External Cache and System Interface Unit
	2.1.4.1� Victim Address File and Victim Data File
	2.1.4.2� I/O Write Buffer
	2.1.4.3� Probe Queue
	2.1.4.4� Duplicate Dcache Tag Array

	2.1.5� Onchip Caches
	2.1.5.1� Instruction Cache
	2.1.5.2� Data Cache

	2.1.6� Memory Reference Unit
	2.1.6.1� Load Queue
	2.1.6.2� Store Queue
	2.1.6.3� Miss Address File
	2.1.6.4� Dstream Translation Buffer

	2.1.7� SROM Interface

	2.2� Pipeline Organization
	2.2.1� Pipeline Aborts

	2.3� Instruction Issue Rules
	2.3.1� Instruction Group Definitions
	2.3.2� Ebox Slotting
	2.3.3� Instruction Latencies

	2.4� Instruction Retire Rules
	2.4.1� Floating-Point Divide/Square Root Early Retire

	2.5� Retire of Operate Instructions into R31/F31
	2.6� Load Instructions to R31 and F31
	2.6.1� Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU, HW_LDL Instructions
	2.6.2� Prefetch with Modify Intent: LDS Instruction
	2.6.3� Prefetch, Evict Next: LDQ and HW_LDQ Instructions
	2.6.4� Prefetch with the LDx_L / STx_C Instruction Sequence

	2.7� Special Cases of Alpha Instruction Execution
	2.7.1� Load Hit Speculation
	2.7.2� Floating-Point Store Instructions
	2.7.3� CMOV Instruction

	2.8� Memory and I/O Address Space Instructions
	2.8.1� Memory Address Space Load Instructions
	2.8.2� I/O Address Space Load Instructions
	2.8.3� Memory Address Space Store Instructions
	2.8.4� I/O Address Space Store Instructions

	2.9� MAF Memory Address Space Merging Rules
	2.10� Instruction Ordering
	2.11� Replay Traps
	2.11.1� Mbox Order Traps
	2.11.1.1� Load-Load Order Trap
	2.11.1.2� Store-Load Order Trap

	2.11.2� Other Mbox Replay Traps

	2.12� I/O Write Buffer and the WMB Instruction
	2.12.1� Memory Barrier (MB/WMB/TB Fill Flow)
	2.12.1.1� MB Instruction Processing
	2.12.1.2� WMB Instruction Processing
	2.12.1.3� TB Fill Flow

	2.13� Performance Measurement Support—Performance Counters
	2.14� Floating-Point Control Register
	2.15� AMASK and IMPLVER Instruction Values
	2.15.1� AMASK
	2.15.2� IMPLVER

	2.16� Design Examples

	Hardware Interface
	3.1� 21264/EV67 Microprocessor Logic Symbol
	3.2� 21264/EV67 Signal Names and Functions
	3.3 � Pin Assignments
	3.4 � Mechanical Specifications
	3.5 � 21264/EV67 Packaging

	Cache and External Interfaces
	4.1� Introduction to the External Interfaces
	4.1.1� System Interface
	4.1.1.1� Commands and Addresses

	4.1.2� Second-Level Cache (Bcache) Interface

	4.2� Physical Address Considerations
	4.3� Bcache Structure
	4.3.1� Bcache Interface Signals
	4.3.2� System Duplicate Tag Stores

	4.4� Victim Data Buffer
	4.5� Cache Coherency
	4.5.1� Cache Coherency Basics
	4.5.2� Cache Block States
	4.5.3� Cache Block State Transitions
	4.5.4� Using SysDc Commands
	4.5.5� Dcache States and Duplicate Tags

	4.6� Lock Mechanism
	4.6.1� In-Order Processing of LDx_L/STx_C Instructions
	4.6.2� Internal Eviction of LDx_L Blocks
	4.6.3� Liveness and Fairness
	4.6.4� Managing Speculative Store Issues with Multiprocessor Systems

