
Watcom C/C++

Programmer’s Guide

Edition 11.0c

Notice of Copyright
Copyright 2000 Sybase, Inc. and its subsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Portions of this manual are reprinted with permission from Tenberry Software, Inc.

Printed in U.S.A.

ii

Preface
The Watcom C/C++ Programmer’s Guide includes the following major components:

• DOS Programming Guide

• The DOS/4GW DOS Extender

• Windows 3.x Programming Guide

• Windows NT Programming Guide

• OS/2 Programming Guide

• AutoCAD ADS Programming Guide

• Novell NLM Programming Guide

• Mixed Language Programming

• Common Problems

Acknowledgements
This book was produced with the Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source
files containing text annotated with tags. These tags label the structural elements of the
document, such as chapters, sections, paragraphs, and lists. The Watcom GML software,
which runs on a variety of operating systems, interprets the tags to format the text into a form
such as you see here. Writers can produce output for a variety of printers, including laser
printers, using separately specified layout directives for such things as font selection, column
width and height, number of columns, etc. The result is type-set quality copy containing
integrated text and graphics.

The Plum Hall Validation Suite for C/C++ has been invaluable in verifying the conformance
of the Watcom C/C++ compilers to the ANSI C Language Standard and the Draft Proposed
C++ Language Standard.

iii

Many users have provided valuable feedback on earlier versions of the Watcom C/C++
compilers and related tools. Their comments were greatly appreciated. If you find problems
in the documentation or have some good suggestions, we would like to hear from you.

September, 2000.

Trademarks Used in this Manual
AutoCAD Development System is a trademark of Autodesk, Inc.

DOS/4G and DOS/16M are trademarks of Tenberry Software, Inc.

OS/2 is a trademark of International Business Machines Corp. IBM Developer’s
WorkFrame/2, Presentation Manager, and OS/2 are trademarks of International Business
Machines Corp. IBM is a registered trademark of International Business Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows
NT is a trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender and 386|DOS-Extender are trademarks of Phar Lap Software,
Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

iv

Table of Contents

1 Watcom C/C++ Application Development ... 1

DOS Programming Guide ... 5

2 Creating 16-bit DOS Applications .. 7
2.1 The Sample Application ... 7
2.2 Building and Running the Sample DOS Application 8
2.3 Debugging the Sample DOS Application ... 8

3 Creating 32-bit Phar Lap 386|DOS-Extender Applications .. 11
3.1 The Sample Application ... 11
3.2 Building and Running the Sample 386|DOS-Extender Application 12
3.3 Debugging the Sample 386|DOS-Extender Application 13

4 Creating 32-bit DOS/4GW Applications .. 15
4.1 The Sample Application ... 15
4.2 Building and Running the Sample DOS/4GW Application 16
4.3 Debugging the Sample DOS/4GW Application ... 17

5 32-bit Extended DOS Application Development .. 19
5.1 Introduction .. 19
5.2 How can I write directly to video memory using a DOS extender? 20

5.2.1 Writing to Video Memory under Tenberry Software DOS/4GW .. 20
5.2.2 Writing to Video Memory under the Phar Lap

386|DOS-Extender ... 21
5.3 How do I get information about free memory in the 32-bit environment? .. 22

5.3.1 Getting Free Memory Information under DOS/4GW 22
5.3.2 Getting Free Memory Information under the Phar Lap

386|DOS-Extender ... 24
5.3.3 Getting Free Memory Information in the 32-bit Environment

under Windows 3.x .. 25
5.4 How do I access the first megabyte in the extended DOS environment? 28

5.4.1 Accessing the First Megabyte under Tenberry Software
DOS/4GW .. 28

5.4.2 Accessing the First Megabyte under the Phar Lap
386|DOS-Extender ... 29

5.5 How do I spawn a protected-mode application? ... 30
5.5.1 Spawning Protected-Mode Applications Under Tenberry

Software DOS/4GW ... 30
5.5.2 Spawning Protected-Mode Applications Under Phar Lap

386|DOS-Extender ... 32

v

Table of Contents

5.6 How Can I Use the Mouse Interrupt (0x33) with DOS/4GW? 33
5.7 How Do I Simulate a Real-Mode Interrupt with DOS/4GW? 35
5.8 How do you install a bi-modal interrupt handler using DOS/4GW? 37

The DOS/4GW DOS Extender .. 43

6 The Tenberry Software DOS/4GW DOS Extender .. 45

7 Linear Executables .. 47
7.1 The Linear Executable Format ... 47

7.1.1 The Stub Program .. 47
7.2 Memory Use ... 49

8 Configuring DOS/4GW .. 51
8.1 The DOS4G Environment Variable .. 51
8.2 Changing the Switch Mode Setting .. 52
8.3 Fine Control of Memory Usage .. 54

8.3.1 Specifying a Range of Extended Memory 54
8.3.2 Using Extra Memory .. 56

8.4 Setting Runtime Options .. 56
8.5 Controlling Address Line 20 .. 58

9 VMM ... 59
9.1 VMM Default Parameters ... 59
9.2 Changing the Defaults .. 60

9.2.1 The .VMC File ... 60

10 Interrupt 21H Functions .. 61
10.1 Functions 25H and 35H: Interrupt Handling in Protected Mode 65

10.1.1 32-Bit Gates ... 65
10.1.2 Chaining 16-bit and 32-bit Handlers .. 66
10.1.3 Getting the Address of the Interrupt Handler 66

11 Interrupt 31H DPMI Functions ... 67
11.1 Using Interrupt 31H Function Calls ... 67
11.2 Int31H Function Calls .. 68

11.2.1 Local Descriptor Table (LDT) Management Services 69
11.2.2 DOS Memory Management Services ... 75
11.2.3 Interrupt Services ... 76
11.2.4 Translation Services ... 79
11.2.5 DPMI Version .. 88

vi

Table of Contents

11.2.6 Memory Management Services .. 88
11.2.7 Page Locking Services ... 90
11.2.8 Demand Paging Performance Tuning Services 92
11.2.9 Physical Address Mapping ... 93
11.2.10 Virtual Interrupt State Functions .. 94
11.2.11 Vendor Specific Extensions ... 96
11.2.12 Coprocessor Status ... 97

12 Utilities .. 99
12.1 DOS4GW .. 100
12.2 PMINFO ... 101
12.3 PRIVATXM ... 103
12.4 RMINFO ... 104

13 Error Messages .. 107
13.1 Kernel Error Messages ... 107
13.2 DOS/4G Errors ... 111

14 DOS/4GW Commonly Asked Questions .. 119
14.1 Access to Technical Support .. 119
14.2 Differences Within the DOS/4G Product Line ... 121
14.3 Addressing .. 124
14.4 Interrupt and Exception Handling .. 126
14.5 Memory Management ... 129
14.6 DOS, BIOS, and Mouse Services ... 129
14.7 Virtual Memory .. 130
14.8 Debugging .. 133
14.9 Compatibility .. 138

Windows 3.x Programming Guide .. 141

15 Creating 16-bit Windows 3.x Applications ... 143
15.1 The Sample Application ... 143
15.2 Building and Running the Sample Windows 3.x Application 143
15.3 Debugging the Sample Windows 3.x Application 144

16 Porting Non-GUI Applications to 16-bit Windows 3.x .. 147
16.1 Console Device in a Windowed Environment .. 147
16.2 The Sample Non-GUI Application ... 148
16.3 Building and Running the Non-GUI Windows 3.x Application 148
16.4 Debugging the Non-GUI Windows 3.x Application 149

vii

Table of Contents

16.5 Default Windowing Library Functions ... 150

17 Creating 32-bit Windows 3.x Applications ... 153
17.1 The Sample Application ... 153
17.2 Building and Running the Sample Windows 3.x Application 153
17.3 Debugging the Sample Windows 3.x Application 156

18 Porting Non-GUI Applications to 32-bit Windows 3.x .. 159
18.1 Console Device in a Windowed Environment .. 159
18.2 The Sample Non-GUI Application ... 160
18.3 Building and Running the Non-GUI Windows 3.x Application 160
18.4 Debugging the Non-GUI Windows 3.x Application 163
18.5 Default Windowing Library Functions ... 164

19 The Watcom 32-bit Windows 3.x Extender .. 167
19.1 Pointers ... 167
19.2 Implementation Overview .. 168
19.3 System Structure ... 170
19.4 System Overview .. 171
19.5 Steps to Obtaining a 32-bit Application ... 172

20 Windows 3.x 32-bit Programming Overview ... 173
20.1 WINDOWS.H ... 174
20.2 Environment Notes ... 175
20.3 Floating-point Emulation .. 175
20.4 Multiple Instances ... 175
20.5 Pointer Handling ... 176

20.5.1 When To Convert Incoming Pointers ... 177
20.5.2 When To Convert Outgoing Pointers ... 178

20.5.2.1 SendMessage and SendDlgItemMessage 178
20.5.3 GlobalAlloc and LocalAlloc .. 180
20.5.4 Callback Function Pointers .. 180

20.5.4.1 Window Sub-classing .. 183
20.6 Calling 16-bit DLLs .. 184

20.6.1 Making DLL Calls Transparent ... 186
20.7 Far Pointer Manipulation .. 187
20.8 _16 Functions ... 188

21 Windows 32-Bit Dynamic Link Libraries ... 191
21.1 Introduction to 32-Bit DLLs ... 191
21.2 A Sample 32-bit DLL ... 192
21.3 Calling Functions in a 32-bit DLL from a 16-bit Application 195

viii

Table of Contents

21.4 Writing a 16-bit Cover for the 32-bit DLL ... 197
21.5 Creating and Debugging Dynamic Link Libraries 198

21.5.1 Building the Applications .. 199
21.5.2 Installing the Examples under Windows 199
21.5.3 Running the Examples ... 199
21.5.4 Debugging a 32-bit DLL .. 199
21.5.5 Summary .. 200

22 Interfacing Visual Basic and Watcom C/C++ DLLs .. 201
22.1 Introduction to Visual Basic and DLLs .. 201
22.2 A Working Example ... 203
22.3 Sample Visual Basic DLL Programs .. 205

22.3.1 Source Code for VBDLL32.DLL ... 205
22.3.2 Source code for COVER16.DLL ... 206

22.4 Compiling and Linking the Examples .. 207

23 WIN386 Library Functions and Macros ... 209
AllocAlias16 .. 210
AllocHugeAlias16 ... 211
_Call16 ... 212
DefineDLLEntry .. 214
DefineUserProc16 .. 215
FreeAlias16 .. 217
FreeHugeAlias16 ... 218
FreeIndirectFunctionHandle .. 219
GetIndirectFunctionHandle ... 221
GetProc16 .. 224
InvokeIndirectFunction .. 228
MapAliasToFlat ... 230
MK_FP16 .. 231
MK_FP32 .. 232
MK_LOCAL32 .. 233
PASS_WORD_AS_POINTER .. 234
ReleaseProc16 .. 235

24 32-bit Extended Windows Application Development .. 237
24.1 Can you call 16-bit code from a 32-bit Windows application? 237
24.2 Can I WinExec another Windows application? .. 238
24.3 How do I add my Windows resources? .. 238
24.4 All function pointers passed to Windows must be 16-bit far pointers,

correct? ... 238
24.5 Why are 32-bit callback routines FAR? ... 239

ix

Table of Contents

24.6 Why use the _16 API functions? .. 239
24.7 What about pointers in structures? ... 239
24.8 When do I use MK_FP32? ... 240
24.9 What is the difference between AllocAlias16 and MK_FP16? 240
24.10 Tell Me More About Thunking and Aliases ... 240

25 Special Variables for Windows Programming .. 243

26 Definitions of Windows Terms ... 245

27 Special Windows API Functions .. 247

Windows NT Programming Guide .. 253

28 Windows NT Programming Overview ... 255
28.1 Windows NT Programming Note ... 255
28.2 Windows NT Character-mode Versus GUI .. 255
28.3 Windows NT Character-mode Applications .. 256

29 Creating Windows NT GUI Applications ... 259
29.1 The Sample Application ... 259
29.2 Building and Running the Sample Windows NT Application 259
29.3 Debugging the Sample Windows NT Application 260

30 Porting Non-GUI Applications to Windows NT GUI .. 263
30.1 Console Device in a Windowed Environment .. 263
30.2 The Sample Non-GUI Application ... 264
30.3 Building and Running the Non-GUI Windows NT Application 264
30.4 Debugging the Non-GUI Windows NT Application 265
30.5 Default Windowing Library Functions ... 266

31 Windows NT Multi-threaded Applications ... 269
31.1 Programming Considerations ... 269
31.2 Creating Threads ... 270

31.2.1 Creating a New Thread .. 270
31.2.2 Terminating the Current Thread ... 271
31.2.3 Getting the Current Thread Identifier .. 271

31.3 A Multi-threaded Example ... 271

32 Windows NT Dynamic Link Libraries ... 275
32.1 Creating Dynamic Link Libraries ... 275

x

Table of Contents

32.2 Creating a Sample Dynamic Link Library .. 276
32.3 Using Dynamic Link Libraries ... 280
32.4 The Dynamic Link Library Data Area .. 282

33 Creating Windows NT POSIX Applications .. 285

OS/2 Programming Guide ... 289

34 Creating 16-bit OS/2 1.x Applications .. 291
34.1 The Sample Application ... 291
34.2 Building and Running the Sample OS/2 1.x Application 292
34.3 Debugging the Sample OS/2 1.x Application .. 293

35 Creating 32-bit OS/2 Applications .. 295
35.1 The Sample Application ... 295
35.2 Building and Running the Sample OS/2 Application 296
35.3 Debugging the Sample OS/2 Application .. 297

36 OS/2 2.x Multi-threaded Applications .. 299
36.1 Programming Considerations ... 299
36.2 Creating Threads ... 300

36.2.1 Creating a New Thread .. 300
36.2.2 Terminating the Current Thread ... 301
36.2.3 Getting the Current Thread Identifier .. 301

36.3 A Multi-threaded Example ... 301
36.4 Thread Limits .. 303

37 OS/2 2.x Dynamic Link Libraries ... 305
37.1 Creating Dynamic Link Libraries ... 305
37.2 Creating a Sample Dynamic Link Library .. 306
37.3 Using Dynamic Link Libraries ... 308
37.4 The Dynamic Link Library Data Area .. 310
37.5 Dynamic Link Library Initialization/Termination 311

38 Programming for OS/2 Presentation Manager .. 313
38.1 Porting Existing C/C++ Applications ... 313

38.1.1 Console Device in a Windowed Environment 314
38.1.2 An Example .. 314

38.2 Default Windowing Library Functions ... 315
38.3 Calling Presentation Manager API Functions .. 316

xi

Table of Contents

39 Developing an OS/2 Physical Device Driver .. 319

40 Using the IBM OS/2 WorkFrame/2 .. 325

AutoCAD ADS Programming Guide .. 327

41 Creating AutoCAD Applications .. 329
41.1 Compiling an ADS Application ... 329
41.2 Linking an ADS Application .. 330
41.3 One-Step Compiling and Linking ... 330
41.4 Debugging an ADS Application ... 331

Novell NLM Programming Guide ... 333

42 Creating NetWare 386 NLM Applications ... 335

Mixed Language Programming ... 337

43 Inter-Language calls: C and FORTRAN ... 339
43.1 Symbol Naming Convention .. 339
43.2 Argument Passing Convention ... 340
43.3 Memory Model Compatibility .. 341
43.4 Linking Considerations ... 341
43.5 Integer Type Compatibility .. 342
43.6 How do I pass integers from C to a FORTRAN function? 342
43.7 How do I pass integers from FORTRAN to a C function? 343
43.8 How do I pass a string from a C function to FORTRAN? 345
43.9 How do I pass a string from FORTRAN to a C function? 346
43.10 How do I access a FORTRAN common block from within C? 347
43.11 How do I call a C function that accepts a variable number of

arguments? .. 349

Common Problems .. 351

44 Commonly Asked Questions and Answers ... 353
44.1 Determining my current patch level ... 353
44.2 Converting to Watcom C/C++ .. 354

44.2.1 Conversion from UNIX compilers ... 357

xii

Table of Contents

44.2.2 Conversion from IBM-compatible PC compilers 358
44.3 What you should know about optimization .. 359
44.4 The compiler cannot find "stdio.h" ... 361
44.5 Resolving an "Undefined Reference" linker error 362
44.6 Why my variables are not set to zero .. 364
44.7 What does "size of DGROUP exceeds 64K" mean for 16-bit

applications? ... 364
44.8 What does "NULL assignment detected" mean in 16-bit applications? 365
44.9 What "Stack Overflow!" means .. 367
44.10 Why redefinition errors are issued from WLINK 368
44.11 How more than 20 files at a time can be opened 369
44.12 How source files can be seen in the debugger .. 371
44.13 The difference between the "d1" and "d2" compiler options 373

xiii

List of Figures

Figure 1. Basic Memory Layout ... 49
Figure 2. Physical Memory/Linear Address Space ... 50
Figure 3. Access Rights/Type ... 72
Figure 4. Extended Access Rights/Type ... 73
Figure 5. WIN386 Structure ... 170
Figure 6. 32-bit Application Structure .. 170

xiv

1 Watcom C/C++ Application Development

This document contains guides to application development for several environments including
16-bit DOS, 32-bit extended DOS, Windows 3.x, 32-bit extended Windows 3.x, Windows
NT, OS/2, AutoCAD and Novell NLMs. It also describes mixed language (C, FORTRAN)
application development. It concludes with a chapter on some general questions and the
answers to them.

This document covers the following topics:

• DOS Programming Guide

Creating 16-bit DOS Applications
Creating 32-bit Phar Lap 386|DOS-Extender Applications
Creating 32-bit DOS/4GW Applications
32-bit Extended DOS Application Development

• The DOS/4GW DOS Extender

The Tenberry Software DOS/4GW DOS Extender
Linear Executables
Configuring DOS/4GW
VMM
Interrupt 21H Functions
Interrupt 31H DPMI Functions
Utilities
Error Messages
DOS/4GW Commonly Asked Questions

• Windows 3.x Programming Guide

Creating 16-bit Windows 3.x Applications
Porting Non-GUI Applications to 16-bit Windows 3.x
Creating 32-bit Windows 3.x Applications
Porting Non-GUI Applications to 32-bit Windows 3.x
The WATCOM 32-bit Windows Extender
Windows 3.x 32-bit Programming Overview

Watcom C/C++ Application Development 1

Chapter 1

Windows 32-Bit Dynamic Link Libraries
Interfacing Visual Basic and Watcom C/C++ DLLs
WIN386 Library Functions and Macros
32-bit Extended Windows Application Development
Special Variables for Windows Programming
Definitions of Windows Terms
Special Windows API Functions

• Windows NT Programming Guide

Windows NT Programming Overview
Creating Windows NT GUI Applications
Porting Non-GUI Applications to Windows NT GUI
Windows NT Multi-threaded Applications
Windows NT Dynamic Link Libraries

• OS/2 Programming Guide

Creating 16-bit OS/2 1.x Applications
Creating 32-bit OS/2 Applications
OS/2 Multi-threaded Applications
OS/2 Dynamic Link Libraries
Programming for OS/2 Presentation Manager
Using the IBM OS/2 WorkFrame/2

• AutoCAD ADS Programming Guide

Creating AutoCAD Applications

• Novell NLM Programming Guide

Creating NetWare 386 NLM Applications

• Mixed Language Programming

Inter-Language calls: C and FORTRAN

• Common Problems

2 Watcom C/C++ Application Development

Watcom C/C++ Application Development

Commonly Asked Questions and Answers

Watcom C/C++ Application Development 3

Chapter 1

4 Watcom C/C++ Application Development

DOS Programming Guide

DOS Programming Guide

6

2 Creating 16-bit DOS Applications

This chapter describes how to compile and link 16-bit DOS applications simply and quickly.

We will illustrate the steps to creating 16-bit DOS applications by taking a small sample
application and showing you how to compile, link, run and debug it.

2.1 The Sample Application
To demonstrate the creation of 16-bit DOS applications using command-line oriented tools,
we introduce a simple sample program. For our example, we are going to use the famous
"hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>
#include <iomanip.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C
version uses the C library printf routine to accomplish this task. The C++ version uses the
"iostream" library to accomplish this task. We will take you through the steps necessary to
produce this result.

The Sample Application 7

DOS Programming Guide

2.2 Building and Running the Sample DOS Application
To compile and link our example program which is stored in the file HELLO.C, enter the
following command:

C>wcl /l=dos hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl /l=dos hello.c
WATCOM C/C++16 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc hello.c
WATCOM C16 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 17

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a DOS executable

Provided that no errors were encountered during the compile or link phases, the "hello"
program may now be run.

C>hello
Hello world

If you examine the current directory, you will find that two files have been created. These are
HELLO.OBJ (the result of compiling HELLO.C) and HELLO.EXE (the result of linking
HELLO.OBJ with the appropriate Watcom C/C++ libraries). It is HELLO.EXE that is run by
DOS when you enter the "hello" command.

2.3 Debugging the Sample DOS Application
Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "hello" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It is also convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WCL

8 Debugging the Sample DOS Application

Creating 16-bit DOS Applications

command, this is fairly straightforward. WCL recognizes the Watcom C/C++ compiler
"debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the
following command may be issued.

C>wcl /l=dos /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl /l=dos /d2 hello.c
WATCOM C/C++16 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc hello.c /d2
WATCOM C16 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 23

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a DOS executable

The "d2" option requests the maximum amount of debugging information that can be provided
by the Watcom C/C++ compiler. WCL will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. You can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, the following
command may be issued.

C>wd hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer
you to the book entitled Watcom Debugger User’s Guide.

Debugging the Sample DOS Application 9

DOS Programming Guide

10 Debugging the Sample DOS Application

3 Creating 32-bit Phar Lap 386|DOS-Extender
Applications

This chapter describes how to compile and link 32-bit Phar Lap 386|DOS-Extender
applications simply and quickly.

We will illustrate the steps to creating 32-bit Phar Lap 386|DOS-Extender applications by
taking a small sample application and showing you how to compile, link, run and debug it.

3.1 The Sample Application
To demonstrate the creation of 32-bit Phar Lap 386|DOS-Extender applications using
command-line oriented tools, we introduce a simple sample program. For our example, we
are going to use the famous "hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>
#include <iomanip.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C
version uses the C library printf routine to accomplish this task. The C++ version uses the
"iostream" library to accomplish this task. We will take you through the steps necessary to
produce this result.

The Sample Application 11

DOS Programming Guide

3.2 Building and Running the Sample
386|DOS-Extender Application

To compile and link our example program which is stored in the file HELLO.C, enter the
following command:

C>wcl386 /l=pharlap hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 /l=pharlap hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 24

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Phar Lap simple executable

Provided that no errors were encountered during the compile or link phases, the "hello"
program may now be run.

C>run386 hello
Hello world

If you examine the current directory, you will find that two files have been created. These are
HELLO.OBJ (the result of compiling HELLO.C) and HELLO.EXP (the result of linking
HELLO.OBJ with the appropriate Watcom C/C++ libraries). It is HELLO.EXP that is run by
DOS when you enter the "run386 hello" command.

12 Building and Running the Sample 386|DOS-Extender Application

Creating 32-bit Phar Lap 386|DOS-Extender Applications

3.3 Debugging the Sample 386|DOS-Extender
Application

Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "hello" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It is also convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "hello" program with debugging information, the
following command may be issued.

C>wcl386 /l=pharlap /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 /l=pharlap /d2 hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c /d2
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 45

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Phar Lap simple executable

The "d2" option requests the maximum amount of debugging information that can be provided
by the Watcom C/C++ compiler. WCL386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. You can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

Debugging the Sample 386|DOS-Extender Application 13

DOS Programming Guide

To request the Watcom Debugger to assist in debugging the application, the following
command may be issued.

C>wd/trap=pls hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer
you to the book entitled Watcom Debugger User’s Guide.

14 Debugging the Sample 386|DOS-Extender Application

4 Creating 32-bit DOS/4GW Applications

This chapter describes how to compile and link 32-bit DOS/4GW applications simply and
quickly.

We will illustrate the steps to creating 32-bit DOS/4GW applications by taking a small sample
application and showing you how to compile, link, run and debug it.

4.1 The Sample Application
To demonstrate the creation of 32-bit DOS/4GW applications using command-line oriented
tools, we introduce a simple sample program. For our example, we are going to use the
famous "hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>
#include <iomanip.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C
version uses the C library printf routine to accomplish this task. The C++ version uses the
"iostream" library to accomplish this task. We will take you through the steps necessary to
produce this result.

The Sample Application 15

DOS Programming Guide

4.2 Building and Running the Sample DOS/4GW
Application

To compile and link our example program which is stored in the file HELLO.C, enter the
following command:

C>wcl386 /l=dos4g hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 /l=dos4g hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 24

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a DOS/4G executable

Provided that no errors were encountered during the compile or link phases, the "hello"
program may now be run.

C>hello
Hello world

If you examine the current directory, you will find that two files have been created. These are
HELLO.OBJ (the result of compiling HELLO.C) and HELLO.EXE (the result of linking
HELLO.OBJ with the appropriate Watcom C/C++ libraries). It is HELLO.EXE that is run by
DOS when you enter the "hello" command.

16 Building and Running the Sample DOS/4GW Application

Creating 32-bit DOS/4GW Applications

4.3 Debugging the Sample DOS/4GW Application
Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "hello" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It is also convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "hello" program with debugging information, the
following command may be issued.

C>wcl386 /l=dos4g /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 /l=dos4g /d2 hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c /d2
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 45

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a DOS/4G executable

The "d2" option requests the maximum amount of debugging information that can be provided
by the Watcom C/C++ compiler. WCL386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. You can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

Debugging the Sample DOS/4GW Application 17

DOS Programming Guide

To request the Watcom Debugger to assist in debugging the application, the following
command may be issued.

C>wd/trap=rsi hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer
you to the book entitled Watcom Debugger User’s Guide.

18 Debugging the Sample DOS/4GW Application

5 32-bit Extended DOS Application
Development

5.1 Introduction
The purpose of this chapter is to anticipate common programming questions for 32-bit
extended DOS application development. Note that these programming solutions may be
DOS-extender specific and therefore may not work for other DOS extenders.

The following topics are discussed in this chapter:

• How can I write directly to video memory using a DOS extender?

• How do I get information about free memory in the 32-bit environment?

• How do I access the first megabyte in the extended DOS environment?

• How do I spawn a protected-mode application?

• How can I use the mouse interrupt (0x33) with DOS/4GW?

• How do I simulate a real-mode interrupt with DOS/4GW?

• How do you install a bi-modal interrupt handler with DOS/4GW?

Please refer to the DOS Protected-Mode Interface (DPMI) Specification for information on
DPMI services. In the past, the DPMI specification could be obtained free of charge by
contacting Intel Literature JP26 at 800-548-4725 or by writing to the address below. We have
been advised that the DPMI specification is no longer available in printed form.

Intel Literature JP26
3065 Bowers Avenue
P.O. Box 58065
Santa Clara, California
U.S.A. 95051-8065

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Here is the URL.

Introduction 19

DOS Programming Guide

ftp://ftp.intel.com/pub/IAL/software specs/dpmiv1.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

5.2 How can I write directly to video memory using a
DOS extender?

Many programmers require access to video RAM in order to directly manipulate data on the
screen. Under DOS, it was standard practice to use a far pointer, with the segment part of the
far pointer set to the screen segment. Under DOS extenders, this practice is not so standard.
Each DOS extender provides its own method for accessing video memory.

5.2.1 Writing to Video Memory under Tenberry Software DOS/4GW

Under DOS/4GW, the first megabyte of physical memory is mapped as a shared linear
address space. This allows your application to access video RAM using a near pointer set to
the screen’s linear address. The following program demonstrates this method.

/*

SCREEN.C - This example shows how to write directly
to screen memory under the DOS/4GW dos-extender.

Compile & Link: wcl386 /l=dos4g SCREEN
*/

#include <stdio.h>
#include <dos.h>

/*
Under DOS/4GW, the first megabyte of physical memory
(real-mode memory) is mapped as a shared linear address
space. This allows your application to access video RAM
using its linear address. The DOS segment:offset of
B800:0000 corresponds to a linear address of B8000.

*/
#define SCREEN AREA 0xb800
#define SCREEN LIN ADDR ((SCREEN AREA) << 4)
#define SCREEN SIZE 80*25

20 How can I write directly to video memory using a DOS extender?

32-bit Extended DOS Application Development

void main()
{

char *ptr;
int i;

/* Set the pointer to the screen’s linear address */
ptr = (char *)SCREEN LIN ADDR;
for(i = 0; i < SCREEN SIZE - 1; i++) {

ptr = ’’;
ptr += 2 * sizeof(char);

}
}

Please refer to the chapter entitled "Linear Executables" on page 47 for more information on
how DOS/4GW maps the first megabyte.

5.2.2 Writing to Video Memory under the Phar Lap 386|DOS-Extender

The Phar Lap DOS extender provides screen access through the special segment selector
0x1C. This allows far pointer access to video RAM from a 32-bit program. The following
example illustrates this technique.

/*

SCREENPL.C - This example shows how to write directly
to screen memory under the Phar Lap DOS extender.

Compile & Link: wcl386 /l=pharlap SCREENPL
*/

#include <stdio.h>
#include <dos.h>

/*
Phar Lap allows access to screen memory through a
special selector. Refer to "Hardware Access" in
Phar Lap’s documentation for details.

*/
#define PL SCREEN SELECTOR 0x1c
#define SCREEN SIZE 80*25

How can I write directly to video memory using a DOS extender? 21

DOS Programming Guide

void main()
{

/* Need a far pointer to use the screen selector */
char far *ptr;
int i;

/* Make a far pointer to screen memory */
ptr = MK FP(PL SCREEN SELECTOR, 0);
for(i = 0; i < SCREEN SIZE - 1; i++) {

ptr = ’’;
ptr += 2 * sizeof(char);

}
}

It is also possible to map screen memory into your near memory using Phar Lap system calls.
Please refer to the chapter entitled "386|DOS-Extender System Calls" in Phar Lap’s
386|DOS-Extender Reference Manual for details.

5.3 How do I get information about free memory in the
32-bit environment?

Under a virtual memory system, programmers are often interested in the amount of physical
memory they can allocate. Information about the amount of free memory that is available is
always provided under a DPMI host, however, the manner in which this information is
provided may differ under various environments. Keep in mind that in a multi-tasking
environment, the information returned to your task from the DPMI host can easily become
obsolete if other tasks allocate memory independently of your task.

5.3.1 Getting Free Memory Information under DOS/4GW

DOS/4GW provides a DPMI interface through interrupt 0x31. This allows you to use DPMI
service 0x0500 to get free memory information. The following program illustrates this
procedure.

22 How do I get information about free memory in the 32-bit environment?

32-bit Extended DOS Application Development

/*

MEMORY.C - This example shows how to get information
about free memory using DPMI call 0500h under DOS/4GW.
Note that only the first field of the structure is
guaranteed to contain a valid value; any field that
is not returned by DOS/4GW is set to -1 (0FFFFFFFFh).

Compile & Link: wcl386 /l=dos4g memory
*/

#include <i86.h>
#include <dos.h>
#include <stdio.h>

#define DPMI INT 0x31

struct meminfo {
unsigned LargestBlockAvail;
unsigned MaxUnlockedPage;
unsigned LargestLockablePage;
unsigned LinAddrSpace;
unsigned NumFreePagesAvail;
unsigned NumPhysicalPagesFree;
unsigned TotalPhysicalPages;
unsigned FreeLinAddrSpace;
unsigned SizeOfPageFile;
unsigned Reserved[3];

} MemInfo;

void main()
{

union REGS regs;
struct SREGS sregs;

regs.x.eax = 0x00000500;
memset(&sregs, 0, sizeof(sregs));
sregs.es = FP SEG(&MemInfo);
regs.x.edi = FP OFF(&MemInfo);

How do I get information about free memory in the 32-bit environment? 23

DOS Programming Guide

int386x(DPMI INT, ®s, ®s, &sregs);
printf("Largest available block (in bytes): %lu\n",

MemInfo.LargestBlockAvail);
printf("Maximum unlocked page allocation: %lu\n",

MemInfo.MaxUnlockedPage);
printf("Pages that can be allocated and locked: "

"%lu\n", MemInfo.LargestLockablePage);
printf("Total linear address space including "

"allocated pages: %lu\n",
MemInfo.LinAddrSpace);

printf("Number of free pages available: %lu\n",
MemInfo.NumFreePagesAvail);

printf("Number of physical pages not in use: %lu\n",
MemInfo.NumPhysicalPagesFree);

printf("Total physical pages managed by host: %lu\n",
MemInfo.TotalPhysicalPages);

printf("Free linear address space (pages): %lu\n",
MemInfo.FreeLinAddrSpace);

printf("Size of paging/file partition (pages): %lu\n",
MemInfo.SizeOfPageFile);

}

Please refer to the chapter entitled "Interrupt 31H DPMI Functions" on page 67 for more
information on DPMI services.

5.3.2 Getting Free Memory Information under the Phar Lap
386|DOS-Extender

Phar Lap provides memory statistics through 386|DOS-Extender System Call 0x2520. The
following example illustrates how to use this system call from a 32-bit program.

/*

MEMPLS40.C - This is an example of how to get the
amount of physical memory present under Phar Lap
386|DOS-Extender v4.0.

Compile & Link: wcl386 /l=pharlap MEMPLS40
*/

#include <dos.h>
#include <stdio.h>

typedef struct {
unsigned data[25];

} pharlap mem status;

24 How do I get information about free memory in the 32-bit environment?

32-bit Extended DOS Application Development

/* Names suggested in Phar Lap documentation */
#define APHYSPG 5
#define SYSPHYSPG 7
#define NFREEPG 21

unsigned long memavail(void)
{

pharlap mem status status;
union REGS regs;
unsigned long amount;

regs.h.ah = 0x25;
regs.h.al = 0x20;
regs.h.bl = 0;
regs.x.edx = (unsigned int) &status;
intdos(®s, ®s);
/* equation is given in description for nfreepg */
amount = status.data[APHYSPG];
amount += status.data[SYSPHYSPG];
amount += status.data[NFREEPG];
return(amount * 4096);

}

void main()
{

printf("%lu bytes of memory available\n",
memavail());

}

Please refer to the chapter entitled "386|DOS-Extender System Calls" in Phar Lap’s
386|DOS-Extender Reference Manual for more information on 386|DOS-Extender System
Calls.

5.3.3 Getting Free Memory Information in the 32-bit Environment
under Windows 3.x

Windows 3.x provides a DPMI host that you can access from a 32-bit program. The interface
to this host is a 16-bit interface, hence there are some considerations involved when calling
Windows 3.x DPMI services from 32-bit code. If a pointer to a data buffer is required to be
passed in ES:DI, for example, an AllocAlias16() may be used to get a 16-bit far pointer that
can be passed to Windows 3.x through these registers. Also, an int86() call should be issued
rather than an int386() call. The following program demonstrates the techniques mentioned
above.

How do I get information about free memory in the 32-bit environment? 25

DOS Programming Guide

/*

MEMWIN.C - This example shows how to get information
about free memory with DPMI call 0x0500 using Windows
as a DPMI host. Note that only the first field of the
structure is guaranteed to contain a valid value; any
field that is not returned by the DPMI implementation
is set to -1 (0FFFFFFFFh).

Compile & Link: wcl386 /l=win386 /zw memwin
Bind: wbind -n memwin

*/
#include <windows.h>
#include <i86.h>
#include <dos.h>
#include <stdio.h>

struct meminfo {
unsigned LargestBlockAvail;
unsigned MaxUnlockedPage;
unsigned LargestLockablePage;
unsigned LinAddrSpace;
unsigned NumFreePagesAvail;
unsigned NumPhysicalPagesFree;
unsigned TotalPhysicalPages;
unsigned FreeLinAddrSpace;
unsigned SizeOfPageFile;
unsigned Reserved[3];

} MemInfo;

#define DPMI INT 0x31
void main()
{

union REGS regs;
struct SREGS sregs;
DWORD mi 16;

regs.w.ax = 0x0500;
mi 16 = AllocAlias16(&MemInfo);
sregs.es = HIWORD(mi 16);
regs.x.di = LOWORD(mi 16);

26 How do I get information about free memory in the 32-bit environment?

32-bit Extended DOS Application Development

int86x(DPMI INT, ®s, ®s, &sregs);
printf("Largest available block (in bytes): %lu\n",

MemInfo.LargestBlockAvail);
printf("Maximum unlocked page allocation: %lu\n",

MemInfo.MaxUnlockedPage);
printf("Pages that can be allocated and locked: "

"%lu\n", MemInfo.LargestLockablePage);
printf("Total linear address space including "

"allocated pages: %lu\n",
MemInfo.LinAddrSpace);

printf("Number of free pages available: %lu\n",
MemInfo.NumFreePagesAvail);

printf("Number of physical pages not in use: %lu\n",
MemInfo.NumPhysicalPagesFree);

printf("Total physical pages managed by host: %lu\n",
MemInfo.TotalPhysicalPages);

printf("Free linear address space (pages): %lu\n",
MemInfo.FreeLinAddrSpace);

printf("Size of paging/file partition (pages): %lu\n",
MemInfo.SizeOfPageFile);

FreeAlias16(mi 16);
}

Please refer to the DOS Protected-Mode Interface (DPMI) Specification for information on
DPMI services. In the past, the DPMI specification could be obtained free of charge by
contacting Intel Literature JP26 at 800-548-4725 or by writing to the address below. We have
been advised that the DPMI specification is no longer available in printed form.

Intel Literature JP26
3065 Bowers Avenue
P.O. Box 58065
Santa Clara, California
U.S.A. 95051-8065

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Here is the URL.

ftp://ftp.intel.com/pub/IAL/software specs/dpmiv1.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

How do I get information about free memory in the 32-bit environment? 27

DOS Programming Guide

5.4 How do I access the first megabyte in the extended
DOS environment?

Many programmers require access to the first megabyte of memory in order to look at key low
memory addresses. Under DOS, it was standard practice to use a far pointer, with the far
pointer set to the segmented address of the memory area that was being inspected. Under
DOS extenders, this practice is not so standard. Each DOS extender provides its own method
for accessing the first megabyte of memory.

5.4.1 Accessing the First Megabyte under Tenberry Software
DOS/4GW

Under DOS/4GW, the first megabyte of physical memory - the real memory - is mapped as a
shared linear address space. This allows your application to access the first megabyte of
memory using a near pointer set to the linear address. The following program demonstrates
this method. This example is similar to the screen memory access example.

/*

KEYSTAT.C - This example shows how to get the keyboard
status under DOS/4GW by looking at the ROM BIOS
keyboard status byte in low memory.

Compile & Link: wcl386 /l=dos4g keystat
*/

#include <stdio.h>
#include <dos.h>

/*
Under DOS, the keyboard status byte has a segmented
address of 0x0040:0x0017. This corresponds to a
linear address of 0x417.

*/
#define LOW AREA 0x417

void main()
{

/* Only need a near pointer in the flat model */
char *ptr;

/* Set pointer to linear address of the first
status byte */

ptr = (char *)LOW AREA;

28 How do I access the first megabyte in the extended DOS environment?

32-bit Extended DOS Application Development

/* Caps lock state is in bit 6 */
if(*ptr & 0x40) {

puts("Caps Lock on");
}
/* Num lock state is in bit 5 */
if(*ptr & 0x20) {

puts("Num Lock on");
}
/* Scroll lock state is in bit 4 */
if(*ptr & 0x10) {

puts("Scroll Lock on");
}

}

Please refer to the chapter entitled "Linear Executables" on page 47 for more information on
how DOS/4GW maps the first megabyte.

5.4.2 Accessing the First Megabyte under the Phar Lap
386|DOS-Extender

The Phar Lap DOS extender provides access to real memory through the special segment
selector 0x34. This allows far pointer access to the first megabyte from a 32-bit program.
The following example illustrates this technique.

/*

KEYSTAPL.C - This example shows how to get the keyboard
status under 386|DOS-Extender by looking at the ROM
BIOS keyboard status byte in low memory.

Compile & Link: wcl386 /l=pharlap keystapl
*/

#include <stdio.h>
#include <dos.h>

/*
Under DOS, the keyboard status byte has a segmented
address of 0x0040:0x0017. This corresponds to a
linear address of 0x417.

*/

void main()
{

/* We require a far pointer to use selector
for 1st megabyte */

char far *ptr;

How do I access the first megabyte in the extended DOS environment? 29

DOS Programming Guide

/* Set pointer to segmented address of the first
status byte */

ptr = MK FP(0x34, 0x417);
/* Caps lock state is in bit 6 */
if(*ptr & 0x40) {

puts("Caps Lock on");
}
/* Num lock state is in bit 5 */
if(*ptr & 0x20) {

puts("Num Lock on");
}
/* Scroll lock state is in bit 4 */
if(*ptr & 0x10) {

puts("Scroll Lock on");
}

}

Please refer to the chapter entitled "Program Environment" in Phar Lap’s 386|DOS-Extender
Reference Manual for more information on segment selectors available to your program.

5.5 How do I spawn a protected-mode application?
Sometimes applications need to spawn other programs as part of their execution. In the
extended DOS environment, spawning tasks is much the same as under DOS, however it
should be noted that the only mode supported is P_WAIT. The P_OVERLAY mode is not
supported since the DOS extender cannot be removed from memory by the application (this is
also the reason why the exec() functions are unsupported). The other modes are for
concurrent operating systems only.

Also, unless the application being spawned is bound or stubbed, the DOS extender must be
spawned with the application and its arguments passed in the parameter list.

5.5.1 Spawning Protected-Mode Applications Under Tenberry
Software DOS/4GW

In the case of DOS/4GW, some real-mode memory must be set aside at run time for spawning
the DOS extender, otherwise the spawning application could potentially allocate all of system
memory. The real memory can be reserved from within your program by assigning the global
variable minreal the number of bytes to be set aside. This variable is referenced in
<stdlib.h>. The following two programs demonstrate how to spawn a DOS/4GW
application.

30 How do I spawn a protected-mode application?

32-bit Extended DOS Application Development

/*

SPWNRD4G.C - The following program demonstrates how to
spawn another DOS/4GW application.

Compile and link: wcl386 /l=dos4g spwnrd4g
*/

#include <process.h>
#include <stdio.h>
#include <stdlib.h>

/* DOS/4GW var for WLINK MINREAL option */
unsigned near minreal = 100*1024;

void main()
{

int app2 exit code;

puts("Spawning a protected-mode application..."
"using spawnlp() with P WAIT");

app2 exit code = spawnlp(P WAIT, "dos4gw",
"dos4gw", "spwndd4g", NULL);

printf("Application #2 returned with exit code %d\n",
app2 exit code);

}

/*

SPWNDD4G.C - Will be spawned by the SPWNRD4G program.

Compile & Link: wcl386 /l=dos4g spwndd4g
*/

#include <stdio.h>
#include <stdlib.h>

void main()
{

puts("\nApplication #2 spawned\n");
/* Send back exit code 59 */
exit(59);

}

How do I spawn a protected-mode application? 31

DOS Programming Guide

5.5.2 Spawning Protected-Mode Applications Under Phar Lap
386|DOS-Extender

In the case of the Phar Lap 386|DOS-Extender, some real-mode memory must be set aside at
link time for spawning the DOS extender, otherwise the spawning application will be assigned
all the system memory at startup. This is done at link time by specifying the runtime minreal
and runtime maxreal options, as demonstrated by the following programs.

/*

SPWNRPLS.C - The following program demonstrates how to
spawn a Phar Lap application.

Compile & Link:
wcl386 /l=pharlap /"runt minr=300K,maxr=400K" spwnrpls

*/
#include <process.h>
#include <stdio.h>

void main()
{

int app2 exit code;

puts("Spawning a protect-mode application..."
"using spawnlp() with P WAIT");

puts("Spawning application #2...");
app2 exit code = spawnlp(P WAIT, "run386",

"run386", "spwndpls", NULL);

printf("Application #2 returned with exit code %d",
app2 exit code);

}

/*

SPWNDPLS.C - Will be spawned by the SPWNRPLS program.

Compile & Link: wcl386 /l=pharlap spwndpls
*/

#include <stdio.h>
#include <stdlib.h>

void main()
{

puts("\nApplication #2 spawned\n");
/* Exit with error code 59 */
exit(59);

}

32 How do I spawn a protected-mode application?

32-bit Extended DOS Application Development

5.6 How Can I Use the Mouse Interrupt (0x33) with
DOS/4GW?

Several commonly used interrupts are automatically supported in protected mode with
DOS/4GW. The DOS extender handles the switch from protected mode to real mode and
manages any intermediate real-mode data buffers that are required. To use a supported
interrupt, set up the register information as required for the interrupt and use one of the
int386() or int386x() library functions to execute the interrupt. For calls that are not supported
by DOS/4GW, you can use the DPMI function, Simulate a Real-Mode Interrupt (0x0300).
This process is described in the next section.

Since the mouse interrupt (0x33) is quite commonly used, DOS/4GW provides
protected-mode support for the interrupt and any mouse data buffer that is required. The
following example demonstrates how a programmer could use the Microsoft standard mouse
interrupt (0x33) from within a DOS/4GW application.

/*

MOUSE.C - The following program demonstrates how
to use the mouse interrupt (0x33) with DOS/4GW.

Compile and link: wcl386 /l=dos4g mouse
*/
#include <stdio.h>
#include <dos.h>
#include <i86.h>

int right button = 0;
int mouse event = 0;
int mouse code = 0;
int mouse cx = 0;
int mouse dx = 0;
/* Set up data buffer for mouse cursor bitmap */
unsigned short cursor[] =
{

0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000,
0x0001, 0x0200, 0x0000, 0x0000

};

How Can I Use the Mouse Interrupt (0x33) with DOS/4GW? 33

DOS Programming Guide

#pragma off (check stack)
void loadds far click handler (int max, int mcx, int mdx)
{
#pragma aux click handler parm [EAX] [ECX] [EDX]

mouse event = 1;
mouse code = max;
mouse cx = mcx;
mouse dx = mdx;
if(mouse code & 8) right button = 1;

}
#pragma on (check stack)
void main(void)
{

struct SREGS sregs;
union REGS inregs, outregs;
int installed = 0;
int orig mode = 0;
int far *ptr;
int (far *function ptr)();

segread(&sregs);

/* get original video mode */

inregs.w.ax = 0x0f00;
int386(0x10, &inregs, &outregs);

printf("Current Mode = %u\n",
orig mode=outregs.h.al);

/* check for mouse driver */

inregs.w.ax = 0;
int386 (0x33, &inregs, &outregs);
if(installed = (outregs.w.ax == -1))

printf("Mouse installed...\n");
else

printf("Mouse NOT installed...\n");
if(installed) {

/* goto graphics mode */

inregs.h.ah = 0x00;
inregs.h.al = 0x4;
int386(0x10, &inregs, &outregs);
/* show mouse cursor */

inregs.w.ax = 0x1;
int386(0x33, &inregs, &outregs);
/* set mouse cursor form */

inregs.w.ax = 0x9;
inregs.w.bx = 0x0;
inregs.w.cx = 0x0;
ptr = cursor;
inregs.x.edx = FP OFF(ptr);
sregs.es = FP SEG(ptr);
int386x(0x33, &inregs, &outregs, &sregs);

34 How Can I Use the Mouse Interrupt (0x33) with DOS/4GW?

32-bit Extended DOS Application Development

/* install click watcher */

inregs.w.ax = 0xC;
inregs.w.cx = 0x0002 + 0x0008;
function ptr = click handler;
inregs.x.edx = FP OFF(function ptr);
sregs.es = FP SEG(function ptr);
int386x(0x33, &inregs, &outregs, &sregs);
while(!right button) {

if(mouse event) {
printf("Event = %x : CX = %u DX = %u\n",

mouse code, mouse cx, mouse dx);
mouse event = 0;

}
}

}
/* check installation again (to clear watcher) */

inregs.w.ax = 0;
int386(0x33, &inregs, &outregs);
if(outregs.w.ax == -1)

printf("DONE : Mouse still installed...\n");
else

printf("DONE : Mouse NOT installed...\n");
inregs.h.ah = 0x00;
inregs.h.al = orig mode;
int386(0x10, &inregs, &outregs);

}

5.7 How Do I Simulate a Real-Mode Interrupt with
DOS/4GW?

Some interrupts are not supported in protected mode with DOS/4GW but they can still be
called using the DPMI function, Simulate Real-Mode Interrupt (0x0300). Information that
needs to be passed down to the real-mode interrupt is transferred using an information data
structure that is allocated in the protected-mode application. The address to this
protected-mode structure is passed into DPMI function 0x0300. DOS/4GW will then use this
information to set up the real-mode registers, switch to real mode and then execute the
interrupt in real mode.

If your protected-mode application needs to pass data down into the real-mode interrupt, an
intermediate real-mode buffer must be used. This buffer can be created using DPMI function
0x0100 to allocate real-mode memory. You can then transfer data from the protected-mode
memory to the real-mode memory using a far pointer as illustrated in the "SIMULATE.C"
example.

The following example illustrates how to allocate some real-mode memory, transfer a string
of characters from protected mode into the real-mode buffer, then set up and call the Interrupt

How Do I Simulate a Real-Mode Interrupt with DOS/4GW? 35

DOS Programming Guide

0x0021 function to create a directory. The string of characters are used to provide the
directory name. This example can be adapted to handle most real-mode interrupt calls that
aren’t supported in protected mode.

/*

SIMULATE.C - Shows how to issue a real-mode interrupt
from protected mode using DPMI call 300h. Any buffers
to be passed to DOS must be allocated in DOS memory
This can be done with DPMI call 100h. This program
will call DOS int 21, function 39h, "Create
Directory".

Compile & Link: wcl386 /l=dos4g simulate
*/
#include <i86.h>
#include <dos.h>
#include <stdio.h>
#include <string.h>

static struct rminfo {
long EDI;
long ESI;
long EBP;
long reserved by system;
long EBX;
long EDX;
long ECX;
long EAX;
short flags;
short ES,DS,FS,GS,IP,CS,SP,SS;

} RMI;
void main()
{

union REGS regs;
struct SREGS sregs;
int interrupt no=0x31;
short selector;
short segment;
char far *str;

/* DPMI call 100h allocates DOS memory */
memset(&sregs,0,sizeof(sregs));
regs.w.ax=0x0100;
regs.w.bx=0x0001;
int386x(interrupt no, ®s, ®s, &sregs);
segment=regs.w.ax;
selector=regs.w.dx;
/* Move string to DOS real-mode memory */
str=MK FP(selector,0);
fstrcpy(str, "myjunk");

/* Set up real-mode call structure */
memset(&RMI,0,sizeof(RMI));
RMI.EAX=0x00003900; /* call service 39h ah=0x39 */
RMI.DS=segment; /* put DOS seg:off into DS:DX*/
RMI.EDX=0; /* DOS ignores EDX high word */

36 How Do I Simulate a Real-Mode Interrupt with DOS/4GW?

32-bit Extended DOS Application Development

/* Use DPMI call 300h to issue the DOS interrupt */
regs.w.ax = 0x0300;
regs.h.bl = 0x21;
regs.h.bh = 0;
regs.w.cx = 0;
sregs.es = FP SEG(&RMI);
regs.x.edi = FP OFF(&RMI);
int386x(interrupt no, ®s, ®s, &sregs);

}

5.8 How do you install a bi-modal interrupt handler
using DOS/4GW?

Due to the nature of the protected-mode/real-mode interface, it is often difficult to handle high
speed communications with hardware interrupt handlers. For example, if you install your
communications interrupt handler in protected mode, you may find that some data is lost
when transmitting data from a remote machine at the rate of 9600 baud. This occurs because
the data arrived at the communication port while the machine was in the process of
transferring the previous interrupt up to protected mode. Data will also be lost if you install
the interrupt handler in real mode since your program, running in protected mode, will have to
switch down into real mode to handle the interrupt. The reason for this is that the data arrived
at the communication port while the DOS extender was switching between real mode and
protected mode, and the machine was not available to process the interrupt.

To avoid the delay caused by switching between real-mode and protected mode to handle
hardware interrupts, install interrupt handlers in both real-mode and protected-mode. During
the execution of a protected-mode program, the system often switches down into real-mode
for DOS system calls. If a communications interrupt occurs while the machine is in
real-mode, then the real-mode interrupt handler will be used. If the interrupt occurs when the
machine is executing in protected-mode, then the protected-mode interrupt handler will be
used. This enables the machine to process the hardware interrupts faster and avoid the loss of
data caused by context switching.

Installing the interrupt handlers in both protected-mode and real-mode is called bi-modal
interrupt handling. The following program is an example of how to install both handlers for
Interrupt 0x0C (also known as COM1 or IRQ4). The program writes either a ’P’ to absolute
address 0xB8002 or an ’R’ to absolute address 0xB8000. These locations are the first two
character positions in screen memory for a color display. As the program runs, you can
determine which interrupt is handling the COM1 port by the letter that is displayed. A mouse
attached to COM1 makes a suitable demo. Type on the keyboard as you move the mouse
around. The ESC key can be used to terminate the program. Transmitted data from a remote
machine at 9600 baud can also be used to test the COM1 handling.

How do you install a bi-modal interrupt handler using DOS/4GW? 37

DOS Programming Guide

/*

BIMODAL.C - The following program demonstrates how
to set up a bi-modal interrupt handler for DOS/4GW

Compile and link: wcl386 /l=dos4g bimodal bimo.obj
*/

#include <stdio.h>
#include <conio.h>
#include <dos.h>

#define D32RealSeg(P) ((((DWORD) (P)) >> 4) & 0xFFFF)
#define D32RealOff(P) (((DWORD) (P)) & 0xF)

typedef unsigned int WORD;
typedef unsigned long DWORD;

extern void com1 init (void);
extern void interrupt pmhandler (void);
extern void interrupt far rmhandler (void);
void *D32DosMemAlloc (DWORD size)
{

union REGS r;

r.x.eax = 0x0100; /* DPMI allocate DOS memory */
r.x.ebx = (size + 15) >> 4; /* Number of paragraphs requested */
int386 (0x31, &r, &r);

if(r.x.cflag) /* Failed */
return ((DWORD) 0);

return (void *) ((r.x.eax & 0xFFFF) << 4);
}
void main (void)
{

union REGS r;
struct SREGS sr;
void *lowp;
void far *fh;
WORD orig pm sel;
DWORD orig pm off;
WORD orig rm seg;
WORD orig rm off;
int c;

/* Save the starting protected-mode handler address */
r.x.eax = 0x350C; /* DOS get vector (INT 0Ch) */
sr.ds = sr.es = 0;
int386x (0x21, &r, &r, &sr);
orig pm sel = (WORD) sr.es;
orig pm off = r.x.ebx;

38 How do you install a bi-modal interrupt handler using DOS/4GW?

32-bit Extended DOS Application Development

/*
Save the starting real-mode handler address using DPMI
(INT 31h).

*/
r.x.eax = 0x0200; /* DPMI get real mode vector */
r.h.bl = 0x0C;
int386 (0x31, &r, &r);
orig rm seg = (WORD) r.x.ecx;
orig rm off = (WORD) r.x.edx;

/*
Allocate 128 bytes of DOS memory for the real-mode
handler, which must of course be less than 128 bytes
long. Then copy the real-mode handler into that
segment.

*/
if(! (lowp = D32DosMemAlloc(128))) {

printf ("Couldn’t get low memory!\n");
exit (1);

}
memcpy (lowp, (void *) rmhandler, 128);

/*
Install the new protected-mode vector. Because INT 0Ch
is in the auto-passup range, its normal "passdown"
behavior will change as soon as we install a
protected-mode handler. After this next call, when a
real mode INT 0Ch is generated, it will be resignalled
in protected mode and handled by pmhandler.

*/
r.x.eax = 0x250C; /* DOS set vector (INT 0Ch) */
fh = (void far *) pmhandler;
r.x.edx = FP OFF (fh);
/* DS:EDX == &handler */
sr.ds = FP SEG (fh);
sr.es = 0;
int386x (0x21, &r, &r, &sr);

/*
Install the new real-mode vector. We do this after
installing the protected-mode vector in order to
override the "passup" behavior. After the next call,
interrupts will be directed to the appropriate handler,
regardless of which mode we are in when they are
generated.

*/
r.x.eax = 0x0201;
r.h.bl = 0x0C;
/* CX:DX == real mode &handler */
r.x.ecx = D32RealSeg(lowp);
r.x.edx = D32RealOff(lowp);
int386 (0x31, &r, &r);

How do you install a bi-modal interrupt handler using DOS/4GW? 39

DOS Programming Guide

/*
Initialize COM1.

*/
com1 init ();

puts("Move mouse, transmit data; ESC to quit\n");

while(1) {
if(kbhit()) {

if(((c = getch ()) & 0xff) == 27)
break;

putch (c);
}

delay(1);
}

/*
Clean up.

*/
r.x.eax = 0x250C; /* DOS set vector (INT 0Ch) */
r.x.edx = orig pm off;
sr.ds = orig pm sel; /* DS:EDX == &handler */
sr.es = 0;
int386x (0x21, &r, &r, &sr);

r.x.eax = 0x0201; /* DPMI set real mode vector */
r.h.bl = 0x0C;
/* CX:DX == real mode &handler */
r.x.ecx = (DWORD) orig rm seg;
r.x.edx = (DWORD) orig rm off;
int386 (0x31, &r, &r);

}

You will also need to create the following assembler code module. The first part provides the
interrupt handling routine for the real-mode interrupt handler. The second provides the
protected-mode version of the interrupt handler.

40 How do you install a bi-modal interrupt handler using DOS/4GW?

32-bit Extended DOS Application Development

;**
;** bimo.asm:
;** Assembler code for real-mode and protected-mode
;** INT 0xC interrupt handlers to support the INT 0xC
;** interrupt in both modes
;**
.386
;**
;** The real-mode interrupt handler is in a 16-bit code
;** segment so that the assembler will generate the right
;** code. We will copy this code down to a 16-bit segment
;** in low memory rather than executing it in place.
;**

TEXT16 SEGMENT BYTE PUBLIC USE16 ’CODE’
ASSUME cs: TEXT16

PUBLIC rmhandler
rmhandler :

push es
push bx
mov bx,0B800h
mov es,bx ; ES = 0xB800
sub bx,bx ; BX = 0
mov WORD PTR es:[bx],0720h ; Clear 2 char cells
mov WORD PTR es:[bx+2],0720h
mov BYTE PTR es:[bx],’R’ ; Write R to memory
pop bx
pop es
push ax
push dx
mov dx,03FAh
in al,dx ; Read ports so
mov dx,03F8h ; interrupts can
in al,dx ; continue to be
mov dx,020h ; generated
mov al,dl
out dx,al ; Send EOI
pop dx
pop ax
iret

TEXT16 ENDS
;**
;** The protected-mode interrupt handler is in a 32-bit code
;** segment. Even so, we have to be sure to force an IRETD
;** at the end of the handler, because MASM doesn’t generate
;** one. This handler will be called on a 32-bit stack by
;** DOS/4GW.
;**
;** DATA is the flat model data segment, which we load into
;** ES so we can write to absolute address 0xB8000. (In the
;** flat model, DS is based at 0.)
;**
DATA SEGMENT BYTE PUBLIC USE32 ’DATA’
DATA ENDS

How do you install a bi-modal interrupt handler using DOS/4GW? 41

DOS Programming Guide

DGROUP GROUP DATA

TEXT SEGMENT BYTE PUBLIC USE32 ’CODE’
ASSUME cs: TEXT

PUBLIC com1 init
com1 init :

mov ax,0F3h ; 9600,n,8,1
mov dx,0 ; com1
int 14h ; Initialize COM1
mov bx,03F8h ; COM1 port space
lea dx,[bx+5] ; line status reg
in al,dx
lea dx,[bx+4] ; modem control reg
in al,dx
or al,8 ; enable OUT2 int
out dx,al
lea dx,[bx+2] ; int id register
in al,dx
mov dx,bx ; data receive reg
in al,dx
in al,21h ; interrupt mask reg
and al,0EFh ; force IRQ4 unmask
out 21h,al
lea dx,[bx+1] ; int enable reg
mov al,1
out dx,al ; enable received int
ret
PUBLIC pmhandler

pmhandler :
push es
push bx
mov bx,DGROUP
mov es,bx
mov ebx,0B8000h ; ES:EBX=flat:0B8000h
mov DWORD PTR es:[ebx],07200720h ; Clear cells
mov BYTE PTR es:[ebx+2],’P’ ; Write P to memory
pop bx
pop es
push ax
push dx
mov dx,03FAh
in al,dx ; Read ports so
mov dx,03F8h ; interrupts can
in al,dx ; continue to be
mov dx,020h ; generated
mov al,dl
out dx,al ; Send EOI
pop dx
pop ax
iretd

TEXT ENDS
END

42 How do you install a bi-modal interrupt handler using DOS/4GW?

The DOS/4GW DOS Extender

The DOS/4GW DOS Extender

44

6 The Tenberry Software DOS/4GW DOS
Extender

The chapters in this section describe the 32-bit Tenberry Software DOS/4GW DOS Extender
which is provided with the Watcom C/C++ package. DOS/4GW is a subset of Tenberry
Software’s DOS/4G product. DOS/4GW is customized for use with the Watcom C/C++
package. Key differences are:

• DOS/4GW will only execute programs built with a WATCOM 32-bit compiler such as
Watcom C/C++ and linked with its run-time libraries.

• The DOS/4GW virtual memory manager (VMM), included in the package, is restricted
to 32MB of memory.

• DOS/4GW does not provide extra functionality such as TSR capability and VMM
performance tuning enhancements.

If your application has requirements beyond those provided by DOS/4GW, you may wish to
acquire DOS/4GW Professional or DOS/4G from:

Tenberry Software, Inc.,
220 No. Main St.,
Natick, Massachusetts,
U.S.A. 01760.

Telephone: (508)653-6006
Facsimile: (508)655-2753
Internet: dos4gw@ratsys.com
CompuServe: 73667,1753

Programs developed to use the restricted version of DOS/4GW which is included in the
Watcom C/C++ package can be distributed on a royalty-free basis, subject to the licensing
terms of the product.

The Tenberry Software DOS/4GW DOS Extender 45

The DOS/4GW DOS Extender

46 The Tenberry Software DOS/4GW DOS Extender

7 Linear Executables

To build a linear executable, compile and link it as described in the chapter entitled "Creating
32-bit DOS/4GW Executables". The resulting file will not run independently: you can run it
under the Watcom Debugger, Tenberry Software Instant-D debugger, or with the standalone
"DOS4GW.EXE".

7.1 The Linear Executable Format
DOS/4GW works with files that use the Linear Executable (LE) file format. The format
represents a protected-mode program in the context of a 32-bit 386 runtime environment with
linear to physical address translation hardware enabled. It uses a flat address space.

This file format is similar to the Segmented Executable (NE) format used in OS/2 1.x and MS
Windows. Both support Dynamic Linking, Resources, and are geared toward protected-mode
programs. Both formats use tables of "counted ASCII" names, and they use similar relocation
formats.

Both formats begin with a DOS style stub program that sophisticated loaders skip. This stub
program executes when the DOS/4GW loader is not present, displaying the message, This
program cannot run in DOS mode.

When the Watcom Linker is used to link a DOS/4GW application, it automatically replaces
the default stub program with one that calls DOS4GW.

7.1.1 The Stub Program

The stub at the beginning of a linear executable is a real-mode program that you can modify
as you like. For example, you can:

• make the stub program do a checksum on the "DOS4GW.EXE" file to make sure it’s
the correct version.

• copy protect your program.

• specify a search path for the "DOS4GW.EXE" file.

The Linear Executable Format 47

The DOS/4GW DOS Extender

• add command line arguments.

The SRC directory contains source code for a sample stub program. "WSTUB.C" is a simple
example, a good base to start from when you construct your own stub. Please note that you
will require a 16-bit C compiler to compile a new stub program. Following is the code in
"WSTUB.C":

#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <errno.h>
#include <string.h>

/* Add environment strings to be searched here */
char *paths to check[] = {

"DOS4GPATH",
"PATH"};

char *dos4g path()
{

static char fullpath[80];
int i;

for(i = 0;
i < sizeof(paths to check) / sizeof(paths to check[0]);
i++) {
searchenv("dos4gw.exe", paths to check[i], fullpath);
if(fullpath[0]) return(&fullpath);

}
for(i = 0;

i < sizeof(paths to check) / sizeof(paths to check[0]);
i++) {
searchenv("dos4g.exe", paths to check[i], fullpath);
if(fullpath[0]) return(&fullpath);

}
return("dos4gw.exe");

}

main(int argc, char *argv[])
{

char *av[4];
auto char cmdline[128];

av[0] = dos4g path(); /* Locate the DOS/4G loader */
av[1] = argv[0]; /* name of executable to run */
av[2] = getcmd(cmdline); /* command line */
av[3] = NULL; /* end of list */

#ifdef QUIET
putenv("DOS4G=QUIET"); /* disables DOS/4G Copyright banner */

#endif
execvp(av[0], av);
puts("Stub exec failed:");
puts(av[0]);
puts(strerror(errno));
exit(1); /* indicate error */

}

48 The Linear Executable Format

Linear Executables

7.2 Memory Use
This section explains how a DOS/4GW application uses the memory on a 386-based PC/AT.
The basic memory layout of an AT machine consists of 640KB of DOS memory, 384KB of
upper memory, and an undetermined amount of extended memory. DOS memory and upper
memory together compose real memory, the memory that can be addressed when the
processor is running in real mode.

Extended
Memory

Upper
Memory

DOS
Memory

Interrupt
Vectors

DOS and
Real-Mode
Software

ROMs and
Hardware

1 MB

640 KB

1 KB

Figure 1. Basic Memory Layout

Under DOS/4GW, the first megabyte of physical memory — the real memory — is mapped as
a shared linear address space. This allows your application to use absolute addresses in real
memory, to access video RAM or BIOS ROM, for example. Because the real memory is
available to all processes, you are not guaranteed to be able to allocate a particular area in real
memory: another process may have allocated it already.

Most code and data is placed in a paged linear address space starting at 4MB. The linear
address space starts at 4MB, the first address in the second page table, to avoid conflicts with
VCPI system software.

Memory Use 49

The DOS/4GW DOS Extender

This split mapping — an executable that is linked to start at 4MB in the linear address space,
with the first MB in the address space mapped to the first MB of physical memory — is called
a split flat model.

The illustration below shows the layout of physical memory on the left, and the layout of the
linear address space on the right.

Mapped
to all
processes

1 KB

4 MB

4 KB

1 MB

640 KB
DOS and
Real-Mode
Software

Mapped into
process as
needed

Mapped
as
needed

4KB pages

VCPI code
1-4 MB unmapped
for VCPI
compatibility

Process code
and data}

Figure 2. Physical Memory/Linear Address Space

The 1KB label in the diagram indicates the top of the real-mode interrupt vectors. 4KB marks
the end of the first page.

50 Memory Use

8 Configuring DOS/4GW

This chapter explains various options that can be specified with the DOS4G environment
variable including how to suppress the banner that is displayed by DOS/4GW at startup. It
also explains how to use the DOS16M environment variable to select the switch mode setting,
if necessary, and to specify the range of extended memory in which DOS/4GW will operate.
DOS/4GW is based on Tenberry Software’s DOS/16M 16-bit Protected-Mode support; hence
the DOS16M environment variable name remains unchanged.

8.1 The DOS4G Environment Variable
A number of options can be selected by setting the DOS4G environment variable. The syntax
for setting options is:

set DOS4G=option1,option2,...

Do not insert a space between DOS4G and the equal sign. A space to the right of the equal
sign is optional.

Options:

QUIET Use this option to suppress the DOS/4GW banner.

The banner that is displayed by DOS/4GW at startup can be suppressed by
issuing the following command:

set DOS4G=quiet

Note: Use of the quiet switch is only permitted pursuant to the terms and
conditions of the WATCOM Software License Agreement and the additional
redistribution rights described in the Getting Started manual. Under these
terms, suppression of the copyright by using the quiet switch is not permitted for
applications which you distribute to others.

VERBOSE Use this option to maximize the information available for postmortem
debugging.

The DOS4G Environment Variable 51

The DOS/4GW DOS Extender

Before running your application, issue the following command:

set DOS4G=verbose

Reproduce the crash and record the output.

NULLP Use this option to trap references to the first sixteen bytes of physical memory.

Before running your application, issue the following command:

set DOS4G=nullp

To select a combination of options, list them with commas as separators.

Example:
set DOS4G=nullp,verbose

8.2 Changing the Switch Mode Setting
In almost all cases, DOS/4GW programs can detect the type of machine that is running and
automatically choose an appropriate real- to protected-mode switch technique. For the few
cases in which this default setting does not work we provide the DOS16M DOS environment
variable, which overrides the default setting.

Change the switch mode settings by issuing the following command:

set DOS16M=value

Do not insert a space between DOS16M and the equal sign. A space to the right of the equal
sign is optional.

The table below lists the machines and the settings you would use with them. Many settings
have mnemonics, listed in the column "Alternate Name", that you can use instead of the
number. Settings that you must set with the DOS16M variable have the notation req’d in the
first column. Settings you may use are marked option, and settings that will automatically be
set are marked auto.

52 Changing the Switch Mode Setting

Configuring DOS/4GW

Alternate
Status Machine Setting Name Comment

auto 386/486 w/ DPMI 0 None Set automatically if DPMI is active
req’d NEC 98-series 1 9801 Must be set for NEC 98-series
auto PS/2 2 None Set automatically for PS/2
auto 386/486 3 386, 80386 Set automatically for 386 or 486
auto 386 INBOARD None 386 with Intel Inboard
req’d Fujitsu FMR-70 5 None Must be set for Fujitsu FMR-70
auto 386/486 w/ VCPI 11 None Set automatically if VCPI detected
req’d Hitachi B32 14 None Must be set for Hitachi B32
req’d OKI if800 15 None Must be set for OKI if800
option IBM PS/55 16 None May be needed for some PS/55s

The following procedure shows you how to test the switch mode setting.

1. If you have one of the machines listed below, set the DOS16M environment
variable to the value shown for that machine and specify a range of extended
memory. For example, if your machine is a NEC 98-series, set DOS16M=1
@2M-4M. See the section entitled "Fine Control of Memory Usage" on page 54 in
this chapter for more information about setting the memory range.

Machine Setting

NEC 98-series 1
Fujitsu FMR-60,-70 5
Hitachi B32 14
OKI if800 15

Before running DOS/4GW applications, check the switch mode setting by
following this procedure:

2. Run PMINFO and note the switch setting reported on the last line of the display.
(PMINFO, which reports on the protected-mode resources available to your
programs, is described in more detail in the chapter entitled "Utilities" on page 99)

If PMINFO runs, the setting is usable on your machine.

3. If you changed the switch setting, add the new setting to your AUTOEXEC.BAT
file.

Changing the Switch Mode Setting 53

The DOS/4GW DOS Extender

Note: PMINFO will run successfully on 286 machines. If your DOS/4GW application does
not run, and PMINFO does, check the CPU type reported on the first line of the display.

You are authorized (and encouraged) to distribute PMINFO to your customers. You may also
include a copy of this section in your documentation.

8.3 Fine Control of Memory Usage
In addition to setting the switch mode as described above, the DOS16M environment variable
enables you to specify which portion of extended memory DOS/4GW will use. The variable
also allows you to instruct DOS/4GW to search for extra memory and use it if it is present.

8.3.1 Specifying a Range of Extended Memory

Normally, you don’t need to specify a range of memory with the DOS16M variable. You
must use the variable, however, in the following cases:

• You are running on a Fujitsu FMR-series, NEC 98-series, OKI if800-series or Hitachi
B-series machine.

• You have older programs that use extended memory but don’t follow one of the
standard disciplines.

• You want to shell out of DOS/4GW to use another program that requires extended
memory.

If none of these conditions applies to you, you can skip this section.

The general syntax is:

set DOS16M= [switch mode] [@start address [- end address]] [:size]

In the syntax shown above, start address, end address and size represent
numbers, expressed in decimal or in hexadecimal (hex requires a 0x prefix). The number
may end with a K to indicate an address or size in kilobytes, or an M to indicate megabytes. If
no suffix is given, the address or size is assumed to be in kilobytes. If both a size and a range
are specified, the more restrictive interpretation is used.

The most flexible strategy is to specify only a size. However, if you are running with other
software that does not follow a convention for indicating its use of extended memory, and
these other programs start before DOS/4GW, you will need to calculate the range of memory
used by the other programs and specify a range for DOS/4GW programs to use.

54 Fine Control of Memory Usage

Configuring DOS/4GW

DOS/4GW ignores specifications (or parts of specifications) that conflict with other
information about extended memory use. Below are some examples of memory usage
control:

set DOS16M= 1 @2m-4m Mode 1, for NEC 98-series machines, and use
extended memory between 2.0 and 4.0MB.

set DOS16M= :1M Use the last full megabyte of extended memory, or
as much as available limited to 1MB.

set DOS16M= @2m Use any extended memory available above 2MB.

set DOS16M= @ 0 - 5m Use any available extended memory from 0.0
(really 1.0) to 5.0MB.

set DOS16M= :0 Use no extended memory.

As a default condition DOS/4GW applications take all extended memory that is not otherwise
in use. Multiple DOS/4GW programs that execute simultaneously will share the reserved
range of extended memory. Any non-DOS/4GW programs started while DOS/4GW programs
are executing will find that extended memory above the start of the DOS/4GW range is
unavailable, so they may not be able to run. This is very safe. There will be a conflict only if
the other program does not check the BIOS configuration call (Interrupt 15H function 88H,
get extended memory size).

To create a private pool of extended memory for your DOS/4GW application, use the
PRIVATXM program, described in the chapter entitled "Utilities" on page 99.

The default memory allocation strategy is to use extended memory if available, and overflow
into DOS (low) memory.

In a VCPI or DPMI environment, the start address and end address arguments are
not meaningful. DOS/4GW memory under these protocols is not allocated according to
specific addresses because VCPI and DPMI automatically prevent address conflicts between
extended memory programs. You can specify a size for memory managed by VCPI or
DPMI, but DOS/4GW will not necessarily allocate this memory from the highest available
extended memory address, as it does for memory managed under other protocols.

Fine Control of Memory Usage 55

The DOS/4GW DOS Extender

8.3.2 Using Extra Memory

Some machines contain extra non-extended, non-conventional memory just below 16MB.
When DOS/4GW runs on a Compaq 386, it automatically uses this memory because the
memory is allocated according to a certain protocol, which DOS/4GW follows. Other
machines have no protocol for allocating this memory. To use the extra memory that may
exist on these machines, set DOS16M with the + option.

set DOS16M=+

Setting the + option causes DOS/4GW to search for memory in the range from FA0000 to
FFFFFF and determine whether the memory is usable. DOS/4GW does this by writing into
the extra memory and reading what it has written. In some cases, this memory is mapped for
DOS or BIOS usage, or for other system uses. If DOS/4GW finds extra memory that is
mapped this way, and is not marked read-only, it will write into that memory. This will cause
a crash, but won’t have any other effect on your system.

8.4 Setting Runtime Options
The DOS16M environment variable sets certain runtime options for all DOS/4GW programs
running on the same system.

To set the environment variable, the syntax is:

set DOS16M=[switch mode setting]^options.

Note: Some command line editing TSRs, such as CED, use the caret (^) as a delimiter. If
you want to set DOS16M using the syntax above while one of these TSRs is resident, modify
the TSR to use a different delimiter.

These are the options:

0x01 check A20 line -- This option forces DOS/4GW to wait until the A20 line is
enabled before switching to protected mode. When DOS/4GW switches to real
mode, this option suspends your program’s execution until the A20 line is
disabled, unless an XMS manager (such as HIMEM.SYS) is active. If an XMS
manager is running, your program’s execution is suspended until the A20 line is
restored to the state it had when the CPU was last in real mode. Specify this
option if you have a machine that runs DOS/4GW but is not truly
AT-compatible. For more information on the A20 line, see the section entitled
"Controlling Address Line 20" on page 58.

56 Setting Runtime Options

Configuring DOS/4GW

0x02 prevent initialization of VCPI -- By default, DOS/4GW searches for a VCPI
server and, if one is present, forces it on. This option is useful if your
application does not use EMS explicitly, is not a resident program, and may be
used with 386-based EMS simulator software.

0x04 directly pass down keyboard status calls -- When this option is set, status
requests are passed down immediately and unconditionally. When disabled,
pass-downs are limited so the 8042 auxiliary processor does not become
overloaded by keyboard polling loops.

0x10 restore only changed interrupts -- Normally, when a DOS/4GW program
terminates, all interrupts are restored to the values they had at the time of
program startup. When you use this option, only the interrupts changed by the
DOS/4GW program are restored.

0x20 set new memory to 00 -- When DOS/4GW allocates a new segment or increases
the size of a segment, the memory is zeroed. This can help you find bugs having
to do with uninitialized memory. You can also use it to provide a consistent
working environment regardless of what programs were run earlier. This option
only affects segment allocations or expansions that are made through the
DOS/4GW kernel (with DOS function 48H or 4AH). This option does not affect
memory allocated with a compiler’s malloc function.

0x40 set new memory to FF -- When DOS/4GW allocates a new segment or increases
the size of a segment, the memory is set to 0xFF bytes. This is helpful in
making reproducible cases of bugs caused by using uninitialized memory. This
option only affects segment allocations or expansions that are made through the
DOS/4GW kernel (with DOS function 48H or 4AH). This option does not affect
memory allocated with a compiler’s malloc function.

0x80 new selector rotation -- When DOS/4GW allocates a new selector, it usually
looks for the first available (unused) selector in numerical order starting with the
highest selector used when the program was loaded. When this option is set, the
new selector search begins after the last selector that was allocated. This causes
new selectors to rotate through the range. Use this option to find references to
stale selectors, i.e., segments that have been cancelled or freed.

Setting Runtime Options 57

The DOS/4GW DOS Extender

8.5 Controlling Address Line 20
This section explains how DOS/4GW uses address line 20 (A20) and describes the related
DOS16M environment variable settings. It is unlikely that you will need to use these settings.

Because the 8086 and 8088 chips have 20-bit address spaces, their highest addressable
memory location is one byte below 1MB. If you specify an address at 1MB or over, which
would require a twenty-first bit to set, the address wraps back to zero. Some parts of DOS
depend on this wrap, so on the 286 and 386, the twenty-first address bit is disabled. To
address extended memory, DOS/4GW enables the twenty-first address bit (the A20 line). The
A20 line must be enabled for the CPU to run in protected mode, but it may be either enabled
or disabled in real mode.

By default, when DOS/4GW returns to real mode, it disables the A20 line. Some software
depends on the line being enabled. DOS/4GW recognizes the most common software in this
class, the XMS managers (such as HIMEM.SYS), and enables the A20 line when it returns to
real mode if an XMS manager is present. For other software that requires the A20 line to be
enabled, use the A20 option. The A20 option makes DOS/4GW restore the A20 line to the
setting it had when DOS/4GW switched to protected mode. Set the environment variable as
follows:

set DOS16M=A20

To specify more than one option on the command line, separate the options with spaces.

The DOS16M variable also lets you to specify the length of the delay between a DOS/4GW
instruction to change the status of the A20 line and the next DOS/4GW operation. By default,
this delay is 1 loop instruction when DOS/4GW is running on a 386 machine. In some cases,
you may need to specify a longer delay for a machine that will run DOS/4GW but is not truly
AT-compatible. To change the delay, set DOS16M to the desired number of loop
instructions, preceded by a comma:

set DOS16M=,loops

58 Controlling Address Line 20

9 VMM

The Virtual Memory Manager (VMM) uses a swap file on disk to augment RAM. With
VMM you can use more memory than your machine actually has. When RAM is not
sufficient, part of your program is swapped out to the disk file until it is needed again. The
combination of the swap file and available RAM is the virtual memory.

Your program can use VMM if you set the DOS environment variable, DOS4GVM, as
follows. To set the DOS4GVM environment variable, use the format shown below.

set DOS4GVM= [option[#value]] [option[#value]]

A "#" is used with options that take values since the DOS command shell will not accept "=".

If you set DOS4GVM equal to 1, the default parameters are used for all options.

Example:
C>set DOS4GVM=1

9.1 VMM Default Parameters
VMM parameters control the options listed below.

MINMEM The minimum amount of RAM managed by VMM. The default is
512KB.

MAXMEM The maximum amount of RAM managed by VMM. The default is
4MB.

SWAPMIN The minimum or initial size of the swap file. If this option is not used,
the size of the swap file is based on VIRTUALSIZE (see below).

SWAPINC The size by which the swap file grows.

SWAPNAME The swap file name. The default name is "DOS4GVM.SWP". By
default the file is in the root directory of the current drive. Specify the
complete path name if you want to keep the swap file somewhere else.

VMM Default Parameters 59

The DOS/4GW DOS Extender

DELETESWAP Whether the swap file is deleted when your program exits. By default
the file is not deleted. Program startup is quicker if the file is not
deleted.

VIRTUALSIZE The size of the virtual memory space. The default is 16MB.

9.2 Changing the Defaults
You can change the defaults in two ways.

1. Specify different parameter values as arguments to the DOS4GVM environment
variable, as shown in the example below.

set DOS4GVM=deleteswap maxmem#8192

2. Create a configuration file with the filetype extension ".VMC", and use that as an
argument to the DOS4GVM environment variable, as shown below.

set DOS4GVM=@NEW4G.VMC

9.2.1 The .VMC File

A ".VMC" file contains VMM parameters and settings as shown in the example below.
Comments are permitted. Comments on lines by themselves are preceded by an exclamation
point (!). Comments that follow option settings are preceded by white space. Do not insert
blank lines: processing stops at the first blank line.

!Sample .VMC file
!This file shows the default parameter values.
minmem = 512 At least 512K bytes of RAM is required.
maxmem = 4096 Uses no more than 4MB of RAM
virtualsize = 16384 Swap file plus allocated memory is 16MB
!To delete the swap file automatically when the program exits, add
!deleteswap
!To store the swap file in a directory called SWAPFILE, add
!swapname = c:\swapfile\dos4gvm.swp

60 Changing the Defaults

10 Interrupt 21H Functions

When you call an Interrupt 21H function under DOS/4GW, the 32-bit registers in which you
pass values are translated into the appropriate 16-bit registers, since DOS works only with 16
bits. However, you can use 32-bit values in your DOS calls. You can allocate blocks of
memory larger than 64KB or use an address with a 32-bit offset, and DOS/4GW will translate
the call appropriately, to use 16-bit registers. When the Interrupt 21H function returns, the
value is widened - placed in a 32-bit register, with the high order bits zeroed.

DOS/4GW uses the following rules to manage registers:

• When you pass a parameter to an Interrupt 21H function that expects a 16-bit quantity
in a general register (for example, AX), pass a 32-bit quantity in the corresponding
extended register (for example, EAX). When a DOS function returns a 16-bit quantity
in a general register, expect to receive it (with high-order zero bits) in the corresponding
extended register.

• When an Interrupt 21H function expects to receive a 16:16 pointer in a
segment:general register pair (for example, ES:BX), supply a 16:32 pointer using the
same segment register and the corresponding extended general register (ES:EBX).
DOS/4GW will copy data and translate pointers so that DOS ultimately receives a 16:16
real-mode pointer in the correct registers.

• When DOS returns a 16:16 real-mode pointer, DOS/4GW translates the segment value
into an appropriate protected-mode selector and generates a 32-bit offset that results in a
16:32 pointer to the same location in the linear address space.

• Many DOS functions return an error code in AX if the function fails. DOS/4GW
checks the status of the carry flag, and if it is set, indicating an error, zero-extends the
code for EAX. It does not change any other registers.

• If the value is passed or returned in an 8-bit register (AL or AH, for example),
DOS/4GW puts the value in the appropriate location and leaves the upper half of the
32-bit register untouched.

The table below lists all the Interrupt 21h functions. For each, it shows the registers that are
widened or narrowed. Footnotes provide additional information about some of the interrupts
that require special handling. Following the table is a section that provides a detailed
explanation of interrupt handling under DOS/4GW.

Interrupt 21H Functions 61

The DOS/4GW DOS Extender

Function Purpose Managed Registers

00H Terminate Process None
01H Character Input with Echo None
02H Character Output None
03H Auxiliary Input None
04H Auxiliary Output None
05H Print Character None
06H Direct Console I/O None
07H Unfiltered Character Input Without Echo None
08H Character Input Without Echo None
09H Display String EDX
0AH Buffered Keyboard Input EDX
0BH Check Keyboard Status None
0CH Flush Buffer, Read Keyboard EDX
0DH Disk Reset None
0EH Select Disk None
0FH Open File with FCB EDX

10H Close File with FCB EDX
11H Find First File EDX
12H Find Next File EDX
13H Delete File EDX
14H Sequential Read EDX
15H Sequential Write EDX
16H Create File with FCB EDX
17H Rename File EDX
19H Get Current Disk None
1AH Set DTA Address EDX
1BH Get Default Drive Data Returns in EBX, ECX, and EDX
1CH Get Drive Data Returns in EBX, ECX, and EDX

21H Random Read EDX
22H Random Write EDX
23H Get File Size EDX
24H Set Relative Record EDX
25H Set Interrupt Vector EDX
26H Create New Program Segment Prefix None
27H Random Block Read EDX, returns in ECX
28H Random Block Write EDX, returns in ECX
29H Parse Filename ESI, EDI, returns in EAX, ESI and EDI (1.)
2AH Get Date Returns in ECX
2BH Set Date None
2CH Get Time None

62 Interrupt 21H Functions

Interrupt 21H Functions

2DH Set Time None
2EH Set/Reset Verify Flag None
2FH Get DTA Address Returns in EBX

30H Get MS-DOS Version Number Returns in ECX
31H Terminate and Stay Resident None
33H Get/Set Control-C Check Flag None
34H Return Address of InDOS Flag Returns in EBX
35H Get Interrupt Vector Returns in EBX
36H Get Disk Free Space Returns in EAX, EBX, ECX, and EDX
38H Get/Set Current Country EDX, returns in EBX
39H Create Directory EDX
3AH Remove Directory EDX
3BH Change Current Directory EDX
3CH Create File with Handle EDX, returns in EAX
3DH Open File with Handle EDX, returns in EAX
3EH Close File None
3FH Read File or Device EBX, ECX, EDX, returns in EAX (2.)

40H Write File or Device EBX, ECX, EDX, returns in EAX (2.)
41H Delete File EDX
42H Move File Pointer Returns in EDX, EAX
43H Get/Set File Attribute EDX, returns in ECX
44H IOCTL (3.)

00H Get Device Information Returns in EDX
01H SetDevice Information None
02H Read Control Data from CDD EDX, returns in EAX
03H Write Control Data to CDD EDX, returns in EAX
04H Read Control Data from BDD EDX, returns in EAX
05H Write Control Data to BDD EDX, returns in EAX
06H Check Input Status None
07H Check Output Status None
08H Check if Block Device is Removeable Returns in EAX
09H Check if Block Device is Remote Returns in EDX
0AH Check if Handle is Remote Returns in EDX
0BH Change Sharing Retry Count None
0CH Generic I/O Control for Character Devices EDX
0DH Generic I/O Control for Block Devices EDX
0EH Get Logical Drive Map None
0FH Set Logical Drive Map None

45H Duplicate File Handle Returns in EAX
46H Force Duplicate File Handle None
47H Get Current Directory ESI
48H Allocate Memory Block Returns in EAX

Interrupt 21H Functions 63

The DOS/4GW DOS Extender

49H Free Memory Block None
4AH Resize Memory Block None
4BH Load and Execute Program (EXEC) EBX, EDX (4.)
4CH Terminate Process with Return Code None
4DH Get Return Code of Child Process None
4EH Find First File EDX
4FH Find Next File None

52H Get List of Lists (not supported)
54H Get Verify Flag None
56H Rename File EDX, EDI
57H Get/Set Date/Time of File Returns in ECX, and EDX
58H Get/Set Allocation Strategy Returns in EAX
59H Get Extended Error Information Returns in EAX
5AH Create Temporary File EDX, returns in EAX and EDX
5BH Create New File EDX, returns in EAX
5CH Lock/Unlock File Region None
5EH Network Machine Name/Printer Setup

00H Get Machine Name EDX
02H Set Printer Setup String ESI
03H Get Printer Setup String EDI, returns in ECX

5FH Get/Make Assign List Entry
02H Get Redirection List Entry ESI, EDI, returns in ECX
03H Redirect Device ESI, EDI
04H Cancel Device Redirection ESI

62H Get Program Segment Prefix Address Returns in EBX
63H Get Lead Byte Table (version 2.25 only) Returns in ESI
65H Get Extended Country Information EDI
66H Get or Set Code Page None
67H Set Handle Count None

This list of functions is excerpted from The MS-DOS Encyclopedia, Copyright (c) 1988 by
Microsoft Press. All Rights Reserved.

1. For Function 29H, DS:ESI and ES:EDI contain pointer values that are not changed
by the call.

2. You can read and write quantities larger than 64KB with Functions 3FH and 40H.
DOS/4GW breaks your request into chunks smaller than 64KB, and calls the DOS
function once for each chunk.

64 Interrupt 21H Functions

Interrupt 21H Functions

3. You can’t transfer more than 64KB using Function 44h, subfunctions 02H, 03H,
04H, or 05H. DOS/4GW does not break larger requests into DOS-sized chunks, as
it does for Functions 3FH and 40H.

4. When you call Function 4B under DOS/4GW, you pass it a data structure that
contains 16:32 bit pointers. DOS/4GW translates these into 16:16 bit pointers in
the structure it passes to DOS.

10.1 Functions 25H and 35H: Interrupt Handling in
Protected Mode

By default, interrupts that occur in protected mode are passed down: the entry in the IDT
points to code in DOS/4GW that switches the CPU to real mode and resignals the interrupt. If
you install an interrupt handler using Interrupt 21H, Function 25H, that handler will get
control of any interrupts that occur while the processor is in protected mode. If the interrupt
for which you installed the handler is in the autopassup range, your handler will also get
control of interrupts signalled in real mode.

The autopassup range runs from 08H to 2EH inclusive, but excluding 21H. If the interrupt is
in the autopassup range, the real-mode vector will be modified when you install the
protected-mode handler to point to code in the DOS/4GW kernel. This code switches the
processor to protected mode and resignals the interrupt-where your protected-mode handler
will get control.

10.1.1 32-Bit Gates

The DOS/4GW kernel always assigns a 32-bit gate for the interrupt handlers it installs. It does
not distinguish between 16-bit and 32-bit handlers for consistency with DPMI.

This 32-bit gate points into the DOS/4GW kernel. When DOS/4GW handles the interrupt, it
switches to its own 16-bit stack, and from there it calls the interrupt handler (yours or the
default). This translation is transparent to the handler, with one exception: since the current
stack is not the one on which the interrupt occurred, the handler cannot look up the stack for
the address at which the interrupt occurred.

Functions 25H and 35H: Interrupt Handling in Protected Mode 65

The DOS/4GW DOS Extender

10.1.2 Chaining 16-bit and 32-bit Handlers

If your program hooks an interrupt, write a normal service routine that either handles the
interrupt and IRETs or chains to the previous handler. As part of handling the interrupt, your
handler can PUSHF/CALL to the previous handler. The handler must IRET (or IRETD) or
chain.

For each protected-mode interrupt, DOS/4GW maintains separate chains of 16-bit and 32-bit
handlers. If your 16-bit handler chains, the previous handler is a 16-bit program. If your
32-bit handler chains, the previous handler is a 32-bit program.

If a 16-bit program hooks a given interrupt before any 32-bit programs hook it, the 16-bit
chain is executed first. If all the 16-bit handlers unhook later and a new 16-bit program hooks
the interrupt while 32-bit handlers are still outstanding, the 32-bit handlers will be executed
first.

If the first program to hook an interrupt is 32-bit, the 32-bit chain is executed first.

10.1.3 Getting the Address of the Interrupt Handler

When you signal Interrupt 21H, Function 35, it always returns a non-null address even if no
other program of your bitness (i.e., 16-bit or 32-bit) has hooked the interrupt. The address
points to a dummy handler that looks to you as though it does an IRET to end the chain. This
means that you can’t find an unused interrupt by looking for a NULL pointer. Since this
technique is most frequently used by programs that are looking for an unclaimed real-mode
interrupt on which to install a TSR, it shouldn’t cause you problems.

66 Functions 25H and 35H: Interrupt Handling in Protected Mode

11 Interrupt 31H DPMI Functions

When a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in enhanced
mode, an OS/2 virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or
QEMM/QDPMI (with EXTCHKOFF), the DPMI host provides the DPMI services, not
DOS/4GW. The DPMI host also provides virtual memory, if any. Performance (speed and
memory use) under different DPMI hosts varies greatly due to the quality of the DPMI
implementation.

DPMI services are accessed using Interrupt 31H.

The following describes the services provided by DOS/4GW and DOS/4GW Professional in
the absence of a DPMI host. DOS/4GW supports many of the common DPMI system
services. Not all of the services described below are supported by other DPMI hosts.

Some of the information in this chapter was obtained from the the DOS Protected-Mode
Interface (DPMI) specification. It is no longer in print; however the DPMI 1.0 specification
can be obtained from the Intel ftp site. Here is the URL.

ftp://ftp.intel.com/pub/IAL/software specs/dpmiv1.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

11.1 Using Interrupt 31H Function Calls
Interrupt 31H DPMI function calls can be used only by protected-mode programs.

The general ground rules for Interrupt 31H calls are as follows:

• All Interrupt 31H calls modify the AX register. Unsupported or unsuccessful calls
return an error code in AX. Other registers are saved unless they contain specified
return values.

• All Interrupt 31H calls modify flags: Unsupported or unsuccessful calls return with the
carry flag set. Successful calls clear the carry flag. Only memory management and
interrupt flag management calls modify the interrupt flag.

Using Interrupt 31H Function Calls 67

The DOS/4GW DOS Extender

• Memory management calls can enable interrupts.

• All calls are reentrant.

The flag and register information for each call is listed in the following descriptions of
supported Interrupt 31H function calls.

11.2 Int31H Function Calls
The Interrupt 31H subfunction calls supported by DOS/4GW are listed below by category:

• Local Descriptor Table (LDT) management services

• DOS memory management services

• Interrupt services

• Translation services

• DPMI version

• Memory management services

• Page locking services

• Demand paging performance tuning services

• Physical address mapping

• Virtual interrupt state functions

• Vendor specific extensions

• Coprocessor status

Only the most commonly used Interrupt 31H function calls are supported in this version.

68 Int31H Function Calls

Interrupt 31H DPMI Functions

11.2.1 Local Descriptor Table (LDT) Management Services

Function 0000H This function allocates a specified number of descriptors from the LDT and
returns the base selector. Pass the following information:

AX = 0000H
CX = number of descriptors to be allocated

If the call succeeds, the carry flag is clear and the base selector is returned in
AX. If the call fails, the carry flag is set.

An allocated descriptor is set to the present data type, with a base and limit of
zero. The privilege level of an allocated descriptor is set to match the code
segment privilege level of the application. To find out the privilege level of a
descriptor, use the lar instruction.

Allocated descriptors must be filled in by the application. If more than one
descriptor is allocated, the returned selector is the first of a contiguous array.
Use Function 0003H to get the increment for the next selector in the array.

Function 0001H This function frees the descriptor specified. Pass the following information:

AX = 0001H
BX = the selector to free

Use the selector returned with function 0000h when the descriptor was allocated.
To free an array of descriptors, call this function for each descriptor. Use
Function 0003H to find out the increment for each descriptor in the array.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

You can use this function to free the descriptors allocated for the program’s
initial CS, DS, and SS segments, but you should not free other segments that
were not allocated with Function 0000H or Function 000DH.

Function 0002H This function converts a real-mode segment to a descriptor that a
protected-mode program can address. Pass the following information:

Int31H Function Calls 69

The DOS/4GW DOS Extender

AX = 0002H
BX = real-mode segment address

If the call succeeds, it clears the carry flag and returns the selector mapped to the
real-mode segment in AX. If the call fails, the carry flag is set.

If you call this function more than once with the same real-mode segment
address, you get the same selector value each time. The descriptor limit is set to
64KB.

The purpose of this function is to give protected-mode programs easy access to
commonly used real-mode segments. However, because you cannot modify or
free descriptors created by this function, it should be used infrequently. Do not
use this function to get descriptors for private data areas.

To examine real-mode addresses using the same selector, first allocate a
descriptor, and then use Function 0007H to change the linear base address.

Function 0003H This function returns the increment value for the next selector. Use this
function to get the value you add to the base address of an allocated array of
descriptors to get the next selector address. Pass the following information:

AX = 0003H

This call always succeeds. The increment value is returned in AX. This value is
always a power of two, but no other assumptions can be made.

Function 0006H This function gets the linear base address of a selector. Pass the following
information:

AX = 0006H
BX = selector

If the call succeeds, the carry flag is clear and CX:DX contains the 32-bit linear
base address of the segment. If the call fails, it sets the carry flag.

If the selector you specify in BX is invalid, the call fails.

Function 0007H This function changes the base address of a specified selector. Only
descriptors allocated through Function 0000H should be modified. Pass the
following information:

70 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0007H
BX = selector
CX:DX = the new 32-bit linear base address for the segment

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

If the selector you specify in BX is invalid, the call fails.

Function 0008H This function sets the upper limit of a specified segment. Use this function
to modify descriptors allocated with Function 0000H only. Pass the following
information:

AX = 0008H
BX = selector
CX:DX = 32-bit segment limit

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

The call fails if the specified selector is invalid, or if the specified limit cannot
be set.

Segment limits greater than 1MB must be page-aligned. This means that limits
greater than 1MB must have the low 12 bits set.

To get the limit of a segment, use the 32-bit form of lsl for segment limits
greater than 64KB.

Function 0009H This function sets the descriptor access rights. Use this function to modify
descriptors allocated with Function 0000H only. To examine the access rights
of a descriptor, use the lar instruction. Pass the following information:

AX = 0009H
BX = selector
CL = Access rights/type byte
CH = 386 extended access rights/type byte

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.
If the selector you specify in BX is invalid, the call fails. The call also fails if
the access rights/type byte does not match the format and meet the requirements
shown in the figures below.

Int31H Function Calls 71

The DOS/4GW DOS Extender

The access rights/type byte passed in CL has the format shown in the figure
below.

6 5 4 3 2 1 07

P DPL 1 C/D E/C W/R A

0 => Not accessed
1 => Accessed

Data: 0 => Read, 1=> R/W
Code: Must be 1 (readable)

Data: 0=> Exp-up, 1=> Exp-dn
Code: Must be 0 (non-conform)

0 => Data, 1=> Code

Must be 1

Must equal caller’s CPL

0 = > Absent, 1=> Present

Figure 3. Access Rights/Type

72 Int31H Function Calls

Interrupt 31H DPMI Functions

The extended access rights/type byte passed in CH has the following format.

6 5 4 3 2 1 07

G B/D Avl0 Reserved

Ignored

Can be 0 or 1

Must be 0

0 => Byte Granular, 1=> Page Granular

0 => Default 16-bit., 1=> Default 32-bit

Figure 4. Extended Access Rights/Type

Function 000AH This function creates an alias to a code segment. This function creates a
data descriptor that has the same base and limit as the specified code segment
descriptor. Pass the following information:

AX = 000AH
BX = code segment selector

If the call succeeds, the carry flag is clear and the new data selector is returned
in AX. If the call fails, the carry flag is set. The call fails if the selector passed
in BX is not a valid code segment.

To deallocate an alias to a code segment, use Function 0001H.

After the alias is created, it does not change if the code segment descriptor
changes. For example, if the base or limit of the code segment change later, the
alias descriptor stays the same.

Int31H Function Calls 73

The DOS/4GW DOS Extender

Function 000BH This function copies the descriptor table entry for a specified descriptor.
The copy is written into an 8-byte buffer. Pass the following information:

AX = 000BH
BX = selector
ES:EDI = a pointer to the 8-byte buffer for the descriptor copy

If the call succeeds, the carry flag is clear and ES:EDI contains a pointer to the
buffer that contains a copy of the descriptor. If the call fails, the carry flag is set.
The call fails if the selector passed in BX is invalid or unallocated.

Function 000CH This function copies an 8-byte buffer into the LDT for a specified
descriptor. The descriptor must first have been allocated with Function 0000H.
Pass the following information:

AX = 000CH
BX = selector
ES:EDI = a pointer to the 8-byte buffer containing the descriptor

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set. The
call fails if the descriptor passed in BX is invalid.

The type byte, byte 5, has the same format and requirements as the access
rights/type byte passed to Function 0009H in CL. The format is shown in the
first figure presented with the description of Function 0009H.

The extended type byte, byte 6, has the same format and requirements as the
extended access rights/type byte passed to Function 0009H in CH, except that
the limit field can have any value, and the low order bits marked reserved are
used to set the upper 4 bits of the descriptor limit. The format is shown in the
second figure presented with the description of Function 0009H.

Function 000DH This function allocates a specific LDT descriptor. Pass the following
information:

AX = 000DH
BX = selector

If the call succeeds, the carry flag is clear and the specified descriptor is
allocated. If the call fails, the carry flag is set.

The call fails if the specified selector is already in use, or if it is not a valid LDT
descriptor. The first 10h (16 decimal) descriptors are reserved for this function,

74 Int31H Function Calls

Interrupt 31H DPMI Functions

and should not be used by the host. Some of these descriptors may be in use,
however, if another client application is already loaded.

To free the descriptor, use Function 0001H.

11.2.2 DOS Memory Management Services

Function 0100H This function allocates memory from the DOS free memory pool. This
function returns both the real-mode segment and one or more descriptors that
can be used by protected-mode applications. Pass the following information:

AX = 0100H
BX = the number of paragraphs (16-byte blocks) requested

If the call succeeds, the carry flag is clear. AX contains the initial real-mode
segment of the allocated block and DX contains the base selector for the
allocated block.

If the call fails, the carry flag is set. AX contains the DOS error code. If
memory is damaged, code 07H is returned. If there is not enough memory to
satisfy the request, code 08H is returned. BX contains the number of paragraphs
in the largest available block of DOS memory.

If you request a block larger than 64KB, contiguous descriptors are allocated.
Use Function 0003H to find the value of the increment to the next descriptor.
The limit of the first descriptor is set to the entire block. Subsequent descriptors
have a limit of 64KB, except for the final descriptor, which has a limit of
blocksize MOD 64KB.

You cannot modify or deallocate descriptors allocated with this function.
Function 101H deallocates the descriptors automatically.

Function 0101H This function frees a DOS memory block allocated with function 0100H.
Pass the following information:

AX = 0101H
DX = selector of the block to be freed

If the call succeeds, the carry flag is clear.

If the call fails, the carry flag is set and the DOS error code is returned in AX. If
the incorrect segment was specified, code 09H is returned. If memory control
blocks are damaged, code 07H is returned.

Int31H Function Calls 75

The DOS/4GW DOS Extender

All descriptors allocated for the specified memory block are deallocated
automatically and cannot be accessed correctly after the block is freed.

Function 0102H This function resizes a DOS memory block allocated with function 0100H.
Pass the following information:

AX = 0102H
BX = the number of paragraphs (16-byte blocks) in the resized block
DX = selector of block to resize

If the call succeeds, the carry flag is clear.

If the call fails, the carry flag is set, the maximum number of paragraphs
available is returned in BX, and the DOS error code is returned in AX. If
memory code blocks are damaged, code 07H is returned. If there isn’t enough
memory to increase the size as requested, code 08H is returned. If the incorrect
segment is specified, code 09h is returned.

Because of the difficulty of finding additional contiguous memory or
descriptors, this function is not often used to increase the size of a memory
block. Increasing the size of a memory block might well fail because other DOS
allocations have used contiguous space. If the next descriptor in the LDT is not
free, allocation also fails when the size of a block grows over the 64KB
boundary.

If you shrink the size of a memory block, you may also free some descriptors
allocated to the block. The initial selector remains unchanged, however; only
the limits of subsequent selectors will change.

11.2.3 Interrupt Services

Function 0200H This function gets the value of the current task’s real-mode interrupt vector
for the specified interrupt. Pass the following information:

AX = 0200H
BL = interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are
supported by the host. When the call returns, the carry flag is clear, and the
segment:offset of the real-mode interrupt handler is returned in CX:DX.

76 Int31H Function Calls

Interrupt 31H DPMI Functions

Because the address returned in CX is a segment, and not a selector, you cannot
put it into a protected-mode segment register. If you do, a general protection
fault may occur.

Function 0201H This function sets the value of the current task’s real-mode interrupt vector
for the specified interrupt. Pass the following information:

AX = 0201H
BL = interrupt number
CX:DX = segment:offset of the real-mode interrupt handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

The address passed in CX:DX should be a real-mode segment:offset,
such as function 0200H returns. For this reason, the interrupt handler must
reside in DOS addressable memory. You can use Function 0100H to allocate
DOS memory. This version does not support the real-mode callback address
function.

If you are hooking a hardware interrupt, you have to lock all segments involved.
These segments include the segment in which the interrupt handler runs, and any
segment it may touch at interrupt time.

Function 0202H This function gets the processor exception handler vector. This function
returns the CS:EIP of the current protected-mode exception handler for the
specified exception number. Pass the following information:

AX = 0202H
BL = exception/fault number (00h - 1Fh)

If the call succeeds, the carry flag is clear and the selector:offset of the
protected-mode exception handler is returned in CX:EDX. If it fails, the carry
flag is set.

The value returned in CX is a valid protected-mode selector, not a real-mode
segment.

Function 0203H This function sets the processor exception handler vector. This function
allows protected-mode applications to intercept processor exceptions that are not
handled by the DPMI environment. Programs may wish to handle exceptions
such as "not present segment faults" which would otherwise generate a fatal
error. Pass the following information:

Int31H Function Calls 77

The DOS/4GW DOS Extender

AX = 0203H
BL = exception/fault number (00h - 1Fh)
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flag is clear. If it fails, the carry flag is set.

The address passed in CX must be a valid protected-mode selector, such as
Function 204H returns, and not a real-mode segment. A 32-bit implementation
must supply a 32-bit offset in the EDX register. If the handler chains to the next
handler, it must use a 32-bit interrupt stack frame to do so.

The handler should return using a far return instruction. The original SS:ESP,
CS:EIP and flags on the stack, including the interrupt flag, will be restored.

All fault stack frames have an error code. However the error code is only valid
for exceptions 08h, 0Ah, 0Bh, 0Ch, 0Dh, and 0Eh.

The handler must preserve and restore all registers.

The exception handler will be called on a locked stack with interrupts disabled.
The original SS, ESP, CS, and EIP will be pushed on the exception handler stack
frame.

The handler must either return from the call by executing a far return or jump to
the next handler in the chain (which will execute a far return or chain to the next
handler).

The procedure can modify any of the values on the stack pertaining to the
exception before returning. This can be used, for example, to jump to a
procedure by modifying the CS:EIP on the stack. Note that the procedure must
not modify the far return address on the stack — it must return to the original
caller. The caller will then restore the flags, CS:EIP and SS:ESP from the stack
frame.

If the DPMI client does not handle an exception, or jumps to the default
exception handler, the host will reflect the exception as an interrupt for
exceptions 0, 1, 2, 3, 4, 5 and 7. Exceptions 6 and 8 - 1Fh will be treated as fatal
errors and the client will be terminated.

Exception handlers will only be called for exceptions that occur in protected
mode.

78 Int31H Function Calls

Interrupt 31H DPMI Functions

Function 0204H This function gets the CS:EIP selector:offset of the current
protected-mode interrupt handler for a specified interrupt number. Pass the
following information:

AX = 0204H
BL = interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are
supported by the host. When the call returns, the carry flag is clear and
CX:EDX contains the protected-mode selector:offset of the exception
handler.

A 32-bit offset is returned in the EDX register.

Function 0205H This function sets the address of the specified protected-mode interrupt
vector. Pass the following information:

AX = 0205H
BL = interrupt number
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

The address passed in CX must be a valid protected-mode selector, such as
Function 204H returns, and not a real-mode segment. A 32-bit implementation
must supply a 32-bit offset in the EDX register. If the handler chains to the next
handler, it must use a 32-bit interrupt stack frame to do so.

11.2.4 Translation Services

These services are provided so that protected-mode programs can call real-mode software that
DPMI does not support directly. The protected-mode program must set up a data structure
with the appropriate register values. This "real-mode call structure" is shown below.

Int31H Function Calls 79

The DOS/4GW DOS Extender

Offset Register

00H EDI

04H ESI

08H EBP

0CH Reserved by system

10H EBX

14H EDX

18H ECX

1CH EAX

20H Flags

22H ES

24H DS

26H FS

28H GS

2AH IP

2CH CS

2EH SP

30H SS

After the call or interrupt is complete, all real-mode registers and flags except SS, SP, CS, and
IP will be copied back to the real-mode call structure so that the caller can examine the
real-mode return values.

The values in the segment registers should be real-mode segments, not protected-mode
selectors.

80 Int31H Function Calls

Interrupt 31H DPMI Functions

The translation services will provide a real-mode stack if the SS:SP fields are zero. However,
the stack provided is relatively small. If the real-mode procedure/interrupt routine uses more
than 30 words of stack space then you should provide your own real-mode stack.

Function 0300H This function simulates a real-mode interrupt. This function simulates an
interrupt in real mode. It will invoke the CS:IP specified by the real-mode
interrupt vector and the handler must return by executing an iret. Pass the
following information:

AX = 0300H
BL = interrupt number
BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags

are reserved and must be 0.
CX = number of words to copy from protected-mode stack to real-mode
stack
ES:EDI = the selector:offset of real-mode call structure

If the call fails, the carry flag is set.

If the call succeeds, the carry flag is clear and ES:EDI contains the
selector:offset of the modified real-mode call structure.

The CS:IP in the real-mode call structure is ignored by this service. The
appropriate interrupt handler will be called based on the value passed in BL.

The flags specified in the real-mode call structure will be pushed on the
real-mode stack iret frame. The interrupt handler will be called with the
interrupt and trace flags clear.

It is up to the caller to remove any parameters that were pushed on the
protected-mode stack.

The flag to reset the interrupt controller and the A20 line is ignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0301H (DOS/4GW Professional only) This function calls a real-mode procedure
with a FAR return frame. The called procedure must execute a FAR return
when it completes. Pass the following information:

Int31H Function Calls 81

The DOS/4GW DOS Extender

AX = 0301H
BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags

reserved and must be 0.
CX = Number of words to copy from protected-mode to real-mode stack
ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and ES:EDI contains the
selector:offset of modified real-mode call structure.

If the call fails, the carry flag is set.

Notes:

1. The CS:IP in the real-mode call structure specifies the address of the
real-mode procedure to call.

2. The real-mode procedure must execute a FAR return when it has
completed.

3. If the SS:SP fields are zero then a real-mode stack will be provided by
the DPMI host. Otherwise, the real-mode SS:SP will be set to the
specified values before the procedure is called.

4. When the Int 31h returns, the real-mode call structure will contain the
values that were returned by the real-mode procedure.

5. It is up to the caller to remove any parameters that were pushed on the
protected-mode stack.

6. The flag to reset the interrupt controller and A20 line is ignored by
DPMI implementations that run in Virtual 8086 mode. It causes
DPMI implementations that return to real mode to set the interrupt
controller and A20 address line hardware to its normal real-mode
state.

Function 0302H (DOS/4GW Professional only) This function calls a real-mode procedure
with an iret frame. The called procedure must execute an iret when it
completes. Pass the following information:

82 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0302H
BH = flags Bit 0 = 1 resets the interrupt controller and A20 line. Other flags

reserved and must be 0.
CX = Number of words to copy from protected-mode to real-mode stack
ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and ES:EDI contains the
selector:offset of modified real-mode call structure.

If the call fails, the carry flag is set.

Notes:

1. The CS:IP in the real-mode call structure specifies the address of the
real-mode procedure to call.

2. The real-mode procedure must execute an iret when it has
completed.

3. If the SS:SP fields are zero then a real-mode stack will be provided by
the DPMI host. Otherwise, the real-mode SS:SP will be set to the
specified values before the procedure is called.

4. When the Int 31h returns, the real-mode call structure will contain the
values that were returned by the real-mode procedure.

5. The flags specified in the real-mode call structure will be pushed the
real-mode stack iret frame. The procedure will be called with the
interrupt and trace flags clear.

6. It is up to the caller to remove any parameters that were pushed on the
protected-mode stack.

7. The flag to reset the interrupt controller and A20 line is ignored by
DPMI implementations that run in Virtual 8086 mode. It causes
DPMI implementations that return to real mode to set the interrupt
controller and A20 address line hardware to its normal real-mode
state.

Function 0303H (DOS/4GW Professional only) This function allocates a real-mode callback
address. This service is used to obtain a unique real-mode SEG:OFFSET that
will transfer control from real mode to a protected-mode procedure.

Int31H Function Calls 83

The DOS/4GW DOS Extender

At times it is necessary to hook a real-mode interrupt or device callback in a
protected-mode driver. For example, many mouse drivers call an address
whenever the mouse is moved. Software running in protected mode can use a
real-mode callback to intercept the mouse driver calls. Pass the following
information:

AX = 0303H
DS:ESI = selector:offset of procedure to call
ES:EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and CX:DX contains the
segment:offset of real-mode callback address.