	4.7� System Port
	4.7.1� System Port Pins
	4.7.2� Programming the System Interface Clocks
	4.7.3� 21264/EV67-to-System Commands
	4.7.3.1� Bank Interleave on Cache Block Boundary Mode
	4.7.3.2� Page Hit Mode

	4.7.4� 21264/EV67-to-System Commands Descriptions
	4.7.5� ProbeResponse Commands (Command[4:0] = 00001)
	4.7.6� SysAck and 21264/EV67-to-System Commands Flow Control
	4.7.7� System-to-21264/EV67 Commands
	4.7.7.1� Probe Commands (Four Cycles)
	4.7.7.2� Data Transfer Commands (Two Cycles)

	4.7.8� Data Movement In and Out of the 21264/EV67
	4.7.8.1� 21264/EV67 Clock Basics
	4.7.8.2� Fast Data Mode
	4.7.8.3� Fast Data Disable Mode
	4.7.8.4� SysDataInValid_L and SysDataOutValid_L
	4.7.8.5� SysFillValid_L
	4.7.8.6� Data Wrapping

	4.7.9� Nonexistent Memory Processing
	4.7.10� Ordering of System Port Transactions
	4.7.10.1� 21264/EV67 Commands and System Probes
	4.7.10.2� System Probes and SysDc Commands

	4.8� Bcache Port
	4.8.1� Bcache Port Pins
	4.8.2� Bcache Clocking
	4.8.2.1� Setting the Period of the Cache Clock

	4.8.3� Bcache Transactions
	4.8.3.1� Bcache Data Read and Tag Read Transactions
	4.8.3.2� Bcache Data Write Transactions
	4.8.3.3� Bubbles on the Bcache Data Bus

	4.8.4� Pin Descriptions
	4.8.4.1� BcAdd_H[23:4]
	4.8.4.2� Bcache Control Pins
	4.8.4.3� BcDataInClk_H and BcTagInClk_H

	4.8.5� Bcache Banking
	4.8.6� Disabling the Bcache for Debugging

	4.9� Interrupts

	Internal Processor Registers
	5.1� Ebox IPRs
	5.1.1� Cycle Counter Register – CC
	5.1.2� Cycle Counter Control Register – CC_CTL
	5.1.3� Virtual Address Register – VA
	5.1.4� Virtual Address Control Register – VA_CTL
	5.1.5� Virtual Address Format Register – VA_FORM

	5.2� Ibox IPRs
	5.2.1� ITB Tag Array Write Register – ITB_TAG
	5.2.2� ITB PTE Array Write Register – ITB_PTE
	5.2.3� ITB Invalidate All Process (ASM=0) Register – ITB_IAP
	5.2.4� ITB Invalidate All Register – ITB_IA
	5.2.5� ITB Invalidate Single Register – ITB_IS
	5.2.6� ProfileMe PC Register – PMPC
	5.2.7� Exception Address Register – EXC_ADDR
	5.2.8� Instruction Virtual Address Format Register — IVA_FORM
	5.2.9� Interrupt Enable and Current Processor Mode Register – IER_CM
	5.2.10� Software Interrupt Request Register – SIRR
	5.2.11� Interrupt Summary Register – ISUM
	5.2.12� Hardware Interrupt Clear Register – HW_INT_CLR
	5.2.13� Exception Summary Register – EXC_SUM
	5.2.14� PAL Base Register – PAL_BASE
	5.2.15� Ibox Control Register – I_CTL
	5.2.16� Ibox Status Register – I_STAT
	5.2.17� Icache Flush Register – IC_FLUSH
	5.2.18� Icache Flush ASM Register – IC_FLUSH_ASM
	5.2.19� Clear Virtual-to-Physical Map Register – CLR_MAP
	5.2.20� Sleep Mode Register – SLEEP
	5.2.21� Process Context Register – PCTX
	5.2.22� Performance Counter Control Register – PCTR_CTL