If the call fails, the carry flag is set.

Callback Procedure Parameters

Interrupts disabled
DS:ESI = selector:offset of real-mode SS:SP
ES:EDI = selector:offset of real-mode call structure
SS:ESP = Locked protected-mode API stack
All other registers undefined

Return from Callback Procedure

Execute an IRET to return
ES:EDI = selector:offset of real-mode call structure
to restore (see note)

Notes:

1. Since the real-mode call structure is static, you must be careful when
writing code that may be reentered. The simplest method of avoiding
reentrancy is to leave interrupts disabled throughout the entire call.
However, if the amount of code executed by the callback is large then
you will need to copy the real-mode call structure into another buffer.
You can then return with ES:EDI pointing to the buffer you copied
the data to — it does not have to point to the original real mode call
structure.

2. The called procedure is responsible for modifying the real-mode
CS:IP before returning. If the real-mode CS:IP is left unchanged then
the real-mode callback will be executed immediately and your
procedure will be called again. Normally you will want to pop a

84 Int31H Function Calls

Interrupt 31H DPMI Functions

return address off of the real-mode stack and place it in the real-mode
CS:IP. The example code in the next section demonstrates chaining
to another interrupt handler and simulating a real-mode iret.

3. To return values to the real-mode caller, you must modify the
real-mode call structure.

4. Remember that all segment values in the real-mode call structure will
contain real-mode segments, not selectors. If you need to examine
data pointed to by a real-mode seg:offset pointer, you should not use
the segment to selector service to create a new selector. Instead,
allocate a descriptor during initialization and change the descriptor’s
base to 16 times the real-mode segment’s value. This is important
since selectors allocated though the segment to selector service can
never be freed.

5. DPMI hosts should provide a minimum of 16 callback addresses per
task.

The following code is a sample of a real-mode interrupt hook. It hooks the DOS
Int 21h and returns an error for the delete file function (AH=41h). Other calls
are passed through to DOS. This example is somewhat silly but it demonstrates
the techniques used to hook a real mode interrupt. Note that since DOS calls are
reflected from protected mode to real mode, the following code will intercept all
DOS calls from both real mode and protected mode.

Int31H Function Calls 85

The DOS/4GW DOS Extender

;**
; This procedure gets the current Int 21h real-mode
; Seg:Offset, allocates a real-mode callback address,
; and sets the real-mode Int 21h vector to the call-
; back address.
;**
Initialization Code:
;
; Create a code segment alias to save data in
;

mov ax, 000Ah
mov bx, cs
int 31h
jc ERROR
mov ds, ax
ASSUMES DS, TEXT

;
; Get current Int 21h real-mode SEG:OFFSET
;

mov ax, 0200h
mov bl, 21h
int 31h
jc ERROR
mov [Orig Real Seg], cx
mov [Orig Real Offset], dx

;
; Allocate a real-mode callback
;

mov ax, 0303h
push ds
mov bx, cs
mov ds, bx
mov si, OFFSET My Int 21 Hook
pop es
mov di, OFFSET My Real Mode Call Struc
int 31h
jc ERROR

;
; Hook real-mode int 21h with the callback address
;

mov ax, 0201h
mov bl, 21h
int 31h
jc ERROR

;**
;
; This is the actual Int 21h hook code. It will return
; an "access denied" error for all calls made in real
; mode to delete a file. Other calls will be passed
; through to DOS.
;
; ENTRY:
; DS:SI -> Real-mode SS:SP
; ES:DI -> Real-mode call structure
; Interrupts disabled
;
; EXIT:

86 Int31H Function Calls

Interrupt 31H DPMI Functions

; ES:DI -> Real-mode call structure
;
;**

My Int 21 Hook:
cmp es:[di.RealMode AH], 41h
jne Chain To DOS

;
; This is a delete file call (AH=41h). Simulate an
; iret on the real-mode stack, set the real-mode
; carry flag, and set the real-mode AX to 5 to indicate
; an access denied error.
;

cld
lodsw ; Get real-mode ret IP
mov es:[di.RealMode IP], ax
lodsw ; Get real-mode ret CS
mov es:[di.RealMode CS], ax
lodsw ; Get real-mode flags
or ax, 1 ; Set carry flag
mov es:[di.RealMode Flags], ax
add es:[di.RealMode SP], 6
mov es:[di.RealMode AX], 5
jmp My Hook Exit

;
; Chain to original Int 21h vector by replacing the
; real-mode CS:IP with the original Seg:Offset.
;
Chain To DOS:

mov ax, cs:[Orig Real Seg]
mov es:[di.RealMode CS], ax
mov ax, cs:[Orig Real Offset]
mov es:[di.RealMode IP], ax

My Hook Exit:
iret

Function 0304H (DOS/4GW Professional only) This function frees a real-mode callback
address that was allocated through the allocate real-mode callback address
service. Pass the following information:

AX = 0304H
CX:DX = Real-mode callback address to free

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. Real-mode callbacks are a limited resource. Your code should free
any break point that it is no longer using.

Int31H Function Calls 87

The DOS/4GW DOS Extender

11.2.5 DPMI Version

Function 0400H This function returns the version of DPMI services supported. Note that this
is not necessarily the version of any operating system that supports DPMI. It
should be used by programs to determine what calls are legal in the current
environment. Pass the following information:

AX = 0400H

The information returned is:

AH = Major version
AL = Minor version
BX = Flags Bit 0 = 1 if running under an 80386 DPMI implementation. Bit 1

= 1 if processor is returned to real mode for reflected interrupts (as
opposed to Virtual 8086 mode). Bit 2 = 1 if virtual memory is
supported. Bit 3 is reserved and undefined. All other bits are zero
and reserved for later use.

CL = Processor type

02 = 80286
03 = 80386
04 = 80486
05 = Pentium

DH = Current value of virtual master PIC base interrupt
DL = Current value of virtual slave PIC base interrupt
Carry flag clear (call cannot fail)

11.2.6 Memory Management Services

Function 0500H This function gets information about free memory. Pass the following
information:

AX = 0500H
ES:EDI = the selector:offset of a 30H byte buffer.

If the call fails, the carry flag is set.

If the call succeeds, the carry flag is clear and ES:EDI contains the
selector:offset of a buffer with the structure shown in the figure below.

88 Int31H Function Calls

Interrupt 31H DPMI Functions

Offset Description

00H Largest available block, in bytes

04H Maximum unlocked page allocation

08H Largest block of memory (in pages) that could
be allocated and then locked

0CH Total linear address space size, in pages, including
already allocated pages

10H Total number of free pages and pages currently
unlocked and available for paging out

14H Number of physical pages not in use

18H Total number of physical pages managed by host

1CH Free linear address space, in pages

20H Size of paging/file partition, in pages

24H - Reserved
2FH

Only the first field of the structure is guaranteed to contain a valid value. Any
field that is not returned by DOS/4GW is set to -1 (0FFFFFFFFH).

Function 0501H This function allocates and commits linear memory. Pass the following
information:

AX = 0501H
BX:CX = size of memory to allocate, in bytes.

If the call succeeds, the carry flag is clear, BX:CX contains the linear address of
the allocated memory, and SI:DI contains the memory block handle used to free
or resize the block. If the call fails, the carry flag is set.

No selectors are allocated for the memory block. The caller must allocate and
initialize selectors needed to access the memory.

Int31H Function Calls 89

The DOS/4GW DOS Extender

If VMM is present, the memory is allocated as unlocked, page granular blocks.
Because of the page granularity, memory should be allocated in multiples of
4KB.

Function 0502H This function frees a block of memory allocated through function 0501H.
Pass the following information:

AX = 0502H
SI:DI = handle returned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set. You
must also free any selectors allocated to point to the freed memory block.

Function 0503H This function resizes a block of memory allocated through the 0501H
function. If you resize a block of linear memory, it may have a new linear
address and a new handle. Pass the following information:

AX = 0503H
BX:CX = new size of memory block, in bytes
SI:DI = handle returned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear, BX:CX contains the new linear
address of the memory block, and SI:DI contains the new handle of the memory
block. If the call fails, the carry flag is set.

If either the linear address or the handle has changed, update the selectors that
point to the memory block. Use the new handle instead of the old one.

You cannot resize a memory block to zero bytes.

11.2.7 Page Locking Services

These services are only useful under DPMI implementations that support virtual memory.
Although memory ranges are specified in bytes, the actual unit of memory that will be locked
will be one or more pages. Page locks are maintained as a count. When the count is
decremented to zero, the page is unlocked and can be swapped to disk. This means that if a
region of memory is locked three times then it must be unlocked three times before the pages
will be unlocked.

90 Int31H Function Calls

Interrupt 31H DPMI Functions

Function 0600H This function locks a specified linear address range. Pass the following
information:

AX = 0600H
BX:CX = starting linear address of memory to lock
SI:DI = size of region to lock (in bytes)

If the call fails, the carry flag is set and none of the memory will be locked.

If the call succeeds, the carry flag is clear. If the specified region overlaps part
of a page at the beginning or end of a region, the page(s) will be locked.

Function 0601H This function unlocks a specified linear address range that was previously
locked using the "lock linear region" function (0600h). Pass the following
information:

AX = 0601H
BX:CX = starting linear address of memory to unlock
SI:DI = size of region to unlock (in bytes)

If the call fails, the carry flag is set and none of the memory will be unlocked.
An error will be returned if the memory was not previously locked or if the
specified region is invalid.

If the call succeeds, the carry flag is clear. If the specified region overlaps part
of a page at the beginning or end of a region, the page(s) will be unlocked. Even
if the call succeeds, the memory will remain locked if the lock count is not
decremented to zero.

Function 0604H This function gets the page size for Virtual Memory (VM) only. This
function returns the size of a single memory page in bytes. Pass the following
information:

AX = 0604H

If the call succeeds, the carry flag is clear and BX:CX = Page size in bytes.

If the call fails, the carry flag is set.

Int31H Function Calls 91

The DOS/4GW DOS Extender

11.2.8 Demand Paging Performance Tuning Services

Some applications will discard memory objects or will not access objects for long periods of
time. These services can be used to improve the performance of demand paging.

Although these functions are only relevant for DPMI implementations that support virtual
memory, other implementations will ignore these functions (it will always return carry clear).
Therefore your code can always call these functions regardless of the environment it is
running under.

Since both of these functions are simply advisory functions, the operating system may choose
to ignore them. In any case, your code should function properly even if the functions fail.

Function 0702H (DOS/4GW Professional only) This function marks a page as a demand
paging candidate. This function is used to inform the operating system that a
range of pages should be placed at the head of the page out candidate list. This
will force these pages to be swapped to disk ahead of other pages even if the
memory has been accessed recently. However, all memory contents will be
preserved.

This is useful, for example, if a program knows that a given piece of data will
not be accessed for a long period of time. That data is ideal for swapping to disk
since the physical memory it now occupies can be used for other purposes. Pass
the following information:

AX = 0702H
BX:CX = Starting linear address of pages to mark
SI:DI = Number of bytes to mark as paging candidates

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. This function does not force the pages to be swapped to disk
immediately.

2. Partial pages will not be discarded.

Function 0703H (DOS/4GW Professional only) This function discards page contents. This
function discards the entire contents of a given linear memory range. It is used
after a memory object that occupied a given piece of memory has been
discarded.

92 Int31H Function Calls

Interrupt 31H DPMI Functions

The contents of the region will be undefined the next time the memory is
accessed. All values previously stored in this memory will be lost. Pass the
following information:

AX = 0703H
BX:CX = Starting linear address of pages to discard
SI:DI = Number of bytes to discard

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. Partial pages will not be discarded.

11.2.9 Physical Address Mapping

Memory mapped devices such as network adapters and displays sometimes have memory
mapped at physical addresses that lie outside of the normal 1Mb of memory that is
addressable in real mode. Under many implementations of DPMI, all addresses are linear
addresses since they use the paging mechanism of the 80386. This service can be used by
device drivers to convert a physical address into a linear address. The linear address can then
be used to access the device memory.

Function 0800H This function is used for Physical Address Mapping.

Some implementations of DPMI may not support this call because it could be
used to circumvent system protection. This call should only be used by
programs that absolutely require direct access to a memory mapped device.

Pass the following information:

AX = 0800H
BX:CX = Physical address of memory
SI:DI = Size of region to map in bytes

If the call succeeds, the carry flag is clear and BX:CX = Linear Address that can
be used to access the physical memory.

If the call fails, the carry flag is set.

Int31H Function Calls 93

The DOS/4GW DOS Extender

Notes:

1. Under DPMI implementations that do not use the 80386 paging
mechanism, the call will always succeed and the address returned will
be equal to the physical address parameter passed into this function.

2. It is up to the caller to build an appropriate selector to access the
memory.

3. Do not use this service to access memory that is mapped in the first
megabyte of address space (the real-mode addressable region).

Function 0801H This function is used to free Physical Address Mapping. Pass the following
information:

AX = 0801H
BX:CX = Linear address returned by Function 0800H.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

Notes:

1. The client should call this function when it is finished using a device
previously mapped to linear addresses with the Physical Address
Mapping function (Function 0800H).

11.2.10 Virtual Interrupt State Functions

Under many implementations of DPMI, the interrupt flag in protected mode will always be set
(interrupts enabled). This is because the program is running under a protected operating
system that cannot allow programs to disable physical hardware interrupts. However, the
operating system will maintain a "virtual" interrupt state for protected-mode programs. When
the program executes a CLI instruction, the program’s virtual interrupt state will be disabled,
and the program will not receive any hardware interrupts until it executes an STI to reenable
interrupts (or calls service 0901h).

When a protected-mode program executes a PUSHF instruction, the real processor flags will
be pushed onto the stack. Thus, examining the flags pushed on the stack is not sufficient to
determine the state of the program’s virtual interrupt flag. These services enable programs to
get and modify the state of their virtual interrupt flag.

The following sample code enters an interrupt critical section and then restores the virtual
interrupt state to it’s previous state.

94 Int31H Function Calls

Interrupt 31H DPMI Functions

;
; Disable interrupts and get previous interrupt state
;

mov ax, 0900h
int 31h

;
; At this point AX = 0900h or 0901h
;

.

.

.
;
; Restore previous state (assumes AX unchanged)
;

int 31h

Function 0900H This function gets and disables Virtual Interrupt State. This function will
disable the virtual interrupt flag and return the previous state of the virtual
interrupt flag. Pass the following information:

AX = 0900H

After the call, the carry flag is clear (this function always succeeds) and virtual
interrupts are disabled.

AL = 0 if virtual interrupts were previously disabled.
AL = 1 if virtual interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the
previous state, simply execute an Int 31h.

Function 0901H This function gets and enables the Virtual Interrupt State. This function will
enable the virtual interrupt flag and return the previous state of the virtual
interrupt flag. Pass the following information:

AX = 0901H

After the call, the carry flag is clear (this function always succeeds) and virtual
interrupts are enabled.

AL = 0 if virtual interrupts were previously disabled.
AL = 1 if virtual interrupts were previously enabled.

Int31H Function Calls 95

The DOS/4GW DOS Extender

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the
previous state, simply execute an Int 31h.

Function 0902H This function gets the Virtual Interrupt State. This function will return the
current state of the virtual interrupt flag. Pass the following information:

AX = 0902H

After the call, the carry flag is clear (this function always succeeds).

AL = 0 if virtual interrupts are disabled.
AL = 1 if virtual interrupts are enabled.

11.2.11 Vendor Specific Extensions

Some DOS extenders provide extensions to the standard set of DPMI calls. This call is used
to obtain an address which must be called to use the extensions. The caller points DS:ESI to a
null terminated string that specifies the vendor name or some other unique identifier to obtain
the specific extension entry point.

Function 0A00H This function gets Tenberry Software’s API Entry Point. Pass the following
information:

AX = 0A00H
DS:ESI = Pointer to null terminated string "RATIONAL DOS/4G"

If the call succeeds, the carry flag is clear and ES:EDI = Extended API entry
point. DS, FS, GS, EAX, EBX, ECX, EDX, ESI, and EBP may be modified.

If the call fails, the carry flag is set.

Notes:

1. Execute a far call to call the API entry point.

2. All extended API parameters are specified by the vendor.

3. The string comparison used to return the API entry point is case
sensitive.

96 Int31H Function Calls

Interrupt 31H DPMI Functions

11.2.12 Coprocessor Status

Function 0E00H This function gets the coprocessor status. Pass the following information:

AX = 0E00H

If the call succeeds, the carry flag is clear and AX contains the coprocessor
status.

Bit Significance

0 MPv (MP bit in the virtual MSW/CR0).
0 = Numeric coprocessor is disabled for this client.
1 = Numeric coprocessor is disabled for this client.

1 EMv (EM bit in the virtual MSW/CR0).
0 = Client is not emulating coprocessor instructions.
1 = Client is emulating coprocessor instructions.

2 MPr (MP bit from the actual MSW/CR0).
0 = Numeric coprocessor is not present.
1 = Numeric coprocessor is present.

1 EMr (EM bit from the actual MSW/CR0).
0 = Host is not emulating coprocessor instructions.
1 = Host is emulating coprocessor instructions.

4-7 Coprocessor type.

00H = no coprocessor.
02H = 80287
03H = 80387
04H = 80486 with numeric coprocessor
05H = Pentium

8-15 Not applicable.

If the call fails, the carry flag is set.

Notes:

1. If the real EM (EMr) bit is set, the host is supplying or is capable of
supplying floating-point emulation.

2. If the MPv bit is not set, the host may not need to save the
coprocessor state for this virtual machine to improve system
performance.

Int31H Function Calls 97

The DOS/4GW DOS Extender

3. The MPr bit setting should be consistent with the setting of the
coprocessor type information. Ignore MPr bit information if it is in
conflict with the coprocessor type information.

4. If the virtual EM (EMv) bit is set, the host delivers all coprocessor
exceptions to the client, and the client is performing its own
floating-point emulation (wether or not a coprocessor is present or the
host also has a floating-point emulator). In other words, if the EMv
bit is set, the host sets the EM bit in the real CR0 while the virtual
machine is active, and reflects coprocessor not present faults (int 7) to
the virtual machine.

5. A client can determine the CPU type with int 31H Function 0400H,
but a client should not draw any conclusions about the presence or
absence of a coprocessor based on the CPU type alone.

Function 0E01H This function sets coprocessor emulation. Pass the following information:

AX = 0E01H
BX = coprocessor bits

Bit Significance

0 New value of MPv bit for client’s virtual CR0.
0 = Disable numeric coprocessor for this client.
1 = Enable numeric coprocessor for this client.

1 New value of EMv bit for client’s virtual CR0.
0 = client will not supply coprocessor emulation.
1 = client will supply coprocessor emulation.

2-15 Not applicable.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

98 Int31H Function Calls

12 Utilities

This chapter describes the Tenberry Software DOS/4GW utility programs provided with the
Watcom C/C++ package. Each program is described using the following format:

Purpose: This is a brief statement of what the utility program does. More specific
information is provided under "Notes".

Syntax: This shows the syntax of the program. The fixed portion of each command is in a
typewriter font, while variable parts of the command are in italics.
Optional parts are enclosed in [brackets].

Notes: These are explanatory remarks noting major features and possible pitfalls. We
explain anything special that you might need to know about the program.

See Also: This is a cross-reference to any information that is related to the program.

Example: You’ll find one or more sample uses of the utility program with an explanation of
what the program is doing.

Some of the utilities are DOS/4GW-based, protected-mode programs. To determine which
programs run in protected mode and which in real, run the program. If you see the DOS/4GW
banner, the program runs in protected mode.

Utilities 99

The DOS/4GW DOS Extender

12.1 DOS4GW
Purpose: Loads and executes linear executables.

Syntax: linear_executable

Notes: The stub program at the beginning of the linear executable invokes this program,
which loads the linear executable and starts up the DOS extender. The stub
program must be able to find DOS4GW: make sure it is in the path.

100 DOS4GW

Utilities

12.2 PMINFO
Purpose: Measures the performance of protected/real-mode switching and extended memory.

Syntax: PMINFO.EXE

Notes: We encourage you to distribute this program to your users.

The time-based measurements made by PMINFO may vary slightly from run to
run.

Example: The following example shows the output of the PMINFO program on a 386
AT-compatible machine.

C>pminfo
Protected Mode and Extended Memory Performance Measurement --

5.00
Copyright (c) Tenberry Software, Inc. 1987 - 1993

DOS memory Extended memory CPU performance equivalent to 67.0
MHz 80486
---------- ---------------

736 8012 K bytes configured (according to
BIOS).

640 15360 K bytes physically present (SETUP).
651 7887 K bytes available for DOS/16M

programs.
22.0 (3.0) 18.9 (4.0) MB/sec word transfer rate (wait
states).
42.9 (3.0) 37.0 (4.0) MB/sec 32-bit transfer rate (wait
states).

Overall cpu and memory performance (non-floating point) for typical
DOS programs is 10.36 æ 1.04 times an 8MHz IBM PC/AT.

Protected/Real switch rate = 36156/sec (27 usec/switch, 15 up + 11
down),
DOS/16M switch mode 11 (VCPI).

The top information line shows that the CPU performance is equivalent to a 67.0
MHz 80486. Below are the configuration and timings for both the DOS memory
and extended memory. If the computer is not equipped with extended memory, or
none is available for DOS/4GW, the extended memory measurements may be
omitted ("--").

The line "according to BIOS" shows the information provided by the BIOS
(interrupts 12h and 15h function 88h). The line "SETUP", if displayed, is the

PMINFO 101

The DOS/4GW DOS Extender

configuration obtained directly from the CMOS RAM as set by the computer’s
setup program. It is displayed only if the numbers are different from those in the
BIOS line. They will be different for computers where the BIOS has reserved
memory for itself or if another program has allocated some memory and is
intercepting the BIOS configuration requests to report less memory available than
is physically configured. The "DOS/16M memory range", if displayed, shows the
low and high addresses available to DOS/4GW in extended memory.

Below the configuration information is information on the memory speed (transfer
rate). PMINFO tries to determine the memory architecture. Some architectures
will perform well under some circumstances and poorly under others; PMINFO
will show both the best and worst cases. The architectures detected are cache,
interleaved, page-mode (or static column), and direct. Measurements are made
using 32-bit accesses and reported as the number of megabytes per second that can
be transferred. The number of wait states is reported in parentheses. The wait
states can be a fractional number, like 0.5, if there is a wait state on writes but not
on reads. Memory bandwidth (i.e., how fast the CPU can access memory) accounts
for 60% to 70% of the performance for typical programs (that are not heavily
dependent on floating-point math).

A performance metric developed by Tenberry Software is displayed, showing the
expected throughput for the computer relative to a standard 8MHz IBM PC/AT
(disk accesses and floating point are excluded). Finally, the speed with which the
computer can switch between real and protected mode is displayed, both as the
maximum number of round-trip switches that can occur per second, and the time
for a single round-trip switch, broken out into the real-to-protected (up) and
protected-to-real (down) components.

102 PMINFO

Utilities

12.3 PRIVATXM
Purpose: Creates a private pool of memory for DOS/4GW programs.

Syntax: PRIVATXM [-r]

Notes: This program may be distributed to your users.

Without PRIVATXM, a DOS/4GW program that starts up while another DOS/4GW
program is active uses the pool of memory built by the first program. The new
program cannot change the parameters of this memory pool, so setting DOS16M to
increase the size of the pool has no effect. To specify that the two programs use
different pools of memory, use PRIVATXM.

PRIVATXM marks the active DOS/4GW programs as private, preventing
subsequent DOS/4GW programs from using the same memory pool. The first
DOS/4GW program to start after PRIVATXM sets up a new pool of memory for
itself and any subsequent DOS/4GW programs. To release the memory used by the
private programs, use the PRIVATXM -r option.

PRIVATXM is a TSR that requires less than 500 bytes of memory. It is not
supported under DPMI.

Example: The following example creates a 512KB memory pool that is shared by two
DOS/4GW TSRs. Subsequent DOS/4GW programs use a different memory pool.

C>set DOS16M= :512 Specifies the size of the memory pool.

C>TSR1 Sets up the memory pool at startup.

C>TSR2 This TSR shares the pool built by TSR1.

C>PRIVATXM Makes subsequent DOS/4GW programs use a new
memory pool.

C>set DOS16M= Specifies an unlimited size for the new pool.

C>PROGRAM3 This program uses the new memory pool.

C>PRIVATXM -R Releases the 512KB memory pool used by the TSRs. (If
the TSRs shut down, their memory is not released unless
PRIVATXM is released.)

PRIVATXM 103

The DOS/4GW DOS Extender

12.4 RMINFO
Purpose: Supplies configuration information and the basis for real/protected-mode switching

in your machine.

Syntax: RMINFO.EXE

Notes: This program may be distributed to your users.

RMINFO starts up DOS/4GW, but stops your machine just short of switching from
real mode to protected mode and displays configuration information about your
computer. The information shown by RMINFO can help determine why
DOS/4GW applications won’t run on a particular machine. Run RMINFO if
PMINFO does not run to completion.

Example: The following example shows the output of the RMINFO program on an 386
AT-compatible machine.

C>rminfo

DOS/16M Real Mode Information Program 5.00
Copyright (C) Tenberry Software, Inc. 1987 - 1993

Machine and Environment:
Processor: i386, coprocessor present
Machine type: 10 (AT-compatible)
A20 now: enabled
A20 switch rigor: disabled
DPMI host found

Switching Functions:
To PM switch: DPMI
To RM switch: DPMI
Nominal switch mode: 0
Switch control flags: 0000

Memory Interfaces:
DPMI may provide: 16384K returnable
Contiguous DOS memory: 463K

The information provided by RMINFO includes:

Machine and Environment:

Processor: processor type, coprocessor present/not present

Machine type:

104 RMINFO

Utilities

(NEC 9801)
(PS/2-compatible)
(AT-compatible)
(FM R)
(AT&T 6300+)
(AT-compatible)
(C&T 230 chipset)
(AT-compatible)
(AT-compatible)
(Acer)
(Zenith)
(Hitachi)
(Okidata)
(PS/55)

A20 now: Current state of Address line 20.

A20 switch rigor: Whether DOS4GW rigorously controls enabling and disabling of
Address line 20 when switching modes.

PS feature flag

XMS host found Whether your system has any software using extended memory
under the XMS discipline.

VCPI host found Whether your system has any software using extended memory
under the VCPI discipline.

page table 0 at: x000h

DPMI host found

DOS/16M resident with private/public memory

Switching Functions:

A20 switching:

To PM switch: reset catch:
pre-PM prep:
post-PM-switch:

RMINFO 105

The DOS/4GW DOS Extender

To RM switch:
pre-RM prep:
reset method:
post-reset:
reset uncatch:

Nominal switch mode: x

Switch control flags: xxxxh

Memory Interfaces:

(VCPI remapping in effect)

DPMI may provide: xxxxxK returnable

VCPI may provide: xxxxxK returnable

Top-down

Other16M

Forced

Contiguous DOS memory:

106 RMINFO

13 Error Messages

The following lists DOS/4G error messages, with descriptions of the circumstances in which
the error is most likely to occur, and suggestions for remedying the problem. Some error
messages pertaining to features — like DLLs — that are not supported in DOS/4GW will not
arise with that product. In the following descriptions, references to DOS/4G, DOS4G, or
DOS4G.EXE may be replaced by DOS/4GW, DOS4GW, or DOS4GW.EXE should the error
message arise when using DOS/4GW.

13.1 Kernel Error Messages
This section describes error messages from the DOS/16M kernel embedded in DOS/4G.
Kernel error messages may occur because of severe resource shortages, corruption of
DOS4GW.EXE, corruption of memory, operating system incompatibilities, or internal errors
in DOS/4GW. All of these messages are quite rare.

0. involuntary switch to real mode

The computer was in protected mode but switched to real mode without going through
DOS/16M. This error most often occurs because of an unrecoverable stack segment
exception (stack overflow), but can also occur if the Global Descriptor Table or Interrupt
Descriptor Table is corrupted. Increase the stack size, recompile your program with stack
overflow checking, or look into ways that the descriptor tables may have been overwritten.

1. not enough extended memory

2. not a DOS/16M executable <filename>

DOS4G.EXE, or a bound DOS/4G application, has probably been corrupted in some way.
Rebuild or recopy the file.

3. no DOS memory for transparent segment

4. cannot make transparent segment

5. too many transparent segments

Kernel Error Messages 107

The DOS/4GW DOS Extender

6. not enough memory to load program

There is not enough memory to load DOS/4G. Make more memory available and try
again.

7. no relocation segment

8. cannot open file <filename>

The DOS/16M loader cannot load DOS/4G, probably because DOS has run out of file
units. Set a larger FILES= entry in CONFIG.SYS, reboot, and try again.

9. cannot allocate tstack

There is not enough memory to load DOS/4G. Make more memory available and try
again.

10. cannot allocate memory for GDT

There is not enough memory to load DOS/4G. Make more memory available and try
again.

11. no passup stack selectors -- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.

12. no control program selectors -- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.

13. cannot allocate transfer buffer

There is not enough memory to load DOS/4G. Make more memory available and try
again.

14. premature EOF

DOS4G.EXE, or a bound DOS/4G application, has probably been corrupted in some way.
Rebuild or recopy the file.

15. protected mode available only with 386 or 486

DOS/4G requires an 80386 (or later) CPU. It cannot run on an 80286 or earlier CPU.

108 Kernel Error Messages

Error Messages

16. cannot run under OS/2

17. system software does not follow VCPI or DPMI specifications

Some memory resident program has put your 386 or 486 CPU into Virtual 8086 mode.
This is done to provide special memory services to DOS programs, such as EMS
simulation (EMS interface without EMS hardware) or high memory. In this mode, it is
not possible to switch into protected mode unless the resident software follows a standard
that DOS/16M supports (DPMI, VCPI, and XMS are the most common). Contact the
vendor of your memory management software.

18. you must specify an extended memory range (SET DOS16M=)

On some Japanese machines that are not IBM AT-compatible, and have no protocol for
managing extended memory, you must set the DOS16M environment variable to specify
the range of available extended memory.

19. computer must be AT- or PS/2- compatible

20. unsupported DOS16M switchmode choice

21. requires DOS 3.0 or later

22. cannot free memory

This error probably indicates that memory was corrupted during execution of your
program.

23. no memory for VCPI page table

There is not enough memory to load DOS/4G. Make more memory available and try
again.

24. VCPI page table address incorrect

This is an internal error.

25. cannot initialize VCPI

This error indicates an incompatibility with other software. DOS/16M has detected that
VCPI is present, but VCPI returns an error when DOS/16M tries to initialize the interface.

26. 8042 timeout

Kernel Error Messages 109

The DOS/4GW DOS Extender

27. extended memory is configured but it cannot be allocated

28. memory error, avail loop

This error probably indicates that memory was corrupted during execution of your
program. Using an invalid or stale alias selector may cause this error. Incorrect
manipulation of segment descriptors may also cause it.

29. memory error, out of range

This error probably indicates that memory was corrupted during execution of your
program. Writing through an invalid or stale alias selector may cause this error.

30. program must be built -AUTO for DPMI

31. protected mode already in use in this DPMI virtual machine

32. DPMI host error (possibly insufficient memory)

33. DPMI host error (need 64K XMS)

34. DPMI host error (cannot lock stack)

Any of these errors (32, 33, 34) probably indicate insufficient memory under DPMI.
Under Windows, you might try making more physical memory available by eliminating or
reducing any RAM drives or disk caches. You might also try editing DEFAULT.PIF so
that at least 64KB of XMS memory is available to non-Windows programs. Under OS/2,
you want to increase the DPMI_MEMORY_LIMIT in the DOS box settings.

35. General Protection Fault

This message probably indicates an internal error in DOS/4G. Faults generated by your
program should cause error 2001 instead.

36. The DOS16M.386 virtual device driver was never loaded

37. Unable to reserve selectors for DOS16M.386 Windows driver

38. Cannot use extended memory: HIMEM.SYS not version 2

This error indicates an incompatibility with an old version of HIMEM.SYS.

39. An obsolete version of DOS16M.386 was loaded

110 Kernel Error Messages

Error Messages

40. not enough available extended memory (XMIN)

This message probably indicates an incompatibility with your memory manager or its
configuration. Try configuring the memory manager to provide more extended memory,
or change memory managers.

13.2 DOS/4G Errors
1000 "can’t hook interrupts"

A DPMI host has prevented DOS/4G from loading. Please contact Tenberry Technical
Support.

1001 "error in interrupt chain"

DOS/4G internal error. Please contact Tenberry Technical Support.

1003 "can’t lock extender kernel in memory"

DOS/4G couldn’t lock the kernel in physical memory, probably because of a memory
shortage.

1004 "syntax is DOS4G <executable.xxx>"

You must specify a program name.

1005 "not enough memory for dispatcher data"

There is not enough memory for DOS/4G to manage user-installed interrupt handlers
properly. Free some memory for the DOS/4G application.

1007 "can’t find file <program> to load"

DOS/4G could not open the specified program. Probably the file didn’t exist. It is
possible that DOS ran out of file handles, or that a network or similar utility has
prohibited read access to the program. Make sure that the file name was spelled
correctly.

1008 "can’t load executable format for file <filename> [<error code>]"

DOS/4G Errors 111

The DOS/4GW DOS Extender

DOS/4G did not recognize the specified file as a valid executable file. DOS/4G can
load linear executables (LE and LX) and EXPs (BW). The error code is for Tenberry
Software’s use.

1009 "program <filename> is not bound"

This message does not occur in DOS/4G, only DOS/4GW Professional; the latter
requires that the DOS extender be bound to the program file. The error signals an
attempt to load

1010 "can’t initialize loader <loader> [<error code>]"

DOS/4G could not initialize the named loader, probably because of a resource
shortage. Try making more memory available. If that doesn’t work, please contact
Tenberry Technical Support. The error code is for Tenberry Software’ use.

1011 "VMM initialization error [<error code>]"

DOS/4G could not initialize the Virtual Memory Manager, probably because of a
resource shortage. Try making more memory available. If that doesn’t work, please
contact Tenberry Technical Support. The error code is for Tenberry Software’ use.

1012 "<filename> is not a WATCOM program"

This message does not occur in DOS/4G, only DOS/4GW and DOS/4GW
Professional. Those extenders only support WATCOM 32-bit compilers.

1013 "int 31h initialization error"

DOS/4G was unable to initialize the code that handles Interrupt 31h, probably because
of an internal error. Please call Tenberry Technical Support.

1100 "assertion \"<statement>\" failed (<file>:<line>)"

DOS/4G internal error. Please contact Tenberry Technical Support.

1200 "invalid EXP executable format"

DOS/4G tried to load an EXP, but couldn’t. The executable file is probably corrupted.

1201 "program must be built -AUTO for DPMI"

Under DPMI, DOS/4G can only load EXPs that have been linked with the GLU
-AUTO or -DPMI switch.

112 DOS/4G Errors

Error Messages

1202 "can’t allocate memory for GDT"

There is not enough memory available for DOS/4G to build a Global Descriptor Table.
Make more memory available.

1203 "premature EOF"

DOS/4G tried to load an EXP but couldn’t. The file is probably corrupted.

1204 "not enough memory to load program"

There is not enough memory available for DOS/4G to load your program. Make more
memory available.

1301 "invalid linear executable format"

DOS/4G cannot recognize the program file as a LINEXE format. Make sure that you
specified the correct file name.

1304 "file I/O seek error"

DOS/4G was unable to seek to a file location that should exist. This usually indicates
truncated program files or problems with the storage device from which your program
loads. Run CHKDSK or a similar utility to begin determining possible causes.

1305 "file I/O read error"

DOS/4G was unable to read a file location that should contain program data. This
usually indicates truncated program files or problems with the storage device from
which your program loads. Run CHKDSK or a similar utility to begin determining
possible causes.

1307 "not enough memory"

As it attempted to load your program, DOS/4G ran out of memory. Make more
memory available, or enable VMM.

1308 "can’t load requested program"

1309 "can’t load requested program"

1311 "can’t load requested program"

DOS/4G Errors 113

The DOS/4GW DOS Extender

1312 "can’t load requested program"

DOS/4G cannot load your program for some reason. Contact Tenberry Technical
Support.

1313 "can’t resolve external references"

DOS/4G was unable to resolve all references to DLLs for the requested program, or the
program contained unsupported fixup types. Use EXEHDR or a similar LINEXE
dump utility to see what references your program makes and what special fixup records
might be present.

1314 "not enough lockable memory"

As it attempted to load your program, DOS/4G encountered a refusal to lock a virtual
memory region. Some memory must be locked in order to handle demand-load page
faults. Make more physical memory available.

1315 "can’t load requested program"

1316 "can’t load requested program"

DOS/4G cannot load your program for some reason. Contact Tenberry Technical
Support.

1317 "program has no stack"

DOS/4G reports this error when you try to run a program with no stack. Rebuild your
program, building in a stack.

2000 "deinitializing twice"

DOS/4G internal error. Please contact Tenberry Technical Support.

2001 "exception <exception_number> (<exception_description>) at <selector:offset>"

Your program has generated an exception. For information about interpreting this
message, see the file COMMON.DOC.

2002 "transfer stack overflow at <selector:offset>"

Your program has overflowed the DOS/4G transfer stack. For information about
interpreting this message, see the file COMMON.DOC.

114 DOS/4G Errors

Error Messages

2300 " can’t find <DLL>.<ordinal> - referenced from <module>"

DOS/4G could not find the ordinal listed in the specified DLL, or it could not find the
DLL at all. Correct or remove the reference, and make sure that DOS/4G can find the
DLL.

DOS/4G looks for DLLs in the following directories:

• The directory specified by the Libpath32 configuration option (which defaults
to the directory of the main application file).

• The directory or directories specified by the LIBPATH32 environment variable.

• Directories specified in the PATH.

2301 "can’t find <DLL>.<name> - referenced from <module>"

DOS/4G could not find the entry point named in the specified module. Correct or
remove the reference, and make sure that DOS/4G can find the DLL.

2302 "DLL modules not supported"

This DOS/4GW Professional error message arises when an application references or
tries to explicitly load a DLL. DOS/4GW Professional does not support DLLs.

2303 "internal LINEXE object limit reached"

DOS/4G currently handles a maximum of 128 LINEXE objects, including all .DLL
and .EXE files. Most .EXE or .DLL files use only three or four objects. If possible,
reduce the number of objects, or contact Tenberry Technical Support.

2500 "can’t connect to extender kernel"

DOS/4G internal error. Please contact Tenberry Technical Support.

2503 "not enough disk space for swapping - <count> byes required"

VMM was unable to create a swap file of the required size. Increase the amount of
disk space available.

2504 "can’t create swap file \<filename>\""

DOS/4G Errors 115

The DOS/4GW DOS Extender

VMM was unable to create the swap file. This could be because the swap file is
specified for a nonexistent drive or on a drive that is read-only. Set the SWAPNAME
parameter to change the location of the swap file.

2505 "not enough memory for <table>"

VMM was unable to get sufficient extended memory for internal tables. Make more
memory available. If <table> is page buffer, make more DOS memory available.

2506 "not enough physical memory (minmem)"

There is less physical memory available than the amount specified by the MINMEM
parameter. Make more memory available.

2511 "swap out error [<error code>]"

Unknown disk error. The error code is for Tenberry Software’ use.

2512 "swap in error [<error code>]"

Unknown disk error. The error code is for Tenberry Software’ use.

2514 "can’t open trace file"

VMM could not open the VMM.TRC file in the current directory for writing. If the
directory already has a VMM.TRC file, delete it. If not, there may not be enough
memory on the drive for the trace file, or DOS may not have any more file handles.

2520 "can’t hook int 31h"

DOS/4G internal error. Please contact Tenberry Technical Support.

2523 "page fault on non-present mapped page"

Your program references memory that has been mapped to a nonexistent physical
device, using DPMI function 508h. Make sure the device is present, or remove the
reference.

2524 "page fault on uncommitted page"

Your program references memory reserved with a call to DPMI function

504h, but never committed (using a DPMI 507h or 508h call). Commit the memory before
you reference it.

116 DOS/4G Errors

Error Messages

3301 "unhandled EMPTYFWD, GATE16, or unknown relocation"

3302 "unhandled ALIAS16 reference to unaliased object"

3304 "unhandled or unknown relocation"

If your program was built for another platform that supports the LINEXE format, it
may contain a construct that DOS/4G does not currently support, such as a call gate.
This message may also occur if your program has a problem mixing 16- and 32-bit
code. A linker error is another likely cause.

DOS/4G Errors 117

The DOS/4GW DOS Extender

118 DOS/4G Errors

14 DOS/4GW Commonly Asked Questions

The following information has been provided by Tenberry Software, Inc. for their DOS/4GW
and DOS/4GW Professional product. The content of this chapter has been edited by Watcom.
In most cases, the information is applicable to both products.

This chapter covers the following topics:

• Access to technical support

• Differences within the DOS/4G product line

• Addressing

• Interrupt and exception handling

• Memory management

• DOS, BIOS, and mouse services

• Virtual memory

• Debugging

• Compatibility

14.1 Access to Technical Support
1a. How to reach technical support.

Here are the various ways you may contact Tenberry Software for technical support.

Access to Technical Support 119

The DOS/4GW DOS Extender

Voice: (508)653-6006
Fax: (508)655-2753
Internet: dos4gw@ratsys.com
CompuServe: 73667,1753
WATCOM BBS: DOS/4GW Professional area
Mail: Tenberry Software, Inc.

220 N. Main St.
Natick, MA 01760
USA

PLEASE GIVE YOUR SERIAL NUMBER WHEN YOU CONTACT TENBERRY.

1b. When to contact Watcom, when to contact Tenberry.

Since DOS/4GW Professional is intended to be completely compatible with DOS/4GW,
you may wish to ascertain whether your program works properly under DOS/4GW before
contacting Tenberry Software for technical support. (This is likely to be the second
question we ask you, after your serial number.)

If your program fails under both DOS/4GW and DOS/4GW Professional, and you suspect
your own code or a problem compiling or linking, you may wish to contact Watcom first.
Tenberry Software support personnel are not able to help you with most programming
questions, or questions about using the Watcom tools.

If your program only fails with DOS/4GW Professional, you have probably found a bug in
DOS/4GW Professional, so please contact us right away.

1c. Telephone support.

Tenberry Software’s hours for telephone support are 9am-6pm EST. Please note that
telephone support is free for the first 30 days only. A one-year contract for continuing
telephone support on DOS/4GW Professional is US$500 per developer, including an
update subscription for one year, to customers in the United States and Canada; for
overseas customers, the price is $600. Site licenses may be negotiated.

There is no time limit on free support by fax, mail, or electronic means.

120 Access to Technical Support

DOS/4GW Commonly Asked Questions

1d. References.

The DOS/4GW documentation from Watcom is the primary reference for DOS/4GW
Professional as well. Another useful reference is the DPMI specification. In the past, the
DPMI specification could be obtained free of charge by contacting Intel Literature JP26 at
800-548-4725 or by writing to the address below. We have been advised that the DPMI
specification is no longer available in printed form.

Intel Literature JP26
3065 Bowers Avenue
P.O. Box 58065
Santa Clara, California
U.S.A. 95051-8065

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Here is the
URL.

ftp://ftp.intel.com/pub/IAL/software specs/dpmiv1.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

14.2 Differences Within the DOS/4G Product Line
2a. DOS/4GW Professional versus DOS/4GW

DOS/4GW Professional was designed to be a higher-performance version of DOS/4GW
suitable for commercial applications. Here is a summary of the advantages of DOS/4GW
Professional with respect to DOS/4GW:

• Extender binds to the application program file

• Extender startup time has been reduced

• Support for Watcom floating-point emulator has been optimized

• Virtual memory manager performance has been greatly improved

• Under VMM, programs are demand loaded

• Virtual address space is 4 GB instead of 32 MB

• Extender memory requirements have been reduced by more than 50K

Differences Within the DOS/4G Product Line 121

The DOS/4GW DOS Extender

• Extender disk space requirements have been reduced by 40K

• Can omit virtual memory manager to save 50K more disk space

• Support for INT 31h functions 301h-304h and 702h-703h

DOS/4GW Professional is intended to be fully compatible with programs written for
DOS/4GW 1.9 and up. The only functional difference is that the extender is bound to
your program instead of residing in a separate file. Not only does this help reduce startup
time, but it eliminates version-control problems when someone has both DOS/4GW and
DOS/4GW Professional applications present on one machine.

2b. DOS/4GW Professional versus DOS/4G.

DOS/4GW Professional is not intended to provide any other new DOS extender
functionality. Tenberry Software’s top-of-the-line 32-bit extender, DOS/4G, is not sold on
a retail basis but is of special interest to developers who require more flexibility (such as
OEMs). DOS/4G offers these additional features beyond DOS/4GW and DOS/4GW
Professional:

• Complete documentation

• DLL support

• TSR support

• Support for INT 31h functions 301h-306h, 504h-50Ah, 702h-703h

• A C language API that offers more control over interrupt handling and program
loading, as well as making it easier to use the extender

• An optional (more protected) nonzero-based flat memory model

• Remappable error messages

• More configuration options

• The D32 debugger, GLU linker, and other tools

• Support for other compilers besides Watcom

• A higher level of technical support

122 Differences Within the DOS/4G Product Line

DOS/4GW Commonly Asked Questions

• Custom work is available (e.g., support for additional executable formats, operating
system API emulations, mixed 16-bit and 32-bit code)

Please contact Tenberry Software if you have questions about other products (present or
future) in the DOS/4G line.

2c. DPMI functions supported by DOS/4GW.

Note that when a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in
enhanced mode, an OS/2 virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY),
or QDPMI (with EXTCHKOFF), the DPMI host provides the DPMI services, not
DOS/4GW. The DPMI host also provides virtual memory, if any. Performance (speed
and memory use) under different DPMI hosts varies greatly due to the quality of the DPMI
implementation.

These are the services provided by DOS/4GW and DOS/4GW Professional in the absence
of a DPMI host.

0000 Allocate LDT Descriptors
0001 Free LDT Descriptor
0002 Map Real-Mode Segment to Descriptor
0003 Get Selector Increment Value
0006 Get Segment Base Address
0007 Set Segment Base Address
0008 Set Segment Limit
0009 Set Descriptor Access Rights
000A Create Alias Descriptor
000B Get Descriptor
000C Set Descriptor
000D Allocate Specific LDT Descriptor

0100 Allocate DOS Memory Block
0101 Free DOS Memory Block
0102 Resize DOS Memory Block

0200 Get Real-Mode Interrupt Vector
0201 Set Real-Mode Interrupt Vector
0202 Get Processor Exception Handler
0203 Set Processor Exception Handler
0204 Get Protected-Mode Interrupt Vector
0205 Set Protected-Mode Interrupt Vector

0300 Simulate Real-Mode Interrupt

Differences Within the DOS/4G Product Line 123

The DOS/4GW DOS Extender

0301 Call Real-Mode Procedure with Far Return Frame (DOS/4GW Professional
only)

0302 Call Real-Mode Procedure with IRET Frame (DOS/4GW Professional only)
0303 Allocate Real-Mode Callback Address (DOS/4GW Professional only)
0304 Free Real-Mode Callback Address (DOS/4GW Professional only)

0400 Get DPMI Version

0500 Get Free Memory Information
0501 Allocate Memory Block
0502 Free Memory Block
0503 Resize Memory Block

0600 Lock Linear Region
0601 Unlock Linear Region
0604 Get Page Size (VM only)

0702 Mark Page as Demand Paging Candidate (DOS/4GW Professional only)
0703 Discard Page Contents (DOS/4GW Professional only)

0800 Physical Address Mapping
0801 Free Physical Address Mapping

0900 Get and Disable Virtual Interrupt State
0901 Get and Enable Virtual Interrupt State
0902 Get Virtual Interrupt State

0A00 Get Tenberry Software API Entry Point

0E00 Get Coprocessor Status
0E01 Set Coprocessor Emulation

14.3 Addressing
3a. Converting between pointers and linear addresses.

Because DOS/4GW uses a zero-based flat memory model, converting between pointers
and linear addresses is trivial. A pointer value is always relative to the current segment
(the value in CS for a code pointer, or in DS or SS for a data pointer). The segment bases
for the default DS, SS, and CS are all zero. Hence a near pointer is exactly the same thing
as a linear address: a null pointer points to linear address 0, and a pointer with value
0x10000 points to linear address 0x10000.

124 Addressing

DOS/4GW Commonly Asked Questions

3b. Converting between code and data pointers.

Because DS and CS have the same base address, they are natural aliases for each other.
To create a data alias for a code pointer, merely create a data pointer and set it equal to the
code pointer. It’s not necessary for you to create your own alias descriptor. Similarly, to
create a code alias for a data pointer, merely create a code pointer and set it equal to the
data pointer.

3c. Converting between pointers and low memory addresses.

Linear addresses under 1 MB map directly to physical memory. Hence the real-mode
interrupt vector table is at address 0, the BIOS data segment is at address 0x400, the
monochrome video memory is at address 0xB0000, and the color video memory is at
address 0xB8000. To read and write any of these, you can just use a pointer set to the
proper address. You don’t need to create a far pointer, using some magic segment value.

3d. Converting between linear and physical addresses.

Linear addresses at or above 1 MB do not map directly to physical memory, so you can
not in general read or write extended memory directly, nor can you tell how a particular
block of extended memory has been used.

DOS/4GW supports the DPMI call INT 31h/800h, which maps physical addresses to
linear addresses. In other words, if you have a peripheral device in your machine that has
memory at a physical address of 256 MB, you can issue this call to create a linear address
that points to that physical memory. The linear address is the same thing as a near pointer
to the memory and can be manipulated as such.

There is no way in a DPMI environment to determine the physical address corresponding
to a given linear address. This is part of the design of DPMI. You must design your
application accordingly.

3e. Null pointer checking.

DOS/4GW will trap references to the first sixteen bytes of physical memory if you set the
environment variable DOS4G=NULLP. This is currently the only null-pointer check
facility provided by DOS/4GW.

As of release 1.95, DOS/4GW traps both reads and writes. Prior to this, it only trapped
writes.

You may experience problems if you set DOS4G=NULLP and use some versions of the
Watcom Debugger with a 1.95 or later extender. These problems have been corrected in
later versions of the Watcom Debugger.

Addressing 125

The DOS/4GW DOS Extender

14.4 Interrupt and Exception Handling
4a. Handling asynchronous interrupts.

Under DOS/4GW, there is a convenient way to handle asynchronous interrupts and an
efficient way to handle them.

Because your CPU may be in either protected mode (when 32-bit code is executing) or
real mode (a DOS or BIOS call) when a hardware interrupt comes in, you have to be
prepared to handle interrupts in either mode. Otherwise, you may miss interrupts.

You can handle both real-mode and protected-mode interrupts with a single handler, if 1)
the interrupt is in the auto-passup range, 8 to 2Eh; and 2) you install a handler with INT
21h/25h or _dos_setvect(); 3) you do not install a handler for the same interrupt using any
other mechanism. DOS/4GW will route both protected-mode interrupts and real-mode
interrupts to your protected-mode handler. This is the convenient way.

The efficient way is to install separate real-mode and protected-mode handlers for your
interrupt, so your CPU won’t need to do unnecessary mode switches. Writing a real-mode
handler is tricky; all you can reasonably expect to do is save data in a buffer and IRET.
Your protected-mode code can periodically check the buffer and process any queued data.
(Remember, protected-mode code can access data and execute code in low memory, but
real-mode code can’t access data or execute code in extended memory.)

For performance, it doesn’t matter how you install the real-mode handler, but we
recommend the DPMI function INT 31h/201h for portability.

It does matter how you install the protected-mode handler. You can’t install it directly
into the IDT, because a DPMI provider must distinguish between interrupts and exceptions
and maintain separate handler chains. Installing with INT 31h/205h is the recommended
way to install your protected-mode handler for both performance and portability.

If you install a protected-mode handler with INT 21h/25h, both interrupts and exceptions
will be funneled to your handler, to mimic DOS. Since DPMI exception handlers and
interrupt handlers are called with different stack frames, DOS/4GW executes a layer of
code to cover these differences up; the same layer is used to support the DOS/4G API (not
part of DOS/4GW). This layer is the reason that hooking with INT 21h/25h is less
efficient than hooking with INT 31h/205h.

126 Interrupt and Exception Handling

DOS/4GW Commonly Asked Questions

4b. Handling asynchronous interrupts in the second IRQ range.

Because the second IRQ range (normally INTs 70h-77h) is outside the DOS/4GW
auto-passup range (8-2Eh, excluding 21h) you may not handle these interrupts with a
single handler, as described above (the "convenient" method). You must install separate
real-mode and protected-mode handlers (the "efficient" method).

DOS/4G does allow you to specify additional passup interrupts, however.

4c. Asynchronous interrupt handlers and DPMI.

The DPMI specification requires that all code and data referenced by a hardware interrupt
handler MUST be locked at interrupt time. A DPMI virtual memory manager can use the
DOS file system to swap pages of memory to and from the disk; because DOS is not
reentrant, a DPMI host is not required to be able to handle page faults during
asynchronous interrupts. Use INT 31h/600h (Lock Linear Region) to lock an address
range in memory.

If you fail to lock all of your code and data, your program may run under DOS/4GW, but
fail under the DOS/4GW Virtual Memory Manager or under another DPMI host such as
Windows or OS/2.

You should also lock the code and data of a mouse callback function.

4d. Watcom signal() function and Ctrl-Break.

In earlier versions of the Watcom C/C++ library, there was a bug that caused
signal(SIGBREAK) not to work. Calling signal(SIGBREAK) did not actually install an
interrupt handler for Ctrl-Break (INT 1Bh), so Ctrl-Break would terminate the application
rather than invoking the signal handler.

With these earlier versions of the library, you could work around this problem by hooking
INT 1Bh directly. With release 10.0, this problem has been fixed.

4e. More tips on writing hardware interrupt handlers.

• It’s more like handling interrupts in real mode than not.

The same problems arise when writing hardware interrupt handlers for protected mode as
arise for real mode. We assume you know how to write real-mode handlers; if our
suggestions don’t seem clear, you might want to brush up on real-mode interrupt
programming.

• Minimize the amount of time spent in your interrupt handlers.

Interrupt and Exception Handling 127

The DOS/4GW DOS Extender

When your interrupt handlers are called, interrupts are disabled. This means that no other
system tasks can be performed until you enable interrupts (an STI instruction) or until
your handler returns. In general, it’s a good idea to handle interrupts as quickly as
possible.

• Minimize the amount of time spent in the DOS extender by installing separate real-mode
and protected-mode handlers.

If you use a passup interrupt handler, so that interrupts received in real mode are
resignalled in protected mode by the extender, your application has to switch from real
mode to protected mode to real mode once per interrupt. Mode switching is a
time-consuming process, and interrupts are disabled during a mode switch. Therefore, if
you’re concerned about performance, you should install separate handlers for real-mode
and protected-mode interrupts, eliminating the mode switch.

• If you can’t just set a flag and return, enable interrupts (STI).

Handlers that do more than just set a flag or store data in a buffer should re-enable
interrupts as soon as it’s safe to do so. In other words, save your registers on the stack,
establish your addressing conventions, switch stacks if you’re going to — and then enable
interrupts (STI), to give priority to other hardware interrupts.

• If you enable interrupts (STI), you should disable interrupts (CLI).

Because some DPMI hosts virtualize the interrupt flag, if you do an STI in your handler,
you should be sure to do a CLI before you return. (CLI, then switch back to the original
stack if you switched away, then restore registers, then IRET.) If you don’t do this, the
IRET will not necessarily restore the previous interrupt flag state, and your program may
crash. This is a difference from real-mode programming, and it tends to show up as a
problem when you try running your program in a Windows or OS/2 DOS box for the first
time (but not before).

• Add a reentrancy check.

If your handler doesn’t complete its work by the time the next interrupt is signalled, then
interrupts can quickly nest to the point of overflowing the transfer stack. This is a design
flaw in your program, not in the DOS extender; a real-mode DOS program can have
exactly the same behavior. If you can conceive of a situation where your interrupt
handler can be called again before the first instance returns, you need to code in a
reentrancy check of some sort (before you switch stacks and enable interrupts (STI),
obviously).

Remember that interrupts can take different amounts of time to execute on different
machines; the CPU manufacturer, CPU speed, speed of memory accesses, and CMOS

128 Interrupt and Exception Handling

DOS/4GW Commonly Asked Questions

settings (e.g. "system BIOS shadowing") can all affect performance in subtle ways. We
recommend you program defensively and always check for unexpected reentry, to avoid
transfer stack overflows.

• Switch to your own stack.

Interrupt handlers are called on a stack that typically has only a small amount of stack
available (512 bytes or less). If you need to use more stack than this, you have to switch
to your own stack on entry into the handler, and switch back before returning.

If you want to use C run-time library functions, which are compiled for flat memory
model (SS == DS, and the base of CS == the base of DS), you need to switch back to a
stack in the flat data segment first.

Note that switching stacks by itself won’t prevent transfer stack overflows of the kind
described above.

14.5 Memory Management
5a. Using the realloc() function.

In versions of Watcom C/C++ prior to 9.5b, there was a bug in the library implementation
of realloc() under DOS/4GW and DOS/4GW Professional. This bug was corrected by
Watcom in the 9.5b release.

5b. Using all of physical memory.

DOS/4GW Professional is currently limited to 64 MB of physical memory. We do not
expect to be able to fix this problem for at least six months. If you need more than 64 MB
of memory, you must use virtual memory.

14.6 DOS, BIOS, and Mouse Services
6a. Speeding up file I/O.

The best way to speed up DOS file I/O in DOS/4GW is to write large blocks (up to 65535
bytes, or the largest number that will fit in a 16-bit int) at a time from a buffer in low
memory. In this case, DOS/4GW has to copy the least amount of data and make the
fewest number of DOS calls in order to process the I/O request.

DOS, BIOS, and Mouse Services 129

The DOS/4GW DOS Extender

Low memory is allocated through INT 31h/0100h, Allocate DOS Memory Block. You
can convert the real-mode segment address returned by INT 31h/0100h to a pointer
(suitable for passing to setvbuf()) by shifting it left four bits.

6b. Spawning.

It is possible to spawn one DOS/4GW application from another. However, two copies of
the DOS extender will be loaded into memory. DOS/4G supports loading of multiple
programs atop a single extender, as well as DLLs.

6c. Mouse callbacks.

DOS/4GW Professional now supports the INT 31h interface for managing real-mode
callbacks. However, you don’t need to bother with them for their single most important
application: mouse callback functions. Just register your protected-mode mouse callback
function as you would in real mode, by issuing INT 33h/0Ch with the event mask in CX
and the function address in ES:EDX, and your function will work as expected.

Because a mouse callback function is called asynchronously, the same locking
requirement exists for a mouse callback function as for a hardware interrupt handler. See
(4c) above.

6d. VESA support.

While DOS/4GW automatically handles most INT 10h functions so that you can you can
issue them from protected mode, it does not translate the INT 10h VESA extensions. The
workaround is to use INT 31h/300h (Simulate Real-Mode Interrupt).

14.7 Virtual Memory
7a. Testing for the presence of VMM.

INT 31h/400h returns a value (BX, bit 2) that tells if virtual memory is available. Under a
DPMI host such as Windows 3.1, this will be the host’s virtual memory manager, not
DOS/4GW’s.

You can test for the presence of a DOS/4G-family DOS extender with INT 31h/0A00h,
with a pointer to the null-terminated string "RATIONAL DOS/4G" in DS:ESI. If the
function returns with carry clear, a DOS/4G-family extender is running.

130 Virtual Memory

DOS/4GW Commonly Asked Questions

7b. Reserving memory for a spawned application.

If you spawn one DOS/4GW application from another, you should set the DELETESWAP
configuration option (i.e., SET DOS4GVM=deleteswap) so that the two applications don’t
try to use the same swap file. You should also set the MAXMEM option low enough so
that the parent application doesn’t take all available physical memory; memory that’s been
reserved by the parent application is not available to the child application.

7c. Instability under VMM.

A program that hooks hardware interrupts, and works fine without VMM but crashes
sporadically with it, probably needs to lock the code and data for its hardware interrupt
handlers down in memory. DOS/4GW does not support page faults during hardware
interrupts, because DOS services may not be available at that time. See (4c) and (6c)
above.

Memory can be locked down with INT 31h/600h (Lock Linear Region).

7d. Running out of memory with a huge virtual address space.

Because DOS/4GW has to create page tables to describe your virtual address space, we
recommend that you set your VIRTUALSIZE parameter just large enough to
accommodate your program. If you set your VIRTUALSIZE to 4 GB, the physical
memory occupied by the page tables will be 4 MB, and that memory will not be available
to DOS/4GW.

7e. Reducing the size of the swap file.

DOS/4GW will normally create a swap file equal to your VIRTUALSIZE setting, for
efficiency. However, if you set the SWAPMIN parameter to a size (in KB), DOS/4GW
will start with a swap file of that size, and will grow the swap file when it has to. The
SWAPINC value (default 64 KB) controls the incremental size by which the swap file will
grow.

7f. Deleting the swap file.

The DELETESWAP option has two effects: telling DOS/4GW to delete the swap file
when it exits, and causing DOS/4GW to provide a unique swap file name if an explicit
SWAPNAME setting was not given.

DELETESWAP is required if one DOS/4GW application is to spawn another; see (7b)
above.

Virtual Memory 131

The DOS/4GW DOS Extender

7g. Improving demand-load performance of large static arrays.

DOS/4GW demand-loading feature normally cuts the load time of a large program
drastically. However, if your program has large amounts of global, zero-initialized data
(storage class BSS), the Watcom startup code will explicitly zero it (version 9.5a or
earlier). Because the zeroing operation touches every page of the data, the benefits of
demand-loading are lost.

Demand loading can be made fast again by taking advantage of the fact that DOS/4GW
automatically zeroes pages of BSS data as they are loaded. You can make this change
yourself by inserting a few lines into the startup routine, assembling it (MASM 6.0 will
work), and listing the modified object module first when you link your program.

Here are the changes for \WATCOM\SRC\STARTUP\386\CSTART3R.ASM (startup
module from the C/C++ 9.5 compiler, library using register calling conventions). You can
modify the workaround easily for other Watcom compilers:

... ; cstart3r.asm, circa line 332

; end of BSS segment (start of STACK)
mov ecx,offset DGROUP: end

; start of BSS segment
mov edi,offset DGROUP: edata

;-------------------------------; RSI OPTIMIZATION
mov eax, edi ; minimize BSS initialization loop
or eax, 0FFFh ; compute address of first page after
inc eax ; start of BSS
cmp eax, ecx ; if BSS extends onto that page,
jae allzero ; then we can rely on the loader
mov ecx, eax ; zeroing the remaining pages

allzero: ;
;-------------------------------; END RSI OPTIMIZATION

sub ecx,edi ; calc # of bytes in BSS segment
mov dl,cl ; save bottom 2 bits of count in edx
shr ecx,2 ; calc # of dwords
sub eax,eax ; zero the BSS segment
rep stosd ; ...
mov cl,dl ; get bottom 2 bits of count
and cl,3 ; ...
rep stosb ; ...
...

Note that the 9.5b and later versions of the Watcom C library already contain this
enhancement.

132 Virtual Memory

DOS/4GW Commonly Asked Questions

7h. How should I configure VM for best performance?

Here are some recommendations for setting up the DOS/4GW virtual memory manager.

VIRTUALSIZE Set to no more than twice the total amount of memory (virtual and
otherwise) your program requires. If your program has 16 MB of code and
data, set to 32 MB. (There is only a small penalty for setting this value
larger than you will need, but your program won’t run if you set it too low.)
See (7d) above.

MINMEM Set to the minimum hardware requirement for running your application. (If
you require a 2 MB machine, set to 2048).

MAXMEM Set to the maximum amount of memory you want your application to use. If
you don’t spawn any other applications, set this large (e.g., 32000) to make
sure you can use all available physical memory. If you do spawn, see (7b)
above.

SWAPMIN Don’t use this if you want the best possible VM performance. The trade-off
is that DOS/4GW will create a swap file as big as your VIRTUALSIZE.

SWAPINC Don’t use this if you want the best possible VM performance.

DELETESWAP DOS/4GW’s VM will start up slightly slower if it has to create the swap
file afresh each time. However, unless your swap file is very large,
DELETESWAP is a reasonable choice; it may be required if you spawn
another DOS/4GW program at the same time. See (7b) above.

14.8 Debugging
8a. Attempting to debug a bound application.

You can’t debug a bound application. The 4GWBIND utility (included with DOS/4GW
Professional) will allow you to take apart a bound application so that you can debug it:

4GWBIND -U <boundapp.exe> <yourapp.exe>

Debugging 133

The DOS/4GW DOS Extender

8b. Debugging with an old version of the Watcom debugger.

DOS/4GW supports versions 8.5 and up of the Watcom C, C++ and FORTRAN
compilers. However, in order to debug your unbound application with a Watcom
debugger, you must have version 9.5a or later of the debugger.

If you have an older version of the debugger, we strongly recommend that you contact
Watcom to upgrade your compiler and tools. The only way to debug a DOS/4GW
Professional application with an old version of the debugger is to rename 4GWPRO.EXE
to DOS4GW.EXE and make sure that it’s either in the current directory or the first
DOS4GW.EXE on the DOS PATH.

Tenberry will not provide technical support for this configuration; it’s up to you to keep
track of which DOS extender is which.

8c. Meaning of "unexpected interrupt" message/error 2001.

In version 1.95 of DOS/4GW, we revised the "unexpected interrupt" message to make it
easier to understand.

For example, the message:

Unexpected interrupt 0E (code 0) at 168:10421034

is now printed:

error (2001): exception 0Eh (page fault) at 168:10421034

followed by a register dump, as before.

This message indicates that the processor detected some form of programming error and
signaled an exception, which DOS/4GW trapped and reported. Exceptions which can be
trapped include:

134 Debugging

DOS/4GW Commonly Asked Questions

00h divide by zero
01h debug exception OR null pointer used
03h breakpoint
04h overflow
05h bounds
06h invalid opcode
07h device not available
08h double fault
09h overrun
0Ah invalid TSS
0Bh segment not present
0Ch stack fault
0Dh general protection fault
0Eh page fault

When you receive this message, this is the recommended course of action:

1. Record all of the information from the register dump.

2. Determine the circumstances under which your program fails.

3. Consult your debugger manual, or an Intel 386, 486 or Pentium Programmer’s
Reference Manual, to determine the circumstances under which the processor
will generate the reported exception.

4. Get the program to fail under your debugger, which should stop the program as
soon as the exception occurs.

5. Determine from the exception context why the processor generated an
exception in this particular instance.

8d. Meaning of "transfer stack overflow" message/error 2002.

In version 1.95 of DOS/4GW, we added more information to the "transfer stack overflow"
message. The message (which is now followed by a register dump) is printed:

error (2002): transfer stack overflow
on interrupt <number> at <address>

This message means DOS/4GW detected an overflow on its interrupt handling stack. It
usually indicates either a recursive fault, or a hardware interrupt handler that can’t keep up
with the rate at which interrupts are occurring. The best way to understand the problem is
to use the VERBOSE option in DOS/4GW to dump the interrupt history on the transfer
stack; see (8e) below.

Debugging 135

The DOS/4GW DOS Extender

8e. Making the most of a DOS/4GW register dump.

If you can’t understand your problem by running it under a debugger, the DOS/4GW
register dump is your best debugging tool. To maximize the information available for
postmortem debugging, set the environment variable DOS4G to VERBOSE, then
reproduce the crash and record the output.

Here’s a typical register dump with VERBOSE turned on, with annotations.

1 DOS/4GW error (2001): exception 0Eh (page fault)

at 170:0042C1B2
2 TSF32: prev tsf32 67D8
3 SS 178 DS 178 ES 178 FS 0 GS 20

EAX 1F000000 EBX 0 ECX 43201C EDX E
ESI E EDI 0 EBP 431410 ESP 4313FC
CS:IP 170:0042C1B2 ID 0E COD 0 FLG 10246

4 CS= 170, USE32, page granular, limit FFFFFFFF, base 0, acc CF9B
SS= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
DS= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
ES= 178, USE32, page granular, limit FFFFFFFF, base 0, acc CF93
FS= 0, USE16, byte granular, limit 0, base 15, acc 0
GS= 20, USE16, byte granular, limit FFFF, base 6AA0, acc 93

5 CR0: PG:1 ET:1 TS:0 EM:0 MP:0 PE:1 CR2: 1F000000 CR3: 9067
6 Crash address (unrelocated) = 1:000001B2
7 Opcode stream: 8A 18 31 D2 88 DA EB 0E 50 68 39 00 43 00 E8 1D

Stack:
8 0178:004313FC 000E 0000 0000 0000 C2D5 0042 C057 0042 0170 0000 0000 0000

0178:00431414 0450 0043 0452 0043 0000 0000 1430 0043 CBEF 0042 011C 0000
0178:0043142C C568 0042 0000 0000 0000 0000 0000 0000 F248 0042 F5F8 0042
0178:00431444 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178:0043145C 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0178:00431474 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

9 Last 4 ints: 21 @ 170:42CF48/21 @ 170:42CF48/21 @ 170:42CF48/E @
170:42C1B2/

1. The error message includes a synopsis of the problem. In this case, the
processor signaled a page fault exception while executing at address
170:0042C1B2.

2. The prev_tsf32 field is not usually of interest.

3. These are the register values at the time of the exception. The interrupt number
and error code (pushed on the stack by the processor for certain exceptions) are
also printed.

4. The descriptors referenced by each segment register are described for your
convenience. USE32 segments in general belong to your program; USE16
segments generally belong to the DOS extender. Here, CS points to your
program’s code segment, and SS, DS, and ES point to your data segment. FS is
NULL and GS points to a DOS extender segment.

136 Debugging

DOS/4GW Commonly Asked Questions

5. The control register information is not of any general interest, except on a page
fault, when CR2 contains the address value that caused the fault. Since EAX in
this case contains the same value, an attempt to dereference EAX could have
caused this particular fault.

6. If the crash address (unrelocated) appears, it tells you where the crash occurred
relative to your program’s link map. You can therefore tell where a crash
occurred even if you can’t reproduce the crash in a debugger.

7. The opcode stream, if it appears, shows the next 16 bytes from the code
segment at the point of the exception. If you disassemble these instructions,
you can tell what instructions caused the crash, even without using a debugger.
In this case, 8A 18 is the instruction mov bl,[eax].

8. 72 words from the top of the stack, at the point of the exception, may be listed
next. You may be able to recognize function calls or data from your program
on the stack.

9. The four interrupts least to most recently handled by DOS/4GW in protected
mode are listed next. In this example, the last interrupt issued before the page
fault occurred was an INT 21h (DOS call) at address 170:42CF48. Sometimes,
this information provides helpful context.

Here’s an abridged register dump from a stack overflow.

DOS/4GW error (2002): transfer stack overflow
on interrupt 70h at 170:0042C002

TSF32: prev tsf32 48C8
SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1D1 EBP B1B1B1B1 ESP 4884

1 CS:IP 170:0042C002 ID 70 COD 0 FLG 2
...

2 Previous TSF:
TSF32: prev tsf32 498C
SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1D1 EBP B1B1B1B1 ESP 4960

3 CS:IP 170:0042C002 ID 70 COD 0 FLG 2
...
Previous TSF:
TSF32: prev tsf32 67E4
SS 178 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1D1 EBP B1B1B1B1 ESP 42FFE0

4 CS:IP 170:0042C039 ID 70 COD 0 FLG 202
5 Opcode stream: CF 66 B8 62 25 66 8C CB 66 8E DB BA 00 C0 42 00

Last 4 ints: 70 @ 170:42C002/70 @ 170:42C002/70 @ 170:42C002/70 @
170:42C002/

Debugging 137

The DOS/4GW DOS Extender

1. We overflowed the transfer stack while trying to process an interrupt 70h at
170:0042C002.

2. The entire interrupt history from the transfer stack is printed next. The
prev_tsf32 numbers increase as we progress from most recent to least recent
interrupt. All of these interrupts are still pending, which is why we ran out of
stack space.

3. Before we overflowed the stack, we got the same interrupt at the same address.
For a recursive interrupt situation, this is typical.

4. The oldest frame on the transfer stack shows the recursion was touched off at a
slightly different address. Looking at this address may help you understand the
recursion.

5. The opcode stream and last four interrupt information comes from the newest
transfer stack frame, not the oldest.

14.9 Compatibility
9a. Running DOS/4GW applications from inside Lotus 1-2-3.

In order to run DOS/4GW applications while "shelled out" from Lotus 1-2-3, you must use
the PRIVATXM program included with your Watcom compiler. Otherwise, 1-2-3 will
take all of the memory on your machine and prevent DOS/4GW from using it.

Before starting 1-2-3, you must set the DOS16M environment variable to limit Lotus’
memory use (see your Watcom manual). After shelling out, you must run PRIVATXM,
then clear the DOS16M environment variable before running your application.

9b. EMM386.EXE provided with DOS 6.0.

We know of at least three serious bugs in the EMM386.EXE distributed with MS-DOS
6.0, one involving mis-counting the amount of available memory, one involving mapping
too little of the High Memory Area (HMA) into its page tables, and one involving
allocation of EMS memory. Version 1.95 of DOS/4GW contains workarounds for some
of these problems.

If you are having problems with DOS/4GW and you are using an EMM386.EXE dated
3-10-93 at 6:00:00, or later, you may wish to try the following workarounds, in sequence,
until the problem goes away.

138 Compatibility

DOS/4GW Commonly Asked Questions

• Configure EMM386 with both the NOEMS and NOVCPI options.

• Convert the DEVICEHIGH statements in your CONFIG.SYS to DEVICE
statements, and remove the LH (Load High) commands from your
AUTOEXEC.BAT.

• Run in a Windows DOS box.

• Replace EMM386 with another memory manager, such as QEMM-386, 386Max, or
an older version of EMM386.

• Run with HIMEM.SYS alone.

You may also wish to contact Microsoft Corporation to inquire about the availability of a
fix.

9c. Spawning under OS/2 2.1.

We know of a bug in OS/2 2.1 that prevents one DOS/4GW application from spawning
another over and over again. The actual number of repeated spawns that are possible
under OS/2 varies from machine to machine, but is generally about 30.

This bug also affects programs running under other DOS extenders, and we have not yet
found a workaround, other than linking your two programs together as a single program.

9d. "DPMI host error: cannot lock stack".

This error message almost always indicates insufficient memory, rather than a real
incompatibility. If you see it under an OS/2 DOS box, you probably need to edit your
DOS Session settings and make DPMI_MEMORY_LIMIT larger.

9e. Bug in Novell TCPIP driver.

Some versions of a program from Novell called TCPIP.EXE, a real-mode program, will
cause the high words of EAX and EDX to be altered during a hardware interrupt. This
bug breaks protected-mode software (and other real-mode software that uses the 80386
registers). Novell has released a newer version of TCPIP that fixes the problem; contact
Novell to obtain the fix.

Compatibility 139

The DOS/4GW DOS Extender

9f. Bugs in Windows NT.

The initial release of Windows NT includes a DPMI host, DOSX.EXE, with several
serious bugs, some of which apparently cannot be worked around. We cannot warranty
operation of DOS/4GW under Windows NT at this time, but we are continuing to exercise
our best efforts to work around these problems.

You may wish to contact Microsoft Corporation to inquire about the availability of a new
version of DOSX.EXE.

140 Compatibility

Windows 3.x Programming Guide

Windows 3.x Programming Guide

142

15 Creating 16-bit Windows 3.x Applications

This chapter describes how to compile and link 16-bit Windows 3.x applications simply and
quickly. In this chapter, we look at applications written to exploit the Windows 3.x
Application Programming Interface (API).

We will illustrate the steps to creating 16-bit Windows 3.x applications by taking a small
sample application and showing you how to compile, link, run and debug it.

15.1 The Sample Application
To demonstrate the creation of 16-bit Windows 3.x applications, we introduce a simple
sample program. The following example is the "hello" program adapted for Windows.

#include <windows.h>

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInst,
LPSTR lpCmdLine, int nCmdShow)

{
MessageBox(NULL, "Hello world",

"Watcom C/C++ for Windows",
MB OK | MB TASKMODAL);

return(0);
}

The goal of this program is to display the message "Hello world" on the screen. The
MessageBox Windows API function is used to accomplish this task. We will take you
through the steps necessary to produce this result.

15.2 Building and Running the Sample Windows 3.x
Application

To compile and link our example program which is stored in the file HELLO.C, enter the
following command:

Building and Running the Sample Windows 3.x Application 143

Windows 3.x Programming Guide

C>wcl /l=windows/bt=windows hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl /l=windows /bt=windows hello.c
WATCOM C/C++16 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc hello.c /bt=windows
WATCOM C16 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 37

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are
HELLO.OBJ (the result of compiling HELLO.C) and HELLO.EXE (the result of linking
HELLO.OBJ with the appropriate Watcom C/C++ libraries).

The resultant 16-bit Windows 3.x application HELLO.EXE can now be run under Windows
3.x.

15.3 Debugging the Sample Windows 3.x Application
Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "hello" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It is also convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WCL
command, this is fairly straightforward. WCL recognizes the Watcom C/C++ compiler
"debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the
following command may be issued.

C>wcl /l=windows/bt=windows /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

144 Debugging the Sample Windows 3.x Application

Creating 16-bit Windows 3.x Applications

C>wcl /l=windows /bt=windows /d2 hello.c
WATCOM C/C++16 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc hello.c /bt=windows /d2
WATCOM C16 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 58

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows 16-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided
by the Watcom C/C++ compiler. WCL will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. You can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory
chapter so we refer you to the book entitled Watcom Debugger User’s Guide.

Debugging the Sample Windows 3.x Application 145

Windows 3.x Programming Guide

146 Debugging the Sample Windows 3.x Application

16 Porting Non-GUI Applications to 16-bit
Windows 3.x

Generally, an application that is to run in a windowed environment must be written in such a
way as to exploit the Windows Application Programming Interface (API). To take an existing
character-based (i.e., non-graphical) application that ran under a system such as DOS and
adapt it to run under Windows can require some considerable effort. There is a steep learning
curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an
application that does not use the Windows API. The application will make use of
WATCOM’s default windowing support.

Suppose you have a set of C/C++ applications that previously ran under a system like DOS
and you now wish to run them under Windows 3.x. To achieve this, you can simply
recompile your application with the appropriate options and link with the appropriate libraries.
We provide a default windowing system that turns your character-mode application into a
simple Windows 3.x Graphical User Interface (GUI) application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus,
icons, scroll bars, etc. However, an application that was not designed as a windowed
application (such as a DOS application) can run as a GUI application. This is achieved by our
default windowing system. The following sections describe the default windowing system.

16.1 Console Device in a Windowed Environment
In a C/C++ application that runs under DOS, stdin (C++ cin) and stdout (C++ cout) are
connected to the standard input and standard output devices respectively. It is not a
recommended practice to read directly from the standard input device or write to the standard
output device when running in a windowed environment. For this reason, a default
windowing environment is created for C/C++ applications that read from stdin (C++ cin) or
write to stdout (C++ cout). When your application is started, a window is created in which
output to stdout (C++ cout) is displayed and input from stdin (C++ cin) is requested.

In addition to the standard I/O device, it is also possible to perform I/O to the console by
explicitly opening a file whose name is "CON". When this occurs, another window is created

Console Device in a Windowed Environment 147

Windows 3.x Programming Guide

and displayed. This window is different from the one created for standard input and standard
output. In fact, every time you open the console device a different window is created. This
provides a simple multi-windowing system for multiple streams of data to and from the
console device.

16.2 The Sample Non-GUI Application
To demonstrate the creation of 16-bit Windows 3.x applications, we introduce a simple
sample program. For our example, we are going to use the famous "hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>
#include <iomanip.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C
version uses the C library printf routine to accomplish this task. The C++ version uses the
"iostream" library to accomplish this task. We will take you through the steps necessary to
produce this result.

16.3 Building and Running the Non-GUI Windows 3.x
Application

Very little effort is required to port an existing C/C++ application to Windows 3.x.

You must compile and link the file HELLO.C specifying the "bw" option.

C>wcl /l=windows/bw/bt=windows hello.c

148 Building and Running the Non-GUI Windows 3.x Application

Porting Non-GUI Applications to 16-bit Windows 3.x

The typical messages that appear on the screen are shown in the following illustration.

C>wcl /l=windows /bw/bt=windows hello.c
WATCOM C/C++16 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc hello.c /bw/bt=windows
WATCOM C16 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 17

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are
HELLO.OBJ (the result of compiling HELLO.C) and HELLO.EXE (the result of linking
HELLO.OBJ with the appropriate Watcom C/C++ libraries).

The resultant 16-bit Windows 3.x application HELLO.EXE can now be run under Windows
3.x as a Windows GUI application.

16.4 Debugging the Non-GUI Windows 3.x Application
Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "hello" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It is also convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WCL
command, this is fairly straightforward. WCL recognizes the Watcom C/C++ compiler
"debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the
following command may be issued.

C>wcl /l=windows/bw/bt=windows /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

Debugging the Non-GUI Windows 3.x Application 149

Windows 3.x Programming Guide

C>wcl /l=windows /bw/bt=windows /d2 hello.c
WATCOM C/C++16 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc hello.c /bw/bt=windows /d2
WATCOM C16 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 23

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows 16-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided
by the Watcom C/C++ compiler. WCL will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. You can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory
chapter so we refer you to the book entitled Watcom Debugger User’s Guide.

16.5 Default Windowing Library Functions
A few library functions have been written to enable some simple customization of the default
windowing system’s behaviour. The following functions are supplied:

_dwDeleteOnClose

int dwDeleteOnClose(int handle);

This function tells the console window that it should close itself when the file is
closed. You must pass to it the handle associated with the opened console.

_dwSetAboutDlg

150 Default Windowing Library Functions

Porting Non-GUI Applications to 16-bit Windows 3.x

int dwSetAboutDlg(const char *title, const char
*text);

This function sets the about dialog box of the default windowing system. The "title"
points to the string that will replace the current title. If title is NULL then the title
will not be replaced. The "text" points to a string which will be placed in the about
box. To get multiple lines, embed a new line after each logical line in the string. If
"text" is NULL, then the current text in the about box will not be replaced.

_dwSetAppTitle

int dwSetAppTitle(const char *title);

This function sets the main window’s title.

_dwSetConTitle

int dwSetConTitle(int handle, const char *title);

This function sets the console window’s title which corresponds to the handle passed
to it.

_dwShutDown

int dwShutDown(void);

This function shuts down the default windowing I/O system. The application will
continue to execute but no windows will be available for output.

_dwYield

int dwYield(void);

This function yields control back to the operating system, thereby giving other
processes a chance to run.

These functions are described more fully in the WATCOM C Library Reference.

Default Windowing Library Functions 151

Windows 3.x Programming Guide

152 Default Windowing Library Functions

17 Creating 32-bit Windows 3.x Applications

This chapter describes how to compile and link 32-bit Windows 3.x applications simply and
quickly. In this chapter, we look at applications written to exploit the Windows 3.x
Application Programming Interface (API).

We will illustrate the steps to creating 32-bit Windows 3.x applications by taking a small
sample application and showing you how to compile, link, run and debug it.

17.1 The Sample Application
To demonstrate the creation of 32-bit Windows 3.x applications, we introduce a simple
sample program. The following example is the "hello" program adapted for Windows.

#include <windows.h>

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInst,
LPSTR lpCmdLine, int nCmdShow)

{
MessageBox(NULL, "Hello world",

"Watcom C/C++ for Windows",
MB OK | MB TASKMODAL);

return(0);
}

The goal of this program is to display the message "Hello world" on the screen. The
MessageBox Windows API function is used to accomplish this task. We will take you
through the steps necessary to produce this result.

17.2 Building and Running the Sample Windows 3.x
Application

To compile and link our example program which is stored in the file HELLO.C, enter the
following command:

Building and Running the Sample Windows 3.x Application 153

Windows 3.x Programming Guide

C>wcl386 /l=win386/bt=windows hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 /l=win386 /bt=windows hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c /bt=windows
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 41

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are
HELLO.OBJ (the result of compiling HELLO.C) and HELLO.REX (the result of linking
HELLO.OBJ with the appropriate Watcom C/C++ libraries). The ".rex" file must now be
combined with WATCOM’s 32-bit Windows supervisor WIN386.EXT using the WATCOM
Bind utility. WBIND.EXE combines your 32-bit application code and data (".rex" file) with
the 32-bit Windows supervisor. The process involves the following steps:

1. WBIND copies WIN386.EXT into the current directory.

2. WBIND.EXE optionally runs the resource compiler on the 32-bit Windows
supervisor so that the 32-bit executable can have access to the applications
resources.

3. WBIND.EXE concatenates WIN386.EXT and the ".rex" file, and creates a ".exe"
file with the same name as the ".rex" file.

The following describes the syntax of the WBIND command.

WBIND file_spec [-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

154 Building and Running the Sample Windows 3.x Application

Creating 32-bit Windows 3.x Applications

WBIND is the name of the WATCOM Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND run in quiet mode (no informational
messages are displayed).

-s supervisor specifies the path and name of the Windows supervisor to be bound
with the application. If not specified, a search of the paths listed in
the PATH environment variable is performed. If this search is not
successful and the WATCOM environment variable is defined, the
%WATCOM%\BINW directory is searched.

-R rc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

C>wbind hello -n

If the "s" option is specified, it must identify the location of the WIN386.EXT file or the
W386DLL.EXT file (if you are building a DLL).

Example:
C>wbind hello -n -s c:\watcom\binw\win386.ext

If the "s" option is not specified, then the WATCOM environment variable must be defined
or the "BINW" directory must be listed in your PATH environment variable.

Example:
C>set watcom=c:\watcom

or
C>path c:\watcom\binw;c:\dos;c:\windows

The resultant 32-bit Windows 3.x application HELLO.EXE can now be run under Windows
3.x.

Building and Running the Sample Windows 3.x Application 155

Windows 3.x Programming Guide

17.3 Debugging the Sample Windows 3.x Application
Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "hello" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It is also convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "hello" program with debugging information, the
following command may be issued.

C>wcl386 /l=win386/bt=windows /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 /l=win386 /bt=windows /d2 hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c /bt=windows /d2
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 66

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows 32-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided
by the Watcom C/C++ compiler. WCL386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. You can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

156 Debugging the Sample Windows 3.x Application

Creating 32-bit Windows 3.x Applications

Once again, the ".rex" file must be combined with WATCOM’s 32-bit Windows supervisor
WIN386.EXT using the WATCOM Bind utility. This step is described in the previous
section.

To request the Watcom Debugger to assist in debugging the application, select the Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory
chapter so we refer you to the book entitled Watcom Debugger User’s Guide.

Debugging the Sample Windows 3.x Application 157

Windows 3.x Programming Guide

158 Debugging the Sample Windows 3.x Application

18 Porting Non-GUI Applications to 32-bit
Windows 3.x

Generally, an application that is to run in a windowed environment must be written in such a
way as to exploit the Windows Application Programming Interface (API). To take an existing
character-based (i.e., non-graphical) application that ran under a system such as DOS and
adapt it to run under Windows can require some considerable effort. There is a steep learning
curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an
application that does not use the Windows API. The application will make use of
WATCOM’s default windowing support.

Suppose you have a set of C/C++ applications that previously ran under a system like DOS
and you now wish to run them under Windows 3.x. To achieve this, you can simply
recompile your application with the appropriate options and link with the appropriate libraries.
We provide a default windowing system that turns your character-mode application into a
simple Windows 3.x Graphical User Interface (GUI) application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus,
icons, scroll bars, etc. However, an application that was not designed as a windowed
application (such as a DOS application) can run as a GUI application. This is achieved by our
default windowing system. The following sections describe the default windowing system.

18.1 Console Device in a Windowed Environment
In a C/C++ application that runs under DOS, stdin (C++ cin) and stdout (C++ cout) are
connected to the standard input and standard output devices respectively. It is not a
recommended practice to read directly from the standard input device or write to the standard
output device when running in a windowed environment. For this reason, a default
windowing environment is created for C/C++ applications that read from stdin (C++ cin) or
write to stdout (C++ cout). When your application is started, a window is created in which
output to stdout (C++ cout) is displayed and input from stdin (C++ cin) is requested.

In addition to the standard I/O device, it is also possible to perform I/O to the console by
explicitly opening a file whose name is "CON". When this occurs, another window is created

Console Device in a Windowed Environment 159

Windows 3.x Programming Guide

and displayed. This window is different from the one created for standard input and standard
output. In fact, every time you open the console device a different window is created. This
provides a simple multi-windowing system for multiple streams of data to and from the
console device.

18.2 The Sample Non-GUI Application
To demonstrate the creation of 32-bit Windows 3.x applications, we introduce a simple
sample program. For our example, we are going to use the famous "hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>
#include <iomanip.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C
version uses the C library printf routine to accomplish this task. The C++ version uses the
"iostream" library to accomplish this task. We will take you through the steps necessary to
produce this result.

18.3 Building and Running the Non-GUI Windows 3.x
Application

Very little effort is required to port an existing C/C++ application to Windows 3.x.

You must compile and link the file HELLO.C specifying the "bw" option.

C>wcl386 /l=win386/bw/bt=windows hello.c

160 Building and Running the Non-GUI Windows 3.x Application

Porting Non-GUI Applications to 32-bit Windows 3.x

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 /l=win386 /bw/bt=windows hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c /bw/bt=windows
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 24

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are
HELLO.OBJ (the result of compiling HELLO.C) and HELLO.REX (the result of linking
HELLO.OBJ with the appropriate Watcom C/C++ libraries). The ".rex" file must now be
combined with WATCOM’s 32-bit Windows supervisor WIN386.EXT using the WATCOM
Bind utility. WBIND.EXE combines your 32-bit application code and data (".rex" file) with
the 32-bit Windows supervisor. The process involves the following steps:

1. WBIND copies WIN386.EXT into the current directory.

2. WBIND.EXE optionally runs the resource compiler on the 32-bit Windows
supervisor so that the 32-bit executable can have access to the applications
resources.

3. WBIND.EXE concatenates WIN386.EXT and the ".rex" file, and creates a ".exe"
file with the same name as the ".rex" file.

The following describes the syntax of the WBIND command.

WBIND file_spec [-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

Building and Running the Non-GUI Windows 3.x Application 161

Windows 3.x Programming Guide

WBIND is the name of the WATCOM Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND run in quiet mode (no informational
messages are displayed).

-s supervisor specifies the path and name of the Windows supervisor to be bound
with the application. If not specified, a search of the paths listed in
the PATH environment variable is performed. If this search is not
successful and the WATCOM environment variable is defined, the
%WATCOM%\BINW directory is searched.

-R rc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

C>wbind hello -n

If the "s" option is specified, it must identify the location of the WIN386.EXT file or the
W386DLL.EXT file (if you are building a DLL).

Example:
C>wbind hello -n -s c:\watcom\binw\win386.ext

If the "s" option is not specified, then the WATCOM environment variable must be defined
or the "BINW" directory must be listed in your PATH environment variable.

Example:
C>set watcom=c:\watcom

or
C>path c:\watcom\binw;c:\dos;c:\windows

The resultant 32-bit Windows 3.x application HELLO.EXE can now be run under Windows
3.x as a Windows GUI application.

162 Building and Running the Non-GUI Windows 3.x Application

Porting Non-GUI Applications to 32-bit Windows 3.x

18.4 Debugging the Non-GUI Windows 3.x Application
Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "hello" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It is also convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "hello" program with debugging information, the
following command may be issued.

C>wcl386 /l=win386/bw/bt=windows /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 /l=win386 /bw/bt=windows /d2 hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c /bw/bt=windows /d2
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 45

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows 32-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided
by the Watcom C/C++ compiler. WCL386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. You can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

Debugging the Non-GUI Windows 3.x Application 163

Windows 3.x Programming Guide

Once again, the ".rex" file must be combined with WATCOM’s 32-bit Windows supervisor
WIN386.EXT using the WATCOM Bind utility. This step is described in the previous
section.

To request the Watcom Debugger to assist in debugging the application, select the Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory
chapter so we refer you to the book entitled Watcom Debugger User’s Guide.

18.5 Default Windowing Library Functions
A few library functions have been written to enable some simple customization of the default
windowing system’s behaviour. The following functions are supplied:

_dwDeleteOnClose

int dwDeleteOnClose(int handle);

This function tells the console window that it should close itself when the file is
closed. You must pass to it the handle associated with the opened console.

_dwSetAboutDlg

int dwSetAboutDlg(const char *title, const char
*text);

This function sets the about dialog box of the default windowing system. The "title"
points to the string that will replace the current title. If title is NULL then the title
will not be replaced. The "text" points to a string which will be placed in the about
box. To get multiple lines, embed a new line after each logical line in the string. If
"text" is NULL, then the current text in the about box will not be replaced.

_dwSetAppTitle

int dwSetAppTitle(const char *title);

This function sets the main window’s title.

_dwSetConTitle

int dwSetConTitle(int handle, const char *title);

This function sets the console window’s title which corresponds to the handle passed
to it.

164 Default Windowing Library Functions

Porting Non-GUI Applications to 32-bit Windows 3.x

_dwShutDown

int dwShutDown(void);

This function shuts down the default windowing I/O system. The application will
continue to execute but no windows will be available for output.

_dwYield

int dwYield(void);

This function yields control back to the operating system, thereby giving other
processes a chance to run.

These functions are described more fully in the WATCOM C Library Reference.

Default Windowing Library Functions 165

Windows 3.x Programming Guide

166 Default Windowing Library Functions

19 The Watcom 32-bit Windows 3.x Extender

Watcom C/C++ contains the necessary tools and libraries to create 32-bit applications for
Windows 3.x. Using Watcom C/C++ gives the programmer the benefits of a 32-bit flat
memory model and access to the full Windows API (along with the usual C/C++ library
functions).

The general model of the environment is as follows: The 32-bit flat memory model program
is linked against a special 32-bit Windows library. This library contains the necessary
information to invoke special 16-bit functions, which lie in the supervisor (WIN386.EXT).
The 32-bit program is then bound (using WBIND.EXE) with the supervisor to create a
Windows executable. At the same time as the 32-bit program is being bound, the resource
compiler is run on the supervisor, and all the resources for the application are placed there.
When the application is started, the supervisor obtains the 32-bit memory, relocates the 32-bit
application into the memory, and invokes the 32-bit application.

All Windows functions are invoked from the supervisor, and all callback routines lie within
the supervisor. The local heap resides within the supervisor as well.

If you are starting from a 16-bit Windows application, most of the code will not change when
you port it to the 32-bit Windows environment. However, because of the nature of the
Windows API and its implicit dependencies on a 16-bit environment, some source changes are
necessary. These source changes are minimal, and are backwards compatible with the 16-bit
environment.

19.1 Pointers
Throughout this document, there will be references to both near and far, and 16-bit and 32-bit
pointers. Since this can rapidly become confusing, some initial explanations will be given
here.

A far pointer is a pointer that is composed of both a selector and an offset. A selector
determines a specific region of memory, and the offset is relative to the start of this region. A
near pointer is a pointer that has an offset only, the selector is automatically assumed by the
CPU.

Pointers 167

Windows 3.x Programming Guide

The problem with far pointers is the selector overhead. Using a far pointer is much more
expensive than using a near pointer. This is the advantage of the 32-bit flat memory model -
all pointers within the program are near, and yet you can address up to 4 gigabytes of
memory.

A 16-bit near pointer occupies 2 bytes of memory (i.e., the offset is 16 bits long). This
pointer can reference up to 64K of data.

A 16-bit far pointer occupies 4 bytes of memory. There is a 16-bit selector and a 16-bit
offset. This pointer can reference up to 64K of data.

A 32-bit near pointer occupies 4 bytes of memory (i.e., the offset is 32 bits long). This
pointer can reference up to 4 gigabytes of data.

A 32-bit far pointer occupies 6 bytes of memory. There is a 16-bit selector and a 32-bit
offset. This pointer can reference up to 4 gigabytes of data.

Windows, in general, uses 16-bit far pointers to pass information around. These 16-bit far
pointers can also be used by a 32-bit Windows application. Using a special macro,
MK_FP32, the offset of the 16-bit far pointer is extended from 16 bits to 32 bits, and the
pointer becomes a 32-bit far pointer. The 32-bit far pointer is then used by the application to
access the data (note that offsets still must be less than 64K, since the selector is still for a 64K
data area).

19.2 Implementation Overview
This section provides an overview of the issues that require consideration when creating a
32-bit Windows application for a 16-bit Windows environment.

First, all modules have to be recompiled for the 32-bit flat memory model with a compiler
capable of generating 32-bit instructions. Many Windows API functions take int as a
parameter. This int is from the 16-bit world, and is 2 bytes long. In the 32-bit world, this int
becomes 4 bytes long. Since Windows is only expecting two bytes of data, all occurrences of
int have to be changed to short in WINDOWS.H.

Pointers to data passed to Windows are all far pointers. We will be passing pointers to data in
our 32-bit flat address space, and these pointers are near pointers. By simply getting rid of all
far keywords in WINDOWS.H, all pointers will now be passed as 32-bit near pointers. As
well, notice that these 32-bit near pointers are the same size as as their 16-bit far pointer
counterparts (4 bytes). This is good, since all data structures containing pointers will remain
the same size.

168 Implementation Overview

The Watcom 32-bit Windows 3.x Extender

Windows cannot be called from 32-bit code on a 32-bit stack. This means that in order to call
the API functions, it is necessary to write a set of cover functions that will accept the
parameters, switch into a 16-bit environment, and then call Windows. There is another issue,
though. Windows only understands 16-bit pointers, so before calling Windows, all pointers
being passed to Windows must be converted to 16-bit far pointers.

It turns out that Windows can also call back to your application. Windows can only call
16-bit code, though, so there is a need for a bridge from the 16-bit side to the 32-bit side. It is
necessary to allocate 16-bit call back routines that can be passed to Windows. These call back
routines will then switch into the 32-bit environment and call whatever 32-bit function is
required. The 32-bit call back has to be declared as a far function, since it is necessary to
issue a far call to enter it from the 16-bit side. If it is a far function, then the compiler will
generate the appropriate code for it to return from the far call.

Once Windows calls you back, it can hand you 16-bit far pointers in a long (4 byte)
parameter. This pointer can only be used in the 32-bit environment if it is a 32-bit far pointer,
not a 16-bit far pointer. The conversion is simple: the 16-bit offset is extended to a 32-bit
offset (the high word is zeroed out). Any far pointer that Windows hands to you must be
converted in this way.

Sometimes, a Windows application wants to call a procedure in a DLL. The procedure
address is a 16-bit far pointer. It is not possible to issue an indirect call to this address from
the 32-bit environment, so some sort of interface is needed. This interface would switch into
the 16-bit environment, and then call the 16-bit function.

These issues, along with other minor items, are handled by Watcom C/C++, and are discussed
in more technical detail in later sections.

System Structure 169

Windows 3.x Programming Guide

19.3 System Structure

C
al

lb
ac

k

A
P

I/D
O

S
 C

al
l

32-16

Translation
(DOS Calls Only)

32-16

Translation
(DOS Calls Only)

C
al

lb
ac

k

32-bit C
Library

32-16

Translation
Windows
Supervisor

Windows
3.x

32-bit
Windows

API

32-bit
Application

Figure 5. WIN386 Structure

0

Stack Code Global
Data

Heap

Figure 6. 32-bit Application Structure

170 System Structure

The Watcom 32-bit Windows 3.x Extender

19.4 System Overview
• WIN386.EXT is the key component of a 32-bit Windows application. It is a 16-bit
Windows application which contains:

• All application resources.
• A 16-bit local heap.
• A 16-bit stack.

• W386DLL.EXT is similar to WIN386.EXT, only it provides a DLL interface.

WIN386.EXT is bound to your 32-bit application to create a 32-bit application that
will run under Windows 3.x. WIN386.EXT provides the following functionality:

• supervisor to bring the 32-bit application into memory and start it running.

• "glue" functions to connect to Windows for both API and DOS functionality.
This interface is designed to transparently set up the calling functions’ pointers
and parameters to their 16-bit counterparts.

• "glue-back" functions to allow Windows to call back 32-bit routines.

• special code to allow debugging of 32-bit applications.

• WINDOWS.H has been specially modified for use in the 32-bit Windows environment.
As well, it contains all special definitions for 32-bit applications.

• WIN386.LIB contains all the necessary library functions to connect to the 32-bit
supervisor WIN386.EXT. All Windows API calls and Watcom C/C++ library DOS
calls are found here.

• The standard C/C++ library functions, specially modified to run in the 32-bit
environment, are located in the \WATCOM\LIB386\WIN directory.

• WBIND.EXE merges your 32-bit executable and the appropriate Supervisor into a
single executable.

System Overview 171

Windows 3.x Programming Guide

19.5 Steps to Obtaining a 32-bit Application
The following is an overview of the procedure for creating a 32-bit Windows Application:

1. If you are starting with a 16-bit Windows application, you must adapt your source
code to the 32-bit environment.

2. You must compile the application using a 32-bit compiler.
3. You must link the application with the 32-bit libraries.
4. You must bind the 32-bit application with the 32-bit supervisor.
5. You can then run and/or debug the application.

172 Steps to Obtaining a 32-bit Application

20 Windows 3.x 32-bit Programming
Overview

This chapter includes the following topics:

• WINDOWS.H

• Environment Notes

• Floating-point Emulation

• Multiple Instances

• Pointer Handling

• When To Convert Incoming Pointers

• When To Convert Outgoing Pointers

• SendMessage and SendDlgItemMessage

• GlobalAlloc and LocalAlloc

• Callback Function Pointers

• Window Sub-classing

• Calling 16-bit DLLs

• Making DLL Calls Transparent

• Far Pointer Manipulation

• _16 Functions

Windows 3.x 32-bit Programming Overview 173

Windows 3.x Programming Guide

20.1 WINDOWS.H
When developing programs, make sure WINDOWS.H is included as the first include file in all
source files. This header file contains only the following lines:

#ifdef WINDOWS 16
#include <win16.h>
#else
#include < win386.h>
#endif

The file WIN16.H is the regular 16-bit Windows header file, and is only conditionally
included for 16-bit Windows applications. The file WIN386.H contains all the prototypes
and macros for the 32-bit environment, as well as including and modifying WIN16.H. These
modifications are changing int to short, and changing the far keyword to nothing. These
changes (that ONLY apply to things defined in WIN16.H) cause all integers to be 16-bit
integers, and all LP... pointer types to be near pointers.

Other include files for Windows must be specifically requested by defining macros before
including WINDOWS.H. This is required so that the same changes made to the primary
Windows header file will apply to routines declared in the other header files.

Macro name File included

#define INCLUDE_COMMDLG_H COMMDLG.H
#define INCLUDE_CUSTCNTL_H CUSTCNTL.H
#define INCLUDE_DDE_H DDE.H
#define INCLUDE_DDEML_H DDEML.H
#define INCLUDE_DRIVINIT_H DRIVINIT.H
#define INCLUDE_LZEXPAND_H LZEXPAND.H
#define INCLUDE_MMSYSTEM_H MMSYSTEM.H
#define INCLUDE_OLE_H OLE.H
#define INCLUDE_PENWIN_H PENWIN.H
#define INCLUDE_PENWOEM_H PENWOEM.H
#define INCLUDE_PRINT_H PRINT.H
#define INCLUDE_SHELLAPI_H SHELLAPI.H
#define INCLUDE_STRESS_H STRESS.H
#define INCLUDE_TOOLHELP_H TOOLHELP.H
#define INCLUDE_VER_H VER.H

174 WINDOWS.H

Windows 3.x 32-bit Programming Overview

20.2 Environment Notes
• The Windows functions Catch and Throw save only the 16-bit state. Instead of these
functions, use the setjmp and longjmp functions.

• The 32-bit Windows Supervisor uses the first 256 bytes of the 32-bit application’s
stack to save state information. If this is corrupted, your application will abnormally
terminate.

• The 32-bit Windows Supervisor provides resources for up to 512 callback routines.
Note that this restriction is only on the maximum number of active callbacks.

20.3 Floating-point Emulation
The file WEMU387.386 is included to support floating-point emulation for 32-bit
applications running under Windows. This file is installed in the [386Enh] section of your
SYSTEM.INI file. By using the floating-point emulator, your application can be compiled
with the "fpi87" option to use inline floating-point instructions, and it will run on a machine
without a numeric coprocessor.

Only one of WEMU387.386 and WDEBUG.386 may be installed in your [386Enh] section.
WEMU387.386 may be distributed with your application.

20.4 Multiple Instances
Since the 32-bit application resides in a flat memory space, it is NOT possible to share code
with other instances. This means that you must register new window classes with callbacks
into the new instance’s code space. A simple way of accomplishing this is as follows:

int PASCAL WinMain(HANDLE hInstance,

HANDLE hPrevInstance;
LPSTR lpCmdLine,
int nCmdShow);

{
WNDCLASS wc;
HWND hWnd
char class[32];

Multiple Instances 175

Windows 3.x Programming Guide

wc.style = NULL;
wc.lpfnWndProc = (LPVOID) MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(NULL, IDI APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC ARROW);
wc.hbrBackground = GetStockObject(WHITE BRUSH);
wc.lpszMenuName = "Menu";
sprintf(class,"Class%d",hInstance);
wc.lpszClassName = class;
RegisterClass(&wc);
hWnd = CreateWindow(

class,
"Application",
WS OVERLAPPEDWINDOW,
CW USEDEFAULT,
CW USEDEFAULT,
CW USEDEFAULT,
CW USEDEFAULT,
NULL,
NULL,
hInstance,
NULL

);

The variable class contains a unique name based on the instance of the application.

20.5 Pointer Handling
Windows 3.x is a 16-bit operating system. Function pointers that Windows deals with are
16-bit far pointers, and any data you communicate to Windows with are 16-bit far pointers.
16-bit far pointers occupy 4 bytes of data, and are capable of addressing up to 64K. For data
objects larger than 64K, huge pointers are used (a sequence of far pointers that map out
consecutive 64K segments for the data object). 16-bit far pointers are expensive to use due to
the overhead of selector loads (each time you use the pointer, a segment register must have a
value put in it). 16-bit huge pointers are even more expensive: not only is there the overhead
of selector loads, but a run-time call is necessary to perform any pointer arithmetic.

In a 32-bit flat memory model, such as that of the Watcom C/C++ for Windows environment,
all pointers are 32-bit near pointers (occupying 4 bytes of data as well). However, these
pointers may access objects of up to 4 gigabytes in size, and there is no selector load
overhead.

176 Pointer Handling

Windows 3.x 32-bit Programming Overview

All Windows defined pointer types (e.g., LPSTR) are by default near pointers, not far
pointers. To obtain a far pointer, the far keyword must be explicitly coded, i.e., char far
*foo, rather than LPSTR foo. A 32-bit near pointer is the same size as a 16-bit far
pointer, so that all Windows pointers are the same size in the 32-bit flat memory model as
they are in the original 16-bit segmented model.

For a 32-bit environment to communicate with Windows 3.x, there are some considerations.
All pointers sent to Windows must be converted from 32-bit near pointers to 16-bit far
pointers. These conversions are handled by the Supervisor.

It is important to remember that all API functions which accept pointers (with the exception of
functions that accept function pointers) accept 32-bit near pointers in this 32-bit model. If you
attempt to pass a 32-bit far pointer, the conversion will not take place correctly.

16-bit far pointers to data may be passed into the API functions, and the Supervisor will not
do any conversion.

Incoming pointers must be converted from 16-bit far pointers to 32-bit far pointers. This
conversion is a trivial one: the offset portion of the 16-bit far pointer is extended to 32-bits.
Pointers from Windows are by their nature far (that is, the data is pointed to by its own
selector), and must be used as far in the 32-bit environment. Of course, conversions are only
required if you actually need to reference the pointer.

Function pointers (i.e., pointers to callback routines) used by Windows are not converted from
32-bit to 16-bit. Rather, a 16-bit thunking layer that transfers control from the 16-bit
environment to the 32-bit environment must be used. This thunking layer is provided by the
Supervisor.

20.5.1 When To Convert Incoming Pointers

Whenever you wish to use a pointer passed to you by Windows, you must convert it to a
32-bit far pointer. If you are passed a 16-bit far pointer, the macro MK_FP32 can be used to
convert it to a 32-bit far pointer. If you are passed a 16-bit near pointer (e.g., from LocalLock
), then the macro MK_LOCAL32 can be used to convert it to a 32-bit far pointer.

Some places where pointer conversion may be required are:

• LocalLock
• GlobalLock
• the lParam in a window callback routine (if it is a pointer)

Pointer Handling 177

Windows 3.x Programming Guide

20.5.2 When To Convert Outgoing Pointers

Typically, there is no need to do any kind of conversions on your pointers when passing them
to Windows. The Supervisor handles all 32-bit to 16-bit translations for you, in the case of
the regular Windows API functions. However, if you are passing a 32-bit pointer to some
other 16-bit application in the Windows environment, then pointer conversions must by done.
There are two types of "outgoing" pointers: data pointers and function pointers.

Function pointers (to callback routines) must have a thunking layer provided, using the
GetProc16 function (this is explained in detail in a later section).

Data pointers can be translated from 32-bit to 16-bit using the AllocAlias16 and
AllocHugeAlias16 functions. These functions create 16-bit far pointers that have the same
linear address as the 32-bit near pointer that was converted.

It is important to remember that when passing a pointer to a data structure in this fashion, any
pointers in the data structure must also be converted.

The Supervisor will convert any pointers that it knows about; but there are some
complications created by the fact that Windows allows you to pass pointers in functions that
are prototyped to take a long integer.

The Windows API functions SendMessage and SendDlgItemMessage rely on other fields
determining the nature of the long data item that they accept; this is discussed in detail in the
next section.

20.5.2.1 SendMessage and SendDlgItemMessage

SendMessage and SendDlgItemMessage have special cover functions that determine when
the long integer is really a pointer and needs to be converted. These cover functions are used
automatically, unless the macro NOCOVERSENDS is defined before including WINDOWS.H
as in the following example.

#define NOCOVERSENDS
#include <windows.h>

SendMessage and SendDlgItemMessage will do pointer conversions automatically using
AllocAlias16 and FreeAlias16 (unless NOCOVERSENDS is defined) for the following
message types:

178 Pointer Handling

Windows 3.x 32-bit Programming Overview

• combo boxes (CB_ messages)
• edit controls (EM_ messages)
• list boxes (LB_ messages)
• certain windows messages (WM_ messages);

The messages that are intercepted by the cover functions for SendMessage and
SendDlgItemMessage are:

CB ADDSTRING CB DIR CB FINDSTRING
CB GETLBTEXT CB INSERTSTRING CB SELECTSTRING

EM GETLINE EM GETRECT EM REPLACESEL
EM SETRECT EM SETRECTNP EM SETTABSTOPS

LB ADDSTRING LB DIR LB FINDSTRING
LB GETITEMRECT LB GETSELITEMS LB GETTEXT
LB INSERTSTRING LB SELECTSTRING LB SETTABSTOPS

WM MDICREATE WM NCCALCSIZE

Note that for SendMessage and SendDlgItemMessage, some of the messages may NOT
require pointer conversion:

• CB_ADDSTRING, CB_FINDSTRING, CB_INSERTSTRING will not need a
conversion if the combo box was created as owner-draw style without
CBS_HASSTRINGS style.

• LB_ADDSTRING, LB_FINDSTRING, LB_INSERTSTRING will not need a
conversion if the list box was created as owner-draw style without LBS_HASSTRINGS
style.

The macro NOCOVERSENDS should be defined in modules where messages like these are
being sent. With these messages, the lParam data item does not contain a pointer, and the
automatic pointer conversion would be incorrect. By doing

#define NOCOVERSENDS
#include "windows.h"

modules that send messages like the above will not have the pointer conversion performed.

Pointer Handling 179

Windows 3.x Programming Guide

20.5.3 GlobalAlloc and LocalAlloc

The functions GlobalAlloc and LocalAlloc are the typical way of allocating memory in the
16-bit Windows environment. In the 32-bit environment, there is no need to use these
functions. The only time GlobalAlloc is needed is when allocating shared memory, i.e.,
GMEM_DDESHARE.

The C runtime functions malloc and free manipulate your 32-bit near heap for you. By using
these functions to allocate memory, you may create data objects as large as the enhanced
mode Windows memory manager will permit.

20.5.4 Callback Function Pointers

To access a callback function, an instance of it must be created using MakeProcInstance.
This creates a "thunk" (a special piece of code) that automatically puts the application’s data
segment into the AX register, and then calls the specified callback function.

In Windows 3.x, it is not possible to do a MakeProcInstance directly on a 32-bit callback
routine, since Windows 3.x does not understand 32-bit applications. Therefore, it is necessary
to use a 16-bit callback routine that passes control to the 32-bit callback routine. This 16-bit
callback routine is automatically created by the Supervisor when using any of the standard
Windows API functions that accept a callback routine.