	5.3� Mbox IPRs
	5.3.1� DTB Tag Array Write Registers 0 and 1 – DTB_TAG0, DTB_TAG1
	5.3.2� DTB PTE Array Write Registers 0 and 1 – DTB_PTE0, DTB_PTE1
	5.3.3� DTB Alternate Processor Mode Register – DTB_ALTMODE
	5.3.4� Dstream TB Invalidate All Process (ASM=0) Register – DTB_IAP
	5.3.5� Dstream TB Invalidate All Register – DTB_IA
	5.3.6� Dstream TB Invalidate Single Registers 0 and 1 – DTB_IS0,1
	5.3.7� Dstream TB Address Space Number Registers 0 and 1 – DTB_ASN0,1
	5.3.8� Memory Management Status Register – MM_STAT
	5.3.9� Mbox Control Register – M_CTL
	5.3.10� Dcache Control Register – DC_CTL
	5.3.11� Dcache Status Register – DC_STAT

	5.4� Cbox CSRs and IPRs
	5.4.1� Cbox Data Register – C_DATA
	5.4.2� Cbox Shift Register – C_SHFT
	5.4.3� Cbox WRITE_ONCE Chain Description
	5.4.4� Cbox WRITE_MANY Chain Description
	5.4.5� Cbox Read Register (IPR) Description

	Privileged Architecture Library Code
	6.1� PALcode Description
	6.2� PALmode Environment
	6.3� Required PALcode Function Codes
	6.4� Opcodes Reserved for PALcode
	6.4.1� HW_LD Instruction
	6.4.2� HW_ST Instruction
	6.4.3� HW_RET Instruction
	6.4.4� HW_MFPR and HW_MTPR Instructions

	6.5� Internal Processor Register Access Mechanisms
	6.5.1� IPR Scoreboard Bits
	6.5.2� Hardware Structure of Explicitly Written IPRs
	6.5.3� Hardware Structure of Implicitly Written IPRs
	6.5.4� IPR Access Ordering
	6.5.5� Correct Ordering of Explicit Writers Followed by Implicit Readers
	6.5.6� Correct Ordering of Explicit Readers Followed by Implicit Writers

	6.6� PALshadow Registers
	6.7� PALcode Emulation of the FPCR
	6.7.1� Status Flags
	6.7.2� MF_FPCR
	6.7.3� MT_FPCR

	6.8� PALcode Entry Points
	6.8.1� CALL_PAL Entry Points
	6.8.2� PALcode Exception Entry Points

	6.9� Translation Buffer (TB) Fill Flows
	6.9.1� DTB Fill
	6.9.2� ITB Fill

	6.10� Performance Counter Support
	6.10.1� General Precautions
	6.10.2� Aggregate Mode Programming Guidelines
	6.10.2.1� Aggregate Mode Precautions
	6.10.2.2� Operation
	6.10.2.3� Aggregate Counting Mode Description
	6.10.2.3.1� Cycle counting
	6.10.2.3.2� Retired instructions cycles
	6.10.2.3.3� Bcache miss or long latency probes cycles
	6.10.2.3.4� Mbox replay traps cycles

	6.10.2.4� Counter Modes for Aggregate Mode

	6.10.3� ProfileMe Mode Programming Guidelines
	6.10.3.1� ProfileMe Mode Precautions
	6.10.3.2� Operation
	6.10.3.3� ProfileMe Counting Mode Description
	6.10.3.3.1� Cycle counting
	6.10.3.3.2� Inum retire delay cycles
	6.10.3.3.3� Retired instructions cycles
	6.10.3.3.4� Bcache miss or long latency probes cycles
	6.10.3.3.5� Mbox replay traps cycles

	6.10.3.4� Counter Modes for ProfileMe Mode

	Initialization and Configuration
	7.1� Power-Up Reset Flow and the Reset_L and DCOK_H Pins
	7.1.1� Power Sequencing and Reset State for Signal Pins
	7.1.2� Clock Forwarding and System Clock Ratio Configuration
	7.1.3� PLL Ramp Up
	7.1.4� BiST and SROM Load and the TestStat_H Pin
	7.1.5� Clock Forward Reset and System Interface Initialization