The 16-bit callback routine for a 32-bit application is a special layer that transfers the
parameters from a 16-bit stack to the 32-bit stack, and then passes control to 32-bit code.
These 16-bit callback routines are found in the Supervisor. The function GetProc16 provides
pointers to these 16-bit callback routines.

However, it is not often necessary to use the GetProc16 function to obtain a 16-bit/32-bit
callback interface function.

In the general case, one would have to write code as follows:

180 Pointer Handling

Windows 3.x 32-bit Programming Overview

#define NOAUTOPROCS
#include <windows.h>

CALLBACKPTR pCb;
FARPROC fpProc;

pCb = GetProc16(A Function, GETPROC callbacktype);
fpProc = MakeProcInstance(pCb, hInstance);

/* do stuff */

Do it(..., fpProc, ...);

/* do more stuff */

FreeProcInstance(fpProc);
ReleaseProc16(pCb);

It is not necessary to use this general code in the case of the regular Windows API functions.
The following functions will automatically allocate the correct 16-bit/32-bit callback interface
functions:

• ChooseColor
• ChooseFont
• CorrectWriting
• CreateDialog
• CreateDialogIndirect
• CreateDialogIndirectParam
• CreateDialogParam
• DdeInitialize
• DialogBox
• DialogBoxIndirect
• DialogBoxIndirectParam
• DialogBoxParam
• DictionarySearch
• EnumChildWindows
• EnumFontFamilies
• EnumFonts
• EnumMetaFile
• EnumObjects
• EnumProps
• EnumSymbols
• EnumTaskWindows
• EnumWindows

Pointer Handling 181

Windows 3.x Programming Guide

• Escape (SETABORTPROC option)
• FindText
• GetOpenFileName
• GetSaveFileName
• GlobalNotify
• GrayString
• LineDDA
• mciSetYieldProc
• mmioInstallIOProc
• NotifyRegister
• PrintDlg
• ProcessWriting
• Recognize
• RecognizeData
• RegisterClass
• ReplaceText
• SetClassLong (GCL_WNDPROC option)
• SetPenHook
• SetResourceHandler
• SetTimer
• SetWindowLong (GWL_WNDPROC option)
• SetWindowsHook
• SetWindowsHookEx
• TrainInk

As well, the following functions are covered to provide support for automatic creation of
16-bit callback routines:

• FreeProcInstance
• MakeProcInstance
• UnhookWindowsHook

If you need to get a callback that is not used by one of the above functions, then you must
code the general case. Typically, this is required when a DLL needs a callback routine. In
modules where this is necessary, you define the macro NOAUTOPROCS before you include
WINDOWS.H as in the following example.

#define NOAUTOPROCS
#include <windows.h>

Be careful of the following when using NOAUTOPROCS.

1. The call to MakeProcInstance and FreeProcInstance for the callback function
occurs in a module with NOAUTOPROCS defined.

182 Pointer Handling

Windows 3.x 32-bit Programming Overview

2. No Windows API functions (listed above) are used in the module with
NOAUTOPROCS defined. If they are, you must code the general case to use them.

Note that NOAUTOPROCS is in effect on a module-to-module basis only.

You can avoid using NOAUTOPROCS on a call-by-call basis, if you do the following:

#undef <function>
<function>
Note: re-defining is only needed if you want to

use a covered version of the function later on.
#define <function> Cover <function>

For example:

{
#undef SetWindowsHook
#undef MakeProcInstance

FARPROC fp,oldfp;
CALLBACKPTR cbp;

cbp = GetProc16(CallbackHook, GETPROC CALLBACK);
fp = MakeProcInstance(cbp, hInstance);
oldfp = SetWindowsHook(WH CALLWNDPROC, fp);

}

This allows you to add general case code in the same module, without having to break the
module into two parts.

RegisterClass automatically does a GetProc16 for the callback function, unless the macro
NOCOVERRC is specified before including WINDOWS.H as in the following example.

#define NOCOVERRC
#include <windows.h>

20.5.4.1 Window Sub-classing

Sub-classing a Windows control in the 32-bit environment is straightforward. In fact, the
code is identical to the code used in the 16-bit environment. A simple example is:

Pointer Handling 183

Windows 3.x Programming Guide

FARPROC fpOldProc;

long FAR PASCAL SubClassProc(HWND hWnd,
unsigned message,
WORD wParam,
LONG lParam)

{
/*
* code for sub-classing here
*/

return(CallWindowProc(fpOldProc, hWnd, message,
wParam, lParam));

}

void SubClassDemo(void)
{

HWND hControl;
FARPROC fp;
extern HANDLE ProgramInstance;

/* assume hControl gets created in here */

fpOldProc = (FARPROC) GetWindowLong(hControl, GWL WNDPROC);
fp = MakeProcInstance(SubClassProc, ProgramInstance);
SetWindowLong(hControl, GWL WNDPROC, (LONG) fp);

/* set it back */
SetWindowLong(hControl, GWL WNDPROC, (LONG) fpOldProc);
FreeProcInstance(fp);

}

Note that SetWindowLong is covered to recognize GWL_WNDPROC and automatically
creates a 16-bit callback for the 32-bit callback. When replacing the callback routine with the
original 16-bit routine, the covered version of SetWindowLong recognizes that the function is
not a 32-bit callback, and so passes the pointer right through to Windows unchanged.

20.6 Calling 16-bit DLLs
A 16-bit function in a DLL can be called using the _Call16 function. The first argument to
_Call16 is the address of the 16-bit function. This address is usually obtained by calling
GetProcAddress with the name of the desired function. The second argument to _Call16 is a
string identifying the types of the parameters to be passed to the 16-bit function.

Character Parameter Type

c call a ’cdecl’ function as opposed to a ’pascal’ function (if specified, it must be
listed first)

184 Calling 16-bit DLLs

Windows 3.x 32-bit Programming Overview

b unsigned BYTE
w 16-bit WORD
d 32-bit DWORD
f double precision floating-point
p 32-bit flat pointer (converted to 16:16 far pointer)

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL
calling convention is the default. If the function uses the CDECL calling convention, then
you must specify the letter "c" as the first character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointers to 16-bit far pointers
before the function is invoked. Note that this pointer is only valid over the period of the call;
after control returns to the 32-bit application, the 16-bit pointer created by the Supervisor is no
longer valid.

The return value from _Call16 is a DWORD.

#include <windows.h>
HANDLE hDrv;
FARPROC lpfn;
int cb;

if((hDrv = LoadLibrary ("foo.dll")) < 32)
return FALSE;

if(!(lpfn = GetProcAddress (hDrv, "ExtDeviceMode")))
return FALSE;

/*
* now, invoke the function
*/

cb = (WORD) Call16(
lpfn, // address of function
"wwdppddw", // parameter type info
hwnd, // parameters ...
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0
);

Calling 16-bit DLLs 185

Windows 3.x Programming Guide

20.6.1 Making DLL Calls Transparent

This section gives an example of how to make your source code look as if you are calling the
16-bit DLL directly.

Assume there are 3 functions that you want to call in the 16-bit DLL, with prototypes as
follows:

HWND FAR PASCAL Initialize(WORD start code);
BOOL FAR PASCAL DoStuff(HWND win hld, HDC win dc);
void FAR PASCAL Finish(void);

A fragment from the header file that you would include in your 32-bit application would be as
follows:

extern FARPROC InitializeAddr;
extern FARPROC DoStuffAddr;
extern FARPROC FinishAddr;
#define Initialize(start code) \

Call16(InitializeAddr, "w", (WORD)start code)
#define DoStuff(win hld, data) \

Call16(DoStuffAddr, "wp", (HWND)win hld, (LPVOID)data)
#define Finish(void) Call16(FinishAddr, "")

The header file fragment gives external references for the function addresses for each
function, and sets up macros do a _Call16 for each of the functions.

At start up, you would call the following function:

/*
* LoadDLL - get DLL ready for 32-bit use
*/

BOOL LoadDLL(void)
{

HANDLE dll;

dll = LoadLibrary("chart.dll");
if(dll < 32) return(FALSE);
InitializeAddr = GetProcAddress(dll, "Initialize");
DoStuffAddr = GetProcAddress(dll, "DoStuff");
FinishAddr = GetProcAddress(dll, "Finish");
return(TRUE);

}

186 Calling 16-bit DLLs

Windows 3.x 32-bit Programming Overview

This function loads the 16-bit DLL and gets the addresses for all of the entry points in the
DLL. By including the header file with all the macros in it, you can code calls to the DLL
functions as if you were calling the functions directly. For example:

#include <windows.h>
#include "fragment.h"
char *data = "the data";

void TestDLL(void)
{

HWND res;
if(!LoadDLL()) {

MessageBox(NULL, "Could not load DLL",
"Error", MB OK);

return;
}
res = Initialize(1);
DoStuff(res, data);
Finish();

}

20.7 Far Pointer Manipulation
The following C library functions are available for manipulating far data. These are useful
when using pointers obtained by MK_FP32 and MK_LOCAL32.

Memory manipulation:

• _fmemccpy
• _fmemchr
• _fmemcmp
• _fmemcpy
• _fmemicmp
• _fmemmove
• _fmemset

String manipulation:

• _fstrcat
• _fstrchr
• _fstrcmp
• _fstrcpy
• _fstrcspn

Far Pointer Manipulation 187

Windows 3.x Programming Guide

• _fstricmp
• _fstrlen
• _fstrlwr
• _fstrncat
• _fstrncmp
• _fstrncpy
• _fstrnicmp
• _fstrnset
• _fstrpbrk
• _fstrrchr
• _fstrrev
• _fstrset
• _fstrspn
• _fstrtok
• _fstrupr

20.8 _16 Functions
Every Windows API function that accepts a pointer has a corresponding _16 function. The
_16 version of the function will not convert any of the pointers that it accepts; it will assume
that all pointers are 16-bit far pointers already. This applies to both data and function
pointers.

Some sample code demonstrating the use for this is:

void ReadEditBuffer(char *fname, HWND hwndEdit)
{

int file;
HANDLE hText;
char far *flpData;
LPSTR lpData;
WORD filelen;
/*
* no error checking is performed; we just
* assume everything works for this example.
*/

file = lopen(fname, 0);
filelen = llseek(file, 0L, 2);

188 _16 Functions

Windows 3.x 32-bit Programming Overview

hText = (HANDLE) SendMessage(hwndEdit, EM GETHANDLE,
0, 0L);

LocalReAlloc(hText, filelen+1, LHND);
flpData = MK LOCAL32(LocalLock(hText));
lpData = (LPSTR) MK FP16(flpB);
16 lread(file, lpData, filelen);
lclose(file);

}

This example reads the contents of a file into the buffer of an edit window. Because the edit
window’s memory is located in the local heap, which is the Supervisor’s heap, the
MK_LOCAL32 function is needed to access the data. The MK_FP16 macro compresses the
32-bit far pointer into a 16-bit far pointer, which can then be used by the _16_lread function.

_16 Functions 189

Windows 3.x Programming Guide

190 _16 Functions

21 Windows 32-Bit Dynamic Link Libraries

21.1 Introduction to 32-Bit DLLs
Watcom C/C++ allows the creation of 32-bit Dynamic Link Libraries (DLL). In fact, 32-bit
DLLs are simpler to write than 16-bit DLLs. A 16-bit DLL runs on the caller’s stack, and
thus DS != SS. This creates difficulties in the small and medium memory models because
near pointers to local variables are different from near pointers to global variables. The 32-bit
DLL runs on its own stack, in the usual flat memory space, which eliminates these concerns.

There is a special version of the supervisor, W386DLL.EXT that performs a similar job to
WIN386.EXT. However, the 32-bit DLL supervisor is a 16-bit Windows DLL, rather than a
16-bit Windows application. On the first use of the 32-bit DLL, the DLL supervisor loads the
32-bit DLL and invokes the 32-bit initialization routine (the DLL’s WinMain routine). The
initialization routine declares all entry points (via DefineDLLEntry) and performs any
other necessary initialization. An index number in the range 1 to 128 is used to identify all
external 32-bit DLL routines. DefineDLLEntry is used to assign an index number to each
routine, as well as to identify the arguments.

The DLL supervisor contains a general entry point for Windows applications to call into
called Win386LibEntry. It also contains 128 specific entry points called DLL1 to
DLL128 which correspond to the entry points established via DefineDLLEntry (the first
argument to DefineDLLEntry is an index number in the range 1 to 128). These entry
points are FAR PASCAL functions. All applications call into the 32-bit DLL via these entry
points. They build the necessary stack frame and switch to the 32-bit DLL’s data space.

If you call via Win386LibEntry then you pass the DLL entry point number or index (1 to
128) as the last argument. Win386LibEntry uses this index number to call the appropriate
32-bit DLL routine. From a pseudo-code point of view, the 16-bit supervisor might look like
the following:

Introduction to 32-Bit DLLs 191

Windows 3.x Programming Guide

DLL1:: set index=1

invoke 32bitDLLindirect

DLL2:: set index=2
invoke 32bitDLLindirect

.

.

.
DLL128:: set index=128

invoke 32bitDLLindirect

Win386LibEntry::
set index from index argument
invoke 32bitDLLindirect

32bitDLLindirect:
set up stack frame
switch to 32-bit data space
call indirect registration list[index]

.

.

.

When you are creating a 32-bit DLL, keep in mind that the entry points you define may be
invoked by a 16-bit application as well as a 32-bit application. It is for this reason that all far
pointers passed to a 32-bit DLL are 16-bit far pointers. Hence, whenever a pointer is passed
as an argument to a 32-bit DLL entry point and you wish to access the data it points to, you
must convert the pointer appropriately.

21.2 A Sample 32-bit DLL
Let us begin our discussion of DLLs by showing the code for a simple DLL. The source code
for these examples is provided in the \WATCOM\SAMPLES\DLL directory. We describe
how to compile and link the examples in the section entitled "Creating and Debugging
Dynamic Link Libraries" on page 198. The code for this DLL can be compiled with the
16-bit compiler to produce a 16-bit DLL and it can can be compiled with the 32-bit compiler
to produce a 32-bit DLL. The example illustrates the fundamental differences between the
two types of DLLs. The 32-bit DLL has a WinMain routine and the 16-bit DLL has a
LibMain routine.

192 A Sample 32-bit DLL

Windows 32-Bit Dynamic Link Libraries

Example:
/*
* DLL.C
*/

#include <stdio.h>
#include <windows.h>

#if defined(386)/* if we are doing a 32-bit DLL */
#define DLL ID "DLL32"

#else /* else we are doing a 16-bit DLL */
#define DLL ID "DLL16"

#endif

long FAR PASCAL export FooMe1(WORD w1, DWORD w2, WORD w3)
{

char buff[128];

sprintf(buff, "FooMe1: w1=%hx, w2=%lx, w3=%hx",
w1, w2, w3);

MessageBox(NULL, buff, DLL ID, MB OK);
return(w1 + w2);

}

long FAR PASCAL export FooMe2(DWORD w1, WORD w2)
{

char buff[128];

sprintf(buff, "FooMe2: w1=%lx, w2=%hx", w1, w2);
MessageBox(NULL, buff, DLL ID, MB OK);
return(w1 + 1);

}

A Sample 32-bit DLL 193

Windows 3.x Programming Guide

#if defined(386)/* if we are doing a 32-bit DLL */
long PASCAL WinMain(HANDLE hInstance,

HANDLE hPrevInstance,
LPSTR lpszCmdLine,
int nCmdShow)

{
if(DefineDLLEntry(1, (void *) FooMe1, DLL WORD,

DLL DWORD, DLL WORD, DLL ENDLIST)) {
return(0);

}
if(DefineDLLEntry(2, (void *) FooMe2, DLL DWORD,

DLL WORD, DLL ENDLIST)) {
return(0);

}
MessageBox(NULL, "32-bit DLL Started", DLL ID, MB OK);
return(1);

}
#else /* else we are doing a 16-bit DLL */
BOOL FAR PASCAL LibMain(HANDLE hInstance,

WORD wDataSegment,
WORD wHeapSize,
LPSTR lpszCmdLine)

{
#if 0
/*

We can’t use MessageBox here since static binding is
used and a message queue has not been created by the
time DLL16 is loaded.

*/
MessageBox(NULL, "16-bit DLL Started", DLL ID, MB OK);
#endif
return(TRUE);

}
#endif

To create a 16-bit DLL from this code, the following steps must be performed.

Example:
C>wcc dll /mc /bt=windows /zu /fo=dll16
C>wlink system windows dll file dll16
C>wlib -n dll16 +dll16.dll

To create a 32-bit DLL from this code, the following steps must be performed.

194 A Sample 32-bit DLL

Windows 32-Bit Dynamic Link Libraries

Example:
C>wcc386 dll /bt=windows /fo=dll32
C>wlink system win386 file dll32
C>wbind -n -d dll32

There are two entry points defined, FooMe1 (index number 1) and FooMe2 (index number
2). FooMe1 accepts three arguments: a WORD, a DWORD, and a WORD. FooMe2
accepts two arguments: a DWORD and a WORD.

WinMain returns zero to notify Windows that the DLL initialization failed, and returns a one
if initialization succeeds.

WinMain accepts the same arguments as the WinMain procedure of a regular Windows
program, however, only two arguments are used. hInstance is the DLL handle and
lpszCmdLine is the command line passed to the DLL.

21.3 Calling Functions in a 32-bit DLL from a 16-bit
Application

The following is a 16-bit Windows program that demonstrates how to call the two routines
defined in our DLL example.

Example:
/*
* EXE16.C
*/

#include <stdio.h>
#include <windows.h>

#define Add3 1
#define Add2 2

typedef long (FAR PASCAL *FPROC)();
typedef long (FAR PASCAL *FARPROC1)(WORD, DWORD, WORD,
int);
typedef long (FAR PASCAL *FARPROC2)(DWORD, WORD, int);

long FAR PASCAL FooMe1(WORD, DWORD, WORD);
long FAR PASCAL FooMe2(DWORD, WORD);

Calling Functions in a 32-bit DLL from a 16-bit Application 195

Windows 3.x Programming Guide

int PASCAL WinMain(HANDLE hInstance,

HANDLE hPrevInstance,
LPSTR lpszCmdLine,
int nCmdShow)

{
FPROC fp;
HANDLE hlib;
long cb;
char buff[128];

MessageBox(NULL, "16-bit EXE Started", "EXE16", MB OK);

/* Do the 16-bit demo using static binding */
cb = FooMe1(0x666, 0x77777111, 0x6969);
sprintf(buff, "RC1 = %lx", cb);
MessageBox(NULL, buff, "EXE16", MB OK);

cb = FooMe2(0x12345678, 0x8888);
sprintf(buff, "RC2 = %lx", cb);
MessageBox(NULL, buff, "EXE16", MB OK);

/* Do the 32-bit demo */
hlib = LoadLibrary("dll32.dll");
fp = (FPROC) GetProcAddress(hlib, "Win386LibEntry");

cb = (*(FARPROC1)fp)(0x666, 0x77777111, 0x6969, Add3);
sprintf(buff, "RC1 = %lx", cb);
MessageBox(NULL, buff, "EXE16", MB OK);

cb = (*(FARPROC2)fp)(0x12345678, 0x8888, Add2);
sprintf(buff, "RC2 = %lx", cb);
MessageBox(NULL, buff, "EXE16", MB OK);

return(0);

}

Note that the last argument of a call to the 32-bit DLL routine is the index number of the
32-bit DLL routine to use. To create the 16-bit sample Windows executable from this code,
the following steps must be performed.

196 Calling Functions in a 32-bit DLL from a 16-bit Application

Windows 32-Bit Dynamic Link Libraries

Example:
C>wcc exe16 /bt=windows
C>wlink system windows file exe16 library dll16

21.4 Writing a 16-bit Cover for the 32-bit DLL
The following is a suggested way to make a 32-bit DLL behave just like a 16-bit DLL from
the point of view of the person trying to use the DLL.

Create a library of cover functions for each of the entry points. Each library entry would call
the 32-bit DLL using the appropriate index number.

For example, assume we have 3 functions in our DLL, Initialize, DoStuff, and
Finish. Assume Initialize takes an integer, DoStuff takes an integer and a pointer,
and Finish takes nothing. We could build a 16-bit library as follows:

Example:
#include <windows.h>
typedef long (FAR PASCAL *FPROC)();
extern long FAR PASCAL Win386LibEntry();
FPROC LibEntry = Win386LibEntry;

BOOL Initialize(int parm)
{

return(LibEntry(parm, 1));
}

int DoStuff(int parm1, LPVOID parm2)
{

return(LibEntry(parm1, parm2, 2));
}

void Finish(void)
{

LibEntry(3);
}

Writing a 16-bit Cover for the 32-bit DLL 197

Windows 3.x Programming Guide

21.5 Creating and Debugging Dynamic Link Libraries
In the following sections, we will take you through the steps of compiling, linking, and
debugging both 16-bit and 32-bit Dynamic Link Libraries (DLLs).

We will use example programs that are provided in source-code form in the Watcom C/C++
package. The files described in this chapter are located in the directory
\WATCOM\SAMPLES\DLL. The following files are provided:

GEN16.C is the source code for a generic 16-bit Windows application that
calls functions in a 32-bit Windows DLL.

GEN16.LNK is the linker directive file for linking the 16-bit Windows
application.

GEN32.C is the source code for a generic 32-bit Windows application that
calls functions in both 16-bit and 32-bit Windows DLLs.

GEN32.LNK is the linker directive file for linking the 32-bit Windows
application.

DLL16.C is the source code for a simple 16-bit DLL containing one library
routine.

DLL16.LNK is the linker directive file for linking the 16-bit Windows DLL.

DLL32.C is the source code for a more complex 32-bit DLL containing three
library routines.

DLL32.LNK is the linker directive file for linking the 32-bit Windows DLL.

EXE16.C is the source code for a generic 16-bit Windows application that
calls functions in both 16-bit and 32-bit Windows DLLs.

DLL.C is the source code for a DLL containing three library routines. The
source code for this DLL can be used to create both 16-bit and
32-bit DLLs.

MAKEFILE is a makefile for compiling and linking the programs described
above.

198 Creating and Debugging Dynamic Link Libraries

Windows 32-Bit Dynamic Link Libraries

21.5.1 Building the Applications

To create the DLLs and test applications, we will use the WATCOM Watcom Make utility
and the supplied makefile.

Example:
C>wmake -f makefile

21.5.2 Installing the Examples under Windows

Start up Microsoft Windows 3.x if you have not already done so. Add the EXE16.EXE file
to one of your Window groups using the Microsoft Program Manager.

1. Select the "New..." entry from the "File" menu of the Microsoft Windows Program
Manager.

2. Select "Program Item" from the "New Program Object" window and press the
"OK" button.

3. Enter "DLL Test" as a description for the EXE16 program. Enter the full path to
the EXE16 program as a command line.

Example:
Description: Test
Command Line: c:\work\dll\exe16.exe

21.5.3 Running the Examples

Start the 16-bit application by double clicking on its icon. A number of message boxes are
presented. You may wish to compare the output in each message box with the source code of
the program to determine if the correct results are being obtained. Click on the "OK" button
as each of them are displayed.

21.5.4 Debugging a 32-bit DLL

The Watcom Debugger can be used to debug a DLL. To debug a 32-bit DLL, a "breakpoint"
instruction must be inserted into the source code for the DLL at the "WinMain" entry point.
This is done using the "pragma" compiler directive. We have already added the breakpoint to
the source code for the 32-bit DLL.

Creating and Debugging Dynamic Link Libraries 199

Windows 3.x Programming Guide

Example:
extern void BreakPoint(void);
#pragma aux BreakPoint = 0xcc;

int PASCAL WinMain(HANDLE hInstance,
HANDLE x1,
LPSTR lpCmdLine,
int x2)

{

BreakPoint();
DefineDLLEntry(1, (void *) Lib1,

DLL WORD,
DLL DWORD,
DLL WORD,

.

.

.

Start up Microsoft Windows 3.x if you have not already done so. Start the debugger by
double-clicking on the Watcom Debugger icon. At the prompt, enter the path specification
for the application. When the debugger has successfully loaded EXE16, start execution of the
program. When the breakpoint is encountered in the 32-bit DLL, the debugger is re-entered.
The debugger will automatically skip past the breakpoint.

From this point on, you can symbolically debug the 32-bit DLL. You might, for example, set
breakpoints at the start of each DLL routine to debug each of them as they are called.

21.5.5 Summary

Note that the "WinMain" entry point is only called once, at the start of any application
requesting it. After this, the "WinMain" entry point is no longer called. You may have to
restart Windows to debug this section of code a second or third time.

200 Creating and Debugging Dynamic Link Libraries

22 Interfacing Visual Basic and Watcom
C/C++ DLLs

22.1 Introduction to Visual Basic and DLLs
This chapter describes how to interface Microsoft Visual Basic 3.0 applications and 32-bit
Dynamic Link Libraries (DLLs) created by Watcom C/C++. It describes how to write
functions for a 32-bit DLL, how to compile and link them, and how to call these functions
from Visual Basic. One of the proposed techniques involves the use of a set of cover
functions in a 16-bit DLL so, indirectly, this chapter also describes interfacing to 16-bit DLLs.

It is possible to invoke the Win386LibEntry function (Watcom’s 32-bit function entry
point, described below) directly from Visual Basic. However, this technique limits the
arguments that can be passed to a 32-bit DLL. The procedure and problems are explained
below.

To work around the problem, a 16-bit DLL can be created, that covers the 32-bit DLL.
Within the 16-bit DLL, we will place cover functions that will call the corresponding 32-bit
function in the 32-bit DLL. We illustrate the creation of the 16-bit DLL using the 16-bit C
compiler in Watcom C/C++.

Before we begin our example, there are some important technical issues to consider.

The discussion in this chapter assumes that you, the developer, have a working knowledge of
Visual Basic, including how to bring up the general declarations screen, how to create
command buttons, and how to associate code with command buttons. You must use Visual
Basic 3.0 or later. Visual Basic Version 2.x will not work because of a deficiency in this
product regarding the calling of functions in DLLs.

For the purposes of the following discussion, you should have installed both the 16-bit and
32-bit versions of Watcom C/C++, as well as version 3.0 or later of Visual Basic. Ensure that
the PATH, INCLUDE and WINDOWS_INCLUDE environment variables are defined to
include at least the directories indicated. We have assumed that Watcom C/C++ is installed in
the C:\WATCOM directory, and Visual Basic is in the C:\VB directory:

set path=c:\watcom\binw;c:\vb;c:\dos;c:\windows
set include=c:\watcom\h
set windows include=c:\watcom\h\win

Introduction to Visual Basic and DLLs 201

Windows 3.x Programming Guide

Watcom’s 32-bit DLL supervisor contains a general entry point for Windows applications to
call into called Win386LibEntry. It also contains 128 specific entry points called DLL1
to DLL128 which correspond to the entry points established via DefineDLLEntry (the
first argument to DefineDLLEntry is an index number in the range 1 to 128). All
applications call into the 32-bit DLL via these entry points. They build the necessary stack
frame and switch to the 32-bit DLL’s data space.

If you call via Win386LibEntry then you pass the DLL entry point number or index (1 to
128) as the last argument. Win386LibEntry uses this index number to call the appropriate
32-bit DLL routine.

In many languages and programs (such as C and Microsoft Excel), function calls are very
flexible. In other words, a function can be called with different argument types each time.
This is generally necessary for calling Win386LibEntry in a 32-bit extended DLL
function. The reason is that this function takes the same arguments as the function being
called, as well as the index number of the called function. After the 32-bit flat model has been
set up, Win386LibEntry then calls this function. In Visual Basic, once a function is
declared as having certain arguments, it cannot be redeclared. For example, suppose we have
a declaration as follows:

Example:
Declare Function Win386LibEntry Lib "c:\path\vbdll32.dll"
=> (ByVal v1 As Integer, ByVal v2 As Long, ByVal
=> v3 As Integer, ByVal I As Integer) As Long

(Note: the => means to continue the statement on the same line.) In this example, we could
only call a function in any 32-bit extended DLL with a 16-bit integer as the first and third
argument, and a 32-bit integer as the second argument. There are three ways to work around
this deficiency in Visual Basic:

1. Use the Visual Basic "Alias" attribute to declare Win386LibEntry differently
for each DLL routine. Reference the different DLL routines using these aliases.

2. Use the specific entry point, one of DLL1 through DLL128, corresponding to the
DLL routine that you want to call. Each entry point can be described to take
different arguments. We can still use the "Alias" attribute to make the link between
the name we use in the Visual Basic function and the name in the 32-bit extended
DLL. This is the method that we will use in the "Direct Call" technique discussed
below. It is simpler to use since it requires one less argument (you don’t require
the index number).

3. Use a method which involves calling functions in a 16-bit "cover" DLL written in a
flexible-argument language, which then calls the functions in the 32-bit DLL. This
is the "Indirect Call" method discussed below.

202 Introduction to Visual Basic and DLLs

Interfacing Visual Basic and Watcom C/C++ DLLs

22.2 A Working Example
The best way to demonstrate these techniques is through an example. This example consists
of a Visual Basic application with 3 push buttons. The first push button invokes a direct call
to a 32-bit DLL which will display a message window with its arguments, the second push
button invokes an indirect call to the same function through a 16-bit DLL, and the third button
exits the Visual Basic application.

To create a Visual Basic application:

(1) Start up a new project folder from the "File" menu.

(2) Select "View Form" from the "Project" window.

(3) Draw three command buttons on the form by selecting command buttons from the
"Toolbox" window.

(4) Change the caption on each button. To do this, highlight the first button. Then, open
the "Properties" window. Double click on the "Caption window", and change the
caption to "Direct call". Highlight the second button, and change its caption to "Indirect
call". Highlight the third, changing the caption to "Exit".

Now, your Visual Basic application should have three push buttons, "Direct call",
"Indirect call", and "Exit".

(5) Double click on the "Direct Call" button.

An edit window will pop up. Enter the following code:

Sub Command1 Click ()

Dim var1, var2 As Integer
Dim varlong, worked As Long

var1 = 230
varlong = 215
var2 = 32
worked = Add3(var1, varlong, var2)
Print worked
worked = Add2(varlong, var2)
Print worked

End Sub

(6) Double click on the "Indirect Call" button.

A Working Example 203

Windows 3.x Programming Guide

Another edit window will pop up. Enter the following code:

Sub Command2 Click ()

Dim var1, var2 As Integer
Dim varlong, worked As Long

var1 = 230
varlong = 215
var2 = 32
worked = Function1(var1, varlong, var2)
Print worked
worked = Function2(varlong, var2)
Print worked

End Sub

(7) Double click on the "Exit" command button and enter the following code in the
pop-up window:

Sub Command3 Click ()

End
End Sub

(8) Select "View Code" from the "Project" window. To interface these Visual Basic
functions to the DLLs, the following code is needed in the

Object: [general] Proc: [declarations]

section of the code. This code assumes that VBDLL32.DLL and COVER16.DLL are in
the C:\PATH directory. Modify the pathnames appropriately if this is not the case.
(Note: the => means to continue the statement on the same line.)

Declare Function Function1 Lib "c:\path\cover16.dll"
=> (ByVal v1 As Integer, ByVal v2 As Long,
=> ByVal v3 As Integer) As Long

Declare Function Function2 Lib "c:\path\cover16.dll"
=> (ByVal v1 As Long, ByVal v2 As Integer) As Long

Declare Function Add3 Lib "c:\path\vbdll32.dll"
=> Alias "DLL1"
=> (ByVal v1 As Integer, ByVal v2 As Long,
=> ByVal v3 As Integer) As Long

Declare Function Add2 Lib "c:\path\vbdll32.dll"
=> Alias "DLL2"
=> (ByVal v1 As Long, ByVal v2 As Integer) As Long

204 A Working Example

Interfacing Visual Basic and Watcom C/C++ DLLs

Now, when all of the code below is compiled correctly, and the Visual Basic program is run,
the "Direct call" button will call the DLL1 and DLL2 functions directly, aliased as the
functions Add3 and Add2 respectively. The "Indirect call" button will call the 16-bit DLL,
which will then call the 32-bit DLL, for both Function1 and Function2. To run the
Visual Basic program, select "Start" from the "Run" menu.

22.3 Sample Visual Basic DLL Programs
The sample programs provided below are for a 32-bit DLL, and a 16-bit cover DLL, which
will call the two functions contained in the 32-bit DLL.

22.3.1 Source Code for VBDLL32.DLL

/*
* VBDLL32.C
*/

#include <stdio.h>
#include <windows.h> /* required for all Windows applications */

long FAR PASCAL Add3(short var1, long varlong, short var2)
{

char buf[128];

sprintf(buf, "Add3: var1=%d, varlong=%ld, var2=%d",
var1, varlong, var2);

MessageBox(NULL, buf, "VBDLL32", MB OK | MB TASKMODAL);
return(var1 + varlong + var2);

}

long FAR PASCAL Add2(long varlong, short var2)
{

char buf[128];

sprintf(buf, "Add2: varlong=%ld, var2=%d", varlong, var2);
MessageBox(NULL, buf, "VBDLL32", MB OK | MB TASKMODAL);
return(varlong + var2);

}

#pragma off (unreferenced);
int PASCAL WinMain(HANDLE hInstance, HANDLE x1, LPSTR lpCmdLine, int x2)
#pragma on (unreferenced);
{

DefineDLLEntry(1, (void *) Add3, DLL WORD, DLL DWORD, DLL WORD,
DLL ENDLIST);

DefineDLLEntry(2, (void *) Add2, DLL DWORD, DLL WORD, DLL ENDLIST);
return(1);

}

Sample Visual Basic DLL Programs 205

Windows 3.x Programming Guide

22.3.2 Source code for COVER16.DLL

The functions in this 16-bit DLL will call the functions in the 32-bit DLL, VBDLL32.DLL,
shown above, with the appropriate Win386LibEntry call for each function.

/*
* COVER16.C
*/

#include <stdio.h>
#include <windows.h> /* required for all Windows applications */

typedef long (FAR PASCAL *FPROC)();

FPROC DLL 1;
FPROC DLL 2;

long FAR PASCAL export Function1(short var1,
long var2,
short var3)

{
return((long) DLL 1(var1, var2, var3));

}

long FAR PASCAL export Function2(long var1, short var2)
{

return((long) DLL 2(var1, var2));
}

#pragma off (unreferenced);
BOOL FAR PASCAL LibMain(HANDLE hInstance, WORD wDataSegment,

WORD wHeapSize, LPSTR lpszCmdLine)
#pragma on (unreferenced);
{

HANDLE hlib;

/* Do our DLL initialization */
hlib = LoadLibrary("vbdll32.dll");
if(hlib < 32) {

MessageBox(NULL,
"Make sure your PATH contains VBDLL32.DLL",
"COVER16", MB OK | MB ICONEXCLAMATION);

return(FALSE);
}
DLL 1 = (FPROC) GetProcAddress(hlib, "DLL1");
DLL 2 = (FPROC) GetProcAddress(hlib, "DLL2");
return(TRUE);

}

206 Sample Visual Basic DLL Programs

Interfacing Visual Basic and Watcom C/C++ DLLs

22.4 Compiling and Linking the Examples
To create the 32-bit DLL VBDLL32.DLL, type the following at the command line (make
sure that VBDLL32.C is in your current directory):

wcl386 vbdll32 -bt=windows -bd -d2 -l=win386
wbind vbdll32 -d -n

To create the 16-bit DLL COVER16.DLL, type the following at the command line (make
sure that COVER16.C are in your current directory):

wcl cover16 -mc -bt=windows -bd -zu -d2 -l=windows dll

Notes:

1. The "mc" option selects the compact memory model (small code, big data). The
code for 16-bit DLLs must be compiled with one of the big data models.

2. The "bd" option indicates that a DLL will be created from the object files.

3. The "bt" option selects the "windows" target. This option causes the C or C++
compiler to generate Windows prologue/epilogue code sequences which are
required for Microsoft Windows applications. It also causes the compiler to use the
WINDOWS_INCLUDE environment variable for header file searches. It also
causes the compiler to define the macro WINDOWS and, for the 32-bit C or
C++ compiler only, the macro WINDOWS 386 .

4. The "zu" option is used when compiling 16-bit code that is to be placed in a
Dynamic Link Library (DLL) since the SS register points to the stack segment of
the calling application upon entry to the function.

5. The "d2" option is used to disable optimizations and include debugging information
in the object file and DLL. The techniques for debugging DLLs are described in
the chapter entitled "Windows 32-Bit Dynamic Link Libraries" on page 191.

You are now ready to run the Visual Basic application.

Compiling and Linking the Examples 207

Windows 3.x Programming Guide

208 Compiling and Linking the Examples

23 WIN386 Library Functions and Macros

Each special Windows function or macro in the Watcom C/C++ library is described in this
chapter. Each description consists of a number of subsections:

Synopsis: This subsection gives the header files that should be included within a source file that
references the function or macro. It also shows an appropriate declaration for the function or
for a function that could be substituted for a macro. This declaration is not included in your
program; only the header file(s) should be included.

When a pointer argument is passed to a function and that function does not modify the item
indicated by that pointer, the argument is shown with const before the argument. For
example,

const char *string

indicates that the array pointed at by string is not changed.

Description: This subsection is a description of the function or macro.

Returns: This subsection describes the return value (if any) for the function or macro.

Errors: This subsection describes the possible errno values.

See Also: This optional subsection provides a list of related functions or macros.

Example: This optional subsection consists of one or more examples of the use of the function. The
examples are often just fragments of code (not complete programs) for illustration purposes.

Classification: This subsection provides an indication of where the function or macro is commonly found.
The functions or macros in this section are all classified as "WIN386" (i.e., they pertain to
32-bit Windows programming).

WIN386 Library Functions and Macros 209

AllocAlias16

Synopsis: #include <windows.h>
DWORD AllocAlias16(void *ptr);

Description: The AllocAlias16 function obtains a 16-bit far pointer equivalent of a 32-bit near
pointer. These pointers are used when passing data pointers to Windows through functions
that have DWORD arguments, and for any pointers within data structures passed this way.

Returns: The AllocAlias16 function returns a 16-bit far pointer usable by Windows, or returns 0
if the alias cannot be allocated.

See Also: FreeAlias16

Example: #include <windows.h>

DWORD mcs 16;
/*
* Send a message to a MDI client to create a window.
* 16SendMessage is used for this example, since it will
* not do any pointer conversions automatically.
*/

MDICREATESTRUCT mcs;
mcs.szTitle = (LPSTR) AllocAlias16("c:\\foo.bar");
mcs.szClass = (LPSTR) AllocAlias16("mdichild");
mcs.hOwner = hInst;
mcs.x = mcs.cx = (int) CW USEDEFAULT;
mcs.y = mcs.cy = (int) CW USEDEFAULT;
mcs.style = 0;

/* tell the MDI Client to create the child */
mcs 16 = AllocAlias16(&mcs);
hwnd = (WORD) 16SendMessage(hwndMDIClient,

WM MDICREATE,
0,
(LONG) mcs 16);

FreeAlias16(mcs 16);
FreeAlias16((DWORD) mcs.szClass);
FreeAlias16((DWORD) mcs.szTitle);

Classification: WIN386

210 WIN386 Library Functions and Macros

AllocHugeAlias16

Synopsis: #include <windows.h>
DWORD AllocHugeAlias16(void *ptr, DWORD size);

Description: The AllocHugeAlias16 function obtains a 16-bit far pointer to a 32-bit memory object
that is size bytes in size. This is similar to the function AllocAlias16, except that
AllocAlias16 will only give 16-bit far pointers to 32-bit memory objects of up to 64K in
size. To get 16-bit far pointers to 32-bit memory objects larger than 64K,
AllocHugeAlias16 should be used.

Returns: The AllocHugeAlias16 function returns a 16-bit far pointer usable by Windows, or
returns 0 if the alias cannot be allocated.

See Also: AllocAlias16, FreeAlias16, FreeHugeAlias16

Example: #include <windows.h>
#include <malloc.h>
#define SIZE 300000

DWORD alias;
void *tmp;

tmp = malloc(SIZE);
alias = AllocHugeAlias16(tmp, SIZE);

/* Windows calls using the alias ... */

FreeHugeAlias16(alias, SIZE);

Classification: WIN386

WIN386 Library Functions and Macros 211

_Call16

Synopsis: #include <windows.h>
DWORD Call16(FARPROC lpFunc, char *fmt, ...);

Description: The Call16 function performs the same function as
GetIndirectFunctionHandle, InvokeIndirectFunctionHandle, and
FreeIndirectFunctionHandle but is much easier to use. The first argument lpFunc
is the address of the 16-bit function to be called. This address is usually obtained by calling
GetProcAddress with the name of the desired function. The second argument fmt is a
string identifying the types of the parameters to be passed to the 16-bit function.

Character Parameter Type

c call a ’cdecl’ function as opposed to a ’pascal’ function (if specified, it must be
listed first)

b unsigned BYTE
w 16-bit WORD
d 32-bit DWORD
f double precision floating-point
p 32-bit flat pointer (converted to 16:16 far pointer)

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL
calling convention is the default. If the function uses the CDECL calling convention, then
you must specify the letter "c" as the first character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointers to 16-bit far pointers
before the function is invoked. Note that this pointer is only valid over the period of the call;
after control returns to the 32-bit application, the 16-bit pointer created by the Supervisor is
no longer valid.

Returns: The Call16 function returns a 32-bit DWORD which represents the return value from the
16-bit function that was called.

See Also: GetIndirectFunctionHandle, InvokeIndirectFunctionHandle,
FreeIndirectFunctionHandle

Example:

212 WIN386 Library Functions and Macros

_Call16

#include <windows.h>
HANDLE hDrv;
FARPROC lpfn;
int cb;

if((hDrv = LoadLibrary ("foo.dll")) < 32)
return FALSE;

if(!(lpfn = GetProcAddress (hDrv, "ExtDeviceMode")))
return FALSE;

/*
* now, invoke the function
*/

cb = (WORD) Call16(
lpfn, // address of function
"wwdppddw", // parameter type info
hwnd, // parameters ...
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0
);

Classification: WIN386

WIN386 Library Functions and Macros 213

DefineDLLEntry

Synopsis: #include <windows.h>
int DefineDLLEntry(int index, void * routine, ...);

Description: The DefineDLLEntry function defines an index number for the 32-bit DLL procedure
routine. The parameter index defines the index number that must be used in order to invoke
the 32-bit FAR procedure routine. The variable argument list defines the types of parameters
that will be received by the 32-bit DLL routine. Valid parameter types are:

DLL_PTR 16-bit far pointer
DLL_DWORD 32-bits
DLL_WORD 16-bits
DLL_CHAR 8-bits
DLL_ENDLIST Marks the end of the variable argument list.

Note that all pointers are received as 16-bit far pointers. To access the data from the 32-bit
DLL, the MK FP32 macro must be applied. The data can then be accessed with the resulting
32-bit far pointer.

Returns: The DefineDLLEntry function returns zero if successful, and a non-zero value otherwise.

Example: #include <windows.h>
int FAR PASCAL FooMe(WORD w1, DWORD w2, WORD w3)
{

char str[128];

sprintf(str, "w1=%hx, w2=%lx, w3=%hx", w1, w2, w3);
MessageBox(NULL, str, "DLL Test", MB OK);
return(w1 + w2);

}

int PASCAL WinMain(HANDLE hInstance, HANDLE x1,
LPSTR lpCmdLine, int x2)

{
DefineDLLEntry(1, (PROCPTR) FooMe, DLL WORD,

DLL DWORD, DLL WORD, DLL ENDLIST);
MessageBox(NULL, "32-bit DLL Started", "Test", MB OK);
return(1);

}

Classification: WIN386

214 WIN386 Library Functions and Macros

DefineUserProc16

Synopsis: #include <windows.h>
int DefineUserProc16(int typ, PROCPTR routine, ...);

Description: The DefineUserProc16 function defines the arguments accepted by the user defined
callback procedure routine. There may be up to 32 user defined callbacks. The parameter
typ indicates which one of GETPROC USERDEFINED 1 through
GETPROC USERDEFINED 32 is being defined (see GetProc16). The callback routine
must be declared as FAR PASCAL, or as FAR cdecl. The variable argument list defines the
types of parameters that will be received by the user defined callback procedure routine.
Valid parameter types are:

UDP16_PTR 16-bit far pointer

UDP16_DWORD 32-bits

UDP16_WORD 16-bits

UDP16_CHAR 8-bits

UDP16_CDECL callback routine will be declared as type cdecl rather than as
type PASCAL. This keyword may be placed anywhere before the
UDP16 ENDLIST keyword.

UDP16_ENDLIST Marks the end of the variable argument list.

Once the DefineUserProc16 function has been used to declare the user callback routine,
then GetProc16 may be used to get a 16-bit function pointer that may be used by
Windows.

Returns: The DefineUserProc16 function returns zero if it succeeds and non-zero if it fails.

See Also: GetProc16

Example: #include <windows.h>

WORD FAR PASCAL Test(DWORD a, WORD b)
{

char foo[128];

sprintf(foo, "a=%lx, b=%hx", a, b);
MessageBox(NULL, foo, "TEST", MB OK);
return(0x123);

}

WIN386 Library Functions and Macros 215

DefineUserProc16

int DefineTest(void)
{

FARPROC cb;

DefineUserProc16(GETPROC USERDEFINED 1,
(PROCPTR) Test,
UDP16 DWORD,
UDP16 WORD,
UDP16 ENDLIST);

cb = GetProc16((PROCPTR) Test, GETPROC USERDEFINED 1);

/*
* cb may then be used whenever a pointer to the
* callback is required by 16-bit Windows
*/

}

Classification: WIN386

216 WIN386 Library Functions and Macros

FreeAlias16

Synopsis: #include <windows.h>
void FreeAlias16(DWORD fp16);

Description: FreeAlias16 frees a 16-bit far pointer alias for a 32-bit near pointer that was allocated
with AllocAlias16. This is important to do when there is no further use for the pointer
since there are a limited number of 16-bit aliases available (due to limited space in the local
descriptor table).

Returns: The FreeAlias16 function returns nothing.

See Also: AllocAlias16

Example: #include <windows.h>

DWORD mcs 16;
/*
* Send a message to a MDI client to create a window.
* 16SendMessage is used for this example, since it will
* not do any pointer conversions automatically.
*/

MDICREATESTRUCT mcs;
mcs.szTitle = (LPSTR) AllocAlias16("c:\\foo.bar");
mcs.szClass = (LPSTR) AllocAlias16("mdichild");
mcs.hOwner = hInst;
mcs.x = mcs.cx = (int) CW USEDEFAULT;
mcs.y = mcs.cy = (int) CW USEDEFAULT;
mcs.style = 0;

/* tell the MDI Client to create the child */
mcs 16 = AllocAlias16(&mcs);
hwnd = (WORD) 16SendMessage(hwndMDIClient,

WM MDICREATE,
0,
(LONG) mcs 16);

FreeAlias16(mcs 16);
FreeAlias16((DWORD) mcs.szClass);
FreeAlias16((DWORD) mcs.szTitle);

Classification: WIN386

WIN386 Library Functions and Macros 217

FreeHugeAlias16

Synopsis: #include <windows.h>
void FreeHugeAlias16(DWORD fp16, DWORD size);

Description: FreeHugeAlias16 frees a 16-bit far pointer alias that was allocated with
AllocHugeAlias16. The size of the original 32-bit memory object must be specified.
It is important to use FreeHugeAlias16 when there is no further use for the pointer,
since there are a limited number of 16-bit aliases available (due to limited space in the local
descriptor table).

Returns: The FreeHugeAlias16 function returns nothing.

See Also: AllocHugeAlias16, AllocAlias16, FreeAlias16

Example: #include <windows.h>
#include <malloc.h>
#define SIZE 300000

DWORD alias;
void *tmp;

tmp = malloc(SIZE);
alias = AllocHugeAlias16(tmp, SIZE);

/* windows calls using the alias ... */

FreeHugeAlias16(alias, SIZE);

Classification: WIN386

218 WIN386 Library Functions and Macros

FreeIndirectFunctionHandle

Synopsis: #include <windows.h>
void FreeIndirectFunctionHandle(HINDIR handle);

Description: FreeIndirectFunctionHandle frees a handle that was obtained using
GetIndirectFunctionHandle. This is important to do when there is no further use
for the pointer since there are a limited number of 16-bit aliases available (due to limited
space in the local descriptor table).

Returns: The FreeIndirectFunctionHandle function returns nothing.

See Also: Call16, GetIndirectFunctionHandle, InvokeIndirectFunction

Example: #include <windows.h>

HANDLE hDrv;
FARPROC lpfn;

if((hDrv = LoadLibrary("foo.lib")) < 32)
return FALSE;

if(!(lpfn = GetProcAddress(hDrv, "ExtDeviceMode")))
return FALSE;

#ifdef WINDOWS 386
hIndir = GetIndirectFunctionHandle(

lpfn,
INDIR WORD,
INDIR WORD,
INDIR DWORD,
INDIR PTR,
INDIR PTR,
INDIR DWORD,
INDIR DWORD,
INDIR WORD,
INDIR ENDLIST);

WIN386 Library Functions and Macros 219

FreeIndirectFunctionHandle

cb = (WORD) InvokeIndirectFunction(
hIndir,
hwnd,
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

FreeIndirectFunctionHandle(hIndir);

#else
cb = lpfn(hwnd,

hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

#endif

Classification: WIN386

220 WIN386 Library Functions and Macros

GetIndirectFunctionHandle

Synopsis: #include <windows.h>
HINDIR GetIndirectFunctionHandle(FARPROC prc, ...);

Description: The GetIndirectFunctionHandle function gets a handle for a 16-bit procedure that
is to be invoked indirectly. The procedure is assumed to have PASCAL calling convention,
unless the INDIR CDECL parameter is used, to indicate that Microsoft C calling convention
is to be used. The 16-bit far pointer prc is supplied to GetIndirectFunctionHandle,
and a list of the type of each parameter (in the order that they will be passed to the 16-bit
function). The parameter types are:

INDIR_DWORD A DWORD will be passed.

INDIR_WORD A WORD will be passed.

INDIR_CHAR A char will be passed.

INDIR_PTR A pointer will be passed. This is only used if pointer conversion
from 32-bit to 16-bit is required, otherwise; INDIR_DWORD is
specified.

INDIR_CDECL This option may be included anywhere in the list before the
INDIR ENDLIST keyword. When this is used, the calling
convention used to invoke the 16-bit function will be the
Microsoft C calling convention.

INDIR_ENDLIST Marks the end of the parameter list.

There is no substitute for this function when compiling for 16-bit Windows. In order to
make the code 16-bit Windows compatible, conditional code (based on the
__WINDOWS_386__ macro) should be placed around the
GetIndirectFunctionHandle usage (see the example).

This handle is a data structure that was created using the malloc function. To free the
handle, just use one of the FreeIndirectFunctionHandle or free functions.

You may find it easier to use Call16 rather than GetIndirectFunctionHandle
followed by a call to InvokeIndirectFunction.

Returns: The GetIndirectFunctionHandle function returns a handle to the indirect function,
or NULL if a handle could not be allocated. This handle is used in conjunction with
InvokeIndirectFunction to call the 16-bit procedure.

WIN386 Library Functions and Macros 221

GetIndirectFunctionHandle

See Also: Call16, FreeIndirectFunctionHandle, InvokeIndirectFunction

Example: #include <windows.h>

HANDLE hDrv;
FARPROC lpfn;

if((hDrv = LoadLibrary("foo.lib")) < 32)
return FALSE;

if(!(lpfn = GetProcAddress(hDrv, "ExtDeviceMode")))
return FALSE;

#ifdef WINDOWS 386
hIndir = GetIndirectFunctionHandle(

lpfn,
INDIR WORD,
INDIR WORD,
INDIR DWORD,
INDIR PTR,
INDIR PTR,
INDIR DWORD,
INDIR DWORD,
INDIR WORD,
INDIR ENDLIST);

cb = (WORD) InvokeIndirectFunction(
hIndir,
hwnd,
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

FreeIndirectFunctionHandle(hIndir);

222 WIN386 Library Functions and Macros

GetIndirectFunctionHandle

#else
cb = lpfn(hwnd,

hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

#endif

Classification: WIN386

WIN386 Library Functions and Macros 223

GetProc16

Synopsis: #include <windows.h>
CALLBACKPTR GetProc16(PROCPTR fcn, long type);

Description: The GetProc16 function returns a 16-bit far function pointer suitable for use as a
Windows callback function. This callback function will invoke the 32-bit far procedure
specified by fcn. The types of callback functions that may be allocated are:

GETPROC_CALLBACK This is the most common form of callback; suitable as the callback
routine for a window. The callback has the form:

long FAR PASCAL WProc(HWND, unsigned,

WORD, LONG);

GETPROC_ABORTPROC This is the callback type used for trapping abort requests when
printing. The callback has the form:

int FAR PASCAL AbortProc(HDC, WORD);

GETPROC_ENUMCHILDWINDOWS This callback is used with the
EnumChildWindows Windows function. The callback function has the
form

BOOL FAR PASCAL EnumChildWindowsFunc(

HWND, DWORD);

GETPROC_ENUMFONTS This callback type is used with the EnumFonts Windows
function. The callback has the form:

int FAR PASCAL EnumFontsFunc(LPLOGFONT,

LPTEXTMETRICS, short, LPSTR);

GETPROC_ENUMMETAFILE This callback is used with the EnumMetaFile Windows
function. The callback function has the form:

int FAR PASCAL EnumMetaFileFunc(HDC,

LPHANDLETABLE, LPMETARECORD,
short, LPSTR);

GETPROC_ENUMOBJECTS This callback is used with the EnumObjects Windows
function. The callback function has the form:

int FAR PASCAL EnumObjectsFunc(LPSTR, LPSTR);

224 WIN386 Library Functions and Macros

GetProc16

GETPROC_ENUMPROPS_FIXED_DS This callback is used with the EnumProps
Windows function, when the fixed data segments callback is needed. The
callback function has the form:

int FAR PASCAL EnumPropsFunc(

HWND, LPSTR, HANDLE);

GETPROC_ENUMPROPS_MOVEABLE_DS This callback is used with the EnumProps
Windows function, when the moveable data segments callback is needed. The
callback function has the form:

int FAR PASCAL EnumPropsFunc(

HWND, WORD, PSTR, HANDLE);

GETPROC_ENUMTASKWINDOWS This callback is used with the EnumTaskWindows
Windows function. The callback function has the form:

int FAR PASCAL EnumTaskWindowsFunc(

HWND, DWORD);

GETPROC_ENUMWINDOWS This callback is used with the EnumWindows Windows
function. The callback function has the form:

int FAR PASCAL EnumWindowsFunc(HWND, DWORD);

GETPROC_GLOBALNOTIFY This callback is used with the GlobalNotify Windows
function. The callback function has the form:

int FAR PASCAL GlobalNotifyFunc(HANDLE);

GETPROC_GRAYSTRING This callback is used with the GrayString Windows
function. The callback function has the form:

int FAR PASCAL GrayStringFunc(

HDC, DWORD, short);

GETPROC_LINEDDA This callback is used with the LineDDA Windows function. The
callback function has the form:

void FAR PASCAL LineDDAFunc(

short, short, LPSTR);

GETPROC_SETRESOURCEHANDLER This callback is used with the
SetResourceHandler Windows function. The callback function has the
form:

WIN386 Library Functions and Macros 225

GetProc16

int FAR PASCAL SetResourceHandlerFunc(

HANDLE, HANDLE, HANDLE);

GETPROC_SETTIMER This callback is used with the SetTimer Windows function. The
callback function has the form:

int FAR PASCAL SetTimerFunc(

HWND, WORD, short, DWORD);

GETPROC_SETWINDOWSHOOK This callback is used with the SetWindowsHook
Windows function. The callback function has the form:

int FAR PASCAL SetWindowsHookFunc(

short, WORD, DWORD);

GETPROC_USERDEFINED_x This callback is used in conjunction with
DefineUserProc16 function to create a callback routine with an arbitrary
set of parameters. Up to 32 user defined callbacks are allowed, they are
identified by using GETPROC_USERDEFINED_1 through
GETPROC_USERDEFINED_32. The user defined callback must be declared
as a FAR PASCAL function, or as a FAR cdecl function.

Returns: The GetProc16 function returns a 16-bit far pointer to a callback procedure. This pointer
may then be fed to any Windows function that requires a pointer to a function within the
32-bit program. Note that the callback function within the 32-bit program must be declared
as FAR.