	7.2� Fault Reset Flow
	7.3� Energy Star Certification and Sleep Mode Flow
	7.4� Warm Reset Flow
	7.5� Array Initialization
	7.6� Initialization Mode Processing
	7.7� External Interface Initialization
	7.8� Internal Processor Register Power-Up Reset State
	7.9� IEEE 1149.1 Test Port Reset
	7.10� Reset State Machine
	7.11� Phase-Lock Loop (PLL) Functional Description
	7.11.1 � Differential Reference Clocks
	7.11.2 � PLL Output Clocks
	7.11.2.1 � GCLK
	7.11.2.2 � Differential 21264/EV67 Clocks
	7.11.2.3 � Nominal Operating Frequency
	7.11.2.4 � Power-Up/Reset Clocking

	Error Detection and Error Handling
	8.1� Data Error Correction Code
	8.2� Icache Data or Tag Parity Error
	8.3� Dcache Tag Parity Error
	8.4� Dcache Data Single-Bit Correctable ECC Error
	8.4.1� Load Instruction
	8.4.2� Store Instruction (Quadword or Smaller)
	8.4.3� Dcache Victim Extracts

	8.5� Dcache Store Second Error
	8.6� Dcache Duplicate Tag Parity Error
	8.7� Bcache Tag Parity Error
	8.8� Bcache Data Single-Bit Correctable ECC Error
	8.8.1� Icache Fill from Bcache
	8.8.2� Dcache Fill from Bcache
	8.8.3� Bcache Victim Read
	8.8.3.1� Bcache Victim Read During a Dcache/Bcache Miss
	8.8.3.2� Bcache Victim Read During an ECB Instruction

	8.9� Memory/System Port Single-Bit Data Correctable ECC Error
	8.9.1� Icache Fill from Memory
	8.9.2� Dcache Fill from Memory

	8.10� Bcache Data Single-Bit Correctable ECC Error on a Probe
	8.11� Double-Bit Fill Errors
	8.12� Error Case Summary

	Electrical Data
	9.1� Electrical Characteristics
	9.2� DC Characteristics
	9.3� Power Supply Sequencing and Avoiding Potential Failure Mechanisms
	9.4� AC Characteristics

	Thermal Management
	10.1� Operating Temperature
	10.2� Heat Sink Specifications
	10.3� Thermal Design Considerations

	Testability and Diagnostics
	11.1� Test Pins
	11.2� SROM/Serial Diagnostic Terminal Port
	11.2.1� SROM Load Operation
	11.2.2� Serial Terminal Port

	11.3� IEEE 1149.1 Port
	11.4� TestStat_H Pin
	11.5� Power-Up Self-Test and Initialization
	11.5.1� Built-in Self-Test
	11.5.2� SROM Initialization
	11.5.2.1� Serial Instruction Cache Load Operation

	11.6� Notes on IEEE 1149.1 Operation and Compliance

	Alpha Instruction Set
	A.1� Alpha Instruction Summary
	A.2� Reserved Opcodes
	A.2.1� Opcodes Reserved for Compaq
	A.2.2� Opcodes Reserved for PALcode

	A.3� IEEE Floating-Point Instructions
	A.4� VAX Floating-Point Instructions
	A.5� Independent Floating-Point Instructions
	A.6� Opcode Summary
	A.7� Required PALcode Function Codes
	A.8� IEEE Floating-Point Conformance

	21264/EV67 Boundary-Scan Register
	B.1� Boundary-Scan Register
	B.1.1� BSDL Description of the Alpha 21264/EV67 Boundary-Scan Register

	Serial Icache Load Predecode Values
	PALcode Restrictions and Guidelines
	D.1� Restriction 1 : Reset Sequence Required by Retire Logic and Mapper
	D.2� Restriction 2 : No Multiple Writers to IPRs in Same Scoreboard Group
	D.3� Restriction 4 : No Writers and Readers to IPRs in Same Scoreboard Group
	D.4� Guideline 6 : Avoid Consecutive Read-Modify-Write-Read- Modify-Write
	D.5� Restriction 7 : Replay Trap, Interrupt Code Sequence, and STF/ ITOF
	D.6� Restriction 9 : PALmode Istream Address Ranges
	D.7� Restriction 10: Duplicate IPR Mode Bits
	D.8� Restriction 11: Ibox IPR Update Synchronization
	D.9� Restriction 12: MFPR of Implicitly-Written IPRs EXC_ADDR, IVA_FORM, and EXC_SUM
	D.10� Restriction 13 : DTB Fill Flow Collision
	D.11� Restriction 14 : HW_RET
	D.12� Guideline 16 : JSR-BAD VA
	D.13� Restriction 17: MTPR to DTB_TAG0/DTB_PTE0/DTB_TAG1/ DTB_PTE1
	D.14� Restriction 18: No FP Operates, FP Conditional Branches, FTOI, or STF in Same Fetch Block a...
	D.15� Restriction 19: HW_RET/STALL After Updating the FPCR by way of MT_FPCR in PALmode
	D.16� Guideline 20 : I_CTL[SBE] Stream Buffer Enable
	D.17� Restriction 21: HW_RET/STALL After HW_MTPR ASN0/ASN1
	D.18� Restriction 22: HW_RET/STALL After HW_MTPR IS0/IS1
	D.19� Restriction 23: HW_ST/P/CONDITIONAL Does Not Clear the Lock Flag
	D.20� Restriction 24: HW_RET/STALL After HW_MTPR IC_FLUSH, IC_FLUSH_ASM, CLEAR_MAP
	D.21� Restriction 25: HW_MTPR ITB_IA After Reset
	D.22� Guideline 26: Conditional Branches in PALcode
	D.23� Restriction 27: Reset of ‘Force-Fail Lock Flag’ State in PALcode
	D.24� Restriction 28: Enforce Ordering Between IPRs Implicitly Written by Loads and Subsequent Loads
	D.25� Guideline 29 : JSR, JMP, RET, and JSR_COR in PALcode
	D.26� Restriction 30 : HW_MTPR and HW_MFPR to the Cbox CSR
	D.27� Restriction 31 : I_CTL[VA_48] Update
	D.28� Restriction 32 : PCTR_CTL Update
	D.29� Restriction 33 : HW_LD Physical/Lock Use
	D.30� Restriction 34 : Writing Multiple ITB Entries in the Same PALcode Flow
	D.31� Guideline 35 : HW_INT_CLR Update
	D.32� Restriction 36 : Updating I_CTL[SDE]
	D.33� Restriction 37 : Updating VA_CTL[VA_48]
	D.34� Restriction 38 : Updating PCTR_CTL
	D.35� Guideline 39: Writing Multiple DTB Entries in the Same PAL Flow
	D.36� Restriction 40: Scrubbing a Single-Bit Error
	D.37� Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the Same Fetch Block
	D.38� Restriction 42: Updating VA_CTL, CC_CTL, or CC IPRs
	D.39� Restriction 43: No Trappable Instructions Along with HW_MTPR
	D.40� Restriction 44: Not Applicable to the 21264/EV67
	D.41� Restriction 45: No HW_JMP or JMP Instructions in PALcode
	D.42� Restriction 46: Avoiding Live locks in Speculative Load CRD Handlers
	D.43� Restriction 47: Cache Eviction for Single-Bit Cache Errors
	D.44� Restriction 48: MB Bracketing of Dcache Writes to Force Bad Data ECC and Force Bad Tag Parity

	21264/EV67-to-Bcache Pin Interconnections
	E.1� Forwarding Clock Pin Groupings
	E.2� Late-Write Non-Bursting SSRAMs
	E.3� Dual-Data Rate SSRAMs

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