See Also: ReleaseProc16

Example: #include <windows.h>

CALLBACKPTR cbp;
FARPROC lpProcAbout;
/*
* Get a 16-bit callback routine to point at
* our About dialogue procedure, then create
* the dialogue. We use 16 versions of
* MakeProcInstance, DialogBox, and
* FreeProcInstance because they do not do
* any magic work on the callback routines.
*/

cbp = GetProc16((PROCPTR) About,
GETPROC CALLBACK);

226 WIN386 Library Functions and Macros

GetProc16

lpProcAbout = 16MakeProcInstance(cbp, hInst);

16DialogBox(hInst,
"AboutBox",
hWnd,
lpProcAbout);

16FreeProcInstance(lpProcAbout);
ReleaseProc16(cbp);

Classification: WIN386

WIN386 Library Functions and Macros 227

InvokeIndirectFunction

Synopsis: #include <windows.h>
long InvokeIndirectFunction(HINDIR handle, ...);

Description: The InvokeIndirectFunction function invokes the 16-bit function pointed to by the
specified handle. The handle must have been previously allocated using the
GetIndirectFunctionHandle function. The handle is followed by the list of
parameters to be passed to the 16-bit function.

If you specified INDIR PTR as a parameter when allocating the handle, then a 16-bit
pointer is allocated for a 32-bit pointer that you pass. However, this pointer is freed when
the 16-bit function being invoked returns.

There is no substitute for this function when compiling for 16-bit Windows. In order to
make the code 16-bit Windows compatible, conditional code (based on the
__WINDOWS_386__ macro) should be placed around the InvokeIndirectFunction
usage (see the example).

Returns: The InvokeIndirectFunction function returns the value which the 16-bit function
returned. If the 16-bit function returns a short rather than a long, the result must be typecast.

See Also: Call16, FreeIndirectFunctionHandle, GetIndirectFunctionHandle

Example: #include <windows.h>

HANDLE hDrv;
FARPROC lpfn;
HINDIR hIndir;
int cb;

if((hDrv = LoadLibrary("foo.lib")) < 32)
return FALSE;

if(!(lpfn = GetProcAddress(hDrv, "ExtDeviceMode")))
return FALSE;

#ifdef WINDOWS 386

228 WIN386 Library Functions and Macros

InvokeIndirectFunction

hIndir = GetIndirectFunctionHandle(
lpfn,
INDIR WORD,
INDIR WORD,
INDIR DWORD,
INDIR PTR,
INDIR PTR,
INDIR DWORD,
INDIR DWORD,
INDIR WORD,
INDIR ENDLIST);

cb = (WORD) InvokeIndirectFunction(
hIndir,
hwnd,
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

FreeIndirectFunctionHandle(hIndir);
#else

cb = lpfn(hwnd,
hDrv,
NULL,
"POSTSCRIPT PRINTER",
"LPT1",
NULL,
NULL,
0);

#endif

Classification: WIN386

WIN386 Library Functions and Macros 229

MapAliasToFlat

Synopsis: #include <windows.h>
void *MapAliasToFlat(DWORD alias);

Description: The MapAliasToFlat function returns a 32-bit near pointer equivalent of a pointer
allocated previously with AllocAlias16 or AllocHugeAlias16. This is useful if
you are communicating with a 16-bit application that is returning pointers that you
previously gave it.

Returns: The MapAliasToFlat function returns a 32-bit near pointer usable by the 32-bit
application.

See Also: AllocAlias16, AllocHugeAlias16

Example: #include <windows.h>

DWORD alias;
void *ptr;

alias = (DWORD) AllocAlias16(&alias);
alias += 5;
ptr = MapAliasToFlat(alias);
if(ptr == ((char *)&alias + 5)) {

MessageBox(NULL,"It Worked","",MB OK);
} else {

MessageBox(NULL,"It Failed","",MB OK);
}

Classification: WIN386

230 WIN386 Library Functions and Macros

MK_FP16

Synopsis: #include <windows.h>
DWORD MK FP16(void far * fp32);

Description: The MK FP16 function converts a 32-bit far pointer to a 16-bit far pointer. The 16-bit
pointer is created by simply removing the high word of the offset of the 32-bit pointer.

The 32-bit far pointer must be one that was obtained by using MK FP32 to extend a 16-bit
pointer.

This is useful whenever it is necessary to pass a 16-bit far pointer a parameter to a Windows
function though an _16 function.

Returns: The MK FP16 returns a 16-bit far pointer.

See Also: MK LOCAL32, MK FP32

Example: #include <windows.h>

DRAWITEMSTRUCT FAR *lpdis;
RECT rc;
DWORD alias;
/*
* The drawitem struct was passed as a long, so we
* have to convert it to a 32 bit far pointer.
* Then, we want the 16 bit far pointer of the rcItem
* element so we can pass it to CopyRect (16CopyRect
* is a version of CopyRect that does not convert
* the pointers it was given).
*/

case WM DRAWITEM:
lpdis = MK FP32((void *) lParam);
alias = AllocAlias16(>);
16CopyRect((LPRECT) alias,

(LPRECT) MK FP16(&lpdis->rcItem));
FreeAlias16(alias);

Classification: WIN386

WIN386 Library Functions and Macros 231

MK_FP32

Synopsis: #include <windows.h>
void far *MK FP32(void * fp16);

Description: The MK FP32 function converts a 16-bit far pointer to a 32-bit far pointer. This is needed
whenever Windows returns a 16-bit far pointer, and access to the data is needed by the 32-bit
program.

Returns: The MK FP32 returns a 32-bit far pointer.

See Also: MK LOCAL32, MK FP16

Example: #include <windows.h>

MEASUREITEMSTRUCT far *mis;

case WM MEASUREITEM:
/*
* Windows has passed us a 16 bit far pointer
* to the measure item data structure. We
* use MK FP32 to make that pointer a 32-bit far
* pointer, which enables us to access the data.
*/

mis = MK FP32((void *) lParam);
mis->itemHeight = MEASUREITEMHEIGHT;
mis->itemWidth = MEASUREITEMWIDTH;
return TRUE;

Classification: WIN386

232 WIN386 Library Functions and Macros

MK_LOCAL32

Synopsis: #include <windows.h>
void far *MK LOCAL32(void * fp16);

Description: The MK LOCAL32 function converts a 16-bit near pointer to a 32-bit far pointer. This is
needed whenever Windows returns a 16-bit near pointer that is to be accessed by the 32-bit
program.

Returns: The MK LOCAL32 returns a 32-bit far pointer.

See Also: MK FP32, MK FP16

Example: #include <windows.h>

WORD ich,cch;
char *pch;
char far *fpch;
HANDLE hT;

/*
* Request the data from an edit window; copy it
* into a local buffer so that it can be passed
* to TextOut
*/

ich = (WORD) SendMessage(hwndEdit,
EM LINEINDEX,
iLine,
0L);

cch = (WORD) SendMessage(hwndEdit,
EM LINELENGTH,
ich,
0L);

fpch = MK LOCAL32(LocalLock(hT)) ;
pch = alloca(cch);
fmemcpy(pch, fpch + ich, cch);

TextOut(hdc, 0, yExtSoFar, (LPSTR) pch, cch);
LocalUnlock(hT);

Classification: WIN386

WIN386 Library Functions and Macros 233

PASS_WORD_AS_POINTER

Synopsis: #include <windows.h>
void *PASS WORD AS POINTER(DWORD dw);

Description: Some Windows API functions have pointer parameters that do not always take pointers.
Sometimes these parameters are pure data. In order to stop the supervisor from trying to
convert the data into a 16-bit far pointer, the PASS WORD AS POINTER function is used.

Returns: The PASS WORD AS POINTER returns a 32-bit "near" pointer, that is really the parameter
dw.

Example: #include <windows.h>

Func(PASS WORD AS POINTER(1));

Classification: WIN386

234 WIN386 Library Functions and Macros

ReleaseProc16

Synopsis: #include <windows.h>
void ReleaseProc16(CALLBACKPTR cbp);

Description: ReleaseProc16 releases the callback function allocated by GetProc16. Since the
callback routines are a limited resource, it is important to release the routines when they are
no longer required.

Returns: The ReleaseProc16 function returns nothing.

See Also: GetProc16

Example: #include <windows.h>

CALLBACKPTR cbp;
FARPROC lpProcAbout;
/*
* Get a 16-bit callback routine to point at
* our About dialogue procedure, then create
* the dialogue. We use 16 versions of
* MakeProcInstance, DialogBox, and
* FreeProcInstance because they do not do
* any magic work on the callback routines.
*/
cbp = GetProc16((PROCPTR) About,

GETPROC CALLBACK);

lpProcAbout = 16MakeProcInstance(cbp, hInst);

16DialogBox(hInst,
"AboutBox",
hWnd,
lpProcAbout);

16FreeProcInstance(lpProcAbout);
ReleaseProc16(cbp);

Classification: WIN386

WIN386 Library Functions and Macros 235

Windows 3.x Programming Guide

236 WIN386 Library Functions and Macros

24 32-bit Extended Windows Application
Development

The purpose of this chapter is to anticipate some common questions about 32-bit Windows
application development.

The following topics are discussed in this chapter:

• Can you call 16-bit code from a 32-bit Windows application?
• Can I WinExec another Windows application?
• How do I add my Windows resources?
• All function pointers passed to Windows must be 16-bit far pointers, correct?
• Why are 32-bit callback routines FAR?
• Why use the _16 API functions?
• What about pointers in structures?
• When do I use MK_FP32?
• What is the difference between AllocAlias16 and MK_FP16?

24.1 Can you call 16-bit code from a 32-bit Windows
application?

A 32-bit Windows application can make a call to 16-bit code through the use of the Watcom
Call16 or InvokeIndirectFunction procedures. These functions ensure that the

Watcom Windows Supervisor prepares the stack for the 16-bit call and return to the 32-bit
code. The 32-bit application uses LoadLibrary function to bring the 16-bit DLL into
memory and then calls the 16-bit procedures. To invoke 16-bit procedures, use
GetProcAddress to get the 16-bit far pointer to the function. Use the Call16
procedure to call the 16-bit function since it is simpler to use than the
GetIndirectFunctionHandle, InvokeIndirectFunction, and
FreeIndirectFunctionHandle sequence. An example of this process is provided
under the Call16 Windows library function description.

This method can be used to call any 16-bit Dynamic Link Library (DLL) procedure or any
32-bit extended DLL procedure from within a 32-bit application, including DLLs that are
available as products through Independent Software Vendors (ISVs).

Can you call 16-bit code from a 32-bit Windows application? 237

Windows 3.x Programming Guide

24.2 Can I WinExec another Windows application?
As far as Windows is concerned, the WinExec was made by a 16-bit application, and the
application specified will be started. This new application can be a 16-bit application or
another 32-bit application that was implemented with Watcom C/C++

24.3 How do I add my Windows resources?
The WBIND utility automatically runs the resource compiler to add the resources to the 32-bit
Windows supervisor (since the supervisor is a 16-bit Windows application). Note that
resource compiler options may be specified by using the "R" option of WBIND.

24.4 All function pointers passed to Windows must be
16-bit far pointers, correct?

All function pointers passed to Windows must be 16-bit far pointers since no translation is
applied to any function pointers passed to Windows. Translation is often not possible, since
any functions that Windows is to call back must be exported, and only 16-bit functions can be
exported.

A 16-bit far pointer to a function is obtained in one of two ways: either Windows gives it to
you (via GetProcAddr, for example), or you obtain a pointer from the supervisor, via
GetProc16.

Function pointers obtained from Windows may either be fed into other Windows functions
requiring function pointers, or called indirectly by using Call16 or by using the
GetIndirectFunctionHandle, InvokeIndirectFunction, and
FreeIndirectFunctionHandle sequence.

The function GetProc16 returns a 16-bit far pointer to a callback function that Windows
can use. This callback function will direct control into the desired 32-bit routine.

238 All function pointers passed to Windows must be 16-bit far pointers, corr

32-bit Extended Windows Application Development

24.5 Why are 32-bit callback routines FAR?
The callback routines are declared as FAR so that the compiler will generate a far return from
the procedure. This is necessary since the 32-bit callback routine is "far" called from the
supervisor.

The callback routine is still "near" in the sense that it lies within the 32-bit flat address space
of the application. This means that GetProc16 only needs the offset of the 32-bit callback
function in order to set up the 16-bit procedure to call back correctly. Thus, GetProc16
accepts type PROCPTR which is in fact only 4 bytes long. The compiler will provide the
offset only, which is, as already stated, all that is needed.

24.6 Why use the _16 API functions?
The regular Windows API functions used in Watcom C/C++ automatically convert any
pointers to 16-bit far pointers for use by Windows. Sometimes, you may have a set of
pointers that are 16-bit far pointers already (e.g., obtained from GlobalLock), and do not
need any conversion. The "_16..." API functions do not convert pointers, they simply pass
them on directly to Windows. See the appendix entitled "Special Windows API Functions"
on page 247 for a list of the "_16..." API functions.

24.7 What about pointers in structures?
Pointers in structures will be converted if the Windows API function actually takes a pointer
to that structure (i.e., if it is possible for the supervisor to identify that structure). There are
few functions that accept pointers to structures containing pointers. One such function is
RegisterClass which accepts a pointer to a WNDCLASS structure.

If Windows has you passing a pointer to a structure through a 32-bit integer argument, then it
is not possible for the supervisor to identify that as a pointer that needs conversion. It is also
not possible for the supervisor to convert any pointers contained in the structure, since it is not
aware that it is a structure (as far as the supervisor is concerned, that data is what Windows
said it was - a 32-bit integer). In this case, it is necessary to get 16-bit far pointer equivalents
to the 32-bit near pointers that you want to pass. Use AllocAlias16 for this.

What about pointers in structures? 239

Windows 3.x Programming Guide

24.8 When do I use MK_FP32?
MK FP32 is used to convert all 16-bit far pointers to 32-bit far pointers that can be used by
your 32-bit application. For example, to access the memory returned by GlobalLock
requires the use of MK FP32. To access any pointer passed to you (in a callback routine)
requires the use of MK FP32 if you want access to that data in your 32-bit application.

24.9 What is the difference between AllocAlias16 and
MK_FP16?

AllocAlias16 actually gets a new selector that points at the same memory as the 32-bit
near pointer, whereas MK FP16 squishes a 32-bit far pointer back into a 16-bit far pointer
(i.e., it reverses MK FP32).

24.10 Tell Me More About Thunking and Aliases
Consider the following example.

dwAlias = AllocAlias16(pszSomething);
hwnd = CreateWindowEx(

0L, // extendedStyle
"classname", // class name
"",
WS POPUP|WS VISIBLE|WS CLIPSIBLINGS|WS HSCROLL|
WS BORDER|WS CAPTION|WS SYSMENU,
x, y, 0, 0, // x, y, cx, cy
hwndParent, // hwndParent
NULL, // control ID
g app.hinst, // hInstance
(void FAR*)dwAlias); // lpCreateParams

FreeAlias16(dwAlias);

When I get the lpCreateParams parameter in WM CREATE, I don’t get the original
dwAlias but something else which looks like another alias to me. So the question is: Must
the CreateWindowEx parameter lpCreateParams be "thunked" or is this done
automatically by the supervisor?

Thunks are always created for function pointers. Aliases are always created for data pointers.
There are 3 data pointer parameters in the CreateWindowEx function call. Aliases are
created for all three pointers. The lpCreateParams argument is a pointer to a struct which
contains 3 pointers. Aliases are not created for the 3 pointers inside the struct. If you need to
have this done, then you will have to create the aliases yourself. If you create aliases for the

240 Tell Me More About Thunking and Aliases

32-bit Extended Windows Application Development

parameters to CreateWindowEx, then you must call the 16CreateWindowEx function
which will not create any aliases.

Here is some further information on thunks (which are created for function pointers). There is
code in the supervisor that trys (note the word trys) to determine if the user has already
created a thunk and, if so, avoids creating a double thunk which will always generate a GPF.
The best policy is to let the supervisor automatically create all thunks for you unless you have
a very specific reason not to, in which case you should call the _16 version of the function.

Here is some further information on aliases (which are created for data pointers). There is no
way for the supervisor to determine if a value is a 32-bit flat pointer or an alias for the pointer.
So if you pass in an alias to the non _16 version of the function, the supervisor will create an
alias for the alias which will end up pointing to the wrong memory location. If you are going
to create the alias, then you must call the _16 version of the function.

Tell Me More About Thunking and Aliases 241

Windows 3.x Programming Guide

242 Tell Me More About Thunking and Aliases

25 Special Variables for Windows
Programming

__A000 A selector for addressing the real-mode segment 0xA000.

__B000 A selector for addressing the real-mode segment 0xB000.

__B800 A selector for addressing the real-mode segment 0xB800.

__C000 A selector for addressing the real-mode segment 0xC000.

__D000 A selector for addressing the real-mode segment 0xD000.

__E000 A selector for addressing the real-mode segment 0xE000.

__F000 A selector for addressing the real-mode segment 0xF000.

LocalPtr The selector for the supervisor’s data area.

Special Variables for Windows Programming 243

Windows 3.x Programming Guide

244 Special Variables for Windows Programming

26 Definitions of Windows Terms

CALLBACKPTR Pointer to a 16-bit callback routine; used to call into 32-bit
functions.

DWORD An unsigned long.

HINDIR A handle to 16-bit function that needs to be called indirectly.

PROCPTR A pointer to a 32-bit callback routine. Although the callback
routine is declared as far, only the 32-bit offset is used.

WORD An unsigned short.

Definitions of Windows Terms 245

Windows 3.x Programming Guide

246 Definitions of Windows Terms

27 Special Windows API Functions

On rare occasions, you want to use 16-bit far pointers directly in a Windows function. Since
all Windows functions in the 32-bit environment are expecting 32-bit near pointers, you
cannot simply use the 16-bit far pointer directly in the function.

The following functions are special versions of Windows API functions that do NOT convert
any of the pointers from 32-bit to 16-bit. There are _16 versions of all Windows API
functions that accept data pointers.

_16AddAtom
_16AddFontResource
_16AdjustWindowRect
_16AdjustWindowRectEx
_16AnimatePalette
_16AnsiLower
_16AnsiLowerBuff
_16AnsiToOem
_16AnsiToOemBuff
_16AnsiUpper
_16AnsiUpperBuff
_16BuildCommDCB
_16CallMsgFilter
_16ChangeMenu
_16ClientToScreen
_16ClipCursor
_16CopyMetaFile
_16CopyRect
_16CreateBitmap
_16CreateBitmapIndirect
_16CreateBrushIndirect
_16CreateCursor
_16CreateDC
_16CreateDialog
_16CreateDialogIndirect
_16CreateDialogIndirectParam
_16CreateDialogParam
_16CreateDIBitmap
_16CreateEllipticRgnIndirect

Special Windows API Functions 247

Windows 3.x Programming Guide

_16CreateFont
_16CreateFontIndirect
_16CreateIC
_16CreateIcon
_16CreateMetaFile
_16CreatePalette
_16CreatePenIndirect
_16CreatePolygonRgn
_16CreatePolyPolygonRgn
_16CreateRectRgnIndirect
_16CreateWindow
_16CreateWindowEx
_16DialogBox
_16DialogBoxIndirect
_16DialogBoxIndirectParam
_16DialogBoxParam
_16DispatchMessage
_16DlgDirList
_16DlgDirListComboBox
_16DlgDirSelect
_16DlgDirSelectComboBox
_16DPtoLP
_16DrawFocusRect
_16DrawText
_16EndPaint
_16EnumChildWindows
_16EnumFonts
_16EnumMetaFile
_16EnumObjects
_16EnumProps
_16EnumTaskWindows
_16EnumWindows
_16EqualRect
_16Escape
_16ExtTextOut
_16FillRect
_16FindAtom
_16FindResource
_16FindWindow
_16FrameRect
_16FreeProcInstance
_16GetAtomName
_16GetBitmapBits
_16GetCaretPos

248 Special Windows API Functions

Special Windows API Functions

_16GetCharWidth
_16GetClassInfo
_16GetClassName
_16GetClientRect
_16GetClipboardFormatName
_16GetClipBox
_16GetCodeInfo
_16GetCommError
_16GetCommState
_16GetCursorPos
_16GetDIBits
_16GetDlgItemInt
_16GetDlgItemText
_16GetEnvironment
_16GetKeyboardState
_16GetKeyNameText
_16GetMenuString
_16GetMetaFile
_16GetModuleFileName
_16GetModuleHandle
_16GetObject
_16GetPaletteEntries
_16GetPriorityClipboardFormat
_16GetPrivateProfileInt
_16GetPrivateProfileString
_16GetProcAddress
_16GetProfileInt
_16GetProfileString
_16GetProp
_16GetRgnBox
_16GetScrollRange
_16GetSystemDirectory
_16GetSystemPaletteEntries
_16GetTabbedTextExtent
_16GetTempFileName
_16GetTextExtent
_16GetTextFace
_16GetTextMetrics
_16GetUpdateRect
_16GetWindowRect
_16GetWindowsDirectory
_16GetWindowText
_16GlobalAddAtom
_16GlobalFindAtom

Special Windows API Functions 249

Windows 3.x Programming Guide

_16GlobalGetAtomName
_16GlobalNotify
_16GrayString
_16InflateRect
_16IntersectRect
_16InvalidateRect
_16InvertRect
_16IsDialogMessage
_16IsRectEmpty
_16LineDDA
_16LoadAccelerators
_16LoadBitmap
_16LoadCursor
_16LoadIcon
_16LoadLibrary
_16LoadMenu
_16LoadMenuIndirect
_16LoadModule
_16LoadString
_16LPtoDP
_16MakeProcInstance
_16MapDialogRect
_16MessageBox
_16OemToAnsi
_16OemToAnsiBuff
_16OffsetRect
_16OpenComm
_16OpenFile
_16OutputDebugString
_16PlayMetaFileRecord
_16Polygon
_16Polyline
_16PolyPolygon
_16PtInRect
_16ReadComm
_16RectInRegion
_16RectVisible
_16RegisterClipboardFormat
_16RegisterWindowMessage
_16RemoveFontResource
_16RemoveProp
_16ScreenToClient
_16ScrollDC
_16ScrollWindow

250 Special Windows API Functions

Special Windows API Functions

_16SetBitmapBits
_16SetCommState
_16SetDIBits
_16SetDIBitsToDevice
_16SetDlgItemText
_16SetEnvironment
_16SetKeyboardState
_16SetPaletteEntries
_16SetProp
_16SetRect
_16SetRectEmpty
_16SetResourceHandler
_16SetSysColors
_16SetTimer
_16SetWindowsHook
_16SetWindowText
_16StretchDIBits
_16TabbedTextOut
_16TextOut
_16ToAscii
_16TrackPopupMenu
_16TranslateAccelerator
_16TranslateMDISysAccel
_16TranslateMessage
_16UnhookWindowsHook
_16UnionRect
_16UnregisterClass
_16ValidateRect
_16WinExec
_16WinHelp
_16WriteComm
_16WritePrivateProfileString
_16WriteProfileString
_16_lread
_16_lwrite

Special Windows API Functions 251

Windows 3.x Programming Guide

252 Special Windows API Functions

Windows NT Programming Guide

Windows NT Programming Guide

254

28 Windows NT Programming Overview

Windows NT supports both non-windowed character-mode applications and windowed
Graphical User Interface (GUI) applications. In addition, Windows NT supports Dynamic
Link Libraries and applications with multiple threads of execution.

We have supplied all the necessary tools for native development on Windows NT. You can
also cross develop for Windows NT using either the DOS-hosted compilers and tools, the
Windows 95-hosted compilers and tools, or the OS/2-hosted compilers and tools. Testing and
debugging of your Windows NT application must be done on Windows NT or Windows 95.

If you are creating a character-mode application, you may also be interested in a special DOS
extender from Phar Lap (TNT) that can run your Windows NT character-mode application
under DOS.

28.1 Windows NT Programming Note
When doing Win32 programming, you should use the /ei and /zp4 options to compile C and
C++ code with the Watcom compilers since this adjusts the compilers to match the default
Microsoft compiler behaviour. Some Microsoft software relies on the default behaviour of
their own compiler regarding the treatment of enums and structure packing alignment.

28.2 Windows NT Character-mode Versus GUI
Basically, there are two classes of C/C++ applications that can run in a windowed
environment like Windows NT.

The first are those C/C++ applications that do not use any of the Win32 API functions; they
are strictly C/C++ applications that do not rely on the features of a particular operating
system. Watcom gives you two choices when porting these kinds of applications to Windows
NT. You may choose to create a character-mode application that makes no use of the
windowing capabilities of the system (the remainder of this chapter will deal with these kinds
of applications). Or, you may choose to make use of Watcom’s default windowing system in
which application output will be directed to one or more windows. The latter can give
somewhat of a GUI look-and-feel to an application what wasn’t designed for the GUI

Windows NT Character-mode Versus GUI 255

Windows NT Programming Guide

environment. A subsequent chapter deals with the creation of applications that make use of
the default windowing system.

The second class of C/C++ applications are those that actually call Win32 API functions
directly. These are applications that have been tailored for the Win32 operating environment.
A subsequent chapter deals with the creation of applications that make use of the Win32 API.

28.3 Windows NT Character-mode Applications
Suppose you have a set of C/C++ applications that previously ran under DOS and you now
wish to run them under Windows NT. To achieve this, simply recompile your application and
link with the appropriate libraries. Depending on the method with which you linked your
application, it can run in a Windows NT character-mode environment, or as a Windows NT
GUI application. A Windows NT GUI application has full access to the complete set of
user-interface tools such as menus, icons, scroll bars, etc. An application that was not
designed as a windowed application (such as a DOS application) can run as a GUI application.
This is achieved by a default windowing system that is optionally linked with your
application. The creation of default windowing applications is described in a later chapter.

Very little effort is required to port an existing C/C++ application to Windows NT. Let us try
to run the following sample program (contained in the file HELLO.C).

#include <stdio.h>

int main(void)
{

printf("Hello world\n");
return(0);

}

An equivalent C++ program follows:

#include <iostream.h>
#include <iomanip.h>

int main(void)
{

cout << "Hello world" << endl;
return(0);

}

First we must compile the file HELLO.C by issuing the following command.

C:\>wcc386 hello

256 Windows NT Character-mode Applications

Windows NT Programming Overview

Once we have successfully compiled the file, we can link it by issuing the following
command.

C:\>wlink system nt file hello

This will create a character-mode application.

Windows NT Character-mode Applications 257

Windows NT Programming Guide

258 Windows NT Character-mode Applications

29 Creating Windows NT GUI Applications

This chapter describes how to compile and link Windows NT GUI applications simply and
quickly. In this chapter, we look at applications written to exploit the Windows NT
Application Programming Interface (API).

We will illustrate the steps to creating Windows NT GUI applications by taking a small
sample application and showing you how to compile, link, run and debug it.

29.1 The Sample Application
To demonstrate the creation of Windows NT GUI applications, we introduce a simple sample
program. The following example is the "hello" program adapted for Windows.

#include <windows.h>

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInst,
LPSTR lpCmdLine, int nCmdShow)

{
MessageBox(NULL, "Hello world",

"Watcom C/C++ for Windows",
MB OK | MB TASKMODAL);

return(0);
}

The goal of this program is to display the message "Hello world" on the screen. The
MessageBox Windows API function is used to accomplish this task. We will take you
through the steps necessary to produce this result.

29.2 Building and Running the Sample Windows NT
Application

To compile and link our example program which is stored in the file HELLO.C, enter the
following command:

Building and Running the Sample Windows NT Application 259

Windows NT Programming Guide

C>wcl386 /l=nt win/bt=nt hello.c

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 /l=nt win /bt=nt hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c /bt=nt
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 41

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows NT windowed executable

If you examine the current directory, you will find that two files have been created. These are
HELLO.OBJ (the result of compiling HELLO.C) and HELLO.EXE (the result of linking
HELLO.OBJ with the appropriate Watcom C/C++ libraries).

The resultant Windows NT GUI application HELLO.EXE can now be run under Windows
NT.

29.3 Debugging the Sample Windows NT Application
Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "hello" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It is also convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "hello" program with debugging information, the
following command may be issued.

C>wcl386 /l=nt win/bt=nt /d2 hello.c

260 Debugging the Sample Windows NT Application

Creating Windows NT GUI Applications

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 /l=nt win /bt=nt /d2 hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c /bt=nt /d2
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 10 lines, included 6500, 0 warnings, 0 errors
Code size: 66

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows NT windowed executable

The "d2" option requests the maximum amount of debugging information that can be provided
by the Watcom C/C++ compiler. WCL386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. You can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory
chapter so we refer you to the book entitled Watcom Debugger User’s Guide.

Debugging the Sample Windows NT Application 261

Windows NT Programming Guide

262 Debugging the Sample Windows NT Application

30 Porting Non-GUI Applications to Windows
NT GUI

Generally, an application that is to run in a windowed environment must be written in such a
way as to exploit the Windows Application Programming Interface (API). To take an existing
character-based (i.e., non-graphical) application that ran under a system such as DOS and
adapt it to run under Windows can require some considerable effort. There is a steep learning
curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an
application that does not use the Windows API. The application will make use of
WATCOM’s default windowing support.

Suppose you have a set of C/C++ applications that previously ran under a system like DOS
and you now wish to run them under Windows NT. To achieve this, you can simply
recompile your application with the appropriate options and link with the appropriate libraries.
We provide a default windowing system that turns your character-mode application into a
simple Windows NT Graphical User Interface (GUI) application.

Normally, a Windows NT GUI application makes use of user-interface tools such as menus,
icons, scroll bars, etc. However, an application that was not designed as a windowed
application (such as a DOS application) can run as a GUI application. This is achieved by our
default windowing system. The following sections describe the default windowing system.

30.1 Console Device in a Windowed Environment
In a C/C++ application that runs under DOS, stdin (C++ cin) and stdout (C++ cout) are
connected to the standard input and standard output devices respectively. It is not a
recommended practice to read directly from the standard input device or write to the standard
output device when running in a windowed environment. For this reason, a default
windowing environment is created for C/C++ applications that read from stdin (C++ cin) or
write to stdout (C++ cout). When your application is started, a window is created in which
output to stdout (C++ cout) is displayed and input from stdin (C++ cin) is requested.

In addition to the standard I/O device, it is also possible to perform I/O to the console by
explicitly opening a file whose name is "CON". When this occurs, another window is created

Console Device in a Windowed Environment 263

Windows NT Programming Guide

and displayed. This window is different from the one created for standard input and standard
output. In fact, every time you open the console device a different window is created. This
provides a simple multi-windowing system for multiple streams of data to and from the
console device.

30.2 The Sample Non-GUI Application
To demonstrate the creation of Windows NT GUI applications, we introduce a simple sample
program. For our example, we are going to use the famous "hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

#include <iostream.h>
#include <iomanip.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C
version uses the C library printf routine to accomplish this task. The C++ version uses the
"iostream" library to accomplish this task. We will take you through the steps necessary to
produce this result.

30.3 Building and Running the Non-GUI Windows NT
Application

Very little effort is required to port an existing C/C++ application to Windows NT.

You must compile and link the file HELLO.C specifying the "bw" option.

C>wcl386 /l=nt win/bw/bt=windows hello.c

264 Building and Running the Non-GUI Windows NT Application

Porting Non-GUI Applications to Windows NT GUI

The typical messages that appear on the screen are shown in the following illustration.

C>wcl386 /l=nt win /bw/bt=windows hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c /bw/bt=windows
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 24

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows NT windowed executable

If you examine the current directory, you will find that two files have been created. These are
HELLO.OBJ (the result of compiling HELLO.C) and HELLO.EXE (the result of linking
HELLO.OBJ with the appropriate Watcom C/C++ libraries).

The resultant Windows NT GUI application HELLO.EXE can now be run under Windows NT
as a Windows GUI application.

30.4 Debugging the Non-GUI Windows NT Application
Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "hello" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It is also convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "hello" program with debugging information, the
following command may be issued.

C>wcl386 /l=nt win/bw/bt=windows /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

Debugging the Non-GUI Windows NT Application 265

Windows NT Programming Guide

C>wcl386 /l=nt win /bw/bt=windows /d2 hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c /bw/bt=windows /d2
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 45

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating a Windows NT windowed executable

The "d2" option requests the maximum amount of debugging information that can be provided
by the Watcom C/C++ compiler. WCL386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. You can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory
chapter so we refer you to the book entitled Watcom Debugger User’s Guide.

30.5 Default Windowing Library Functions
A few library functions have been written to enable some simple customization of the default
windowing system’s behaviour. The following functions are supplied:

_dwDeleteOnClose

int dwDeleteOnClose(int handle);

This function tells the console window that it should close itself when the file is
closed. You must pass to it the handle associated with the opened console.

_dwSetAboutDlg

266 Default Windowing Library Functions

Porting Non-GUI Applications to Windows NT GUI

int dwSetAboutDlg(const char *title, const char
*text);

This function sets the about dialog box of the default windowing system. The "title"
points to the string that will replace the current title. If title is NULL then the title
will not be replaced. The "text" points to a string which will be placed in the about
box. To get multiple lines, embed a new line after each logical line in the string. If
"text" is NULL, then the current text in the about box will not be replaced.

_dwSetAppTitle

int dwSetAppTitle(const char *title);

This function sets the main window’s title.

_dwSetConTitle

int dwSetConTitle(int handle, const char *title);

This function sets the console window’s title which corresponds to the handle passed
to it.

_dwShutDown

int dwShutDown(void);

This function shuts down the default windowing I/O system. The application will
continue to execute but no windows will be available for output.

_dwYield

int dwYield(void);

This function yields control back to the operating system, thereby giving other
processes a chance to run.

These functions are described more fully in the WATCOM C Library Reference.

Default Windowing Library Functions 267

Windows NT Programming Guide

268 Default Windowing Library Functions

31 Windows NT Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded
application is one whose tasks are divided among several threads of execution. A process is
an executing application and the resources it uses. A thread is the smallest unit of execution
within a process. Each thread has its own stack and a set of machine registers and shares all
resources with its parent process. The path of execution of one thread does not affect that of
another; each thread is an independent entity.

Typically, an application has a single thread of execution. In this type of application, all
tasks, once initiated, are completed before the next task begins. In contrast, tasks in a
multi-threaded application can be performed concurrently since more than one thread is
executing at once. For example, each thread may be designed to perform a separate task.

31.1 Programming Considerations
Since a multi-threaded application consists of many threads of execution, there are a number
of issues that you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these
resources. For example, if your application has a function that displays information on the
console and is used by all threads, it is necessary to allow only one thread to use that function
at any time. That is, once a thread calls that function, the function should ensure that no other
thread displays information until all information for the initial thread has been displayed. An
example of such a function is the printf library function.

Another issue that must be considered when creating multi-threaded applications is global
variables. If you have global variables that contain thread-specific information, there must be
an instance of each global variable for each thread. An example of such a variable is the
errno global variable defined in the run-time libraries. If an error condition was created by
a thread, you would not want it to affect the execution of other threads. Therefore, each
thread should contain its own instance of this variable.

Programming Considerations 269

Windows NT Programming Guide

31.2 Creating Threads
Each application initially contains a single thread. The run-time libraries contain two
functions that create and terminate threads of execution. The function beginthread
creates a thread of execution and the function endthread ends a thread of execution. The
macro threadid can be used to determine the current thread identifier.

WARNING! If any thread calls a library function, you must use the beginthread
function to create the thread. Do not use the CreateThread API function.

31.2.1 Creating a New Thread

The beginthread function creates a new thread. It is defined as follows.

unsigned long beginthread(void (*start address)(void *),

unsigned stack size,
void *arglist);

where description:

start_address is the address of the function that will be called when the newly created thread
is executed. When the thread returns from that function, the thread will be
terminated. Note that a call to the endthread function will also terminate
the thread.

stack_size specifies the size of the stack to be allocated by the operating system for the new
thread. The stack size should be a multiple of 4K.

arglist is passed as an argument to the function specified by start address. If no
argument is required, a value of NULL can be specified.

If a new thread is successfully created, the thread identifier of the new thread is returned.
Otherwise, a value of -1 is returned.

The header file PROCESS.H contains the definition of the beginthread function.

Another thread related function for Windows NT is beginthreadex. See the Watcom C
Library Reference for more information.

270 Creating Threads

Windows NT Multi-threaded Applications

31.2.2 Terminating the Current Thread

The endthread function terminates the current thread. It is defined as follows.

void endthread(void)

The header file PROCESS.H contains the definition of the endthread function.

31.2.3 Getting the Current Thread Identifier

The threadid macro can be used to determine the current thread identifier. It is defined
as follows.

int * threadid(void);
#define threadid (threadid())

The header file STDDEF.H contains the definition of the threadid macro.

31.3 A Multi-threaded Example
Let us create a simple multi-threaded application.

#include <process.h>
#include <stdio.h>
#include <stddef.h>
#include <windows.h>

static volatile int NumThreads;
static volatile int HoldThreads;

CRITICAL SECTION CriticalSection;

#define NUM THREADS 5
#define STACK SIZE 8192

static void a thread(void *arglist)
/***********************************/
{

while(HoldThreads) {
Sleep(1);

}
printf("Hi from thread %d\n", * threadid);
EnterCriticalSection(&CriticalSection);
--NumThreads;
LeaveCriticalSection(&CriticalSection);
endthread();

}

A Multi-threaded Example 271

Windows NT Programming Guide

int main(void)
/**************/
{

int i;

printf("Initial thread id = %d\n", * threadid);
NumThreads = 0;
HoldThreads = 1;
InitializeCriticalSection(&CriticalSection);
/* initial thread counts as 1 */
for(i = 2; i <= NUM THREADS; ++i) {

if(beginthread(a thread, STACK SIZE, NULL) == -1) {
printf("creation of thread %d failed\n", i);

} else {
++NumThreads;

}
}
HoldThreads = 0;
while(NumThreads != 0) {

Sleep(1);
}
DeleteCriticalSection(&CriticalSection);
return(0);

}

Note:

1. In the function a thread, EnterCriticalSection and
LeaveCriticalSection are called when we modify the variable
NumThreads. This ensures that the action of extracting the value of
NumThreads from memory, incrementing the value, and storing the new result
into memory, occurs without interruption. If these functions were not called, it
would be possible for two threads to extract the value of NumThreads from
memory before an update occurred.

Let us assume that the file MTHREAD.C contains the above example. Before compiling the
file, make sure that the WATCOM environment variable is set to the directory in which you
installed Watcom C/C++. Also, the INCLUDE environment variable must include the
\WATCOM\H\NT and \WATCOM\H directories ("\WATCOM" is the directory in which
Watcom C/C++ was installed).

We can now compile and link the application by issuing the following command.

C:\>wcl386 /bt=nt /bm /l=nt mthread

The "bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled
using the "bm" switch.

272 A Multi-threaded Example

Windows NT Multi-threaded Applications

The "l" option specifies the target system for which the application is to be linked. The
system name nt is defined in the file WLSYSTEM.LNK which is located in the "BINW"
directory of the directory in which you installed Watcom C/C++.

The multi-threaded application is now ready to be run.

A Multi-threaded Example 273

Windows NT Programming Guide

274 A Multi-threaded Example

32 Windows NT Dynamic Link Libraries

A dynamic link library, like a standard library, is a library of functions. When an application
uses functions from a standard library, the library functions referenced by the application
become part of the executable module. This form of linking is called static linking. When an
application uses functions from a dynamic link library, the library functions referenced by the
application are not included in the executable module. Instead, the executable module
contains references to these functions which are resolved when the application is loaded. This
form of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functions in dynamic link libraries are not linked into your program. Only
references to the functions in dynamic link libraries are placed in the program
module. These references are called import definitions. As a result, the linking
time is reduced and disk space is saved. If many applications reference the same
dynamic link library, the saving in disk space can be significant.

2. Since program modules only reference dynamic link libraries and do not contain
the actual executable code, a dynamic link library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications
that use them. If many applications that use the same dynamic link library are
executing concurrently, the sharing of code and data segments improves memory
utilization.

32.1 Creating Dynamic Link Libraries
Once you have developed the source for a library of functions, a number of steps are required
to create a dynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the
compiler that the module you are compiling is part of a dynamic link library. Once you have
successfully compiled your source, you must create a linker directive file that describes the

Creating Dynamic Link Libraries 275

Windows NT Programming Guide

attributes of your dynamic link library. The following lists the most common linker directives
required to create a dynamic link library.

1. The "SYSTEM" directive is used to specify that a dynamic link library is to be
created.

2. The "EXPORT" directive is used to to specify which functions in the dynamic link
library are to be exported.

3. The "OPTION" directive is used to specify attributes such as the name of the
dynamic link library and how to allocate the automatic data segment when the
dynamic link library is referenced.

4. The "SEGMENT" directive is used to specify attributes of segments. For example,
a segment may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to
applications that wish to use it. This can be done by creating an import library for the
dynamic link library or creating a linker directive file that contains "IMPORT" directives for
each of the entry points in the dynamic link library.

32.2 Creating a Sample Dynamic Link Library
Let us now create a dynamic link library using the following example.

#include <stdio.h>
#include <windows.h>

#if defined(cplusplus)
#define EXTERNC extern "C"
#else
#define EXTERNC
#endif

DWORD TlsIndex; /* Global Thread Local Storage index */

/* Error checking should be performed in following code */

BOOL APIENTRY LibMain(HANDLE hinstDLL,
DWORD fdwReason,
LPVOID lpvReserved)

{
switch(fdwReason) {
case DLL PROCESS ATTACH:

/* do process initialization */

/* create TLS index */
TlsIndex = TlsAlloc();
break;

276 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

case DLL THREAD ATTACH:
/* do thread initialization */

/* allocate private storage for thread */
/* and save pointer to it */
TlsSetValue(TlsIndex, malloc(200));
break;

case DLL THREAD DETACH:
/* do thread cleanup */

/* get the TLS value and free associated memory */
free(TlsGetValue(TlsIndex));
break;

case DLL PROCESS DETACH:
/* do process cleanup */

/* free TLS index */
TlsFree(TlsIndex);
break;

}
return(1); /* indicate success */
/* returning 0 indicates initialization failure */

}
EXTERNC void dll entry 1(void)
{

printf("Hi from dll entry #1\n");
}

EXTERNC void dll entry 2(void)
{

printf("Hi from dll entry #2\n");
}

Arguments:

hinstDLL This is a handle for the DLL. It can be used as a argument to other functions
such as GetModuleFileName.

fdwReason This argument indicates why LibMain is being called. It can have one of the
following values:

Value Meaning

DLL_PROCESS_ATTACH This value indicates that the DLL is attaching to the
address space of the current process as a result of the process
starting up or as a result of a call to LoadLibrary. A DLL can
use this opportunity to initialize any instance data or to use the
TlsAlloc function to allocate a Thread Local Storage (TLS)
index.

Creating a Sample Dynamic Link Library 277

Windows NT Programming Guide

During initial process startup or after a call to LoadLibrary,
the operating system scans the list of loaded DLLs for the process.
For each DLL that has not already been called with the
DLL PROCESS ATTACH value, the system calls the DLL’s
LibMain entry-point. This call is made in the context of the
thread that caused the process address space to change, such as the
primary thread of the process or the thread that called
LoadLibrary.

DLL_THREAD_ATTACH This value indicates that the current process is
creating a new thread. When this occurs, the system calls the
LibMain entry-point of all DLLs currently attached to the
process. The call is made in the context of the new thread. DLLs
can use this opportunity to initialize a Thread Local Storage (TLS)
slot for the thread. A thread calling the DLL’s LibMain with the
DLL PROCESS ATTACH value does not call LibMain with the
DLL THREAD ATTACH value. Note that LibMain is called
with this value only by threads created after the DLL is attached to
the process. When a DLL is attached by LoadLibrary,
existing threads do not call the LibMain entry-point of the newly
loaded DLL.

DLL_THREAD_DETACH This value indicates that a thread is exiting
normally. If the DLL has stored a pointer to allocated memory in a
TLS slot, it uses this opportunity to free the memory. The
operating system calls the LibMain entry-point of all currently
loaded DLLs with this value. The call is made in the context of the
exiting thread. There are cases in which LibMain is called for a
terminating thread even if the DLL never attached to the thread.
For example, LibMain is never called with the
DLL THREAD ATTACH value in the context of the thread in
either of these two situations:

• The thread was the initial thread in the process, so the
system called LibMain with the DLL PROCESS ATTACH
value.

• The thread was already running when a call to the
LoadLibrary function was made, so the system never
called LibMain for it.

DLL_PROCESS_DETACH This value indicates that the DLL is detaching from
the address space of the calling process as a result of either a
normal termination or of a call to FreeLibrary. The DLL can

278 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

use this opportunity to call the TlsFree function to free any TLS
indices allocated by using TlsAlloc and to free any thread local
data. When a DLL detaches from a process as a result of process
termination or as a result of a call to FreeLibrary, the
operating system does not call the DLL’s LibMain with the
DLL THREAD DETACH value for the individual threads of the
process. The DLL is only given DLL PROCESS DETACH
notification. DLLs can take this opportunity to clean up all
resources for all threads attached and known to the DLL.

lpvReserved This argument specifies further aspects of DLL initialization and cleanup. If
fdwReason is DLL PROCESS ATTACH, lpvReserved is NULL for
dynamic loads and non-NULL for static loads. If fdwReason is
DLL PROCESS DETACH, lpvReserved is NULL if LibMain has been
called by using FreeLibrary and non-NULL if LibMain has been called
during process termination.

Return Value When the system calls the LibMain function with the
DLL PROCESS ATTACH value, the function returns TRUE (1) if initialization
succeeds or FALSE (0) if initialization fails.

If the return value is FALSE (0) when LibMain is called because the process
uses the LoadLibrary function, LoadLibrary returns NULL.

If the return value is FALSE (0) when LibMain is called during process
initialization, the process terminates with an error. To get extended error
information, call GetLastError.

When the system calls LibMain with any value other than
DLL PROCESS ATTACH, the return value is ignored.

Assume the above example is contained in the file DLLSAMP.C. We can compile the file
using the following command. Note that we must specify the "bd" compiler option.

C:\>wcc386 /bd dllsamp

Before we can link our example, we must create a linker directive file that describes the
attributes and entry points of our dynamic link library. The following is a linker directive file,
called DLLSAMP.LNK, that can be used to create the dynamic link library.

system nt dll initinstance terminstance
export dll entry 1
export dll entry 2
file dllsamp

Creating a Sample Dynamic Link Library 279

Windows NT Programming Guide

Notes:

1. The "SYSTEM" directive specifies that we are creating a Windows NT dynamic
link library.

2. When a dynamic link library uses the Watcom C/C++ run-time libraries, an
automatic data segment is created each time a new process accesses the dynamic
link library. For this reason, initialization code must be executed when a process
accesses the dynamic link library for the first time. To achieve this,
"INITINSTANCE" must be specified in the "SYSTEM" directive. Similarly,
"TERMINSTANCE" must be specified so that the termination code is executed
when a process has completed its access to the dynamic link library. If the Watcom
C/C++ run-time libraries are not used, these options are not required.

3. The "EXPORT" directive specifies the entry points into the dynamic link library.
Note that the names specified in the "EXPORT" directive are appended with an
underscore. This is the default naming convention used when compiling using the
register-based calling convention. No underscore is required when compiling using
the stack-based calling convention.

We can now create our dynamic link library by issuing the following command.

C:\>wlink @dllsamp

A file called DLLSAMP.DLL will be created.

32.3 Using Dynamic Link Libraries
Once we have created a dynamic link library, we must allow other applications to access the
functions available in the dynamic link library. There are two ways to achieve this.

The first method is to create a linker directive file which contains an "IMPORT" directive for
all entry points in the dynamic link library. The "IMPORT" directive provides the name of
the entry point and the name of the dynamic link library. When creating an application that
references a function in the dynamic link library, this linker directive file would be included
as part of the linking process that created the application.

The second method is to use import libraries. An import library is a standard library that is
created from a dynamic link library by using the Watcom Library Manager. It contains object
modules that describe the entry points in a dynamic link library. The resulting import library
can then be specified in a "LIBRARY" directive in the same way one would specify a
standard library.

280 Using Dynamic Link Libraries

Windows NT Dynamic Link Libraries

Using an import library is the preferred method of providing references to functions in
dynamic link libraries. When a dynamic link library is modified, typically the import library
corresponding to the modified dynamic link library is updated to reflect the changes. Hence,
any directive file that specifies the import library in a "LIBRARY" directive need not be
modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directives to reflect the changes in the dynamic link library.

Let us create an import library for our sample dynamic link library we created in the previous
section. We do this by issuing the following command.

C:\>wlib dllsamp +dllsamp.dll

A standard library called DLLSAMP.LIB will be created.

Suppose the following sample program, contained in the file DLLTEST.C, calls the
functions from our sample dynamic link library.

#include <stdio.h>
#include <process.h>
#if defined(cplusplus)
#define EXTERNC extern "C"
#else
#define EXTERNC
#endif

EXTERNC void dll entry 1(void);
EXTERNC void dll entry 2(void);

#define STACK SIZE 8192

static void thread(void *arglist)
{

printf("Hi from thread\n");
endthread();

}

int main(void)
{

unsigned long tid;

dll entry 1();
tid = beginthread(thread, STACK SIZE, NULL);
dll entry 2();
return(0);

}

We can compile and link our sample application by issuing the following command.

C:\>wcl386 /bm /l=nt dlltest dllsamp.lib

Using Dynamic Link Libraries 281

Windows NT Programming Guide

If we had created a linker directive file of "IMPORT" directives instead of an import library
for the dynamic link library, the linker directive file, say DLLIMPS.LNK, would be as
follows.

import dll entry 1 dllsamp
import dll entry 2 dllsamp

Note that the names specified in the "IMPORT" directive are appended with an underscore.
This is the default naming convention used when compiling using the register-based calling
convention. No underscore is required when compiling using the stack-based calling
convention.

To compile and link our sample application, we would issue the following command.

C:\>wcl386 /bm /l=nt dlltest /"@dllimps"

32.4 The Dynamic Link Library Data Area
The Watcom C/C++ 32-bit run-time library does not support the general case operation of
DLLs in an execution environment where there is only one instance of the DATA segment
(DGROUP) for that DLL.

There are two cases that can lead to a DLL executing with only one instance of the DGROUP.

1. DLLs linked for 32-bit OS/2 without the MANYAUTODATA option.

2. DLLs linked for the Win32 API and executing under Win32s.

In these cases the run-time library startup code detects that there is only one instance of the
DGROUP when a second process attempts to attach to the DLL. At that point, it issues a
diagnostic for the user and then notifies the operating system that the second process cannot
attach to the DLL.

Developers who require DLLs to operate when there is only one instance of the DGROUP can
suppress the function which issues the diagnostic and notifies the operating system that the
second process cannot attach to the DLL.

Doing so requires good behaviour on the part of processes attaching to the DLL. This good
behaviour consists primarily of ensuring that the first process to attach to the DLL is also the
last process to detach from the DLL thereby ensuring that the DATA segment is not released
back to the free memory pool.

282 The Dynamic Link Library Data Area

Windows NT Dynamic Link Libraries

To suppress the function which issues the diagnostic and notifies the operating system that the
second process cannot attach to the DLL, the developer must provide a replacement entry
point with the following prototype:

int disallow single dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA
segment is allowed.

The Dynamic Link Library Data Area 283

Windows NT Programming Guide

284 The Dynamic Link Library Data Area

33 Creating Windows NT POSIX Applications

This chapter describes how to compile and link POSIX applications for Windows NT. There
are a number of issues to consider.

1. Watcom does not provide its own POSIX libraries. You must use those included
with the Microsoft Win32 SDK. They are LIBCPSX.LIB, PSXDLL.LIB and
PSXRTL.LIB. If you installed the Win32 SDK component when you installed
the Watcom software, you will find these libraries in the
%WATCOM%\LIB386\NT directory.

2. Since you will be using Microsoft POSIX libraries compiled by the Microsoft
compiler, you must follow the calling conventions used by Microsoft (i.e., the
cdecl convention). The Watcom compiler can generate these calling

conventions provided that the POSIX library routines are all properly prototyped.
3. Watcom does not provide its own header files for use with the Microsoft POSIX

libraries. The Microsoft Win32 SDK includes only a subset of the headers required
for calling the POSIX library routines. If you installed the Win32 SDK component
when you installed the Watcom software, you will find these headers in the
%WATCOM%\SDK\POSIX\H and %WATCOM%\SDK\POSIX\H\SYS directories.
Take a look at these directories to see what is and what is not included.

4. If you have the Microsoft compiler, then you will likely have access to the missing
header files. If you do not have the Microsoft compiler, then you will have to
define prototypes for any of the POSIX library routines that you use for which no
prototypes are defined in any of the POSIX header files.

5. There is one exception to the generation of the cdecl calling convention for
appropriately prototyped functions. This is the main function. Since many
Microsoft sample programs inappropriately declare the main function as

cdecl, it was necessary to make a special case in the Watcom compilers to
ignore the cdecl attribute when used for this entry point. To work around this
problem, a special pragma is used. This is shown in the following example.

6. Since we are going to use the Microsoft POSIX libraries rather than the Watcom
libraries, we will use the "zl" compile option to instruct the Watcom compiler not
to include references to Watcom libraries in the object files.

To illustrate the creation of a POSIX application, we will use a simple example. This program
displays an identifying banner and then displays its arguments one at a time.

Creating Windows NT POSIX Applications 285

Windows NT Programming Guide

Example:
[POSIXSMP.C]
#include <unistd.h>

// The Win32 SDK doesn’t provide a complete set of
// headers for the libraries (e.g., no stdio.h).

extern int cdecl printf(char *, ...);

// Note: the " cdecl" attribute is ignored for main().

int cdecl main(int argc, char **argv)
{

int i;
printf("POSIX sample program\n");
for(i = 0 ; i < argc ; i++) {

printf("%d: %s\n", i, argv[i]);
}
return 0;

}

// Since the " cdecl" attribute is ignored,
// make sure that parms go on the stack for main
// and that main gets the in the right place by
// using a pragma to do so.

#pragma aux main " *" parm [];

// The compiler emits references to these symbols,
// so make sure they get defined here to prevent
// unresolved references.

int cstart ;
#pragma aux cstart "*";
int argc;
#pragma aux argc "*";

The example program illustrates some of the special considerations required for using the
Microsoft POSIX libraries rather than the Watcom libraries. There are also some special link
time issues and these are addressed in the following sample "makefile".

286 Creating Windows NT POSIX Applications

Creating Windows NT POSIX Applications

Example:
[MAKEFILE]
posixsmp.exe : posixsmp.c posix.add makefile.

set nt include=
set include=$(%watcom)\sdk\posix\h;$(%watcom)\sdk\posix\h\sys
wcc386 -bt=nt -oaxt -zl posixsmp.c
wlink @posix.add file posixsmp sys nt posix option map

posix.add :
%create posix.add
%append posix.add system begin nt posix
%append posix.add option osname=’Windows NT character-mode posix’
%append posix.add libpath %WATCOM%\lib386\nt
%append posix.add option nodefaultlib
%append posix.add option start= PosixProcessStartup
%append posix.add lib { libcpsx.lib psxrtl.lib psxdll.lib }
%append posix.add format windows nt ^
%append posix.add runtime posix
%append posix.add end

A new "nt_posix" system is defined in the POSIX.ADD file. This file is generated
automatically by the makefile.

That is about all there is to creating a Windows NT POSIX application. One final note - make
sure when using the Microsoft headers that all the library routines that you use are declared as
cdecl otherwise your application will not run correctly.

Creating Windows NT POSIX Applications 287

Windows NT Programming Guide

288 Creating Windows NT POSIX Applications

OS/2 Programming Guide

OS/2 Programming Guide

290

34 Creating 16-bit OS/2 1.x Applications

An OS/2 application can be one of the following; a fullscreen application, a PM-compatible
application, or a Presentation Manager application. A fullscreen application runs in its own
screen group. A PM-compatible application will run in an OS/2 fullscreen environment or in
a window in the Presentation Manager screen group but does not take direct advantage of
menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus,
icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on
creating Presentation Manager applications, refer to the section entitled "Programming for
OS/2 Presentation Manager" on page 313.

We will illustrate the steps to creating 16-bit OS/2 1.x applications by taking a small sample
application and showing you how to compile, link, run and debug it.

34.1 The Sample Application
To demonstrate the creation of 16-bit OS/2 1.x applications using command-line oriented
tools, we introduce a simple sample program. For our example, we are going to use the
famous "hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

The Sample Application 291

OS/2 Programming Guide

#include <iostream.h>
#include <iomanip.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C
version uses the C library printf routine to accomplish this task. The C++ version uses the
"iostream" library to accomplish this task. We will take you through the steps necessary to
produce this result.

34.2 Building and Running the Sample OS/2 1.x
Application

To compile and link our example program which is stored in the file HELLO.C, enter the
following command:

[C:\]wcl /l=os2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wcl /l=os2 hello.c
WATCOM C/C++16 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc hello.c
WATCOM C16 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 17

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating an OS/2 16-bit executable

Provided that no errors were encountered during the compile or link phases, the "hello"
program may now be run.

[C:\]hello
Hello world

292 Building and Running the Sample OS/2 1.x Application

Creating 16-bit OS/2 1.x Applications

If you examine the current directory, you will find that two files have been created. These are
HELLO.OBJ (the result of compiling HELLO.C) and HELLO.EXE (the result of linking
HELLO.OBJ with the appropriate Watcom C/C++ libraries). It is HELLO.EXE that is run by
OS/2 when you enter the "hello" command.

34.3 Debugging the Sample OS/2 1.x Application
Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "hello" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It is also convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WCL
command, this is fairly straightforward. WCL recognizes the Watcom C/C++ compiler
"debug" options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "hello" program with debugging information, the
following command may be issued.

[C:\]wcl /l=os2 /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wcl /l=os2 /d2 hello.c
WATCOM C/C++16 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc hello.c /d2
WATCOM C16 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 155, 0 warnings, 0 errors
Code size: 23

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating an OS/2 16-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided
by the Watcom C/C++ compiler. WCL will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "Code size" value is larger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. You can request more optimization by

Debugging the Sample OS/2 1.x Application 293

OS/2 Programming Guide

specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

For OS/2, you should also include the BINP\DLL directory in the "LIBPATH" directive of
the system configuration file CONFIG.SYS. It contains the Watcom Debugger Dynamic
Link Libraries (DLLs).

Example:
libpath=c:\watcom\binp\dll

To request the Watcom Debugger to assist in debugging the application, the following
command may be issued.

[C:\]wd hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer
you to the book entitled Watcom Debugger User’s Guide.

294 Debugging the Sample OS/2 1.x Application

35 Creating 32-bit OS/2 Applications

An OS/2 application can be one of the following; a fullscreen application, a PM-compatible
application, or a Presentation Manager application. A fullscreen application runs in its own
screen group. A PM-compatible application will run in an OS/2 fullscreen environment or in
a window in the Presentation Manager screen group but does not take direct advantage of
menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus,
icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on
creating Presentation Manager applications, refer to the section entitled "Programming for
OS/2 Presentation Manager" on page 313.

We will illustrate the steps to creating 32-bit OS/2 applications by taking a small sample
application and showing you how to compile, link, run and debug it.

35.1 The Sample Application
To demonstrate the creation of 32-bit OS/2 applications using command-line oriented tools,
we introduce a simple sample program. For our example, we are going to use the famous
"hello" program.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

The C++ version of this program follows:

The Sample Application 295

OS/2 Programming Guide

#include <iostream.h>
#include <iomanip.h>

void main()
{

cout << "Hello world" << endl;
}

The goal of this program is to display the message "Hello world" on the screen. The C
version uses the C library printf routine to accomplish this task. The C++ version uses the
"iostream" library to accomplish this task. We will take you through the steps necessary to
produce this result.

35.2 Building and Running the Sample OS/2
Application

To compile and link our example program which is stored in the file HELLO.C, enter the
following command:

[C:\]wcl386 /l=os2v2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wcl386 /l=os2v2 hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 24

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating an OS/2 32-bit executable

Provided that no errors were encountered during the compile or link phases, the "hello"
program may now be run.

[C:\]hello
Hello world

296 Building and Running the Sample OS/2 Application

Creating 32-bit OS/2 Applications

If you examine the current directory, you will find that two files have been created. These are
HELLO.OBJ (the result of compiling HELLO.C) and HELLO.EXE (the result of linking
HELLO.OBJ with the appropriate Watcom C/C++ libraries). It is HELLO.EXE that is run by
OS/2 when you enter the "hello" command.

35.3 Debugging the Sample OS/2 Application
Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "hello" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It is also convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WCL386 command, this is fairly straightforward. WCL386 recognizes the Watcom C/C++
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "hello" program with debugging information, the
following command may be issued.

[C:\]wcl386 /l=os2v2 /d2 hello.c

The typical messages that appear on the screen are shown in the following illustration.

[C:\]wcl386 /l=os2v2 /d2 hello.c
WATCOM C/C++32 Compile and Link Utility
Copyright by WATCOM International Corp. 1988, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

wcc386 hello.c /d2
WATCOM C32 Optimizing Compiler
Copyright by WATCOM International Corp. 1984, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
hello.c: 6 lines, included 174, 0 warnings, 0 errors
Code size: 45

WATCOM Linker
Copyright by WATCOM International Corp. 1985, 2000. All rights reserved.
WATCOM is a trademark of Sybase, Inc. and its subsidiaries.
loading object files
searching libraries
creating an OS/2 32-bit executable

The "d2" option requests the maximum amount of debugging information that can be provided
by the Watcom C/C++ compiler. WCL386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

Debugging the Sample OS/2 Application 297

OS/2 Programming Guide

The "Code size" value is larger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. You can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, the following
command may be issued.

[C:\]wd hello

It would be too ambitious to describe the debugger in this introductory chapter so we refer
you to the book entitled Watcom Debugger User’s Guide.

298 Debugging the Sample OS/2 Application

36 OS/2 2.x Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded
application is one whose tasks are divided among several threads of execution. A process is
an executing application and the resources it uses. A thread is the smallest unit of execution
within a process. Each thread has its own stack and a set of machine registers and shares all
resources with its parent process. The path of execution of one thread does not affect that of
another; each thread is an independent entity.

Typically, an application has a single thread of execution. In this type of application, all
tasks, once initiated, are completed before the next task begins. In contrast, tasks in a
multi-threaded application can be performed concurrently since more than one thread is
executing at once. For example, each thread may be designed to perform a separate task.

36.1 Programming Considerations
Since a multi-threaded application consists of many threads of execution, there are a number
of issues that you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these
resources. For example, if your application has a function that displays information on the
console and is used by all threads, it is necessary to allow only one thread to use that function
at any time. That is, once a thread calls that function, the function should ensure that no other
thread displays information until all information for the initial thread has been displayed. An
example of such a function is the printf library function.

Another issue that must be considered when creating multi-threaded applications is global
variables. If you have global variables that contain thread-specific information, there must be
an instance of each global variable for each thread. An example of such a variable is the
errno global variable defined in the run-time libraries. If an error condition was created by
a thread, you would not want it to affect the execution of other threads. Therefore, each
thread should contain its own instance of this variable.

Programming Considerations 299

OS/2 Programming Guide

36.2 Creating Threads
Each application initially contains a single thread. The run-time libraries contain two
functions that create and terminate threads of execution. The function beginthread
creates a thread of execution and the function endthread ends a thread of execution. The
macro threadid can be used to determine the current thread identifier.

WARNING! If any thread calls a library function, you must use the beginthread
function to create the thread. Do not use the DosCreateThread API function.

36.2.1 Creating a New Thread

The beginthread function creates a new thread. It is defined as follows.

int beginthread(void (*start address)(void *),

void *stack bottom,
unsigned stack size,
void *arglist);

where description:

start_address is the address of the function that will be called when the newly created thread
is executed. When the thread returns from that function, the thread will be
terminated. Note that a call to the endthread function will also terminate
the thread.

stack_bottom specifies the bottom of the stack to be used by the thread. Note that this
argument is ignored as it is only needed to simplify the port of OS/2 1.x
multi-threaded applications to OS/2 2.x. Under OS/2 2.x, the operating system
allocates the stack for the new thread. A value of NULL may be specified.

stack_size specifies the size of the stack to be allocated by the operating system for the new
thread. The stack size should be a multiple of 4K.

arglist is passed as an argument to the function specified by start address. If no
argument is required, a value of NULL can be specified.

If a new thread is successfully created, the thread identifier of the new thread is returned.
Otherwise, a value of -1 is returned.

300 Creating Threads

OS/2 2.x Multi-threaded Applications

The header file PROCESS.H contains the definition of the beginthread function.

36.2.2 Terminating the Current Thread

The endthread function terminates the current thread. It is defined as follows.

void endthread(void)

The header file PROCESS.H contains the definition of the endthread function.

36.2.3 Getting the Current Thread Identifier

The threadid macro can be used to determine the current thread identifier. It is defined
as follows.

int * threadid(void);
#define threadid (threadid())

The header file STDDEF.H contains the definition of the threadid macro.

36.3 A Multi-threaded Example
Let us create a simple multi-threaded application.

#include <process.h>
#include <stdio.h>
#include <stddef.h>
#define INCL DOS
#include <os2.h>

static volatile int NumThreads;
static volatile int HoldThreads;

#define NUM THREADS 5
#define STACK SIZE 8192

A Multi-threaded Example 301

OS/2 Programming Guide

static void a thread(void *arglist)
/***********************************/
{

while(HoldThreads) {
DosSleep(1);

}
printf("Hi from thread %d\n", * threadid);
DosEnterCritSec();
--NumThreads;
DosExitCritSec();
endthread();

}

int main(void)
/**************/
{

int i;

printf("Initial thread id = %d\n", * threadid);
NumThreads = 0;
HoldThreads = 1;
/* initial thread counts as 1 */
for(i = 2; i <= NUM THREADS; ++i) {

if(beginthread(a thread, NULL, STACK SIZE, NULL) == -1) {
printf("creation of thread %d failed\n", i);

} else {
++NumThreads;

}
}
HoldThreads = 0;
while(NumThreads != 0) {

DosSleep(1);
}
return(0);

}

Note:

1. In the function a thread, DosEnterCritSec and DosExitCritSec are
called when we modify the variable NumThreads. This ensures that the action
of extracting the value of NumThreads from memory, incrementing the value,
and storing the new result into memory, occurs without interruption. If these
functions were not called, it would be possible for two threads to extract the value
of NumThreads from memory before an update occurred.

Let us assume that the file MTHREAD.C contains the above example. Before compiling the
file, make sure that the WATCOM environment variable is set to the directory in which you
installed Watcom C/C++. Also, the INCLUDE environment variable must include the
\WATCOM\H\OS2 and \WATCOM\H directories ("\WATCOM" is the directory in which
Watcom C/C++ was installed).

We can now compile and link the application by issuing the following command.

302 A Multi-threaded Example

OS/2 2.x Multi-threaded Applications

[C:\]wcl386 /bt=os2 /bm /l=os2v2 mthread

The "bm" option must be specified since we are creating a multi-threaded application. If your
multi-threaded application contains more than one module, each module must be compiled
using the "bm" switch.

The "l" option specifies the target system for which the application is to be linked. The
system name os2v2 is defined in the file WLSYSTEM.LNK which is located in the "BINW"
directory of the directory in which you installed Watcom C/C++.

The multi-threaded application is now ready to be run.

36.4 Thread Limits
There is a limit to the number of threads an application can create under 16-bit OS/2. The
default limit is 32. This limit can be adjusted by statically initializing the unsigned global
variable MaxThreads.

Under 32-bit OS/2, there is no limit to the number of threads an application can create.
However, due to the way in which multiple threads are supported in the WATCOM libraries,
there is a small performance penalty once the number of threads exceeds the default limit of
32 (this number includes the initial thread). If you are creating more than 32 threads and wish
to avoid this performance penalty, you can redefine the threshold value of 32. You can
statically initialize the global variable MaxThreads.

By adding the following line to your multi-threaded application, the new threshold value will
be set to 48.

unsigned MaxThreads = { 48 };

Thread Limits 303

OS/2 Programming Guide

304 Thread Limits

37 OS/2 2.x Dynamic Link Libraries

A dynamic link library, like a standard library, is a library of functions. When an application
uses functions from a standard library, the library functions referenced by the application
become part of the executable module. This form of linking is called static linking. When an
application uses functions from a dynamic link library, the library functions referenced by the
application are not included in the executable module. Instead, the executable module
contains references to these functions which are resolved when the application is loaded. This
form of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functions in dynamic link libraries are not linked into your program. Only
references to the functions in dynamic link libraries are placed in the program
module. These references are called import definitions. As a result, the linking
time is reduced and disk space is saved. If many applications reference the same
dynamic link library, the saving in disk space can be significant.

2. Since program modules only reference dynamic link libraries and do not contain
the actual executable code, a dynamic link library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications
that use them. If many applications that use the same dynamic link library are
executing concurrently, the sharing of code and data segments improves memory
utilization.

37.1 Creating Dynamic Link Libraries
Once you have developed the source for a library of functions, a number of steps are required
to create a dynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the
compiler that the module you are compiling is part of a dynamic link library. Once you have
successfully compiled your source, you must create a linker directive file that describes the

Creating Dynamic Link Libraries 305

OS/2 Programming Guide

attributes of your dynamic link library. The following lists the most common linker directives
required to create a dynamic link library.

1. The "SYSTEM" directive is used to specify that a dynamic link library is to be
created.

2. The "EXPORT" directive is used to to specify which functions in the dynamic link
library are to be exported.

3. The "OPTION" directive is used to specify attributes such as the name of the
dynamic link library and how to allocate the automatic data segment when the
dynamic link library is referenced.

4. The "SEGMENT" directive is used to specify attributes of segments. For example,
a segment may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to
applications that wish to use it. This can be done by creating an import library for the
dynamic link library or creating a linker directive file that contains "IMPORT" directives for
each of the entry points in the dynamic link library.

37.2 Creating a Sample Dynamic Link Library
Let us now create a dynamic link library using the following example.

#include <stdio.h>
#if defined(cplusplus)
#define EXTERNC extern "C"
#else
#define EXTERNC
#endif

unsigned LibMain(unsigned hmod, unsigned termination)
{

if(termination) {
/* DLL is detaching from process */

} else {
/* DLL is attaching to process */

}
return(1);

}
EXTERNC void dll entry 1(void)
{

printf("Hi from dll entry #1\n");
}

EXTERNC void dll entry 2(void)
{

printf("Hi from dll entry #2\n");
}

306 Creating a Sample Dynamic Link Library

OS/2 2.x Dynamic Link Libraries

Starting with version 11, 32-bit OS/2 DLLs can include a LibMain entry point when you are
using the Watcom C/C++ run-time libraries.

Arguments:

hmod This is a handle for the DLL.

termination A 0 value indicates that the DLL is attaching to the address space of the current
process as a result of the process starting up or as a result of a call to
LoadLibrary. A DLL can use this opportunity to initialize any instance
data.

A non-zero value indicates that the DLL is detaching from the address space of
the calling process as a result of either a normal termination or of a call to
FreeLibrary.

Return Value The LibMain function returns 1 if initialization succeeds or 0 if initialization
fails.

If the return value is 0 when LibMain is called because the process uses the
LoadLibrary function, LoadLibrary returns NULL.

If the return value is 0 when LibMain is called during process initialization, the
process terminates with an error.

Assume the above example is contained in the file DLLSAMP.C. We can compile the file
using the following command. Note that we must specify the "bd" compiler option.

[C:\]wcc386 /bd dllsamp

Before we can link our example, we must create a linker directive file that describes the
attributes and entry points of our dynamic link library. The following is a linker directive file,
called DLLSAMP.LNK, that can be used to create the dynamic link library.

system os2v2 dll initinstance terminstance
option manyautodata
export dll entry 1
export dll entry 2
file dllsamp

Creating a Sample Dynamic Link Library 307

OS/2 Programming Guide

Notes:

1. The "SYSTEM" directive specifies that we are creating a 32-bit OS/2 dynamic link
library.

2. The "MANYAUTODATA" option specifies that the automatic data segment is
allocated for every instance of the dynamic link library. This option must be
specified only for a dynamic link library that uses the Watcom C/C++ run-time
libraries. If the Watcom C/C++ run-time libraries are not used, this option is not
required. Our example does use the Watcom C/C++ run-time libraries so we must
specify the "MANYAUTODATA" option.

As was just mentioned, when a dynamic link library uses the Watcom C/C++
run-time libraries, an automatic data segment is created each time a process
accesses the dynamic link library. For this reason, initialization code must be
executed when a process accesses the dynamic link library for the first time. To
achieve this, "INITINSTANCE" must be specified in the "SYSTEM" directive.
Similarly, "TERMINSTANCE" must be specified so that the termination code is
executed when a process has completed its access to the dynamic link library. If
the Watcom C/C++ run-time libraries are not used, these options are not required.

3. The "EXPORT" directive specifies the entry points into the dynamic link library.
Note that the names specified in the "EXPORT" directive are appended with an
underscore. This is the default naming convention used when compiling using the
register-based calling convention. No underscore is required when compiling using
the stack-based calling convention.

We can now create our dynamic link library by issuing the following command.

[C:\]wlink @dllsamp

A file called DLLSAMP.DLL will be created.

37.3 Using Dynamic Link Libraries
Once we have created a dynamic link library, we must allow other applications to access the
functions available in the dynamic link library. There are two ways to achieve this.

The first method is to create a linker directive file which contains an "IMPORT" directive for
all entry points in the dynamic link library. The "IMPORT" directive provides the name of
the entry point and the name of the dynamic link library. When creating an application that

308 Using Dynamic Link Libraries

OS/2 2.x Dynamic Link Libraries

references a function in the dynamic link library, this linker directive file would be included
as part of the linking process that created the application.

The second method is to use import libraries. An import library is a standard library that is
created from a dynamic link library by using the Watcom Library Manager. It contains object
modules that describe the entry points in a dynamic link library. The resulting import library
can then be specified in a "LIBRARY" directive in the same way one would specify a
standard library.

Using an import library is the preferred method of providing references to functions in
dynamic link libraries. When a dynamic link library is modified, typically the import library
corresponding to the modified dynamic link library is updated to reflect the changes. Hence,
any directive file that specifies the import library in a "LIBRARY" directive need not be
modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directives to reflect the changes in the dynamic link library.

Let us create an import library for our sample dynamic link library we created in the previous
section. We do this by issuing the following command.

[C:\]wlib dllsamp +dllsamp.dll

A standard library called DLLSAMP.LIB will be created.

Suppose the following sample program, contained in the file DLLTEST.C, calls the
functions from our sample dynamic link library.

#include <stdio.h>
#if defined(cplusplus)
#define EXTERNC extern "C"
#else
#define EXTERNC
#endif

EXTERNC void dll entry 1(void);
EXTERNC void dll entry 2(void);

int main(void)
{

dll entry 1();
dll entry 2();
return(0);

}

We can compile and link our sample application by issuing the following command.

[C:\]wcl386 /l=os2v2 dlltest dllsamp.lib

Using Dynamic Link Libraries 309

OS/2 Programming Guide

If we had created a linker directive file of "IMPORT" directives instead of an import library
for the dynamic link library, the linker directive file, say DLLIMPS.LNK, would be as
follows.

import dll entry 1 dllsamp
import dll entry 2 dllsamp

Note that the names specified in the "IMPORT" directive are appended with an underscore.
This is the default naming convention used when compiling using the register-based calling
convention. No underscore is required when compiling using the stack-based calling
convention.

To compile and link our sample application, we would issue the following command.

[C:\]wcl386 /l=os2v2 dlltest /"@dllimps"

37.4 The Dynamic Link Library Data Area
The Watcom C/C++ 32-bit run-time library does not support the general case operation of
DLLs in an execution environment where there is only one instance of the DATA segment
(DGROUP) for that DLL.

There are two cases that can lead to a DLL executing with only one instance of the DGROUP.

1. DLLs linked for 32-bit OS/2 without the MANYAUTODATA option.

2. DLLs linked for the Win32 API and executing under Win32s.

In these cases the run-time library startup code detects that there is only one instance of the
DGROUP when a second process attempts to attach to the DLL. At that point, it issues a
diagnostic for the user and then notifies the operating system that the second process cannot
attach to the DLL.

Developers who require DLLs to operate when there is only one instance of the DGROUP can
suppress the function which issues the diagnostic and notifies the operating system that the
second process cannot attach to the DLL.

Doing so requires good behaviour on the part of processes attaching to the DLL. This good
behaviour consists primarily of ensuring that the first process to attach to the DLL is also the
last process to detach from the DLL thereby ensuring that the DATA segment is not released
back to the free memory pool.

310 The Dynamic Link Library Data Area

OS/2 2.x Dynamic Link Libraries

To suppress the function which issues the diagnostic and notifies the operating system that the
second process cannot attach to the DLL, the developer must provide a replacement entry
point with the following prototype:

int disallow single dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA
segment is allowed.

37.5 Dynamic Link Library Initialization/Termination
Each dynamic link library (DLL) has an initialization and termination routine associated with
it. The initialization routine can either be called the first time any process accesses the DLL
("INITGLOBAL" is specified at link time) or each time a process accesses the DLL
("INITINSTANCE" is specified at link time). Similarly, the termination routine can either be
called when all processes have completed their access of the DLL ("TERMGLOBAL" is
specified at link time) or each time a process completes its access of the DLL
("TERMINSTANCE" is specified at link time).

For a DLL that uses the C/C++ run-time libraries, initialization and termination of the C/C++
run-time environment is performed automatically. It is also possible for a DLL to do its own
special initialization and termination process.

The C/C++ run-time environment provides two methods for calling user-written DLL
initialization and termination code.

1. If you provide your own version of LibMain then it will be called for
initialization and termination. The use of LibMain is described earlier in this
chapter.

2. If you do not provide your own version of LibMain then a default version is
linked in from the library. This version will call dll initialize for DLL
initialization and dll terminate for DLL termination. Default stub
versions of these two routines are included in the run-time library. If you wish to
perform additional initialization/termination that is specific to your dynamic link
library, you may write your own versions of these routines.

Once the C/C++ run-time environment is initialized, the routine dll initialize is
called. After the C/C++ run-time environment is terminated, the routine
dll terminate is called. This last point is important since it means that you cannot do

any run-time calls in the termination routine.

Dynamic Link Library Initialization/Termination 311

OS/2 Programming Guide

The initialization and termination routines return an integer. A value of 0 indicates failure; a
value of 1 indicates success. The following example illustrates sample
initialization/termination routines.

#include <stdlib.h>

#define WORKING SIZE (64 * 1024)

char *WorkingStorage;

#if defined(cplusplus)
#define EXTERNC extern "C"
#else
#define EXTERNC
#endif

void dll finalize(void);

EXTERNC int dll initialize(void)
{

WorkingStorage = malloc(WORKING SIZE);
if(WorkingStorage == NULL) return(0);
atexit(dll finalize);
return(1);

}

void dll finalize(void)
{

free(WorkingStorage);
}

EXTERNC int dll terminate(void)
{

/* no C run-time calls allowed under OS/2 Warp */
return(1);

}

EXTERNC void dll entry(void)
{

/* use array WorkingStorage */
}

In the above example, the process initialization routine allocates storage that the dynamic link
library needs, the routine dll entry uses the storage, and the process termination routine
frees the storage allocated in the initialization routine.

312 Dynamic Link Library Initialization/Termination

38 Programming for OS/2 Presentation
Manager

Basically, there are two classes of C/C++ applications that can run in a windowed
environment.

The first are those C/C++ applications that do not use any of the Presentation Manager API
functions; they are strictly C/C++ applications that do not rely on the features of a particular
operating system.

The second class of C/C++ applications are those that actually call Presentation Manager API
functions directly. These are applications that have been tailored for the Presentation
Manager operating environment.

It is assumed that the reader is familiar with the concepts of Presentation Manager
programming.

38.1 Porting Existing C/C++ Applications
Suppose you have a set of C/C++ applications that previously ran under DOS and you now
wish to run them under OS/2. To achieve this, simply recompile your application and link
with the appropriate libraries. Depending on the method with which you linked your
application, it can run in an OS/2 fullscreen environment, a PM-compatible window, or as a
Presentation Manager application. An OS/2 fullscreen application runs in its own screen
group. A PM-compatible application will run in an OS/2 fullscreen environment or in a
window in the Presentation Manager screen group but does not take direct advantage of
menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus,
icons, scroll bars, etc. An application that was not designed as a windowed application (such
as a DOS application) can run as a Presentation Manager application. This is achieved by a
default windowing system that is optionally linked with your application. The following
sections describe the default windowing system.

Porting Existing C/C++ Applications 313

OS/2 Programming Guide

38.1.1 Console Device in a Windowed Environment

In a C/C++ application that runs under DOS, stdin (C++ cin) and stdout (C++ cout) are
connected to the standard input and standard output devices respectively. It is not a
recommended practice to read directly from the standard input device or write to the standard
output device when running in a windowed environment. For this reason, a default
windowing environment is created for C/C++ applications that read from stdin (C++ cin) or
write to stdout (C++ cout). When your application is started, a window is created in which
output to stdout (C++ cout) is displayed and input from stdin (C++ cin) is requested.

In addition to the standard I/O device, it is also possible to perform I/O to the console by
explicitly opening a file whose name is "CON". When this occurs, another window is created
and displayed. This window is different from the one created for standard input and standard
output. In fact, every time you open the console device a different window is created. This
provides a simple multi-windowing system for multiple streams of data to and from the
console device.

38.1.2 An Example

Very little effort is required to port an existing C/C++ application to OS/2. Let us try to run
the following sample program (contained in the file HELLO.C).

#include <stdio.h>

int main(void)
/**************/
{

printf("Hello world!\n");
return(0);

}

An equivalent C++ program follows:

#include <iostream.h>
#include <iomanip.h>

int main(void)
{

cout << "Hello world" << endl;
return(0);

}

First we must compile the file HELLO.C by issuing the following command.

314 Porting Existing C/C++ Applications

Programming for OS/2 Presentation Manager

[C:\]wcc386 hello

Once we have successfully compiled the file, we can link it by issuing the following
command.

[C:\]wlink sys os2v2 file hello

This will create a PM-compatible application. If you wish to create a fullscreen application,
link with the following command.

[C:\]wlink sys os2v2 fullscreen file hello

If you wish to use the default windowing system, you must recompile your application and
specify a special option, namely "bw".

[C:\]wcc386 /bw hello

We now link our application with the following command.

[C:\]wlink sys os2v2 pm file hello

38.2 Default Windowing Library Functions
A few library functions have been written to enable some simple customization of the default
windowing system’s behaviour. The following functions are supplied:

_dwDeleteOnClose

int dwDeleteOnClose(int handle);

This function tells the console window that it should close itself when the file is
closed. You must pass to it the handle associated with the opened console.

_dwSetAboutDlg

int dwSetAboutDlg(const char *title, const char
*text);

This function sets the about dialog box of the default windowing system. The "title"
points to the string that will replace the current title. If title is NULL then the title
will not be replaced. The "text" points to a string which will be placed in the about

Default Windowing Library Functions 315

OS/2 Programming Guide

box. To get multiple lines, embed a new line after each logical line in the string. If
"text" is NULL, then the current text in the about box will not be replaced.

_dwSetAppTitle

int dwSetAppTitle(const char *title);

This function sets the main window’s title.

_dwSetConTitle

int dwSetConTitle(int handle, const char *title);

This function sets the console window’s title which corresponds to the handle passed
to it.

_dwShutDown

int dwShutDown(void);

This function shuts down the default windowing I/O system. The application will
continue to execute but no windows will be available for output.

_dwYield

int dwYield(void);

This function yields control back to the operating system, thereby giving other
processes a chance to run.

These functions are described more fully in the WATCOM C Library Reference.

38.3 Calling Presentation Manager API Functions
It is also possible for a C/C++ application to create its own windowing environment. This is
achieved by calling PM API functions directly from your C/C++ program. The techniques for
developing these applications can be found in the OS/2 Technical Library. To order the
Technical Library, call one of the following numbers.

In Canada: 1-800-465-1234
In the United States: 1-800-426-7282 (OS/2 2.0, 2.1)

1-800-879-2755 (OS/2 Warp)

316 Calling Presentation Manager API Functions

Programming for OS/2 Presentation Manager

You can also order copies of these books from an IBM authorized dealer or IBM
representative.

Calling Presentation Manager API Functions 317

OS/2 Programming Guide

318 Calling Presentation Manager API Functions

39 Developing an OS/2 Physical Device
Driver

In this chapter, we discuss the development of Physical Device Drivers (PDD) for OS/2. The
tools used in the creation of the sample PDD are:

• the 16-bit Watcom C compiler

• the Watcom Assembler

• the Watcom Make utility

The sample Physical Device Driver that we are going to build, HRTIMER.SYS, provides
access to a high resolution timer. Additional sources of information on PDDs can be found in
the following:

1. OS/2 2.0 Technical Library - Physical Device Driver Reference

2. Writing OS/2 2.1 Device Drivers in C by Steve J. Mastrianni

3. An OS/2 High Resolution Software Timer by Derek Williams, an article which
appeared in the Fall 1991 issue of IBM Personal Systems Developer magazine.
The source code for this device driver was adapted from the magazine article. For
detailed information on the way this device driver works, please read that article.

HRTIMER.SYS is a 16-bit device driver which runs under OS/2 1.x and 2.x/3.x. It has a
resolution of 840 nanoseconds (i.e., 1 tick of the Intel 8253/8254 timer = 840 nanoseconds).

Here are some notes on creating Physical Device Drivers using Watcom software tools.

1. A Physical Device Driver is linked as a DLL.

2. The first segment must be a data segment, the next a code segment.

3. By default only the first two segments remain after initialization, extra segments
have to be marked IOPL.

Developing an OS/2 Physical Device Driver 319

OS/2 Programming Guide

4. The assembler file, DEVSEGS.ASM, defines the segment ordering.

5. #pragma dataseg and #pragma codeseg are used to get various pieces of
code and data into the correct segments.

6. The HEADER segment contains the device header and must be at the beginning of
the data segment.

7. The INITCODE and INITDATA segments are used to place initialization code
and data at the end so it can be discarded by OS/2.

To compile the source code for the 16-bit Physical Device Drivers, we use the following
options:

/bt=os2 build target is OS/2

/ms 16-bit small code/small data model

/5 Pentium optimizations (this is optional)

/omi inline math and intrinsic functions (this is optional)

/s no stack checking

/zdp DS is pegged to DGROUP

/zff FS floats, i.e. not fixed to a segment

/zgf GS floats, i.e. not fixed to a segment

/zu SS != DGROUP

/zl remove default library information

To link the object code for the 16-bit Physical Device Drivers, we use the following options:

name hrtimer.sys to name the executable file.

sys os2 dll initglobal to link a 16-bit OS/2 DLL. Specifying INITGLOBAL will cause
the initialization routine to be called the first time the dynamic link
library is loaded.

option map to generate a map file.

320 Developing an OS/2 Physical Device Driver

Developing an OS/2 Physical Device Driver

option quiet to minimize the number of linker informational messages.

lib os2 to include the 16-bit OS2.LIB library file.

file ... to include the component object files of the device driver.

The sample files used to create the Physical Device Driver and the programs that use it are
located in the \WATCOM\SRC\OS2\PDD directory. The Physical Device Driver files are:

DEVSEGS.ASM This small assembler file orders the segment definitions in the
executable file.

Data Segments HEADER

CONST
CONST2
DATA
BSS
INITDATA (discardable)

Code Segments TEXT
INITCODE (discardable)

HEADER.C The first thing that must follow the EXE Header is the Device
Driver Header.

STRATEGY.C This is the resident portion of the Strategy routine.

STRATINI.C This is the discardable portion of the Strategy routine, the
initialization code and data.

HRTIMER.H This file contains the definition of the timer "timestamp" structure.

HRDEV.H This file contains definitions for the Intel 8253 hardware timer.

DEVHDR.H This file contains definitions for the Device Driver Header
structure (see page 3-2, "Physical Device Driver Header" of PDD
Reference).

DEVDEFS.H This file provides type definitions.

DEVREQP.H This file contains definitions for the Device Driver Request
Packets.

DEVAUX.H This file contains definitions for the Device Driver Help (DevHlp)
routines.

Developing an OS/2 Physical Device Driver 321

OS/2 Programming Guide

The demonstration program files are:

HRTEST.C This file is a sample C program that shows how to use the device driver to
calculate elapsed times. It demonstrates how to open the device driver, read
timestamps from it and close it. It factors in the overhead of the read and has a
function that is used to calculate elapsed time from a start and stop timestamp.

TIMER.C This file is a sample C program that can be used to time other applications. It
also uses the device driver.

To build the device driver and demonstration programs, set your current directory to
\WATCOM\SRC\OS2\PDD and type:

wmake

To install the device driver, put the following statement in your CONFIG.SYS file.

DEVICE=\WATCOM\SRC\OS2\PDD\HRTIMER.SYS

You must then reboot OS/2.

To run the test program, use the following command-line:

HRTEST [milliseconds]

For [milliseconds], you can enter any number (e.g., 2000 which is 2 seconds).

HRTEST.EXE will issue a DosSleep for the amount of milliseconds specified or will use a
default if no command-line parameter is given. It will get a timestamp from the device driver
before and after the DosSleep and will calculate the elapsed time of that sleep and display the
results. It will do this continuously until Ctrl/C or Ctrl/Break is pressed.

Keep in mind that DosSleep has a granularity of 32 milliseconds. Any discrepancy between
the number of milliseconds used for the DosSleep and the elapsed time results from the timer
are the fault of this granularity, not a problem with the timer. DosSleep is used solely as a
convenient method of displaying the capabilities of the driver.

To run the timer program, use the following command-line:

TIMER program name [program args]

For example, to time an OS/2 Directory command, issue the following command.

322 Developing an OS/2 Physical Device Driver

Developing an OS/2 Physical Device Driver

Example:
timer cmd /c dir c:

Developing an OS/2 Physical Device Driver 323

OS/2 Programming Guide

324 Developing an OS/2 Physical Device Driver

40 Using the IBM OS/2 WorkFrame/2

Watcom C/C++ has been integrated into the IBM Developer’s WorkFrame/2 version 1.1. The
IBM Developer’s WorkFrame/2 provides a complete development environment for editing,
compiling, linking, and debugging your application. You must install the IBM Developer’s
WorkFrame/2 on your system before you can use it. Also, you must have selected support for
IBM Developer’s WorkFrame/2 when you installed Watcom C/C++.

Note that Watcom C/C++ was tested with version 1.1 of WorkFrame/2. We do not guarantee
that Watcom C/C++ will work with later versions of WorkFrame/2.

WorkFrame/2 provides a convenient, user-friendly and consistent method of accessing the
compiler and tools. For example, setting compiler options is achieved through the use of
pulldown menus and dialogs that list all the options and provide help information for each
option. You can also invoke the compiler from a pulldown menu.

It is assumed that you are familiar with the operating procedures required to use the IBM
Developer’s WorkFrame/2.

Using the IBM OS/2 WorkFrame/2 325

OS/2 Programming Guide

326 Using the IBM OS/2 WorkFrame/2

AutoCAD ADS Programming
Guide

AutoCAD ADS Programming Guide

328

41 Creating AutoCAD Applications

Watcom C/C++ supports the DOS version of the AutoCAD Development System (ADS) from
Autodesk (release 13 and earlier versions). ADS is a set of header files and a library. The
header files (files with extension ".h") are located in the \ACAD\ADS directory (assuming
you installed AutoCAD in the "\ACAD" directory). Files in this directory with extension ".C"
are sample ADS applications. The ADS library is called WCADS.LIB and is located in the
\ACAD\ADS directory.

The ADS library WCADS.LIB is in a format that is specific to the Phar Lap development
tools and must be converted to a standard form so that the Watcom Linker can read the library
dictionary. This is achieved by issuing the following two commands.

1. Protect the old ADS library by renaming it.

Example:
C>ren wcads.lib owcads.lib

2. Convert the library by issuing the following command.

Example:
C>wlib wcads +owcads.lib

41.1 Compiling an ADS Application
As an example, we will create the ADS application contained in the file FACT.C. In order to
compile this file, we must set the INCLUDE environment variable to the paths that contain
the necessary header files.

Compiling an ADS Application 329

AutoCAD ADS Programming Guide

Example:
C>set include=\watcom\h;\acad\ads

We can now compile FACT.C by issuing the following command.

Example:
C>wcc386 /fpi87 /3s fact

The "fpi87" option tells the compiler to generate in-line 80x87 floating-point instructions.
The "3s" option selects 80387 instruction timings and the stack-based calling convention. The
stack-based calling convention is required for AutoCAD applications.

41.2 Linking an ADS Application
Each ADS application requires a special version of the startup module that is contained in the
Watcom C/C++ run-time library CLIB3S.LIB. This special version, ADSSTART.OBJ, is
located in the \WATCOM\LIB386\DOS directory. It is automatically included when you use
the system ads directive shown below.

For ease of use, create the following linker directive file and name it FACT.LNK.

system ads
file fact
library \acad\ads\wcads

We can now link our ADS application by issuing the following command.

Example:
C>wlink @fact

41.3 One-Step Compiling and Linking
For simple applications, the above steps can be combined into a single command as follows:

330 One-Step Compiling and Linking

Creating AutoCAD Applications

Example:
C>wcl386 /l=ads /fpi87 /3s \acad\ads\wcads.lib fact

The WCL386 utility will automatically generate the appropriate linker directive file.

41.4 Debugging an ADS Application
If you wish to debug your ADS application with the Watcom Debugger, you must specify the
"d1" or "d2" option when compiling the source code. The "d1" compiler option generates
only line numbering information; the "d2" compiler option generates full debugging
information that includes symbolic information for all variables.

Example:
C>wcc386 /fpi87 /3s /d2 fact

When we link our application we must inform the Watcom Linker to create an executable file
that contains the debugging information generated by the compiler. This is done by adding
the "DEBUG ALL" directive to our directive file.

debug all
system ads
file fact
library \acad\ads\wcads

We must link our application again.

Example:
C>wlink @fact

Before running the Watcom Debugger, add the following line to your ACAD.ADS file.

\watcom\binw\adshelp.exp

The ACAD.ADS file contains a list of ADS applications that are loaded by AutoCAD when
AutoCAD is loaded. The ADSHELP.EXP file is an ADS application that is required by the
Watcom Debugger for debugging ADS applications.

An earlier version of the Watcom Debugger required that you set the DOSX environment
variable to PRIVILEGED (DOSX=-priv) for AutoCAD Release 12 since AutoCAD was
linked as UNPRIVILEGED. Starting with version 10 of the debugger, this is no longer
required and, in fact, will cause unpredictable results for release 13 if it is set.

To invoke the Watcom Debugger, enter the following command.

Debugging an ADS Application 331

AutoCAD ADS Programming Guide

Example:
C>wd /tr=ads /swap

If you have a two-monitor setup, you may omit the "swap" option.

Note that we did not specify the AutoCAD executable file; the debugger trap file, ADS.TRP,
will load AutoCAD automatically. You should now be in the Watcom Debugger. At this
point, enter the following debugger command.

Example:
ads fact.exp

You should now be in AutoCAD. When you load your ADS application from AutoLISP, the
debugger will be entered and source for your program should be displayed in the source
window. The ADS.DBG file contains a sequence of debugger commands that starts
AutoCAD, loads the debugging information from the executable file you specify, and
relocates address information based on the code and data selector values for your application.
You are now ready to debug your ADS application.

For large ADS applications, you may get an error when the "ADS" debugger command file is
invoked indicating that the debugger was unable to load the debugging information from the
executable file because of memory constraints. If the error message "no memory for
debugging information" or "no memory for debugging information - increase dynamic
memory" is issued, use the debugger "dynamic" option to increase the amount of dynamic
memory (the default is 40k). The following example increases the amount of dynamic
memory to 60k.

Example:
C>wd /tr=ads /swap /dynamic=60k

332 Debugging an ADS Application

Novell NLM Programming Guide

Novell NLM Programming Guide

334

42 Creating NetWare 386 NLM Applications

Watcom C/C++ supports version 4.0 of the Netware 386 API. We include the following
components:

header files Header files for the Netware 4.0 API are located in the \WATCOM\NOVH
directory.

import libraries
Import libraries for the Netware 4.0 API are located in the \WATCOM\NOVI
directory.

libraries The C/C++ libraries for Netware 4.0 is located in the \WATCOM\LIB386 and
\WATCOM\LIB386\NETWARE directories.

debug servers
Servers for remote debugging of Netware 4.0 NLMs are located in the
\WATCOM\NLM directory. The same directory also contains the Watcom
Execution Sampler for NLMs.

Applications built for version 4.0 will run on 4.1. We do not include support for any API
specific to version 4.1. Netware developers must use the support included with Watcom
C/C++ version 10.0 or greater since the version supplied by Novell only works with Watcom
C/C++ version 9.5. Netware 4.1 support requires modification to the header files supplied by
Novell. Contact Novell for more information.

The following special notes apply to developing applications for NetWare.

1. You must compile your source files with the "/bt=NETWARE" option. This will
cause the compiler to:

• use the small memory model instead of the flat memory model,
• use stack-based calling conventions,
• search the NETWARE_INCLUDE environment variable before searching
the INCLUDE environment variable, and

• reference a special startup symbol, WATCOM Prelude, in the libraries.

2. You must compile your source files with the small memory model option ("ms").
This is accomplished by specifying the "/bt=NETWARE" option.

Creating NetWare 386 NLM Applications 335

Novell NLM Programming Guide

3. You must compile your source files with one of the stack-based calling convention
options ("3s", "4s" or "5s"). This is accomplished by specifying the
"/bt=NETWARE" option.

4. You must set the NETWARE_INCLUDE environment variable to point to the
\WATCOM\NOVH directory. This environment variable will be searched first when
you compile with the "/bt=NETWARE" option. Alternatively, you can set the
INCLUDE environment variable to include \WATCOM\NOVH before other include
directories.

5. If you are using the compile and link utility WCL386, you must use the following
options: "/l=NETWARE /bt=NETWARE".

6. You must specify

system NETWARE

when linking an NLM. This is automatic if you are using WCL386 and the
"/l=NETWARE" option.

7. If you are using other Netware APIs such as NWSNUT, then you must include
module and import statements as input to the Watcom Linker.

Example:
module nwsnut
import @%WATCOM%\novi\nwsnut.imp

This is done automatically for the C Library (CLIB.IMP). The following import
lists have been provided for Netware API libraries.

AIO.IMP
APPLETLK.IMP
BSD.IMP
CLIB.IMP
DSAPI.IMP
MATHLIB.IMP
NWSNUT.IMP
SOCKLIB.IMP
STREAMS.IMP
TLI.IMP

336 Creating NetWare 386 NLM Applications

Mixed Language Programming

Mixed Language Programming

338

43 Inter-Language calls: C and FORTRAN

The purpose of this chapter is to anticipate common questions about mixed-language
development using Watcom C/C++ and Watcom FORTRAN 77.

The following topics are discussed in this chapter:

• Symbol Naming Convention

• Argument Passing Convention

• Memory Model Compatibility

• Integer Type Compatibility

• How do I pass integers from C to a FORTRAN function?

• How do I pass integers from FORTRAN to a C function?

• How do I pass a string from a C function to FORTRAN?

• How do I pass a string from FORTRAN to a C function?

• How do I access a FORTRAN common block from within C?

• How do I call a C function that accepts a variable number of arguments?

43.1 Symbol Naming Convention
The symbol naming convention describes how a symbol in source form is mapped to its object
form. Because of this mapping, the name generated in the object file may differ from its
original source form.

Default symbol naming conventions vary between compilers. Watcom C/C++ prefixes an
underscore character to the beginning of variable names and appends an underscore to the end
of function names during the compilation process. Watcom FORTRAN 77 converts symbols
to upper case. Auxiliary pragmas can be used to resolve this inconsistency.

Symbol Naming Convention 339

Mixed Language Programming

Pragmas are compiler directives which can provide several capabilities, one of which is to
provide information used for code generation. When calling a FORTRAN subprogram from
C, we want to instruct the compiler NOT to append the underscore at the end of the function
name and to convert the name to upper case. This is achieved by using the following C
auxiliary pragma:

#pragma aux ftnname "^";

The "^" character tells the compiler to convert the symbol name "ftnname" to upper case; no
underscore character will be appended. This solves potential linker problems with "ftnname"
since (by C convention) the linker would attempt to resolve a reference to "ftnname_".

When calling C functions from FORTRAN, we need to instruct the compiler to add the
underscore at the end of the function name, and to convert the name to lower case. Since the
FORTRAN compiler automatically converts identifiers to uppercase, it is necessary to force
the compiler to emit an equivalent lowercase name. Both of these things can be done with the
following FORTRAN auxiliary pragma:

*$pragma aux CNAME "! "

There is another less convenient way to do this as shown in the following:

*$pragma aux CNAME "cname "

In the latter example, the case of the name in quotation marks is preserved.

Use of these pragmas resolves the naming differences, however, the issue of argument passing
must still be resolved.

43.2 Argument Passing Convention
In general, C uses call-by-value (passes argument values) while FORTRAN uses
call-by-reference (passes pointers to argument values). This implies that to pass arguments to
a FORTRAN subprogram we must pass the addresses of arguments rather than their values. C
uses the "&" character to signify "address of".

340 Argument Passing Convention

Inter-Language calls: C and FORTRAN

Example:
result = ftnname(&arg);

When calling a C function from FORTRAN, the pragma used to correct the naming
conventions must also instruct the compiler that the C function is expecting values, not
addresses.

*$pragma aux CNAME "! " parm (value)

The "parm (value)" addition instructs the FORTRAN compiler to pass values, instead of
addresses.

Character data (strings) are an exception to the general case when used as arguments. In C,
strings are not thought of as a whole entity, but rather as an "array of characters". Since
strings are not considered scalar arguments, they are referenced differently in both C and
FORTRAN. This is described in more detail in a following section.

43.3 Memory Model Compatibility
While it is really not an issue with the 32-bit compilers (both use the default "flat" memory
model), it is important to know that the default memory model used in Watcom FORTRAN
77 applications is the "large" memory model ("ml") with "medium" and "huge" memory
models as options. Since the 16-bit Watcom C/C++ default is the "small" memory model, you
must specify the correct memory model when compiling your C/C++ code with the 16-bit C
or C++ compiler.

43.4 Linking Considerations
When both C/C++ and FORTRAN object files are combined into an executable program or
dynamic link library, it is important that you list a least one of the FORTRAN object files first
in the Watcom Linker (WLINK) "FILES" directive to guarantee the proper search order of the
FORTRAN and C run-time libraries. If you place a C/C++ object file first, you may
inadvertently cause the wrong version of run-time initialization routines to be loaded by the
linker.

Linking Considerations 341

Mixed Language Programming

43.5 Integer Type Compatibility
In general, the number of bytes used to store an integer type is implementation dependent. In
FORTRAN, the default size of an integer type is always 4 bytes, while in C/C++, the size is
architecture dependent. The size of an "int" is 2 bytes for the 16-bit Watcom C/C++
compilers and 4 bytes for the 32-bit compilers while the size of a "long" is 4 bytes regardless
of architecture. It is safest to prototype the function in C, specifying exactly what size
integers are being used. The byte sizes are as follows:

1. LONG - 4 bytes
2. SHORT - 2 bytes

Since FORTRAN uses a default of 4 bytes, we should specify the "long" keyword in C for
integer types.

Example:
long int ftnname(long int *, long int *, long int *);

In this case, "ftnname" takes three "pointers to long ints" as arguments, and returns a "long
int". By specifying that the arguments are pointers, and not values, and by specifying "long
int" for the return type, this prototype has solved the problems of argument passing and
integer type compatibility.

43.6 How do I pass integers from C to a FORTRAN
function?

The following Watcom C/C++ routine passes three integers to a FORTRAN function that
returns an integer value.

/* MIX1C.C - This C program calls a FORTRAN function to
* compute the max of three numbers.
*
* Compile/Link: wcl /ml mix1c mix1f.obj /fe=mix1
* wcl386 mix1c mix1f.obj /fe=mix1
*/

#include <stdio.h>

#pragma aux tmax3 "^";
long int tmax3(long int *, long int *, long int *);

342 How do I pass integers from C to a FORTRAN function?

Inter-Language calls: C and FORTRAN

void main()
{

long int result;
long int i, j, k;

i = -1;
j = 12;
k = 5;
result = tmax3(&i, &j, &k);
printf("Maximum is %ld\n", result);

}

The FORTRAN function:

* MIX1F.FOR - This FORTRAN function accepts three integer
* arguments and returns their maximum.

* Compile: wfc[386] mix1f.for

integer function tmax3(arga, argb, argc)
integer arga, argb, argc

tmax3 = arga
if (argb .gt. tmax3) tmax3 = argb
if (argc .gt. tmax3) tmax3 = argc
end

43.7 How do I pass integers from FORTRAN to a C
function?

The following Watcom FORTRAN 77 routine passes three integers to a Watcom C/C++
function that returns an integer value.

How do I pass integers from FORTRAN to a C function? 343

Mixed Language Programming

* MIX2F.FOR - This FORTRAN program calls a C function to
* compute the max of three numbers.
*
* Compile/Link: wfl[386] mix2f mix2c.obj /fe=mix2

*$pragma aux tmax3 "! " parm (value)

program mix2f

integer*4 tmax3
integer*4 result
integer*4 i, j, k

i = -1
j = 12
k = 5
result = tmax3(i, j, k)
print *, ’Maximum is ’, result
end

The C function "tmax3" is shown below.

/* MIX2C.C - This C function accepts 3 integer arguments
* and returns their maximum.
*
* Compile: wcc /ml mix2c
* wcc386 mix2c
*/

long int tmax3(long int arga,
long int argb,
long int argc)

{
long int result;
result = arga;
if(argb > result) result = argb;
if(argc > result) result = argc;
return(result);

}

344 How do I pass integers from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

43.8 How do I pass a string from a C function to
FORTRAN?

Character strings are referenced differently in C and FORTRAN. The C language terminates
its strings with a null character as an End-Of-String (EOS) marker. In this case, C need not
store the length of the string in memory. FORTRAN, however, does not use any EOS marker;
hence it must store each string’s length in memory.

The structure FORTRAN uses to keep track of character data is called a "string descriptor"
which consists of a pointer to the character data (2, 4, or 6 bytes, depending on the data
model) followed by an unsigned integer length (2 bytes or 4 bytes, depending on the data
model).

system option size of pointer size of length
------ ------ --------------- --------------
16-bit /MM 16 bits 16 bits
16-bit /ML 32 bits 16 bits
32-bit /MF 32 bits 32 bits
32-bit /ML 48 bits 32 bits

In order to access character data, FORTRAN needs to have access to the data’s string
descriptor. Hence, FORTRAN expects a pointer to a string descriptor to be passed as an
argument for character data.

Passing string arguments between C and FORTRAN is a simple task of describing a struct
type in C containing the two fields described above. The first field must contain the pointer to
the character data, and the second field must contain the length of the string being passed. A
pointer to this structure can then be passed to FORTRAN.

* MIX3F.FOR - This FORTRAN program calls a function written
* in C that passes back a string.
*
* Compile/Link: wfl[386] mix3f mix3c.obj /fe=mix3

program mix3f

character*80 sendstr
character*80 cstring

cstring = sendstr()
print *, cstring(1:lentrim(cstring))
end

The C function "sendstr" is shown below.

How do I pass a string from a C function to FORTRAN? 345

Mixed Language Programming

/* MIX3C.C - This C function passes a string back to its
* calling FORTRAN program.
*
* Compile: wcc /ml mix3c
* wcc386 mix3c
*/

#include <string.h>

#pragma aux sendstr "^";

typedef struct descriptor {
char *addr;
unsigned len;

} descriptor;

void sendstr(descriptor *ftn str desc)
{

ftn str desc->addr = "This is a C string";
ftn str desc->len = strlen(ftn str desc->addr);

}

43.9 How do I pass a string from FORTRAN to a C
function?

By default, FORTRAN passes the address of the string descriptor when passing strings. If the
C function knows it is being passed a string descriptor address, then it is very similar to the
above example. If the C function is expecting normal C-type strings, then a FORTRAN
pragma can be used to pass the string correctly. When the Watcom FORTRAN 77 compiler
pragma to pass by value is used for strings, then just a pointer to the string is passed.

Example:
*$pragma aux cname "! " parm (value)

The following example FORTRAN mainline defines a string, and passes it to a C function that
prints it out.

346 How do I pass a string from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

* MIX4F.FOR - This FORTRAN program calls a function written
* in C and passes it a string.
*
* Compile/Link: wfl[386] mix4f mix4c.obj /fe=mix4

*$pragma aux cstr "! " parm (value)

program mix4f

character*80 forstring

forstring = ’This is a FORTRAN string’//char(0)
call cstr(forstring)
end

The C function:

/* MIX4C.C - This C function prints a string passed from
* FORTRAN.
*
* Compile: wcc /ml mix4c
* wcc386 mix4c
*/

#include <stdio.h>

void cstr(char *instring)
{

printf("%s\n", instring);
}

43.10 How do I access a FORTRAN common block
from within C?

The following code demonstrates a technique for accessing a FORTRAN common block in a
C routine. The C routine defines an extern struct to correspond to the FORTRAN common
block.

How do I access a FORTRAN common block from within C? 347

Mixed Language Programming

* MIX5F.FOR - This program shows how a FORTRAN common
* block can be accessed from C.
*
* Compile/Link: wfl[386] mix5f mix5c.obj /fe=mix5

program mix5f
external put
common/cblk/i,j

i=12
j=10
call put
print *, ’i = ’, i
print *, ’j = ’, j
end

The C function:

/* MIX5C.C - This code shows how to access a FORTRAN
* common block from C.
*
* Compile: wcc /ml mix5c
* wcc386 mix5c
*/

#include <stdio.h>

#pragma aux put "^";
#pragma aux cblk "^";

#ifdef 386
#define FAR
#else
#define FAR far
#endif

extern struct cb {
long int i,j;

} FAR cblk;

void put(void)
{

printf("i = %ld\n", cblk.i);
printf("j = %ld\n", cblk.j);
cblk.i++;
cblk.j++;

}

348 How do I access a FORTRAN common block from within C?

Inter-Language calls: C and FORTRAN

For the 16-bit C compiler, the common block "cblk" is described as far to force a load of the
segment portion of the address. Otherwise, since the object is smaller than 32K (the default
data threshold), it is assumed to be located in the DGROUP group which is accessed through
the SS segment register.

43.11 How do I call a C function that accepts a variable
number of arguments?

One capability that C possesses is the ability to define functions that accept variable number
of arguments. This feature is not present, however, in the definition of the FORTRAN 77
language. As a result, a special pragma is required to call these kinds of functions.

*$pragma aux printf "! " parm (value) caller []

The "caller" specifies that the caller will pop the arguments from the stack. The "[]" indicates
that there are no arguments passed in registers because the printf function takes a variable
number of arguments passed on the stack. The following example is a FORTRAN function
that uses this pragma. It calls the printf function to print the value 47 on the screen.

* MIX6.FOR - This FORTRAN program calls the C
* printf function.

* Compile/Link: wfl[386] mix6

*$pragma aux printf "! " parm (value) caller []

program mix6

character cr/z0d/, nullchar/z00/

call printf(’Value is %ld.’//cr//nullchar, 47)
end

For more information on the pragmas that are used extensively during inter-language
programming, please refer to the chapter entitled "Pragmas" in both the Watcom C/C++
User’s Guide and the Watcom FORTRAN 77 User’s Guide.

How do I call a C function that accepts a variable number of arguments? 349

Mixed Language Programming

350 How do I call a C function that accepts a variable number of arguments?

Common Problems

Common Problems

352

44 Commonly Asked Questions and Answers

As with any sophisticated piece of software, there are topics that are not directly addressed by
the descriptive portions of the manuals. The purpose of this chapter is to anticipate common
questions concerning Watcom C/C++. It is difficult to predict what topics will prove to be
useful but with that in mind, we hope that this chapter will help our customers make full use
of Watcom C/C++.

A number of example programs are presented throughout. The source text for these files can
be found in the \WATCOM\SAMPLES\GOODIES directory.

The purpose of this chapter is to present some of the more commonly asked questions from
our users and the answers to these questions. The following topics are discussed:

• How do I determine my current patch level?
• How do I convert to Watcom C/C++?
• What should I know about optimization?
• Why can’t the compiler find "stdio.h"?
• How do I resolve an "Undefined Reference" linker error?
• Why aren’t my variables set to zero?
• What does "size of DGROUP exceeds 64K" mean for 16-bit applications?
• What does "NULL assignment detected" mean in 16-bit applications?
• What does "Stack Overflow!" mean?
• Why do I get redefinition errors from WLINK?
• How can I open more than 20 files at a time?
• How can I see my source files in the debugger?
• What is the difference between the "d1" and "d2" compiler options?

44.1 Determining my current patch level
In an effort to immediately correct any problems discovered in the originally shipped product,
Watcom provides patches as a continued service to its customers. To determine the current
patch level of your Watcom software, a TECHINFO utility program has been provided. This
program will display your current environment variables, the patch level of various Watcom
software programs, and other pertinent information, such as your AUTOEXEC.BAT and
CONFIG.SYS files. This information proves to be very useful when reporting a problem to
the Technical Support team.

Determining my current patch level 353

Common Problems

To run TECHINFO, you must ensure the Watcom environment variable has been set to the
directory where your Watcom software has been installed. TECHINFO will pause after each
screenful of information. The output is also placed in the file TECHINFO.OUT.

Below is an example of some partial output produced by running the TECHINFO utility:

Example:
WATCOM’s Techinfo Utility, Version 1.4
Current Time: Thu Oct 27 15:58:34 1994

WATCOM Phone: (519) 884-0702
415 Phillip St. Fax: (519) 747-4971
Waterloo, Ontario
CANADA N2L 3X2

-------------WATCOM C Environment Variables -------------
WATCOM=<c:\watcom>
EDPATH=<c:\watcom\eddat>
INCLUDE=<c:\watcom\h;c:\watcom\h\os2>
FINCLUDE=<c:\watcom\src\fortran;c:\watcom\src\fortran\win>
LIBOS2=<c:\watcom\lib286\os2;c:\watcom\lib286>
PATH=<c:\dos;c:\windows;c:\watcom\binw>
TMP=<h:\temp>
File ’c:\watcom\binw\wcc386.exe’ has been patched to level ’.d’
...etc...

In this example, the software has been patched to level "d". In most cases, all tools will share
a common patch level. However, there are instances where certain tools have been patched to
one level while others are patched to a different level. For example, the compiler may be
patched to level "d" while the debugger is only patched to level "c". Basically, this means that
there were no debugger changes in the D-level patches.

If you run the TECHINFO utility, and determine that you are not at the current patch level, it
is recommended that you update your software. Patches are available on Watcom’s bulletin
board, Watcom’s FTP site and CompuServe. They are available 24 hours a day. Patches are
also available on the current release CD-ROM. Each patch will include a batch file that
allows you to apply the patches to your existing software. Note that patches must be applied
in sequential order, as each patch depends on the previous one.

44.2 Converting to Watcom C/C++
There are some common steps involved in converting C programs written for other compilers.
Conversion from UNIX and other IBM-compatible PC compilers will be covered in detail
later. There are six major problems with most programs that are ported to Watcom C/C++.
The assumptions that most foreign programs make that may be invalid when using Watcom
C/C++ are:

354 Converting to Watcom C/C++

Commonly Asked Questions and Answers

1. sizeof(pointer) == sizeof(int)

(true for 16-bit systems except "far" pointers, true for 32-bit systems except "far"
pointers)

2. sizeof(long) == sizeof(int)

(not true for 16-bit systems)

3. sizeof(short) == sizeof(int)

(not true for 32-bit systems)

4. arguments are always passed on the stack

5. dereferencing the NULL pointer

6. "char" is either signed or unsigned

These assumptions are very easy to make when developing programs for only one system.
The first point becomes important when you move a program to 80x86 systems. Depending
on the memory model, the size of an integer might not equal the size of a pointer. You might
ask how this assumption is made in programs. The C language will assume that a function
returns an integer unless told otherwise. If a programmer does not declare a function as
returning a pointer, the compiler will generate code which would convert an integer to a
pointer. On other systems, where the size of an integer is equal to the size of a pointer this
would amount to nothing because no conversion was necessary (to change size). The older C
compilers did not worry about warning the programmer about this condition and as such this
error is imbedded in a lot of older C code. As C was moved to other machines, it became
apparent that this assumption was no longer valid for all machines. The 80x86 architecture
can have 16-bit integers and 32-bit pointers (in the compact, large, and huge memory models),
which means that more care must be taken when working with declarations (converting an int
to a 32-bit pointer will result in a segment value of 0x0000 or 0xffff). Similarly, the 386
architecture can have 32-bit integers and 48-bit pointers.

The Watcom C/C++ compiler will complain about incorrect pointer and integer mixing thus
making programs compiled with Watcom C/C++ much more portable. For instance, if the
Watcom C/C++ compiler complains about your usage of the "malloc" memory allocation
function then you probably forgot to include "<stdlib.h>" which contains the prototype of the
"malloc" function.

Converting to Watcom C/C++ 355

Common Problems

Example:
extern void *malloc(unsigned);

The Watcom C/C++ compiler was complaining about you trying to assign an integer (the
value returned by "malloc") to a pointer. By including the header file with the correct
prototype, the Watcom C/C++ compiler can validate that you are in fact assigning a pointer
value to a pointer.

Passing arguments on the stack has been the method used by most older compilers because it
allowed the C library function "printf" to work with a variable number of arguments. Older C
compilers catered to a few functions by forcing all the argument handling to be handled by the
caller of the function. With the advent of the ANSI standard, which forced all functions
expecting a variable number of arguments to be declared properly, compilers can generate
smaller code for routines that did not require a variable number of arguments.

Example:
/* function accepting two arguments */
extern FILE *fopen(char *, char *);
/* function accepting a variable number of arguments */
extern int printf(char *, ...);

The Watcom C/C++ compiler takes advantage of this part of the ANSI standard by passing
arguments in registers (for the first few arguments). If there are not enough registers for all of
the arguments, the rest of the arguments are passed on the stack but the routine being called is
responsible for removing them from the stack. By default, the Watcom C/C++ compiler uses
this calling convention because it results in faster procedure calls and smaller code. The
Watcom C/C++ calling convention carries with it a responsibility to ensure that all functions
are prototyped correctly before they are used. For instance, if a procedure is called with too
few arguments, the assumptions that the code generator made (while generating the code) will
be invalidated. The code generator assumes that AX (EAX for the 32-bit compiler) and any
other registers used to pass arguments will be modified by the called function. The code
generator also assumes that the exact amount of arguments pushed on the stack will be
removed by the function that is called. It is important to recognize this aspect of the Watcom
C/C++ compiler because the program will simply not work unless the caller and the function
being called strictly agree on the number and types of the arguments being passed. See the
"Assembly Language Considerations" chapter in the Watcom C/C++ User’s Guide for more
details.

Some compilers allow the NULL pointer to be dereferenced and return NULL (we have never
understood the rationale behind this, nor why some compilers continue to support this type of
code). Leaving the aesthetics of this type of code behind, using the NULL dereferencing
assumption in a program will ensure that the program will not be portable. Source code which
contains the NULL dereferencing assumption must be corrected before it will work with
Watcom C/C++.

356 Converting to Watcom C/C++

Commonly Asked Questions and Answers

Programs that assume that the "char" type is "signed" should use the Watcom C/C++ compiler
"j" option. The "j" option will indicate to the Watcom C/C++ compiler that the "char" type is
"signed" rather than the default "unsigned".

44.2.1 Conversion from UNIX compilers

The ANSI standard for C (which Watcom C/C++ adheres to) is very similar to UNIX C.
Most of the effort in converting UNIX C programs will involve replacing references to library
functions (such as the CURSES library). There are many third-party libraries which are
implementations of UNIX libraries on IBM-compatible Personal Computers. There is a
common problem which many older UNIX programs exhibit, namely, functions that accept a
variable number of arguments are coded in many different ways. Functions accepting a
variable number of arguments must be coded according to the ANSI standard if they are to
work with Watcom C/C++. We will code an example of a function which will return the
maximum of a list of positive integers.

/*

variable number of arguments example
*/
#include <stdarg.h>

int MaxList(int how many, ...)
{

va list args;
int max;

max = 0;
va start(args, how many);
while(how many > 0) {

value = va arg(args, int);
if(value > max) {

max = value;
}

}
va end(args);

return(max);
}

Notice that the standard header file STDARG.H must be included in any source file which
defines a function that handles a variable number of arguments. The function "MaxList" must
be prototyped correctly in other source files external to the source file containing the
definition of "MaxList".

extern int MaxList(int how many, ...);

Converting to Watcom C/C++ 357

Common Problems

See the Watcom C Library Reference manual description of "va_arg" for a more complete
description of variable number of arguments handling.

44.2.2 Conversion from IBM-compatible PC compilers

Most of the compilers available for IBM-compatible PCs have been following the ANSI
standard and, as such, the majority of programs will not require extensive source changes.
There are problems with programs that use compiler-specific library functions. The use of
compiler-specific library functions can be dealt with in two different ways:

1. use equivalent Watcom C/C++ library functions
2. write your own library functions

If portability must be maintained with the other compiler, the predefined macro
" WATCOMC " can be used to conditionally compile the correct code for the Watcom
C/C++ compiler.

The default calling convention for the Watcom C/C++ compiler is different from the calling
convention used by other compilers for Intel-based personal computers. The Watcom C/C++
calling convention is different because it will pass some arguments in registers (thus reducing
the overhead of a function call) rather than pushing all of the arguments on the stack. The
Watcom C/C++ compiler is flexible enough to use different calling conventions on a per
function basis. Converting code from other compilers usually involves recompiling the C
source files and setting up prototypes (to use the older calling convention) for functions
written in assembly language. For instance, if you have the functions "video_init",
"video_put", and "video_get" written in assembly language, you can use the following
prototypes in any source file which uses these functions.

#include <stddef.h>

extern int cdecl video init(void);
extern void cdecl video put(int row,int col,char ch,int attr);
extern char cdecl video get(int row,int col);

The inclusion of the STDDEF.H header file defines the "cdecl" calling convention. The
Watcom C/C++ compiler will ensure that any calls to these three functions will adhere to the
"cdecl" calling conventions. The Watcom C/C++ compiler will put a trailing underscore "_"
character (as opposed to the beginning of the name for the "cdecl" convention) on any
function names to ensure that the program will not link register calling convention calls to
"cdecl" convention functions (or vice versa). If the linker indicates that functions defined in
assembler files cannot be resolved, it could be a result of not prototyping the functions
properly as "cdecl" functions.

358 Converting to Watcom C/C++

Commonly Asked Questions and Answers

Hint: (16-bit applications only) Most 16-bit C compilers (including Watcom C/C++) have
a "large" memory model which means that four byte pointers are used for both code and
data references. A subtle point to watch out for involves differences between memory
model definitions of different compilers. The "cdecl" calling convention allows functions
to assume that the DS segment register points to the group "DGROUP". The Watcom
C/C++ large memory model has what is called a "floating DS". Any function used for the
large memory model cannot assume that the DS segment register points to the group
"DGROUP". There are a few possible recourses.

1. The assembly code could save and restore the DS segment register and set DS
to DGROUP in order to conform to the Watcom C/C++ convention. If there are
only a few accesses to DGROUP data, it is advisable to use the SS segment
register which points to DGROUP in the large memory model.

2. The assembly function could be described using a pragma that states that DS
should point to "DGROUP" before calling the function.

#pragma aux _Setcolor parm loadds

In the above example, _Setcolor is the sample function being described.

3. The final alternative would be the use of the "zdp" compiler option. The "zdp"
option informs the code generator that the DS register must always point to
"DGROUP". This is the default in the small, medium and flat memory models.
Note that "flat" is a 32-bit memory model only.

44.3 What you should know about optimization
The C/C++ language contains features which allow simpler compilers to generate code of
reasonable quality. Register declarations and imbedding assignments in expressions are two
of the ways that C allows the programmer to "help" the compiler generate good quality code.
An important point about the Watcom C/C++ compiler is that it is not as important (as it is
with other compilers) to "help" the compiler. In order to make good decisions about code
generation, the Watcom C/C++ compiler uses modern optimization techniques.

What you should know about optimization 359

Common Problems

Hint: The definitive reference on compiler design is the "dragon" book "Compilers -
Principles, Techniques, and Tools", Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,
published by Addison-Wesley, Reading, Massachusetts, 1986. The authors of the
"dragon" book advocate a conservative approach to code generation where optimizations
must preserve the semantics of the original program. The conservative approach is used
throughout the Watcom C/C++ compiler to ensure that programmers can use the compiler
without worrying about the semantics of their program being changed. The programmer
can request that potentially unsafe optimizations be performed. With regard to the "oa"
(ignore aliasing) option provided by the Watcom C/C++ compiler, the compiler only
ignores aliasing of global variables rather than ignore aliasing totally like other compilers.

There are certain pieces of information which the compiler cannot derive from the source
code. The "#pragma" compiler directive is used to provide extra information to the compiler.
It is necessary to have a complete understanding of both C/C++ and the machine architecture
(i.e., 80x86) before using the powerful pragma compiler directives. See the "Pragmas"
chapter in the Watcom C/C++ User’s Guide for more details.

Debugging optimized programs is difficult because variables can be assigned to different
locations (i.e., memory or registers) in different parts of the function. The "d2" compiler
option will restrict the amount of optimization so that variables occupy one location and can
be easily displayed. It follows that the "d2" option is useful for initial development but
production programs should be compiled with only the "d1" option for the best code quality.
Before you distribute your application to others, you may wish to use the Watcom Strip
Utility (WSTRIP) to remove debugging information from the executable image on disk
thereby reducing disk space requirements.

Hint: The "d2" compiler option will generate symbolic information (for every local
variable) and line number information for the source file. The "d1" compiler option will
only generate line number information for the source file. The use of these options
determines what kind of information will be available for the particular module during the
debugging session.

Incorrect programs can sometimes work when compiled with the "d2" option and not work
when compiled with the "d1" option. One way this sort of problem arises involves local
arrays.

360 What you should know about optimization

Commonly Asked Questions and Answers

void example(void)
{

int i;
int a[10];

for(i = 0; i <= 10; ++i)
a[i] = i;

do something(a);
}

The "for" loop initializes one too many array elements but the version compiled with the "d2"
option will overwrite the variable "i" without causing any problems. The same function
compiled with the "d1" option would have the variable "i" in a register. The erroneous access
of "a[10]" would modify a value that is used to restore a register when the function returns.
The register would be "restored" with an incorrect value and this would affect the execution of
the function that called this function. The above example shows how a program can work
when compiled with the "d2" option and stop working when compiled with the "d1" option.
You should always test your program fully with all the modules compiled with the "d1"
option to protect yourself from any surprises.

44.4 The compiler cannot find "stdio.h"
The standard header files are usually located in the sub-directory that the Watcom C/C++
compiler is installed in. Suppose that the header files are located in the sub-directory
C:\WATCOM\H. If the compiler indicates (through an error message) that it is unable to
locate the file STDIO.H, we have forgotten something. There are two ways to indicate to the
Watcom C/C++ compiler the location of the standard header files.

1. use the INCLUDE environment variable
2. use the "i" option (Watcom C/C++, Watcom Compile and Link)

The use of the environment variable is the simplest way to ensure that the include files will be
found. For instance, if you include the following line in your system initialization file,
AUTOEXEC.BAT,

set include=c:\watcom\h

the Watcom C/C++ compiler will be able to find the standard include files. The use of the "i"
option is another way to give the directory name of the standard include files.

The compiler cannot find "stdio.h" 361

Common Problems

Example:
C>wcc myfile.c -ic:\watcom\h

or
C>wcc386 myfile.c -ic:\watcom\h

or
C>wpp myfile.cpp -ic:\watcom\h

or
C>wpp386 myfile.cpp -ic:\watcom\h

The usual manner that these methods are combined is as follows. The INCLUDE
environment variable is used to give the location of the standard C library header files. Any
directories of header files local to a specific programming project are often candidates for the
"i" option method. See the "Watcom C/C++ #include File Processing" section of the chapter
entitled "The Watcom C/C++ Compilers" in the Watcom C/C++ User’s Guide for more
details.

44.5 Resolving an "Undefined Reference" linker error
The Watcom Linker builds an executable file by a process of resolving references to functions
or data items that are declared in other source files. Certain conditions arise that cause the
linker to generate an "Undefined Reference" error message. An "Undefined Reference" error
message will be displayed by the linker when it cannot find a function or data item that was
referenced in the program. Verify that you have included all the required object modules in
the linker command and that you are linking with the correct libraries. There are a couple of
"undefined references" that require some explanation.

cstart The unresolved reference for cstart indicates that the linker cannot find
the C/C++ run-time libraries. The 16-bit C run-time libraries for the small
memory model are CLIBS.LIB and, either MATHS.LIB, or
MATH87S.LIB. The 32-bit C run-time libraries for the flat memory model
compiled for the register-based argument passing model are CLIB3R.LIB and,
either MATH3R.LIB, or MATH387R.LIB. Ensure that the WATCOM
environment variable is set to the directory that Watcom C/C++ was installed in.

fltused The fltused undefined reference indicates that floating-point arithmetic
has been used in the modules that exhibit this error. The remedy is to ensure
that the linker can find the appropriate math library. For the 16-bit small
memory model, it is either MATHS.LIB, or MATH87S.LIB For the 32-bit
register-based argument passing model, it is either MATH3R.LIB, or
MATH387R.LIB depending on which floating-point option is used. Ensure that
the WATCOM environment variable is set to the directory that Watcom C/C++
was installed in.

362 Resolving an "Undefined Reference" linker error

Commonly Asked Questions and Answers

_small_code_ If this undefined reference occurs when you are trying to create a 16-bit
application, we have saved you many hours of debugging! The reason for this
undefined reference is that the "main" entry point has been compiled for a big
code model (in any one of medium, large, or huge memory models). Any of the
modules that have this undefined reference have been compiled for a small code
model (in any one of small or compact memory models) and as such do not have
the correct return instructions. You should recompile the modules so that all the
modules are compiled for the same memory model. Combining source modules
compiled for different memory models is very difficult and often leads to strange
bugs. If your program has special considerations and this reference causes you
problems, there is a "work-around". You could resolve the reference with a
PUBLIC declaration in an assembler file or code the following in Watcom
C/C++.

/* rest of your module */

void small code(void)
{}

The code generator will generate a single RET instruction with the public
symbol small code attached to it. The common epilogue optimizations
will probably combine this function with another function’s RET instruction and
you will not even pay the small penalty of one byte of extra code.

There may be another cause of this problem, the "main" function must be
entered in lower case letters ("Main" or "MAIN" are not identified as being the
same as "main" by the compiler). The compiler will identify the module that
contains the definition of the function "main" by creating the public definition of
either small code or big code depending on the memory model it
was compiled in.

_big_code_ Your module that contains the "main" entry point has been compiled with a
16-bit small code model (small or compact). The modules that have this
undefined reference have been compiled in 16-bit big code models (medium,
large, or huge). You should recompile the modules so that all the modules are
compiled in the same memory model. See the explanation for small code
for more details.

main_ All C programs, except applications developed specifically for Microsoft
Windows, must have a function called "main". The name "main" must be in
lower case for the compiler to generate the appropriate information in the "main"
module.

Resolving an "Undefined Reference" linker error 363

Common Problems

WINMAIN All Windows programs must have a function called "WinMain". The function
"WinMain" must be declared "pascal" in order that the compiler generate the
appropriate name in the "WinMain" module.

44.6 Why my variables are not set to zero
The linker is the program that handles the organization of code and data and builds the
executable file. C guarantees that all global and static uninitialized data will contain zeros.
The "BSS" region contains all uninitialized global and static data for C programs (the name
"BSS" is a remnant of the early UNIX C compilers). Most C compilers take advantage of this
situation by not explicitly storing all the zeros to achieve smaller executable file sizes. In
order for the program to work correctly, there must be some code (that will be executed before
"main") that will clear the "BSS" region. The code that is executed before "main" is called
"startup" code. The linker must indicate to the startup code where the "BSS" region is
located. In order to do this, the Watcom Linker (WLINK) treats the "BSS" segment (region)
in a special manner. The special variables ’_edata’ and ’_end’ are constructed by the Watcom
Linker so that the startup code knows the beginning and end of the "BSS" region.

Some users may prefer to use the linker provided by another compiler vendor for
development. In order to have the program execute correctly, some extra care must be taken
with other linkers. For instance, with the Microsoft linker (LINK) you must ensure that the
’/DOSSEG’ command line option is used. With the Phar Lap Linker, you must use the
"-DOSORDER" command line option. In general, if you must use other linkers, extract the
module that contains cstart from CLIB?.LIB (? will change depending on the memory
model) and specify the object file containing cstart as the first object file to be processed
by the linker. The object file will contain the information necessary for the linker to build the
executable file correctly.

44.7 What does "size of DGROUP exceeds 64K" mean
for 16-bit applications?

This question applies to 16-bit applications. There are two types of segments in which data is
stored. The two types of segments are classified as "near" and "far". There is only one "near"
segment while there may be many "far" segments. The single "near" segment is provided for
quick access to data but is limited to less than 64K in size. Conversely, the "far" segments can
hold more than 64K of data but suffer from a slight execution time penalty for accessing the
data. The "near" segment is linked by arranging for the different parts of the "near" segment
to fall into a group called DGROUP. See the section entitled "Memory Layout" in the
Watcom Linker User’s Guide for more details.

364 What does "size of DGROUP exceeds 64K" mean for 16-bit applications?

Commonly Asked Questions and Answers

The 8086 architecture cannot support segments larger than 64K. As a result, if the size of
DGROUP exceeds 64K, the program cannot execute correctly. The basic idea behind solving
this problem is to move data out of the single "near" segment into one or more "far" segments.
Of course, this solution does not come without any penalties. The penalty is paid in decreased
execution speed as a result of accessing "far" data items. The magnitude of this execution
speed penalty depends on the behavior of the program and, as such, cannot be predicted (i.e.,
we cannot say that the program will take precisely 5% longer to execute). The specific
solution to this problem depends on the memory model being used in the compilation of the
program.

If you are compiling with the tiny, small, or medium memory models then there are two
possible solutions. The first solution involves changing the program source code so that any
large data items are declared as "far" data items and accessed with "far" pointers. The
addition of the "far" keyword into the source code makes the source code non-portable but
this might be an acceptable tradeoff. See the "Advanced Types" chapter in the Watcom C
Language Reference manual for details on the use of the "near" and "far" keywords. The
second solution is to change memory models and use the large or compact memory model.
The use of the large or compact memory model allows the compiler to use "far" segments to
store data items that are larger than 32K.

The large and compact memory models will only allocate data items into "far" segments if the
size of the data item exceeds 32K. If the size of DGROUP exceeds 64K then a good solution
is to reduce the size threshold so that smaller data items will be stored into "far" segments.
The relevant compiler option to accomplish this task is "zt<num>". The "zt" option sets a data
size threshold which, if exceeded, will allocate the data item in "far" segments. For instance,
if the option "zt100" is used, any data item larger than 100 bytes will be allocated in "far"
segments. A good starting value for the data threshold is 32 bytes (i.e., "zt32"). The number
of compilations necessary to reduce the size of DGROUP for a successful link with WLINK
depends on the program. Minimally, any files which allocate a lot of data items should be
recompiled. The "zt<num>" option should be used for all subsequent compiles, but the
recompilation of all the source files in the program is not necessary. If the "DGROUP
exceeds 64K" WLINK error persists, the threshold used in the "zt<num>" option should be
reduced and all of the source files should be recompiled.

44.8 What does "NULL assignment detected" mean in
16-bit applications?

This question applies to 16-bit applications. The C language makes use of the concept of a
NULL pointer. The NULL pointer cannot be dereferenced according to the ANSI standard.
The Watcom C/C++ compiler cannot signal the programmer when the NULL address has been
written to or read from because the Intel-based personal computers do not have the necessary

What does "NULL assignment detected" mean in 16-bit applications? 365

Common Problems

hardware support. The best that the run-time system can do is help programmers find these
sorts of errors through indirect means. The lower 32 bytes of "near" memory have been
seeded with 32 bytes of the value 0x01. The C run-time function "_exit" checks these 32
bytes to ensure that they have not been written over. Any modification of these 32 bytes
results in the "NULL assignment error" being printed before the program terminates.

Here is an overview of a good debugging technique for this sort of error:

1. use the Watcom Debugger to debug the program
2. let the program execute
3. find out what memory has been incorrectly modified
4. set a watchpoint on the modified memory address
5. restart the program with the watchpoint active
6. let the program execute, for a second time
7. when the memory location is modified, execution will be suspended

We will go through the commands that are executed for this debugging session. First of all,
we invoke the Watcom Debugger from the command line as follows:

C>wd myprog

Once we are in the debugger type:

DBG>go

The program will now execute to completion. At this point we can look at the output screen
with the debugger command, "FLIP".

DBG>flip

We would see that the program had the run-time error "NULL assignment detected". At this
point, all we have to do is find out what memory locations were modified by the program.

The following command will display the lower 16 bytes of "near" memory.

DBG>examine nullarea

The command should display 16 bytes of value 0x01. Press the space bar to display the next
16 bytes of memory. This should also display 16 bytes of value 0x01. Notice that the
following data has two bytes which have been erroneously modified by the program.

nullarea 01 01 56 12 01 01 01 01-01 01 01 01 01 01 01 01
nullarea+16 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01

366 What does "NULL assignment detected" mean in 16-bit applications?

Commonly Asked Questions and Answers

The idea behind this debugging technique is to set a watchpoint on the modified memory so
that execution of the program will be suspended when it modifies the memory. The following
command will "watch" the memory for you.

DBG>watch nullarea+2

There has to be a way to restart the program without leaving the Watcom Debugger so that the
watchpoint is active during a subsequent execution of the program. The Watcom Debugger
command "NEW" will reload the program and prepare for a new invocation of the program.

DBG>new
DBG>go

The Watcom Debugger command "GO" will start execution of the program. You may notice
that the program executes much slower than usual but eventually the debugger will show the
part of the program that modified the two bytes. At this point, you might want to clear the
watchpoint and proceed to debug why the memory was modified. The command to clear the
watchpoint is:

DBG>watch/clear 1

The "1" indicates that you want watchpoint number 1 to be cleared. Typing "WATCH" by
itself will print out all active watchpoints. The above technique is generally useful for any
type of memory overwrite error provided you know which memory location has been
overwritten.

Hint: The Watcom Debugger allows many commands to have short forms. For instance,
the "EXAMINE" command can be shortened to an "E". We used the full commands in the
examples for clarity.

44.9 What "Stack Overflow!" means
The memory used for local variables is allocated from the function call stack although the
Watcom compilers will often use registers for local variables. The size of the function call
stack is limited at link-time and it is possible to exceed the amount of stack space during
execution. The Watcom run-time library will perform checks whenever a large amount of
stack space is required by a function but it is up to the user to check stack requirements before
calling a Watcom run-time function. Compiling programs with stack checking will ensure
that there is enough stack space to call a Watcom run-time function.

What "Stack Overflow!" means 367

Common Problems

There are various ways of protecting against stack overflow errors. First, one should
minimize the number of recursive functions used in an application program. This can be done
by recoding recursive functions to use loops. Keep the amount of stack used in functions to a
minimum by using and reusing static arrays whenever possible. These techniques will reduce
the amount of stack space required but there still may be times where the default amount of
stack space (2048 bytes for 16-bit applications and 4096 bytes for 32-bit applications) is
insufficient. The Watcom Linker (WLINK) allows the user to set the amount of stack space at
link-time through the directive "OPTION STACK=size" where size may be specified in bytes
with an optional "k" suffix for kilobytes (1024 bytes).

Example:
option stack=9k

Debugging a program that reports a stack overflow error can be accomplished with the
following sequence.

1. Load your application into the debugger

2. Set a breakpoint at STKOVERFLOW

3. Run the application until the breakpoint at STKOVERFLOW is triggered

4. Issue the debugger "show calls" command. This will display a stack traceback
giving you the path of calls that led up to the stack overflow situation.

The solution to the stack overflow problem at this point depends on the programmer.

44.10 Why redefinition errors are issued from WLINK
This question comes up often in discussions about porting old UNIX or Microsoft C
programs. The problem stems from the forgiving nature of early UNIX linkers. In early C
code, it was common to define header files like this:

Example:
/* define global variables */
int line count;
int word count;
int char count;

The header file would then be included in many different modules. The C compiler would
generate a definition of each variable in each module and leave it to the linker to pick one and
resolve all references to one variable. The development of the ANSI C standard made this

368 Why redefinition errors are issued from WLINK

Commonly Asked Questions and Answers

practice non-conforming. The Watcom C compiler is an ANSI C compiler and as such, is not
required to support this obsolete behavior. The effect is that WLINK will report redefinition
errors. The header file must be coded in such a way that the variables are defined in one
module. One way to do this is as follows:

Example:
#ifdef DEFINE HERE
#define GLOBAL
#else
#define GLOBAL extern
#endif
/* define global variables */
GLOBAL int line count;
GLOBAL int word count;
GLOBAL int char count;

In most modules, the macro "DEFINE_HERE" will not be defined so the file will be
equivalent to:

Example:
/* define global variables */
extern int line count;
extern int word count;
extern int char count;

In one module, the macro "DEFINE_HERE" must be defined before the header file is
included. This can be done by defining the macro on the command line or by coding like this:

Example:
#define DEFINE HERE
#include "globals.h"

44.11 How more than 20 files at a time can be opened
The number of file handles allowed by Watcom C/C++ is initialized to 20 in STDIO.H, but
this can be changed by the application developer. To change the number of file handles
allowed with Watcom C/C++, follow the steps outlined below.

1. Let n represent the number of files the application developer wishes to have open.
Ensure that the stdin, stdout, stderr, stdaux, and stdprn files are included in the
count.

How more than 20 files at a time can be opened 369

Common Problems

2. Change the CONFIG.SYS file to include "files=n" where "n" is the number of file
handles required by the application plus an additional 5 handles for the standard
files (this applies to DOS 5.0). The number "n" may vary depending on your
operating system and version. If you are running a network such as Novell’s
NetWare, this will also affect the number of available file handles. In this case,
you may have to increase the number specified in the "files=n" statement.

3. Add a call to grow handles in your application.

The following example illustrates the use of grow handles.

Example:
/*
* HANDLES.C
* This C program grows the number of file handles so
* more than 16 files can be opened. This program
* illustrates the interaction between grow handles and
* the DOS 5.0 file system. If you are running a network
* such as Novell’s NetWare, this will also affect the
* number of available file handles. In the actual trial,
* FILES=40 was specified in CONFIG.SYS.
*/

#include <stdio.h>

void main()
{

int i, j, maxh, maxo;
FILE *temp files[50];

for(i = 25; i < 40; i++) {
/* count 5 for stdin,stdout,stderr,stdaux,stdprn */
printf("Trying for %2.2d handles...", 5 + i);
maxh = grow handles(5 + i);
maxo = 0;
for(j = 0; j < maxh; j++) {

temp files[j] = tmpfile();
if(temp files[j] == NULL)break;
maxo++;

}
printf(" %d/%d temp files opened\n", maxo, maxh);
for(j = 0; j < maxo; j++) {

fclose(temp files[j]);
}

}
}

370 How more than 20 files at a time can be opened

Commonly Asked Questions and Answers

44.12 How source files can be seen in the debugger
The selection and use of debugging information is important for getting the most out of the
Watcom Debugger. If you are not able to see your source code in the Watcom Debugger
source window, there are three areas where things may have gone wrong, namely:

1. using the correct option for the Watcom C/C++.
2. using the correct directives for the Watcom Linker.
3. using the right commands in the Watcom Debugger.

The Watcom C/C++ compiler takes C/C++ source and creates an object file containing the
generated code. By default, no debugging information is included in the object file. The
compiler will output debugging information into the object file if you specify a debugging
option during the compile. There are two levels of debugging information that the compiler
can generate:

1. Line numbers and local variables ("d2" option)
2. Line numbers ("d1" option)

The options are used to determine how much debugging information will be visible when you
are debugging a particular module. If you use the "d2" option, you will be able to see your
source file and display your local variables. The "d1" option will display the source but will
not give you access to local variable information.

The Watcom Linker (WLINK) is the tool that puts together a complete program and sets up
the debugging information for all the modules in the executable file. There is a linker
directive that indicates to the linker when it should include debugging information from the
modules. There are five levels of debugging information that can be collected during the link.
These are:

1. global names (DEBUG)
2. global names, line numbers (DEBUG LINE)
3. global names, types (DEBUG TYPES)
4. global names, local variables (DEBUG LOCALS)
5. all of the above (DEBUG ALL)

Notice that global names will always be included in any request for debugging information.
The debugging options can be combined

DEBUG LINE, TYPES

How source files can be seen in the debugger 371

Common Problems

with the above directive resulting in full line number and typing information being available
during debugging. The directives are position dependent so you must precede any object files
and libraries with the debugging directive. For instance, if the file MYLINK.LNK contained:

#
invoke with: wlink @mylink
#
file main
debug line
file input, output
debug all
file process

then the modules INPUT and OUTPUT will have global names and source line information
available during debugging. All debugging information in the module PROCESS will be
available during debugging.

Hint: A subtle point to debugging information is that all the modules will have global
names available if any debugging directive is used. In the above example, the module
MAIN will have global name information even though it does not have a DEBUG directive
preceding it.

It is preferable to have one DEBUG directive before any FILE and LIBRARY directives.
You might wonder if this increases the size of the executable file so that it will occupy too
much memory during debugging. The debugging information is loaded "on demand" by the
debugger during the debugging session. A small amount of memory (40k default, selectable
with the Watcom Debugger "dynamic" command line option) is used to hold the most recently
used module debugging information. In practice, this approach saves a lot of memory because
most debugging information is never used. The overhead of accessing the disk for debugging
information is negligible compared to accessing the source file information. In other words,
you can have as much debugging information as you want included in the executable file
without sacrificing memory required by the program. See the section entitled "The DEBUG
Directive" in the Watcom Linker User’s Guide for more details.

If the previous steps have been followed, you should be well on your way to debugging your
programs with source line information. There are instances where the Watcom Debugger
cannot find the appropriate source file even though it knows all the line numbers. The
problem that has surfaced involves how the source file is associated with the debugging
information of the module. The original location of the source file is included in the
debugging information for a module. The name that is included in the debugging information
is the original name that was on the Watcom C/C++ command line. If the original filename is
no longer valid (i.e., you have moved the executable to another directory), the Watcom

372 How source files can be seen in the debugger

Commonly Asked Questions and Answers

Debugger must be told where to find the source files. The Watcom Debugger "Source Path"
menu item (under "File") can be used to supply new directories to search for source files. If
your source files are located in two directories, the following paths can be added in the
Watcom Debugger:

c:\program\c*.c
c:\program\new\c*.c

The "*" character indicates where the module name will be inserted while the Watcom
Debugger is searching for the source file. See the description of the "Source Path" menu item
in the Watcom Debugger User’s Guide for more details.

44.13 The difference between the "d1" and "d2"
compiler options

The reason that there are two levels of debugging information available is that the code
optimizer can perform many more optimizations and still maintain "d1" (line) information.
The "d2" option forces the code optimizer to ensure that any local variable can be displayed at
any time in the function. To illustrate why this results in less optimum code being generated
for a function, let us look at a simple array initialization.

extern int a[100];

void init a(void)
{

int i;

for(i = 0; i < 100; ++i) {
a[i] = 3*i;

}
}

The code optimizer will ensure that you can print the value of the variable "i" at any time
during the execution of the loop. The "d2" option will always generate code and debugging
information so that you can print the value of any variable during the execution of the
function. In order to get the best code possible and still see your source file while debugging,
the "d1" option only generates line number information into the object file. With line number
information, much better code can be generated. Here is the C equivalent of the code
generated for the array initialization example.

The difference between the "d1" and "d2" compiler options 373

Common Problems

extern int a[100];

void init a(void)
{

int *t1;
int t2;

/* for(i = 0; i < 100; ++i) { */
t1 = a;
t2 = 0;
do {

/* a[i] = 3*i; */
*t1 = t2;
++t1;
t2 += 3;

/* } */
} while(t1 != a + 100);

}

The above code executes very quickly but notice that the variable "i" has been split into two
different variables. One of the variables handles the use of "i" as an array index and the other
handles the calculation of "3*i". The debugging of programs that have undergone extensive
optimization can be difficult, but with the source line information it is much easier. To
summarize, use the "d2" compiler option if you are developing a module and you would like
to be able to display each local variable. The "d1" compiler option will give you line number
information and the best generated code possible. There is absolutely no reason not to specify
the "d1" option because the code quality will be identical to code generated without the "d1"
option.

374 The difference between the "d1" and "d2" compiler options

Index

1 8

16-bit 167 8042 auxiliary processor 57
16-bit DLL 201
16-bit DOS applications 7
16-bit far pointer 168
16-bit near pointer 168 A
16-bit OS/2 1.x applications 291
16-bit Windows 3.x application 143
16-bit Windows 3.x applications 143

__A000 24316-bit Windows 3.x non-GUI applications 147
A20 line 56, 58_16xxx functions 247
ACAD.ADS 331
address line 20 58
ADS application

compile and link 3303
compiling 329
debugging 331
linking 330

32-bit 167 ADS support
32-bit DLL 191, 201 DOS version 329
32-bit DOS/4GW applications 15 release 13 329
32-bit far pointer 168 ADS.DBG 332
32-bit gates 65 ADS.TRP 332
32-bit near pointer 168 ADSHELP.EXP 331
32-bit OS/2 applications 295 AllocAlias16 210, 178, 211, 217-218, 230,
32-bit Phar Lap 386|DOS-Extender applications 239-240

11 AllocHugeAlias16 211, 178, 211, 218, 230
32-bit Windows 3.x application 153 ANSI standard
32-bit Windows 3.x applications 153 NULL 365
32-bit Windows 3.x non-GUI applications 159 variable number of arguments 356
386enh 175 answers to general problems 353
386LINK 364 API special functions 247

application development 1
arguments

what you need to know 356
array subscript errors4

how they hurt 360
AutoCAD support 329
AUTOEXEC.BAT

4GWPRO.EXE 134 system initialization file 361

375

Index

autopassup range 65 Catch 175
auxiliary pragma cdecl 185, 212, 215, 285

loadds 359 calling convention 358
character-mode applications 256
class 176
clearing

variables 364B
COMMDLG.H 174
common questions 353

DOS/4GW 119
__B000 243 Compaq 386 memory 56
__B800 243 compile options
BBS 354 zdp 359
_beginthread function 270, 300 CompuServe 354
bi-modal interrupt 37 CONFIG.SYS 294, 322
_big_code_ 363 const 209
binding 32-bit applications 154, 161 converting to Watcom C/C++ 354
binding a 32-bit DLL 155, 162 common problems 354
BINP directory 294 from IBM-compatible PC compilers 358
BINW directory 155, 162 from UNIX 357
BSS segment 364 what you need to know 354
building 386|DOS-Extender applications 12 _cstart_ 362
building DOS applications 8 CUSTCNTL.H 174
building DOS/4GW applications 16
building OS/2 1.x applications 292
building OS/2 applications 296
building Windows 3.x applications 143, 153 D
building Windows NT applications 259
bulletin board 354

__D000 243
d1 360
d1 versus d2 373C
d2 360
DDE.H 174
DDEML.H 174

__C000 243 debugging 360
_Call16 212, 184-186, 219, 221-222, 228, memory bugs 365

237-238 NULL assignment detected 365
CALLBACKPTR 245 optimized programs 360, 373
calling convention stack overflow 367

what you need to know 356 techniques 365, 367
calling conventions debugging 386|DOS-Extender applications 13

cdecl 358 debugging DOS applications 8

376

Index

debugging DOS/4GW applications 17 OS/2 2.x 305
debugging information Windows NT 275

global variables 371 DLL directory 294
line numbering 371 DLL initialization
local variables 371 OS/2 2.x 311
source file 371 DLL sample
types 371 OS/2 2.x 306
Watcom C/C++ 371 Windows NT 276
Watcom Debugger 372 DLL termination
WLINK 371 OS/2 2.x 311

debugging OS/2 1.x applications 293 DLL_CHAR 214
debugging OS/2 applications 297 DLL_DWORD 214
debugging Windows 3.x applications 144, 149, DLL_ENDLIST 214

156, 163 __dll_initialize 311
debugging Windows NT applications 260, 265 DLL_PTR 214
default windowing library functions 150, 164, __dll_terminate 311

266, 315 DLL_WORD 214
DefineDLLEntry 214 DOS extenders
DefineUserProc16 215, 226 common problems 19
DELETESWAP virtual memory option 60, 131, DOS file I/O 129

133 DOS memory 28
DevHlp 321 using DOS/4GW 28
device driver header 321 using Phar Lap 29
DEVICE= 322 DOS memory management 75
DGROUP size exceeds 64K 364 DOS Protected-Mode Interface 67
distribution rights 175 DOS/4GW
DLL 319 4GWPRO.EXE 134

16-bit 201 address line 20 58
16-bit calls into 32-bit DLLs 195 asynchronous interrupts 126
16-bit cover 197 bi-modal interrupt 37
32-bit 191, 201 cannot lock stack 139
32-bit Windows example 192 chaining handlers 66
creating 198-199 code and data addresses 125
debugging 198 common questions 119
debugging example 199 contacting Tenberry 120
installing example 199 Ctrl-Break handling 127
OS/2 2.x 305 debugger version 134
running example 199 debugging bound applications 133
summary 200 demand-loading 132
Windows NT 275 differences with DOS/4G 122

DLL access differences with Professional version 121
OS/2 2.x 308 documentation 121
Windows NT 280 DOS file I/O 129

DLL creation DOSX.EXE 140

377

Index

DPMI support 123 runtime options 56
EMM386.EXE 138 DOS16M environment variable 51-54, 56, 58,
error messages 111 103
extender messages 107 DOS4G
extra memory 56 NULLP option 52, 125
int 70h-77h 127 QUIET option 51
interrupt handler address 66 VERBOSE option 51, 136
interrupt handlers 66, 127 DOS4G environment variable 51
kernel error messages 107 DOS4GPATH environment variable 48
linear vs physical addresses 125 DOS4GVM
locking memory 127 DELETESWAP 131, 133
Lotus 1-2-3 138 MAXMEM 133
low memory access 125 MINMEM 133
memory addressability 129 SWAPINC 131, 133
memory control 54 SWAPMIN 131, 133
memory range 54 SWAPNAME 131
memory use 49 VIRTUALSIZE 131, 133
mouse support 130 DOS4GVM environment variable 59-60
NULL pointer references 125 DOS4GVM.SWP 59
OS/2 bug 139 DOS4GW 100
out of memory 131 DOS4GW.EXE 47
pointers vs linear addresses 124 DosSleep 322
realloc 129 DOSX environment variable 331
register dump 136 DOSX.EXE 140
runtime options 56 DPMI 55, 65, 67
spawning 130 allocate DOS memory block 75
switch mode setting 52 allocate memory block 89
TCPIP.EXE 139 allocate real-mode callback address 83
telephone support 120 demand paging 92
transfer stack overflow 135 discard page 92
TSR not supported 45 free DOS memory block 75
unexpected interrupt 134 free memory block 90
utilities 99 free physical address mapping 94
VESA support 130 free real-mode callback address 87
VM configuration 133 function calls 68
VMM 130 get and disable virtual interrupt state 95
VMM instability 131 get and enable virtual interrupt state 95
VMM restriction 45 get API entry point 96
Windows NT bug 140 get coprocessor status 97

DOS/4GW DOS extender 45 get DPMI version 88
DOS16M get exception handler vector 77

+ option 56 get free memory information 88
A20 option 58 get page size 91
loops option 58 get protected-mode interrupt vector 79

378

Index

get real-mode interrupt vector 76 Windows NT 275
get virtual interrupt state 96 dynamic link library initialization
lock linear region 91 OS/2 2.x 311
mark page 92 dynamic link library sample
physical address mapping 93 OS/2 2.x 306
resize DOS memory block 76 Windows NT 276
resize memory block 90 dynamic link library termination
set coprocessor emulation 98 OS/2 2.x 311
set exception handler vector 77 dynamic linking 275, 305
set protected-mode interrupt vector 79
set real-mode interrupt vector 77
simulate real-mode far call 81
simulate real-mode interrupt 81 E
simulate real-mode iret call 82
unlock linear region 91
vendor extensions 96

__E000 243virtual interrupt state 94
EMM386.EXE 138DPMI host
_endthread function 271, 301386Max 67
EnumChildWindows 224OS/2 VDM 67
EnumFonts 224QEMM QDPMI 67
EnumMetaFile 224Windows 3.1 67
EnumObjects 224DPMI specification 19, 27, 121
EnumProps 225DPMI_MEMORY_LIMIT
enums 255DOS setting 139
EnumTaskWindows 225dragon book 359
EnumWindows 225DRIVINIT.H 174
environment variablesDS segment register 359

DOS16M 51-54, 56, 58, 103_dwDeleteOnClose 150, 164, 266, 315
DOS4G 51DWORD 185, 245
DOS4GPATH 48_dwSetAboutDlg 150, 164, 266, 315
DOS4GVM 59-60_dwSetAppTitle 151, 164, 267, 316
DOSX 331_dwSetConTitle 151, 164, 267, 316
INCLUDE 201, 272, 302, 329, 335-336,_dwShutDown 151, 165, 267, 316

361-362_dwYield 151, 165, 267, 316
NETWARE_INCLUDE 335-336dynamic link libraries 294
PATH 155, 162, 201OS/2 2.x 305
WATCOM 155, 162, 272, 302, 362Windows NT 275
WINDOWS_INCLUDE 201, 207dynamic link library 191, 201

errno 209dynamic link library access
error messagesOS/2 2.x 308

DOS/4GW 111Windows NT 280
kernel 107dynamic link library creation

exampleOS/2 2.x 305

379

Index

variable number of arguments 357
EXE header 321 Gexecutable

linear 47
segmented 47

executable file 8, 12, 16, 144, 149, 154, 161, 260, GetIndirectFunctionHandle 221, 212, 219, 228,
265, 293, 297 237-238

extended memory 51 GetLastError 279
extender messages GetModuleFileName 277

DOS/4GW 107 GetProc16 224, 178, 180, 215, 235, 238-239
GETPROC_ABORTPROC 224
GETPROC_CALLBACK 224
GETPROC_ENUMCHILDWINDOWS 224F GETPROC_ENUMFONTS 224
GETPROC_ENUMMETAFILE 224
GETPROC_ENUMOBJECTS 224
GETPROC_ENUMPROPS_FIXED_DS 225__F000 243
GETPROC_ENUMPROPS_MOVEABLE_DSfar 167-168, 174, 226, 349

225far pointer 167
GETPROC_ENUMTASKWINDOWS 225files
GETPROC_ENUMWINDOWS 225more than 20 369
GETPROC_GLOBALNOTIFY 225unable to find 361
GETPROC_GRAYSTRING 225_fltused_ 362
GETPROC_LINEDDA 225free 180, 221
GETPROC_SETRESOURCEHANDLER 225free memory 22
GETPROC_SETTIMER 226using DOS/4GW 22
GETPROC_SETWINDOWSHOOK 226using Phar Lap 24
GETPROC_USERDEFINED_1 215using Windows 3.x 25
GETPROC_USERDEFINED_32 215FreeAlias16 217, 178, 210-211, 218
GETPROC_USERDEFINED_x 226FreeHugeAlias16 218, 211, 218
GetProcAddr 238FreeIndirectFunctionHandle 219, 212, 221-222,
GetProcAddress 184, 212, 237228, 237-238
GlobalAlloc 180FreeLibrary 278-279, 307
GlobalLock 239-240FreeProcInstance 182
GlobalNotify 225FTP site 354
GMEM_DDESHARE 180Fujitsu FMR-70 switch mode setting 52
GrayString 225
_grow_handles 370
GWL_WNDPROC 184

380

Index

int 168
INT 21H 61H INT 31H 24, 67
int 31H function calls 68
INT 33H

using DOS/4GW 33header 320
integer/pointer equivalence 355device driver 321
inter-language calls 339EXE 321
interrupt handling 65header files 361
interrupt services 76hello program 7, 11, 15, 291, 295
interruptsHIMEM.SYS 56

real-mode simulation 35HINDIR 245
invalid conversion 355Hitachi B32 switch mode setting 52
InvokeIndirectFunction 228, 219, 221-222,HRTEST.EXE 322

237-238HRTIMER.SYS 319
InvokeIndirectFunctionHandle 212
iostream 7, 11, 15, 148, 160, 264, 292, 296

I
K

i8253 timer 321
IBM PS/55 switch mode setting 52

kernel error messages 107IBM-compatible PC compilers 358
keyboard status 57IDT 65

import 336
import definitions 275, 305
import library 280, 309 LINCLUDE environment variable 201, 272, 302,

329, 335-336, 361-362
INDIR_CDECL 221
INDIR_CHAR 221 LDT 69
INDIR_DWORD 221 LE format 47
INDIR_ENDLIST 221 LibMain 277-279, 307
INDIR_PTR 221, 228 library functions
INDIR_WORD 221 default windowing 150, 164, 266, 315
_INITCODE 320 line number information 360
_INITDATA 320 linear executable 47
INITGLOBAL 320 LineDDA 225
initialization LINK 364

OS/2 2.x dynamic link library 311 LINK386 364
initialized global data 364 linker
Instant-D 47

381

Index

undefined references 362 common blocks 347
loadds pragma option 359 integer type 342
LoadLibrary 237, 277-279, 307 linking issues 341
LoadLibrary returns NULL 279, 307 memory models 341
local descriptor table 69 parameter passing 340
LocalAlloc 180 passing integers 342-343
LocalLock 177 passing strings 345-346
LocalPtr 243 symbol names 339
longjmp 175 variable number of arguments 349
Lotus 1-2-3 138 MK_FP16 231, 189, 232-233, 240
LZEXPAND.H 174 MK_FP32 232, 168, 177, 187, 214, 231, 233, 240

MK_LOCAL32 233, 177, 187, 189, 231-232
MMSYSTEM.H 174
mode switching

basis 104M
performance 101

module 336
mouse interrupt

macros using DOS/4GW 33
__WATCOMC__ 358 multi-threaded applications 269, 299

main_ 363 OS/2 2.x 299
MakeProcInstance 180, 182 Windows NT 269
malloc 180, 221 multi-threading issues
MapAliasToFlat 230 OS/2 2.x 299
MAXMEM virtual memory option 59, 133 Windows NT 269
memory management services 88
memory models

what you need to know 355
memory transfer rate 102 N
memory wait states 102
message

header files 361
unable to find files 361 NE format 47
undefined references 362 near 167

MessageBox 143, 153, 259 near pointer 167
messages NEC 98-series switch mode setting 52

DOS/4GW 107 NETWARE_INCLUDE environment variable
Microsoft 335-336

LINK 364 NLM
LINK386 364 debugging 335

Microsoft Win32 SDK 285 header files 335
MINMEM virtual memory option 59, 133 import libraries 335
mixed-language programming 339 libraries 335

argument passing 340 sampler 335

382

Index

NLM support
version 4.0 335 Pversion 4.1 335

NOAUTOPROCS 182-183
NOCOVERSENDS 178-179
Novell page locking services 90

TCPIP.EXE 139 page tuning services 92
NT character-mode applications 256 parameters
NT default windowing system 256 what you need to know 356
NT development 255 PASCAL 185, 212, 215
NULL assignment detected 365 PASS_WORD_AS_POINTER 234

debugging 365 patch level 353
NULL pointer 356 patches 353
NULLP 52 PATH environment variable 155, 162

PATH, environment variable 201
PDD 319
PENWIN.H 174O PENWOEM.H 174
performance 102
Phar Lap

386LINK 364object file 8, 12, 16, 144, 149, 154, 161, 260, 265,
Phar Lap TNT 255293, 297
physical device drivers 319OKI if800 switch mode setting 52
PMINFO 53, 101OLE.H 174
pointersopening more than 20 files 369

16-bit 168optimization
32-bit 168suggested reading 359
far 167what you should know 359
near 167OS/2

portabilityfullscreen application 291, 295
NULL pointer 356PM-compatible application 291, 295
signed char 357Presentation Manager application 291, 295

portingOS/2 PDD 319
from Microsoft C 368OS/2 physical device drivers 319
from UNIX 368OS/2 PM

POSIX applications 285API calls 316
POSIX libraries 285non-GUI applications 313
pragma 360non-GUI example 314

loadds option 359OS/2 Presentation Manager 313
predefined macrosOS/2 Workframe/2 325

__WATCOMC__ 358OS2.LIB 321
PRINT.H 174
printf 7, 11, 15, 148, 160, 264, 292, 296

383

Index

private memory pool 103 DS 359
PRIVATXM 55, 103, 138 segmented executable 47
problems selector

with d2 and d1 options 360 __A000 243
PROCPTR 239, 245 __B000 243
program timer 322 __B800 243
protected mode 56 __C000 243
PS/2 switch mode setting 52 __D000 243
pushing arguments __E000 243

what you need to know 356 __F000 243
LocalPtr 243

SendDlgItemMessage 178-179
SendMessage 178-179
setjmp 175Q
SetResourceHandler 225
SetTimer 226
setvbuf 130

questions 353 SetWindowLong 184
QUIET 51 SetWindowsHook 226

SHELLAPI.H 174
short 168
signed char 357R simulating real-mode interrupts 35
size of DGROUP exceeds 64K 364
_small_code_ 362
spawn 30real mode 56

using DOS/4GW 30real-mode memory 28
using Phar Lap 32using DOS/4GW 28

stack overflow 367using Phar Lap 29
static linking 275, 305registers
Strategy routine 321calling convention 356
STRESS.H 174ReleaseProc16 235, 226
structure alignment 255request packets 321
stub program 47, 100resource compiler 155, 162
supervisor 154, 161RMINFO 104
SWAPINC virtual memory option 59, 131, 133
SWAPMIN virtual memory option 59, 131, 133
SWAPNAME virtual memory option 59, 131
switch mode settingS

Fujitsu FMR-70 52
Hitachi B32 52
IBM PS/55 52
NEC 98-series 52segment ordering 321
OKI if800 52segment registers

384

Index

PS/2 52 TOOLHELP.H 174
switching modes transfer rate

performance 101 memory 102
symbolic information 360 translation services 79
system configuration file 294
system initialization file

AUTOEXEC.BAT 361
SYSTEM.INI 175 U

UDP16_CDECL 215T
UDP16_CHAR 215
UDP16_DWORD 215
UDP16_ENDLIST 215

TCPIP.EXE 139 UDP16_PTR 215
TECHINFO 353 UDP16_WORD 215
technical support unable to find files 361

Tenberry Software 119 undefined references 362
termination _big_code_ 363

OS/2 2.x dynamic link library 311 _cstart_ 362
thread creation _fltused_ 362

OS/2 2.x 300 main_ 363
Windows NT 270 _small_code_ 362

thread example WinMain 364
OS/2 2.x 301 UNIX 357
Windows NT 271

thread identifier
OS/2 2.x 301
Windows NT 271 V

thread limits
OS/2 2.x 303

thread termination
variable number of arguments 357OS/2 2.x 301
variablesWindows NT 271

set to zero 364_threadid macro 271, 301
VCPI 55threads of execution 269, 299
VER.H 174Throw 175
VERBOSE 51timer
video memory 20i8523 321

using DOS/4GW 20TIMER.EXE 322
using Phar Lap 21TlsAlloc 277, 279

virtual memory manager 59, 130TlsFree 279
TNT 255

385

Index

VIRTUALSIZE virtual memory option 60, 131, windowed applications
133 default windowing environment 147, 159, 263,

Visual Basic 201 314
16-bit DLL 205-206 Windows
32-bit DLL 205 binding 32-bit applications 154, 161
building examples 207 Windows 3.x extender 167
example 203 _16xxx functions 239, 247
Version 3.0 201 32-bit callback routines 239

VMC extension 60 aliases 240
VMM 59, 130 AllocAlias16 240

calling 16-bit code 237
components 171
creating applications 172
floating-point 175W
function pointers 238
MK_FP16 240
MK_FP32 240

W386DLL.EXT 155, 162 multiple instances 175
Watcom C/C++ overview 168

calling convention 356 pointer conversion 177-178
converting to 354 pointer handling 176
unique aspects 356 pointers 167

Watcom C/C++ options pointers in structures 239
d1 360, 371, 373 programming notes 173
d2 360, 371, 373 questions 237
i 361 resources 238

WATCOM environment variable 155, 162, 272, special functions 247
302, 362 structure 170

Watcom Strip Utility 360 thunks 240
__WATCOM_Prelude 335 WinExec 238
__WATCOMC__ 358 Windows API functions
WBIND 154-155, 161-162, 238 Catch 175
WBIND.EXE 154, 161 Throw 175
WCL 8-9, 144-145, 149-150, 293 Windows NT 255
WCL386 13, 17, 156, 163, 260-261, 265-266, character-mode applications 255-256

297 GUI applications 255
WDEBUG.386 175 programming notes 255
WEMU387.386 175 programming overview 255
WIN16.H 174 Windows NT GUI application 259
Win32 SDK 285 Windows NT GUI applications 259
WIN386 library routines 209 Windows NT GUI non-GUI applications 263
WIN386.EXT 154-155, 161-162 Windows supervisor 154, 161
_WIN386.H 174 WINDOWS.H 174, 178
Win386LibEntry 201 __WINDOWS_386__ 207

386

Index

__WINDOWS__ 207
WINDOWS_INCLUDE environment variable

201, 207
WinMain 191, 364
WORD 245
Workframe/2 325
WSTUB.C 48

X

XMS 56

387

